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Quantum internal modes of solitons in a one-dimensional easy-plane antiferromagnet
in a strong magnetic field
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We use the effective Lagrangian approach to study the dynamics of solitons in a one-dimensional easy-plane
Heisenberg antiferromagnet in the presence of a strong external in-plane magnetit &lelse to a certain
critical valueH .= (H H,) ¥ (whereH, andH , are the exchange and anisotropy fields, respectivéle show
that the dynamics of internal soliton degrees of freedom is essentially quantum, and they are strongly coupled
to the “translational” mode of soliton movement. These peculiarities lead to considerable changes in the
response functions of the system that can be detected experimentally; we discuss the possibility to observe the
signatures of internal soliton modes (6D;),NMnCl; (TMMC). [S0163-182€27)04638-9

I. INTRODUCTION The main feature of the problem, determining kink stabil-
ity and dynamics in strong magnetic fields, is the presence of
Study of soliton excitations in one-dimensiortaD) sys-  an out-of plane magnon mode localized at the Kfhk®

tems have been attracting much attention since the pioneethis internal mode is highly nonlinear at-v, and strongly
ing work by Krumhansl and SchriefférMikesk& was the coupled to the “translational”(zerg mode of the kink

first to calculate the contribution of solitons into Observablemotion?which makes its analysis rather complicated. More-

qluantTes for the tr(e:a“S.tF'iC systertn, V'ZI‘ the qltJ_asf[-lkljD |if.a‘s’ybver, it can be shown that because of the relatively small
plane ferromagnet CSN4fin an external magnetic field. His . effective mass of solitonghe ratio of soliton and magnon

prediction of the sollton-lnduce_d central pe_ak in the d.ynam"masses i§ for antiferromagnets, while for ferromagnets this
cal structure factor was confirmed experimentallwhich

o : v
gave rise to intensive theoretical and experimental studie$° IS proportional to the large parame&{He/H.) ?] the

Since then, soliton signatures were reliably observed in statigynam'cs. of mterngl soliton degrees of fre‘v‘edom n antlfgrro’—'
and dynamic characteristics of various 1D magnets with botf"@gnets is essentially quantum even for “almost classical
ferromagnetic and antiferromagnetic coupling, see recenfalues ofS such as 5/ZRefs. 5 and 1Band exhibits subtle
reviewss effects distinguishing between integer and half-integéf2°

The easy-plane 1D antiferromagnetic compound TMMCThus, in our opinion, the internal dynamics of solitons in
[(CDy),NMNCl5] in an external field is one of the most TMMC in a strong-field regime can be highly nontrivial, and
widely studied materiafs'* (see also Ref. 4 and references its consistent description, as well as experimental observa-
therein. Its magnetic ions have spi8=5/2, and thus it is tion, is a fascinating problem.
believed that the dynamics of TMMC can be well described In this paper we present a detailed theoretical study of the
on the basis of classical equations of motion for the sublatsoliton dynamics in a 1D “almost-classical” spB-easy-
tice magnetization. It is well known that in the presence of gplane antiferromagnet in a strong external magnetic field
strong magnetic field the equations of motion for antiferro-close to the critical valuél.. We use the effective Lagrang-
magnets are rather complicated and cannot be reduced to tien approach(valid for H close toH.) to reduce approxi-
sine-Gordon(SG) model because of the importance of out- mately the original field problem to one with a finite number
of-plane deviation&®® Effective field-induced anisotropy of degrees of freedom, and after that a common canonical
competes with the easy-plane anisotropy, so that at a certaguantization is performed. We show that quantum effects
critical field H.=(HH,)"? (whereH, andH, are the ex- (tunneling between two energetically equivalent kink states
change and anisotropy fields, respectiyéfyplane and out- lead to the appearance of a localized mode that is also
of-plane magnon modes have equal excitation energies, ambupled to the translational mode and thus depends on the
the SG approximation becomes obviously inadequateéHfor soliton momentunP. At P=0 the tunneling is suppressed
close toH.. for half-integerS due to the topological effects, but at non-

At H=H, the “easy plane” effectively changes. There zeroP it becomes possible for arfy. We calculate the con-
are, respectively, two types of static kink solutidnsne of  tribution of the localized modes into the dynamic structure
which has lower energy & <H. and the other aH>H.. factor (DSFH and show that it leads to an additional peak
Corresponding dynamic solutions are much less understoodoncentrated at nonzero frequency, which can be detected by
Different author$*3>°~1obtained contradictory results con- electron spin resonan¢ESR) or inelastic neutron scattering
cerning their stability. It was showfi'®1/that the effective  (INS) technique. Numerical estimations of the corresponding
plane of rotation of the sublattice magnetization in a kinkresonance frequencies and the peak properties for TMMC are
depends on the kink velocity, and the two types of kinksgiven. To our knowledge, at present the only known experi-
transform into each other at some critical veloaity, v.—0  ment probing internal soliton modes is the so-called “soliton
atH—H,. magnetic resonance?! in the Ising-type quasi-1D antiferro-
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magnet CsCoGJ and no such data exist for the Heisenbergclassical analysis, but is very important for the quantum

magnets. theory since it distinguishes between integer and half-integer
This paper is organized as follows: In Sec. Il we introduceS.

the model. In Sec. Ill we derive an effective model of inter-  Within this approximation, the vector of magnetizatin

nal kink dynamics, perform classical linear analysis of theis a “slave” variable and can be expressed through the an-

spectrum of excitations against the background of kinks, andferromagnetism vector:

discuss the soliton stability problem, and in Sec. IV we per- " L

form quantization of the effective model and discuss the be- . = o= Que s - s o -

havio(;1 of the energy levels of localized modes. In Sec. V the m= Hs(l Xail)+ H{H —I(H-D}- EaVI C)

soliton contribution to the response functions is considered,

and numerical estimations of predicted effects for TMMC  Further, it is convenient to introduce angular variables for

are given. Finally, Sec. VI contains concluding remarks. the vector. We choose the easiest ayiss a polar one, and

put

1. MODEL . . .
ly=cosd, |,=sind cosp, | =sind sine.
We consider a one-dimensional two-sublattice Heisenber
antiferromagne{AFM) of the TMMC type in an external
magnetic field. This system is well described by the follow-HIX, theny is always the easiest axis, and there is no spin-
ing Hamiltonian: flop transition. However, at=H_, where

Eet us set the field in plane perpendicular to the easy axis,

H.=2(2JD;$%)%?, 4

the axesx andz switch their roles: the easy planexg when

whereJ>0 is the exchange constantg is the Bohr mag- H<Hc, andyzwhenH>H.. In this paper, we consider the
neton,g is the Landefactor, D, andD,, are anisotropy con- Case of strong fieldsi~H; for TMMC the critical field is
stantsD;>D,>0, H is the magnetic field, and spirg are of the order of 100 kOe. In what follows, we can safely
treated as classical vectors. In the absence of the Xiglis r_leglect any co_ntr|but|on coming fr_omz because in strong
an easy plane, angis the easiest axis in this plariaie case fields the fmld-md_u_ced anisotropy in _the basal plane is much
of “pure” easy-plane AFM corresponds t®,=0); the larger than the |n!t|al grystal-fleld anisotropy. Hereafter,' we
chain axis is along. For TMMC the value of the spin is assume that the field is closelth., and regard the quantity

H=§ {38,811+ D1(S5)2—Dy(S)2—gugHS}, (V)

S= 2, and the following values for the parameters of the p=1—(H/H.)? (5)
classical Hamiltonian have been establisftdS?=85 K, _ _ N
D,$?=1.9 K, D,S?=0.022 K, andg=2.01. as a small parameter playing the role of effective rhombicity

Long-wavelength dynamics of AFM can be described(@S far as only static properties are considetée;H. cor-
within the nonlinear sigma model approach. It is convenienf€SPONds o a “uniaxial” situation
to introduce the antiferromagnetism vecthe sublattice
magnetization T — (S, ., 5,)/2S at each magnetic el lll. EFFECTIVE MODEL OF KINK DYNAMICS

ementary cell. At low temperatures, when the magnetization Because of the presence of magnetic field, the equations

m,=(S,;1+S,)/2S is small, ' can be regarded as a unit of motion for the model(2) contain not only the usual

vector, and after passing to the continuum limit the following Lorentz-invariant terms, but also terms of the first order in

Lagrangian can be obtained: time derivatives, and thus their analysis is rather compli-
cated. However, one can easily find static soliton solutions.

iz(&tr)z_(azr)z_ i2|2_ iz There are two types of static kinks, wifrrotating in thexy

c 0’ Xp plane (p= = 7/2) or in theyz plane (=0, 7).% The behav-

ior of the angled in both kinks is given by

|_—le2 d
_E af Z

2y
- |-H)2+E§H.(|xat|)}

(

qyi

cosfy= *tanh (z—z.)/zp], (6)

S .. where the kink thickness igy=xqy for the yz kink and
t5 f dzl-(VIXayl). (2 zg=xoH /H=xo/(1—p)*2 for the xy kink, and z is an
(arbitrary) kink coordinate. ForH<H. the kink with
One can find derivation from different points of view in o=+ 7/2 is the lowest-energy nonlinear excitation, and for
Refs. 22-25; this approach is closely related to the comp >H_ this role goes to the kink withp=0,7; at H=H,
monly used Mikeska’'s formulatioh.Here a is the lattice their energies are equal, as well as the energies of in-plane
spacing,c=2JSd1 is the limiting velocity of spin waves, and out-of-plane magnon branches.
Y=0gupgy; IS the gyromagnetic ratio, ana,=a[J/2(D; As shown in Refs. 26 and 16, approximate soliton solu-
+Dy)]Y2 and x,=a(J/2D,) "2 are the characteristic length tions can be constructed using the following trick: from the
scales. The last term in E@R) is the so-called topological equations of motion determined by the Lagrangi@none
term, which can be rewritten asn2SQ, whereQ is the  can easily see that the characteristic space scale ofpthe
Pontryagin index(the winding numberof a given space- variation|,=x,/\p is much larger than the characteristic
time configuration of the field. This term is irrelevant in thickness of the kinkx,. Then, “within the kink,” i.e.,
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within the region where the variation éfmainly takes place, 1 4

we can neglect the spatial dependence @fand put Pe= Po[ 1—P(§— ;z) ]
¢= ps=const. Such approximate soliton solutions with con-

stant ¢, as shown in Refs. 26 and 16, can be obtained foExtrema ates= 0,7 correspond tg/z kinks, and extrema at
arbitrary velocity, and the only requirement is thahas to  ¢s=¢; (P) correspond txy type kinks. When the velocity
be small. The angle of out-of-plane deviatign changes of anxy-type kink is zero, the plane of rotation of the vector

from = /2 to O7r when the velocity changes from 0 to a [ isxy, and this plane smoothly changesymwhenP tends
certain critical value. to P, so that arxy-type kink smoothly transforms intoys

To study the dynamics of out-of-plane motion, we use theink. The frequency of linear oscillations around those ex-
same trick, but regards and ¢s as new dynamic variables trema is given by

slowly varying in time: we assume that the soliton solution

has the form P
og=——1 for ¢,=0,7

P
z—z4(t 2_ 2 ¢
cod=o tan!‘( = S())), GDZ‘Ps(t)u W) —wof(P)X p2 ) (13)
ol ¥s (7) P2 for os=¢1AP)
Zo(@)=x%o(1—p sirfe) 2, where
hereoc=*1 is the topological charge distinguishing kinks
and antikinks. Substituting the ans&%z into the Lagrangian 0o=0 Sgr(Cospy),
(2) and assuming that; and ¢ are “slow” variables, i.e., ) 2_4
ar T —
Z,<C, @s<wo=ClXg, (8) f(p):f(l_ m p].
one can obtain the following effective Lagrangian with only Thus, xy-type kinks are stable in the entire region
two degrees of freedom: —P.<P=<P, where the corresponding solutiofs2) have
E sense. The stability ofz kinks depends oR and on the sign
Low=—Eo(1—p sirPeo) Y2+ Z—(fz('ziﬂééoi) of the quantityoo=sgn(@, cosey): yz kinks with 0x>0 are

stable atP>P., and those withoy<0 are stable at
E P<—P.. For eactyz kink there exist two possible “daugh-
TEy . . . . .
+ ——0z4(1—p)Y%cosps— 1 Sps. (9  ter” xy-type kinks, corresponding to the two possible solu-
2c tions ¢, o P), so that the transition from yz kink to anxy
Here the dot denotes differentiation with respect to time, an&ink when|P| drops belowP. is a spontaneous breaking of
Eo=2S%(2JD;)Y? is a characteristic energy scalest en- Symmetry.
ergy of a soliton aH =H_). The last term in the Lagrangian The dispersion relation for soliton excitations, i.e., the de-
comes from the topological term in E(@) and is ineffective ~Pendence of their energly on the momentun®, is sche-
in classical treatment since it is a complete derivative. Howmatically shown in Fig. 1(the curve labeled “classica)
ever, in quantum treatment it changes the definition of caFor p>0, i.e., H<H. the minimal energy is reached at
nonical momentum conjugate o, which is very impor- P=0, while atp<0 (H>H.) the minimum is located at
tant, as we will see below. P=P,; in both cases the second derivattv&E/d P? is dis-

The effective potential for the internal variable, ~ continuous aP=*P..

strongly depends on the kink velocity. One can see thata It should be remarked that the effective mod@l was
classical stability analysis of the effective Lagrangi@nal-  derived under the assumption that the variahlés “slow,”
lows one to reproduce the results of a more rigorous apand this assumption has to be checked self-consistently at the

proach of Refs. 16, 17, and 5, which we briefly revisit below.end. Thus, the expressiof3) make sense only b <w§ .

The canonical momentur conjugate tazg, This does not matter, of course, for the classical linear analy-
sis of stability presented above, because the corresponding

_Eo. 12 _mEy frequencies are small in the vicinity of the transition, but it
P= 2 Z5+Po(1—p) ™o cosps, where Po_z_c' indicates that those classical results cannot be used for the

(100  adequate description of the internal dynamics.
, L . . Indeed, in linear analysis the localized mode frequency is
is conserved, and thus it is convenient to express everything, .o ~+p— P, which meangi) strong nonlinearity: anhar-
in terms ofP. The effective potential monic terms have to be taken into accouit} the impor-
tance of quantum effects: the magnitude of quantum zero-

_ e 112
Uerr=Eo(1=p siPey) point fluctuations around the classical minima of the

w2En (P 2 effective potential strongly increases when the potential well
0 112
g |P, © cosps(1—p) (1))  becomes “flat.”
has four extrema as a function gf;, at ¢s=0,7 and at IV. QUANTUM INTERNAL MODES

©s= @1 AP), wheregp, (P) are two roots of the equation ) . )
Since the effective modé¢®) contains only two degrees of

cog o )=oP/P,., (120  freedom, one can easily quantize it in a canonical way. The
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are located afp= = /2, asP deviates from zero they both
move towards O orr depending on the sign d? and the
“generalized” topological charge, and atP=*+P_ they
merge into one well atp;=0 or 7. One may expect that
tunneling between equivalent minima |[&| <P, splits the
lowest-energy levels, leading to the appearance of one more
internal soliton mode. However, using arguments of the
same type as in Refs. 19 and 20, it is easy to show that at
P=0 the tunneling is possible only for integ®r Indeed, the
tunneling amplitude is proportional to the path integral,

@2(P) i
f D@sexpl’— f dtLeﬁ], (15
¢1(P) h

. . where ¢, (P) are the well minima and the effective La-
0.0 0.5 L0 grangian is defined by Ed9). SinceL o contains the topo-
logical term# Ses, different paths contribute with the phase
factor proportional ta'S2%s, whereA ¢, is the change irps
along the path. AP=0 one has two equivalent paths with
Agps==*, so that their contributions cancel each other for
half-integerS (recall that in the case of TMMG= 3). If
P+ 0, the two paths become inequivalent, thus allowing non-
zero tunneling amplitude.

The Schrdinger equation with the Hamiltoniafi4) can
be easily solved numerically, and one gets the energy eigen-
values as functions of the soliton momentum a typical
level structure is shown in Fig. 1. All states at fixBd

'ﬁn,v( P1 (PS) = un,v( P!@S)eiS(pSl

can be labeled with two quantum numberand » (v being
the parity of the “reduced” wave function), and for half-
integerS odd and even states are degeneratBal. One
can see that quantum effects change the soliton dispersion
P/P, considerably compared to the classical calculation; particu-
larly, the dispersion tends to have a minimum at nonZero
FIG. 1. Typical dependence of the soliton energy lesetn its  even for fields lower thahl ., which means thatl,, is effec-
momentumP for half-integer spirS (levels presented in this figure tively renormalized towards its decrease. This renormaliza-
were computed forS= 3): (8 H<H. (p=0.2); (b) H>H; tion is not small, as seen from Fig. 1, sincepat0.2 the
(p=—0.2). The curve labeled “classical” corresponds to the resultiowest energy is still reached Bt~ 0. Unfortunately, we are
of classical calculatioiiRef. 5 for the lowest energy state; dashed not able to calculate this renormalization quantitatively: first
pieces of the cur.ve.indicate unstable statgs.Eerri the 1" levels ¢ all, our effective model is valid only at smalland, sec-
are completely inside the magnon continuum and thus are alsgpq there are other quantum effects influencing the effective
shown with dashed lines. For integérthe degeneracy &#=01is  gqiton energy(the change in the energy of zero-point fluc-
lifted. tuations of magnon modes in the presence of a)kihlt are

) not considered here; the interested reader is referred for de-
Lagrangian does not depend mnand thus the total momen-  ,is 1o the original papefé2°and to the recent reviefy.

E(P)-E,

classical

E(P)-E,

classical

tum P is conserved and can be treated asraimber, sothat  From the picture of the energy levels presented in Fig. 1
we are left with only one variables. The Hamiltonian can  gne can see that there aweo possible types of out-of-plane
be easily obtained in the form modes: one is “classical” in the sense that it corresponds to

(nonlineay oscillations ofe around the classical minima in
U 00) (14 the tvyo-well potentiald o ; an example of the mode of th@s
efl $s)» type is given by T levels in Fig. 1. The other mode is
“purely quantum;” it corresponds to tunnelling between two
whereS in curly brackets appears because the last term irquivalent classical minima and is always the lowest excita-
Eq. (2) changes the definition of the angular momentum. Astion; this mode is unique and is labeled n Fig. 1.
we will see below, the presence of this term changes the Again, as in the classical case, the results of semiquantum
situation drastically depending on wheth®8ris integer or treatment should be checked for self-consistency at the end:
half-integer. For the wave functiodf (¢;) one has the usual we can trust only in those energy levels that are considerably
periodic boundary condition¥ (@)=Y (¢+21). lower thanEy s +7wg, whereEg s is the ground-state level
The effective potential . generally has two wells, with  (“0 *” in Fig. 1). From this condition one can see that
energetically equivalent well minima; &=0 the minima  “classical” modes are in fact always “fast” and, strictly

R 2
H=

—+5S

h2wg [
|
s

2E,
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speaking, cannot be described adequately within the prdions is the so-called dynamical structure facB(q, ),
posed scheme. Moreover, one can see that actually only onehich is essentially the space-time Fourier component of the
of the “classical” modes(namely, “1*") can exist at all, two-spin correlation functiogS*(n,t)S#(n’,0)). In case of
since the energy levels of the other “classical” modes areantiferromagnet, the quantities of interest a&rethe DSF
completely inside the magnon continuum and thus they cancomponent afg=0, describing the intensity of response in
not exist as localized modes. The situation, however, is difESR experimentgii) the DSF component at~Qg, where
ferent with the quantum mode: its frequency remains considQy is the Bragg wave vector, which is usually measured in
erably lower tharwg in a wide range oP. It is always the INS experiments. The main contribution to the DSF at
lowest excitation and thus the most important one for theg=Qg comes from the correlator of the antiferromagnetism
low-temperature physics of the system. In this paper, we ar@ector(F(z,t) r(z’,0)>, and the component at=0 is deter-
mainly interested in this second type of internal excitation,pined by the correlator of magnetizatiom(z,t)m(z’,0)).%
and in the next section we study the possibility of its mani-the sgliton contribution to the correlation functions can be
festation in the experimentally observable quantities. calculated using the approximation of the soliton ideal ‘gas,
which means that at low density of kinks the main role is

played by one-soliton correlations. Then one has to deal with
V. INTERNAL SOLITON MODES correlators of the form

AND RESPONSE FUNCTIONS

In this section we apply the results obtained so far to find f dzj dz €9z 2)(f(z—z4(t))
out how the excitation of internal soliton degrees of freedom
contributes to the response functions of an easy-plane anti- X A(9s,1)f (@2 —250))A(95,0)) (16)

ferromagnet in a strong-field regingel close toH,).

We wish to begin this section with a remark concerningwhereA andf are generally certain operators. The average
the relation between the gap in the spectrum of linear excishould be taken in both quantum-mechanical and thermody-
tationsz wgy and the kink rest energlf in various soliton- namic senses. Quantum-mechanical averaging is performed
bearing systems. For the model of structural phase transitiowith the wave functionslfkp:e‘PZSsz(P,gos) (we use the
used by Krumhansl and Schriefférwx®,, and Eqx®3, notationA ={n,v} for the sake of brevity and the thermo-
where ®, is the magnitude of the order parameter, so thadynamic average should be performed with the Gibbs distri-
near the transition poiry<# wg, which justifies neglecting bution function
kink-phonon interaction al <E, in Ref. 1. For ferromag-
nets one obtaing, /% wex S(J/D)*2, whered andD are the Wy (P)=(2mh)~te BT 2sMPIT, 17
exchange and anisotropy constants, respectively, so that in : . . .
the case of the Heisenberg magnatB>1, andEy>% wg v;/]herew IS nor_malrllzedhto the_ tofl (fjensny of SOI:}OQS’ and
for any S. For antiferromagnets the situation is “intermedi- the quantityX.s is the change in the free energy of the mag-
ate”: Eo/fwy>S, and the inequalitf, /4 wo>1 holds only non gas due to the presence of a kink, which is attributed to

for S>1. One can see that in the lar§elimit solitons in the kink in the phenomenological approath:
antiferromagnets are much “lighter” than in ferromagnets;

however, for realistic smas systems the above statement S (\,P)=T>, j dkAn((k,\,P)In[ 2 sinh(Z '/ T)].
may be true as well: For example, for a 1D easy-plane fer- ]

romagnet in an external in-plane magnetic ficdde geom-
etry typical for the experiments on widely studied spin-1
quasi-1D compound CsNjRvith J=23.6 K, D=4.5 K) the
ratio of soliton and magnon energies i&qy/fwg
=4S5y2J/D~12.95 for CsNik, and for TMMC Eqy/fwq

Herej=1,2 labels different branches of magnons of the con-
tinuous spectrum, andy’ are the frequencies of correspond-
ing modes. The change in the magnon density of states
An®(k,\,P) is connected with the phase shifh{’

=S=5/2, which is more than five times smaller. X(k,\,P) acquired by a magnon of thith branch with
The rélation8>1 is often used as a condition under Wave vectok after its interaction with the kink having quan-

. . . . = (i
which a quantum spin system can be treated classically, bim numbers, P: An)=(1/2m) (dA¢ /dK). [In fact, X
in actual practice the strong inequality is not needed, an§ontains divergent terms connected with the change in the
classical equations of motion work well, say, B5/2, as  €Nergy of zero-point vibrations between the ground state and

in case of TMMC. Thus, in antiferromagnets for realisiic the one-soliton state. This di\{e.rgence, however, is compen-
valuesE, is only a few times greater thanw,, (for example, sated by the cpun_tertgrms arising from thg normal ordgrmg
in the case of strong fields close t. the characteristic of operators, yielding finite quantum correction to the soliton

7-2
values of the kink energy and magnon gap for TMMC are€nergy’

Eo=20 K and%w,=7 K, respectively, and the conditon  USing the above arguments, expressid6) can be re-
usually usedi wo<T<<E, can hardly be satisfied as a strong written as

inequality. Therefore, for antiferromagnéts is of the or-

der of T within the temperature range<E, where the phe- If(q)2Y, | dPe B+ PIT
nomenological approach is valigractically, it is sufficient A

that T< 3 Eg), so that one should use quantum statistics for ><|<)\,P|A|)\’,P—ﬁq>|25(E>\(P)

magnon modes.
The most general quantity determining the response func- —E,(P—%Q)—fw), (19
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where|\,P)= ¢, (P). At low temperature§ <E, one may
take into account only the contribution of the lowest two — p=0.1 (@
soliton levels 0 (see Fig. L. | == p=0
At T<hwg, 2 is proportional to exp{7iwy/T) and can —==- p=—0.1

be neglected. AT=% w, the effect of%, becomes signifi-
cant; its accurate calculation requires solving the soliton-
magnon scattering problem to get the phase shifts, which is
too complicated to do analytically. Howevery-type soli-
tons, i.e., kinks withP=P_,, classically havep,= 0,7, thus
being “sine-Gordon” in structure, and the phase shifts for |
the sine-Gordon problem are known. In this casg?(k) ' s \
=—2 arctankx) at small kink velocitiesv<c, and for I \\
T>#hwy we obtain the well-known SG result ! A\

T/E,=0.05 [

intensity (arb. units)

2= —2T In2—2T In(Aiwg /T). 0.0 :
-0.3 -0.1 0.1 0.3
On the other hand, the same SG result should be valigyfor
solitons withP=0. We will assume that the same expression
can be applied for alP; this assumption seems plausible
though it cannot be justified in a rigorous way. One can 10 — p=01 N ®
expect that the possible weak dependencg oill lead to O pi’im AN
certain renormalization of th® dependence of the soliton p=-
energy level€, , but we believe that our results will remain
gualitatively correct.

The conditions necessary for the consistency of our ap-
proach to calculate the response functions can be summa
rized as follows:(i) smallness ofp; (ii) smallness of the
temperaturd (compared with the soliton enerdy, or, bet-
ter, compared with the magnon enerfiy, to avoid the i “.‘\\
possible influence of th® dependence of unknown phase l i l \

T/E,=0.15

L H
0.5 1

intensity (arb. units)

shifts as described aboydiii) only the low-frequency part

(at most up tof) = wg) of the response can be trusted, ac-
H H 13 1 0.0 Il 1 1 I

cording to the demand that; should remain “slow. ) oe o4 02 00 02 04 0.6

frequency in E; units

A. Internal modes in ESR
The static component of magnetizatidn according to FIG. 2. quts ofSZZ(O,w23 (this q_uantity determines the intensity
of the ESR signalfor S= 3 and different values of the parameter

Eq. (3), is directed along th®x axis. Let us assume that the ~ 2ia2. B _ 2
pumping rf field is parallel t@z, then the intensity of the p=1-HH;: (@ T=0.0%,; (b) T=0.15,. Arows show the
ESR signal is proportional t6°(0,w) and is determined by p03||t_||0ns of the boundary of the continuous magnon spectrum at
the correlator ofn,. It is easy to see that only the first term =~ ¢

in m,, according to Eq(3), contributes ta&5*40,w) at non- ) )

zero frequenciefthe last term in Eq(3) does not depend on Perimentally in TMMC, where atH=H the three-

@ and thus yields the delta function in, and the contribu- dimensional ordering temperaturgy=3K, i.e., about
tion from the second term just vanishes becausg=ad the 0.1%,.

corresponding form factof(q) in Eq. (18) is zerq. Thus,

the significant term irm, is proportional to Sifi G5, and B. Internal modes in INS

@5, according to Eq(9), is proportional toﬁ(P—ﬁS, where _ o _
p,=—i% dldgs is the operator of the canonical momentum In neutron experiments, it is usually possible to measure

conjugate togs. Again, #S yields &), so that the only either the Iongitudi”na[with respect to the magnetic figld
contribution at nonzera comes fromp,,. Typical plots of DPF componentS'=S%(q,w), or the transverse one
the ESR response depending on frequency Ser$ are S =57(d,0)+S5%(q,»), with g close to the Bragg wave
shown in Fig. 2; one can see that the transitions between 0Vector Qg. In TMMC, both those components exhibit the
and 0" soliton levels lead to a pronounced peak with a maxi-Presence of the soliton central pedkn the transverse DSF
mum located well below the antiferromagnetic resonancdhe dominating contribution comes frot” (which corre-
frequencyw,. Since the levels © and 0" have different sponds to the contrlbutlop of flips of the direction of the
minima in theirP dependencies, the position of peaks in theantiferromagnetism vector along the easy axi®y), and
ESR response at positive and negativés also different. $7 is insensitive to the effects of internal modes becdyse
When the temperature increases, peaks shift tomagdsut  does not depend ogg; that is why we will be interested
still keep their shape with a clearly pronounced maximumonly in the longitudinal componer8* determined by the
Thus we expect that this effect can be really observable excorrelator ofl,. Figure 3 shows several typical plots of
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FIG. 3. Plots of the longitudinal DSE*(Qg ,w) for S= 3 and
different values of the parameter= 1—H2/H§: (& T=0.0%,;

S*(Qg,w) for different values of the field and temperature
[actually, we have also calculat&¥*(q,») for a few values

festation of internal soliton modes is a nonzero width of the
central peaKCP) atg= Qg (recall that in the standard ideal-
gas calculatiohwithout taking into account internal degrees
of freedom the CP width for the longitudinal component is
proportional to|g—Qg|). However, it should be mentioned
that the effects of soliton-magnon and soliton-soliton scatter-
ing, which we do not consider here, also lead to a nonzero
CP width atq= Qg ,*2 and therefore it may be problematic to
separate those two contributions experimentally. The addi-
tional peak at nonzero frequency is also preser®h but
with increasing temperature it quickly gets smeared by the
tails of the dominating central pedkee Fig. 8)], and in
TMMC at H=~H, for T=Ty=0.15, this peak should be
almost completely suppressed.

VI. SUMMARY

We consider the problem of soliton dynamics in a 1D
“almost-classical” spinS easy-plane antiferromagnet in
strong external magnetic field, taking into account internal
degrees of freedom of solitons. For this purpose, we use the
effective Lagrangian approach, which is valid férclose to
a certain critical valuéd .= (H H,)*? (whereH, andH, are
the exchange and anisotropy fields, respectivahd allows
one to reduce the original continuum field problem to the
problem with only two degrees of freedom: one is the soliton
coordinate and describes its translational motion, and the
other one is the internal angle of out-of-plane deviation. We
show that quantum effects of tunneling between two ener-
getically equivalent kink states lead to level splitting for all
values ofS; the usual selection ruf€;?°which prohibits the
tunneling for half-integes, is lifted due to the strong cou-
pling between internal and translational modes. It is pre-
dicted that this internal mode can be detected in TMMC
[(CD3)4NMnNCl3] by means of the electron spin resonance or
inelastic neutron scattering technique; we also show that
ESR is a preferable method because the corresponding reso-
nance peak is much more pronounced compared to that in
the INS response.

ACKNOWLEDGMENTS

The authors are grateful to V. G. Baryakhtar, H.-J.

of g close toQg, but the resulting curves exhibit very weak Mikeska, and G. M. Wysin for stimulating discussions. This
g dependence, so we restrict ourselves to presenting onklywork was partially supported by the grant 2.4/27 “Tunnel”
plots forq=Qg]. One can see that the most significant mani-from the Ukrainian Ministry of Science and Technology.

1J. A. Krumhansl and J. R. Schrieffer, Phys. Rev.lB 3535
(1975.

2H.-J. Mikeska, J. Phys. @1, L29 (1978.

3J. K. Kjems and M. Steiner, Phys. Rev. Lett, 1137(1978.

4H.-J. Mikeska and M. Steiner, Adv. Phy40, 191(1991).

5B. A. lvanov and A. K. Kolezhuk, Low Temp. Phyg&1, 255
(1995.

H.-J. Mikeska, J. Phys. @3, 2913(1980.

7J. P. Boucher and J. P. Renard, Phys. Rev. U&t486(1980.

8. Harada, K. Sasaki, and H. Shiba, Solid State Comndn29
(1981.

°N. Fluggen and H.-J. Mikeska, Solid State Commu8, 293
(1983.

10, p. Regnault, J. P. Boucher, J. Rossat-Mignod, J. P. Renard, J.
Bouillot, and W. G. Stirling, J. Phys. @5, 1261(1982.

113, P. Boucher, L. P. Regnault, A. S. T. Pires, J. Rossat-Mignod,
Y. Henry, J. Bouillot, W. G. Stirling, and J. P. Renard,Ntag-
netic Excitations and Fluctuationedited by S. W. Lovesey, U.
Bolucani, F. Borsa, and V. Tognet$pringer, Berlin, 1984 p.

6.
12M. E. Gouvea and A. S. T. Pires, Phys. Rev38 306 (1986.
13G. Wysin, A. R. Bishop, and J. Oitmaa, J. Physl €221 (1986.



56 QUANTUM INTERNAL MODES OF SOLITONS INA.. .. 8893

143, P. Boucher, L. P. Regnault, R. Pynn, J. Bouilot, and J. P. (1979 [ Sov. J. Low Temp. Phys, 361 (1979]; Solid State

Renard, Europhys. Letfl, 415(1986. Commun.34, 545(1980.
5B, V. Costa and A. S. T. Pires, Solid State Comm&6, 769  23A. F. Andreev and V. |. Marchenko, Usp. Fiz. Nadld0, 39
(1985. (1980 [ Sov. Phys. Usp23, 21 (1980].
168 A. lvanov, A. K. Kolezhuk, and G. K. Oksyuk, Europhys. Lett. 241 Affleck, Nucl. Phys. B257, 397 (1985.
14, 151 (1991). 25E. D. M. Haldane, J. Appl. Phy&7, 3359(1985.
7B. A. Ivanov and A. K. Kolezhuk, Fiz. Nizk. Templ7, 343  2%E. V. Gomonai, B. A. lvanov, V. A. L'vov, and G. K. Oksyuk,
(1999 [ Sov. J. Low Temp. Physl7, 177 (1991)]. Zh. Eksp. Teor. Fiz97, 307 (1990 [ Sov. Phys. JETRO, 174
8B, A. Ivanov and A. K. Kolezhuk, Phys. Rev. Leff4, 1859 (1990].
(1995. 2’R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Re®1D
198, A. Ivanov and A. K. Kolezhuk, Low Temp. Phy21, 760 3424(1975.
(1995. 28K. Maki, Phys. Rev. B24, 3991(1981).
20B. A. Ivanov and A. K. Kolezhuk, Zh. Eksp. Teor. Fi#10, 2183  2°H.-J. Mikeska, Phys. Rev. B6, 5213(1982.
(1996 [JETP83, 1202(1996)]. 30K. Sasaki, J. Phys. Soc. JpBB, 2872(1984).
213.-P. Boucher, G. Rius, and Y. Henry, Europhys. L41t1073  31J. R. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger,
(1987. Phys. Rev. B22, 477 (1980.

22|, v. Baryakhtar and B. A. Ivanov, Fiz. Nizk. Temg, 759  *2K. Sasaki and K. Maki, Phys. Rev. 85, 257 (1987).



