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Quantum internal modes of solitons in a one-dimensional easy-plane antiferromagnet
in a strong magnetic field
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We use the effective Lagrangian approach to study the dynamics of solitons in a one-dimensional easy-plane
Heisenberg antiferromagnet in the presence of a strong external in-plane magnetic fieldH close to a certain
critical valueHc.(HeHa)1/2 ~whereHe andHa are the exchange and anisotropy fields, respectively!. We show
that the dynamics of internal soliton degrees of freedom is essentially quantum, and they are strongly coupled
to the ‘‘translational’’ mode of soliton movement. These peculiarities lead to considerable changes in the
response functions of the system that can be detected experimentally; we discuss the possibility to observe the
signatures of internal soliton modes in~CD3!4NMnCl3 ~TMMC!. @S0163-1829~97!04638-9#
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I. INTRODUCTION

Study of soliton excitations in one-dimensional~1D! sys-
tems have been attracting much attention since the pion
ing work by Krumhansl and Schrieffer.1 Mikeska2 was the
first to calculate the contribution of solitons into observa
quantities for the realistic system, viz. the quasi-1D ea
plane ferromagnet CsNiF3 in an external magnetic field. Hi
prediction of the soliton-induced central peak in the dyna
cal structure factor was confirmed experimentally,3 which
gave rise to intensive theoretical and experimental stud
Since then, soliton signatures were reliably observed in st
and dynamic characteristics of various 1D magnets with b
ferromagnetic and antiferromagnetic coupling, see rec
reviews.4,5

The easy-plane 1D antiferromagnetic compound TMM
@~CD3!4NMnCl3# in an external field is one of the mos
widely studied materials6–14 ~see also Ref. 4 and referenc
therein!. Its magnetic ions have spinS55/2, and thus it is
believed that the dynamics of TMMC can be well describ
on the basis of classical equations of motion for the sub
tice magnetization. It is well known that in the presence o
strong magnetic field the equations of motion for antifer
magnets are rather complicated and cannot be reduced t
sine-Gordon~SG! model because of the importance of ou
of-plane deviations.9,13 Effective field-induced anisotropy
competes with the easy-plane anisotropy, so that at a ce
critical field Hc.(HeHa)1/2 ~whereHe and Ha are the ex-
change and anisotropy fields, respectively! in-plane and out-
of-plane magnon modes have equal excitation energies,
the SG approximation becomes obviously inadequate foH
close toHc .

At H5Hc the ‘‘easy plane’’ effectively changes. Ther
are, respectively, two types of static kink solutions,8 one of
which has lower energy atH,Hc and the other atH.Hc .
Corresponding dynamic solutions are much less underst
Different authors9,13,15–17obtained contradictory results con
cerning their stability. It was shown13,16,17that the effective
plane of rotation of the sublattice magnetization in a ki
depends on the kink velocity, and the two types of kin
transform into each other at some critical velocityvc , vc→0
at H→Hc .
560163-1829/97/56~14!/8886~8!/$10.00
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The main feature of the problem, determining kink stab
ity and dynamics in strong magnetic fields, is the presenc
an out-of plane magnon mode localized at the kink.16,17,5

This internal mode is highly nonlinear atv→vc and strongly
coupled to the ‘‘translational’’~zero! mode of the kink
motion,5 which makes its analysis rather complicated. Mo
over, it can be shown that because of the relatively sm
effective mass of solitons@the ratio of soliton and magnon
masses isS for antiferromagnets, while for ferromagnets th
ratio is proportional to the large parameterS(He /Ha)1/2# the
dynamics of internal soliton degrees of freedom in antifer
magnets is essentially quantum even for ‘‘almost classic
values ofS such as 5/2~Refs. 5 and 18! and exhibits subtle
effects distinguishing between integer and half-integerS.19,20

Thus, in our opinion, the internal dynamics of solitons
TMMC in a strong-field regime can be highly nontrivial, an
its consistent description, as well as experimental obse
tion, is a fascinating problem.

In this paper we present a detailed theoretical study of
soliton dynamics in a 1D ‘‘almost-classical’’ spin-S easy-
plane antiferromagnet in a strong external magnetic fi
close to the critical valueHc . We use the effective Lagrang
ian approach~valid for H close toHc! to reduce approxi-
mately the original field problem to one with a finite numb
of degrees of freedom, and after that a common canon
quantization is performed. We show that quantum effe
~tunneling between two energetically equivalent kink stat!
lead to the appearance of a localized mode that is a
coupled to the translational mode and thus depends on
soliton momentumP. At P50 the tunneling is suppresse
for half-integerS due to the topological effects, but at non
zeroP it becomes possible for anyS. We calculate the con-
tribution of the localized modes into the dynamic structu
factor ~DSF! and show that it leads to an additional pe
concentrated at nonzero frequency, which can be detecte
electron spin resonance~ESR! or inelastic neutron scatterin
~INS! technique. Numerical estimations of the correspond
resonance frequencies and the peak properties for TMMC
given. To our knowledge, at present the only known expe
ment probing internal soliton modes is the so-called ‘‘solit
magnetic resonance’’21 in the Ising-type quasi-1D antiferro
8886 © 1997 The American Physical Society
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56 8887QUANTUM INTERNAL MODES OF SOLITONS INA . . .
magnet CsCoCl3, and no such data exist for the Heisenbe
magnets.

This paper is organized as follows: In Sec. II we introdu
the model. In Sec. III we derive an effective model of inte
nal kink dynamics, perform classical linear analysis of t
spectrum of excitations against the background of kinks,
discuss the soliton stability problem, and in Sec. IV we p
form quantization of the effective model and discuss the
havior of the energy levels of localized modes. In Sec. V
soliton contribution to the response functions is consider
and numerical estimations of predicted effects for TMM
are given. Finally, Sec. VI contains concluding remarks.

II. MODEL

We consider a one-dimensional two-sublattice Heisenb
antiferromagnet~AFM! of the TMMC type in an externa
magnetic field. This system is well described by the follo
ing Hamiltonian:

H5(
n

$JSW nSW n111D1~Sn
z!22D2~Sn

y!22gmBHW SW n%, ~1!

whereJ.0 is the exchange constant,mB is the Bohr mag-
neton,g is the Lande´ factor,D1 andD2 are anisotropy con-
stants,D1@D2.0, HW is the magnetic field, and spinsSW n are
treated as classical vectors. In the absence of the fieldxy is
an easy plane, andy is the easiest axis in this plane~the case
of ‘‘pure’’ easy-plane AFM corresponds toD250!; the
chain axis is alongz. For TMMC the value of the spin is

S5 5
2 , and the following values for the parameters of t

classical Hamiltonian have been established:10 JS2585 K,
D1S251.9 K, D2S250.022 K, andg52.01.

Long-wavelength dynamics of AFM can be describ
within the nonlinear sigma model approach. It is conveni
to introduce the antiferromagnetism vector~the sublattice
magnetization! lW i5(SW 2i 112SW 2i)/2S at each magnetic el
ementary cell. At low temperatures, when the magnetiza
mW i5(SW 2i 111SW 2i)/2S is small, lW can be regarded as a un
vector, and after passing to the continuum limit the followi
Lagrangian can be obtained:

L5
1

2
JS2aE dzH 1

c2 ~] t lW !22~]zlW !22
1

x0
2 l z

22
1

xb
2

2
g2

c2 ~ lW•HW !21
2g

c2 HW •~ lW3] t lW !J
1

\S

2 E dz lW•~¹ lW3] t lW !. ~2!

One can find derivation from different points of view
Refs. 22–25; this approach is closely related to the co
monly used Mikeska’s formulation.6 Here a is the lattice
spacing,c52JSa/\ is the limiting velocity of spin waves
g5gmB/\ is the gyromagnetic ratio, andx05a@J/2(D1
1D2)#1/2 and xb5a(J/2D2)1/2 are the characteristic lengt
scales. The last term in Eq.~2! is the so-called topologica
term, which can be rewritten as 2p\SQ, where Q is the
Pontryagin index~the winding number! of a given space-
time configuration of the fieldlW. This term is irrelevant in
e
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classical analysis, but is very important for the quantu
theory since it distinguishes between integer and half-inte
S.

Within this approximation, the vector of magnetizationmW
is a ‘‘slave’’ variable and can be expressed through the
tiferromagnetism vectorlW:

mW 5
\

4JS
~ lW3] t lW !1

gmB

4J
$HW 2 lW~HW • lW !%2

1

2
a¹ lW. ~3!

Further, it is convenient to introduce angular variables
the vectorlW. We choose the easiest axisy as a polar one, and
put

l y5cosu, l z5sinu cosw, l x5sinu sinw.

Let us set the field in plane perpendicular to the easy a

HW ixŴ , theny is always the easiest axis, and there is no sp
flop transition. However, atH5Hc , where

Hc52~2JD1S2!1/2, ~4!

the axesx andz switch their roles: the easy plane isxy when
H,Hc , andyz whenH.Hc . In this paper, we consider th
case of strong fieldsH'Hc ; for TMMC the critical field is
of the order of 100 kOe. In what follows, we can safe
neglect any contribution coming fromD2 because in strong
fields the field-induced anisotropy in the basal plane is m
larger than the initial crystal-field anisotropy. Hereafter, w
assume that the field is close toHc , and regard the quantity

r512~H/Hc!
2 ~5!

as a small parameter playing the role of effective rhombic
~as far as only static properties are considered,H5Hc cor-
responds to a ‘‘uniaxial’’ situation!.

III. EFFECTIVE MODEL OF KINK DYNAMICS

Because of the presence of magnetic field, the equat
of motion for the model~2! contain not only the usua
Lorentz-invariant terms, but also terms of the first order
time derivatives, and thus their analysis is rather com
cated. However, one can easily find static soliton solutio
There are two types of static kinks, withlW rotating in thexy
plane (w56p/2) or in theyz plane (w50, p).8 The behav-
ior of the angleu in both kinks is given by

cosu056tanh@~z2zs!/z0#, ~6!

where the kink thickness isz05x0 for the yz kink and
z0.x0Hc /H5x0 /(12r)1/2 for the xy kink, and zs is an
~arbitrary! kink coordinate. For H,Hc the kink with
w56p/2 is the lowest-energy nonlinear excitation, and f
H.Hc this role goes to the kink withw50,p; at H5Hc
their energies are equal, as well as the energies of in-p
and out-of-plane magnon branches.

As shown in Refs. 26 and 16, approximate soliton so
tions can be constructed using the following trick: from t
equations of motion determined by the Lagrangian~2! one
can easily see that the characteristic space scale of thw
variation l w5x0 /Ar is much larger than the characterist
thickness of the kinkx0 . Then, ‘‘within the kink,’’ i.e.,
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8888 56B. A. IVANOV AND A. K. KOLEZHUK
within the region where the variation ofu mainly takes place,
we can neglect the spatial dependence ofw and put
w5ws5const. Such approximate soliton solutions with co
stantw, as shown in Refs. 26 and 16, can be obtained
arbitrary velocity, and the only requirement is thatr has to
be small. The angle of out-of-plane deviationws changes
from 6p/2 to 0,p when the velocity changes from 0 to
certain critical value.

To study the dynamics of out-of-plane motion, we use
same trick, but regardzs and ws as new dynamic variable
slowly varying in time: we assume that the soliton soluti
has the form

cosus5s tanhS z2zs~ t !

z0~ws!
D , w5ws~ t !,

~7!

z0~w![x0~12r sin2w!21/2,

heres561 is the topological charge distinguishing kink
and antikinks. Substituting the ansatz~7! into the Lagrangian
~2! and assuming thatzs andws are ‘‘slow’’ variables, i.e.,

żs!c, ẇs!v0[c/x0 , ~8!

one can obtain the following effective Lagrangian with on
two degrees of freedom:

Leff52E0~12r sin2ws!
1/21

E0

2c2 ~ żs
21x0

2ẇs
2!

1
pE0

2c
s żs~12r!1/2cosws2\Sẇs . ~9!

Here the dot denotes differentiation with respect to time, a
E052S2(2JD1)1/2 is a characteristic energy scale~rest en-
ergy of a soliton atH5Hc). The last term in the Lagrangia
comes from the topological term in Eq.~2! and is ineffective
in classical treatment since it is a complete derivative. Ho
ever, in quantum treatment it changes the definition of
nonical momentum conjugate tows , which is very impor-
tant, as we will see below.

The effective potential for the internal variablews
strongly depends on the kink velocityżs . One can see that
classical stability analysis of the effective Lagrangian~9! al-
lows one to reproduce the results of a more rigorous
proach of Refs. 16, 17, and 5, which we briefly revisit belo
The canonical momentumP conjugate tozs ,

P5
E0

c2 żs1P0~12r!1/2s cosws , where P05
pE0

2c
,

~10!

is conserved, and thus it is convenient to express everyt
in terms ofP. The effective potential

Ueff5E0~12r sin2ws!
1/2

1
p2E0

8 H P

P0
2s cosws~12r!1/2J 2

~11!

has four extrema as a function ofws , at ws50,p and at
ws5w1,2(P), wherew1,2(P) are two roots of the equation

cos~ws!5sP/Pc , ~12!
-
r

e

d

-
-

-
.

ng

Pc.P0H 12rS 1

2
2

4

p2D J .

Extrema atws50,p correspond toyz kinks, and extrema a
ws5w1,2(P) correspond toxy type kinks. When the velocity
of anxy-type kink is zero, the plane of rotation of the vect
lW is xy, and this plane smoothly changes toyz whenP tends
to Pc , so that anxy-type kink smoothly transforms into ayz
kink. The frequency of linear oscillations around those e
trema is given by

v l
25v0

2f ~r!3H s0

P

Pc
21 for ws50,p

12
P2

Pc
2 for ws5w1,2~P!

, ~13!

where

s05s sgn~cosws!,

f ~r!.
p2

4 H 12
p224

p2 rJ .

Thus, xy-type kinks are stable in the entire regio
2Pc<P<Pc where the corresponding solutions~12! have
sense. The stability ofyz kinks depends onP and on the sign
of the quantitys05sgn(u08 cosws): yz kinks with s0.0 are
stable at P.Pc , and those withs0,0 are stable at
P,2Pc . For eachyz kink there exist two possible ‘‘daugh
ter’’ xy-type kinks, corresponding to the two possible so
tions w1,2(P), so that the transition from ayz kink to anxy
kink when uPu drops belowPc is a spontaneous breaking o
symmetry.

The dispersion relation for soliton excitations, i.e., the d
pendence of their energyE on the momentumP, is sche-
matically shown in Fig. 1~the curve labeled ‘‘classical’’!.
For r.0, i.e., H,Hc the minimal energy is reached a
P50, while at r,0 (H.Hc) the minimum is located a
P5P0 ; in both cases the second derivatived2E/dP2 is dis-
continuous atP56Pc .

It should be remarked that the effective model~9! was
derived under the assumption that the variablews is ‘‘slow,’’
and this assumption has to be checked self-consistently a
end. Thus, the expressions~13! make sense only ifv l

2!v0
2 .

This does not matter, of course, for the classical linear an
sis of stability presented above, because the correspon
frequencies are small in the vicinity of the transition, but
indicates that those classical results cannot be used for
adequate description of the internal dynamics.

Indeed, in linear analysis the localized mode frequenc
zero atP5Pc , which means~i! strong nonlinearity: anhar
monic terms have to be taken into account;~ii ! the impor-
tance of quantum effects: the magnitude of quantum ze
point fluctuations around the classical minima of t
effective potential strongly increases when the potential w
becomes ‘‘flat.’’

IV. QUANTUM INTERNAL MODES

Since the effective model~9! contains only two degrees o
freedom, one can easily quantize it in a canonical way. T
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Lagrangian does not depend onzs and thus the total momen
tum P is conserved and can be treated as ac number, so that
we are left with only one variablews . The Hamiltonian can
be easily obtained in the form

Ĥ5
\2v0

2

2E0
H i

]

]ws
1SJ 2

1Ueff~ws!, ~14!

whereS in curly brackets appears because the last term
Eq. ~2! changes the definition of the angular momentum.
we will see below, the presence of this term changes
situation drastically depending on whetherS is integer or
half-integer. For the wave functionC(ws) one has the usua
periodic boundary conditionsC(w)5C(w12p).

The effective potentialUeff generally has two wells, with
energetically equivalent well minima; atP50 the minima

FIG. 1. Typical dependence of the soliton energy levelsE on its
momentumP for half-integer spinS ~levels presented in this figur
were computed forS5

5
2!: ~a! H,Hc (r50.2); ~b! H.Hc

(r520.2). The curve labeled ‘‘classical’’ corresponds to the res
of classical calculation~Ref. 5! for the lowest energy state; dashe
pieces of the curve indicate unstable states. ForS5

5
2 the 16 levels

are completely inside the magnon continuum and thus are
shown with dashed lines. For integerS the degeneracy atP50 is
lifted.
in
s
e

are located atws56p/2, asP deviates from zero they both
move towards 0 orp depending on the sign ofP and the
‘‘generalized’’ topological charges0 , and atP56Pc they
merge into one well atws50 or p. One may expect tha
tunneling between equivalent minima atuPu,Pc splits the
lowest-energy levels, leading to the appearance of one m
internal soliton mode. However, using arguments of
same type as in Refs. 19 and 20, it is easy to show tha
P50 the tunneling is possible only for integerS. Indeed, the
tunneling amplitude is proportional to the path integral,

E
w1~P!

w2~P!

DwsexpH i

\ E dtLeffJ , ~15!

where w1,2(P) are the well minima and the effective La
grangian is defined by Eq.~9!. SinceLeff contains the topo-
logical term\Sẇs , different paths contribute with the phas
factor proportional toeiSDws, whereDws is the change inws
along the path. AtP50 one has two equivalent paths wit
Dws56p, so that their contributions cancel each other
half-integerS ~recall that in the case of TMMCS5 5

2!. If
PÞ0, the two paths become inequivalent, thus allowing n
zero tunneling amplitude.

The Schro¨dinger equation with the Hamiltonian~14! can
be easily solved numerically, and one gets the energy eig
values as functions of the soliton momentumP; a typical
level structure is shown in Fig. 1. All states at fixedP,

cn,n~P,ws!5un,n~P,ws!e
iSws,

can be labeled with two quantum numbersn andn ~n being
the parity of the ‘‘reduced’’ wave functionu!, and for half-
integerS odd and even states are degenerate atP50. One
can see that quantum effects change the soliton disper
considerably compared to the classical calculation; part
larly, the dispersion tends to have a minimum at nonzeroP
even for fields lower thanHc , which means thatHc is effec-
tively renormalized towards its decrease. This renormali
tion is not small, as seen from Fig. 1, since atr50.2 the
lowest energy is still reached atPÞ0. Unfortunately, we are
not able to calculate this renormalization quantitatively: fi
of all, our effective model is valid only at smallr and, sec-
ond, there are other quantum effects influencing the effec
soliton energy~the change in the energy of zero-point flu
tuations of magnon modes in the presence of a kink! that are
not considered here; the interested reader is referred for
tails to the original papers27–29 and to the recent review.4

From the picture of the energy levels presented in Fig
one can see that there aretwo possible types of out-of-plane
modes: one is ‘‘classical’’ in the sense that it corresponds
~nonlinear! oscillations ofw around the classical minima in
the two-well potentialUeff ; an example of the mode of thi
type is given by 16 levels in Fig. 1. The other mode i
‘‘purely quantum;’’ it corresponds to tunnelling between tw
equivalent classical minima and is always the lowest exc
tion; this mode is unique and is labeled 02 in Fig. 1.

Again, as in the classical case, the results of semiquan
treatment should be checked for self-consistency at the
we can trust only in those energy levels that are considera
lower thanEg.s.1\v0 , whereEg.s. is the ground-state leve
~‘‘0 1’’ in Fig. 1!. From this condition one can see th
‘‘classical’’ modes are in fact always ‘‘fast’’ and, strictly

lt

so



pr
o

ar
a
di
sid

th
a
n

ni

n
om
an

ng
xc

iti

ha

at

i-

ts
nt
fe

-1

er
b

an

re

g

fo

n

the

in

in
at
m

be
s,
is
ith

ge
dy-
med

tri-

d
g-
to

n-
d-
tes

-

the
and
en-
ing
on

8890 56B. A. IVANOV AND A. K. KOLEZHUK
speaking, cannot be described adequately within the
posed scheme. Moreover, one can see that actually only
of the ‘‘classical’’ modes~namely, ‘‘11’’ ! can exist at all,
since the energy levels of the other ‘‘classical’’ modes
completely inside the magnon continuum and thus they c
not exist as localized modes. The situation, however, is
ferent with the quantum mode: its frequency remains con
erably lower thanv0 in a wide range ofP. It is always the
lowest excitation and thus the most important one for
low-temperature physics of the system. In this paper, we
mainly interested in this second type of internal excitatio
and in the next section we study the possibility of its ma
festation in the experimentally observable quantities.

V. INTERNAL SOLITON MODES
AND RESPONSE FUNCTIONS

In this section we apply the results obtained so far to fi
out how the excitation of internal soliton degrees of freed
contributes to the response functions of an easy-plane
ferromagnet in a strong-field regime~H close toHc!.

We wish to begin this section with a remark concerni
the relation between the gap in the spectrum of linear e
tations\v0 and the kink rest energyE0 in various soliton-
bearing systems. For the model of structural phase trans
used by Krumhansl and Schrieffer\v0}F0 , and E0}F0

3,
whereF0 is the magnitude of the order parameter, so t
near the transition pointE0!\v0 , which justifies neglecting
kink-phonon interaction atT!E0 in Ref. 1. For ferromag-
nets one obtainsE0 /\v0}S(J/D)1/2, whereJ andD are the
exchange and anisotropy constants, respectively, so th
the case of the Heisenberg magnetsJ/D@1, andE0@\v0
for any S. For antiferromagnets the situation is ‘‘intermed
ate’’: E0 /\v0}S, and the inequalityE0 /\v0@1 holds only
for S@1. One can see that in the large-S limit solitons in
antiferromagnets are much ‘‘lighter’’ than in ferromagne
however, for realistic small-S systems the above stateme
may be true as well: For example, for a 1D easy-plane
romagnet in an external in-plane magnetic field~the geom-
etry typical for the experiments on widely studied spin
quasi-1D compound CsNiF3 with J523.6 K, D54.5 K! the
ratio of soliton and magnon energies isE0 /\v0

54SA2J/D'12.95 for CsNiF3, and for TMMC E0 /\v0
5S55/2, which is more than five times smaller.

The relation S@1 is often used as a condition und
which a quantum spin system can be treated classically,
in actual practice the strong inequality is not needed,
classical equations of motion work well, say, forS55/2, as
in case of TMMC. Thus, in antiferromagnets for realisticS
valuesE0 is only a few times greater than\v0 ~for example,
in the case of strong fields close toHc the characteristic
values of the kink energy and magnon gap for TMMC a
E0.20 K and \v0.7 K, respectively!, and the condition
usually used\v0!T!E0 can hardly be satisfied as a stron
inequality. Therefore, for antiferromagnets\v0 is of the or-
der ofT within the temperature rangeT!E0 where the phe-
nomenological approach is valid~practically, it is sufficient

that TaI 1
3 E0!, so that one should use quantum statistics

magnon modes.
The most general quantity determining the response fu
o-
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tions is the so-called dynamical structure factorSab(q,v),
which is essentially the space-time Fourier component of
two-spin correlation function̂Sa(n,t)Sb(n8,0)&. In case of
antiferromagnet, the quantities of interest are~i! the DSF
component atq50, describing the intensity of response
ESR experiments;~ii ! the DSF component atq'QB , where
QB is the Bragg wave vector, which is usually measured
INS experiments. The main contribution to the DSF
q5QB comes from the correlator of the antiferromagnetis
vector ^ lW(z,t) lW(z8,0)&, and the component atq50 is deter-
mined by the correlator of magnetization^mW (z,t)mW (z8,0)&.30

The soliton contribution to the correlation functions can
calculated using the approximation of the soliton ideal ga1

which means that at low density of kinks the main role
played by one-soliton correlations. Then one has to deal w
correlators of the form

E dzE dz8eiq~z2z8!^ f „z2zs~ t !…

3A~ws ,t ! f „z82zs~0!…A~ws,0!&, ~16!

whereA and f are generally certain operators. The avera
should be taken in both quantum-mechanical and thermo
namic senses. Quantum-mechanical averaging is perfor
with the wave functionsCl,P5eiPzscl(P,ws) ~we use the
notationl5$n,n% for the sake of brevity!, and the thermo-
dynamic average should be performed with the Gibbs dis
bution function

wl~P!5~2p\!21e2El~P!/Te2Ss~l,P!/T, ~17!

wherew is normalized to the total density of solitons, an
the quantitySs is the change in the free energy of the ma
non gas due to the presence of a kink, which is attributed
the kink in the phenomenological approach:31

Ss~l,P!5T(
j
E dkDn~ j !~k,l,P!ln@2 sinh~\vk

~ j !/T!#.

Here j 51,2 labels different branches of magnons of the co
tinuous spectrum, andvk

( j ) are the frequencies of correspon
ing modes. The change in the magnon density of sta
Dn( j )(k,l,P) is connected with the phase shiftDs

( j )

3(k,l,P) acquired by a magnon of thej th branch with
wave vectork after its interaction with the kink having quan
tum numbersl, P: Dn( j )5(1/2p)(dDs

( j )/dk). @In fact, Ss

contains divergent terms connected with the change in
energy of zero-point vibrations between the ground state
the one-soliton state. This divergence, however, is comp
sated by the counterterms arising from the normal order
of operators, yielding finite quantum correction to the solit
energy.27–29#

Using the above arguments, expression~16! can be re-
written as

u f ~q!u2(
l,l8

E dPe2@El~P!1Ss~l,P!#/T

3u^l,PuÂul8,P2\q&u2d„El~P!

2El8~P2\q!2\v…, ~18!
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whereul,P&[cl(P). At low temperaturesT!E0 one may
take into account only the contribution of the lowest tw
soliton levels 06 ~see Fig. 1!.

At T!\v0 , Ss is proportional to exp(2\v0 /T) and can
be neglected. AtT>\v0 the effect ofSs becomes signifi-
cant; its accurate calculation requires solving the solit
magnon scattering problem to get the phase shifts, whic
too complicated to do analytically. However,zy-type soli-
tons, i.e., kinks withP>Pc , classically havews50,p, thus
being ‘‘sine-Gordon’’ in structure, and the phase shifts
the sine-Gordon problem are known. In this caseDs

(1,2)(k)
.22 arctan(kx0) at small kink velocitiesv!c, and for
T@\v0 we obtain the well-known SG result

Ss522T ln222T ln~\v0 /T!.

On the other hand, the same SG result should be valid foxy
solitons withP50. We will assume that the same express
can be applied for allP; this assumption seems plausib
though it cannot be justified in a rigorous way. One c
expect that the possible weak dependence ofSs will lead to
certain renormalization of theP dependence of the solito
energy levelsEl , but we believe that our results will remai
qualitatively correct.

The conditions necessary for the consistency of our
proach to calculate the response functions can be sum
rized as follows:~i! smallness ofr; ~ii ! smallness of the
temperatureT ~compared with the soliton energyE0 or, bet-
ter, compared with the magnon energy\v0 to avoid the
possible influence of theP dependence of unknown phas
shifts as described above!; ~iii ! only the low-frequency par
~at most up toV5v0! of the response can be trusted, a
cording to the demand thatws should remain ‘‘slow.’’

A. Internal modes in ESR

The static component of magnetizationmW , according to
Eq. ~3!, is directed along theOx axis. Let us assume that th
pumping rf field is parallel toOz, then the intensity of the
ESR signal is proportional toSzz(0,v) and is determined by
the correlator ofmz . It is easy to see that only the first ter
in mz , according to Eq.~3!, contributes toSzz(0,v) at non-
zero frequencies@the last term in Eq.~3! does not depend on
ws and thus yields the delta function inv, and the contribu-
tion from the second term just vanishes because atq50 the
corresponding form factorf (q) in Eq. ~18! is zero#. Thus,
the significant term inmz is proportional to sin2 usẇs, and
ẇs , according to Eq.~9!, is proportional top̂w2\S, where
p̂w52 i\ ]/]ws is the operator of the canonical momentu
conjugate tows . Again, \S yields d~v!, so that the only
contribution at nonzerov comes frompw . Typical plots of
the ESR response depending on frequency forS5 5

2 are
shown in Fig. 2; one can see that the transitions between1

and 02 soliton levels lead to a pronounced peak with a ma
mum located well below the antiferromagnetic resona
frequencyv0 . Since the levels 01 and 02 have different
minima in theirP dependencies, the position of peaks in t
ESR response at positive and negativev is also different.
When the temperature increases, peaks shift towardsv0 , but
still keep their shape with a clearly pronounced maximu
Thus we expect that this effect can be really observable
-
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perimentally in TMMC, where atH5Hc the three-
dimensional ordering temperatureTN.3 K, i.e., about
0.15E0 .

B. Internal modes in INS

In neutron experiments, it is usually possible to meas
either the longitudinal~with respect to the magnetic field!
DSF component Si5Sxx(q,v), or the transverse one
S'5Syy(q,v)1Szz(q,v), with q close to the Bragg wave
vector QB . In TMMC, both those components exhibit th
presence of the soliton central peak.14 In the transverse DSF
the dominating contribution comes fromSyy ~which corre-
sponds to the contribution of flips of the direction of th
antiferromagnetism vectorlW along the easy axisOy!, and
Syy is insensitive to the effects of internal modes becausl y
does not depend onws ; that is why we will be interested
only in the longitudinal componentSxx determined by the
correlator of l x . Figure 3 shows several typical plots o

FIG. 2. Plots ofSzz(0,v) ~this quantity determines the intensit
of the ESR signal! for S5

5
2 and different values of the paramete

r512H2/Hc
2 : ~a! T50.05E0 ; ~b! T50.15E0 . Arrows show the

positions of the boundary of the continuous magnon spectrum
H5Hc .
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Sxx(QB ,v) for different values of the field and temperatu
@actually, we have also calculatedSxx(q,v) for a few values
of q close toQB , but the resulting curves exhibit very wea
q dependence, so we restrict ourselves to presenting
plots forq5QB#. One can see that the most significant ma

FIG. 3. Plots of the longitudinal DSFSxx(QB ,v) for S5
5
2 and

different values of the parameterr512H2/Hc
2 : ~a! T50.05E0 ;

~b! T50.1E0 .
ly
-

festation of internal soliton modes is a nonzero width of t
central peak~CP! at q5QB ~recall that in the standard idea
gas calculation6 without taking into account internal degree
of freedom the CP width for the longitudinal component
proportional touq2QBu!. However, it should be mentione
that the effects of soliton-magnon and soliton-soliton scat
ing, which we do not consider here, also lead to a nonz
CP width atq5QB ,32 and therefore it may be problematic t
separate those two contributions experimentally. The ad
tional peak at nonzero frequency is also present inSxx, but
with increasing temperature it quickly gets smeared by
tails of the dominating central peak@see Fig. 3~b!#, and in
TMMC at H'Hc for T>TN.0.15E0 this peak should be
almost completely suppressed.

VI. SUMMARY

We consider the problem of soliton dynamics in a 1
‘‘almost-classical’’ spin-S easy-plane antiferromagnet i
strong external magnetic fieldH, taking into account interna
degrees of freedom of solitons. For this purpose, we use
effective Lagrangian approach, which is valid forH close to
a certain critical valueHc.(HeHa)1/2 ~whereHe andHa are
the exchange and anisotropy fields, respectively! and allows
one to reduce the original continuum field problem to t
problem with only two degrees of freedom: one is the solit
coordinate and describes its translational motion, and
other one is the internal angle of out-of-plane deviation. W
show that quantum effects of tunneling between two en
getically equivalent kink states lead to level splitting for a
values ofS; the usual selection rule,19,20 which prohibits the
tunneling for half-integerS, is lifted due to the strong cou
pling between internal and translational modes. It is p
dicted that this internal mode can be detected in TMM
@~CD3!4NMnCl3# by means of the electron spin resonance
inelastic neutron scattering technique; we also show
ESR is a preferable method because the corresponding
nance peak is much more pronounced compared to tha
the INS response.
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