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Analytical approach to the Heisenberg antiferromagnet with nearest-
and next-nearest-neighbor exchange
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We investigate the ground-state energy of a two-dimensional Heisenberg antiferromagnet with competing
nearest- and next-nearest-neighbor exchange interaclipasid J,. On the basis of a recently introduced
cumulant technique we describe the transition from the usual antiferromagnetic phase to a so-called layered
antiferromagnetic phase as a function of the rdtidJ,. Whereas in the former phase the spins are approxi-
mately aligned antiparallel along the up and down sublattice, in the layered phase each of the two sublattices
forms an antiferromagnetic lattice by itself. The result for the ground-state energy and for respective order
parameters agree well with findings obtained from numerical metti8@4.63-18207)00937-3

[. INTRODUCTION advantage is that this method is easy applicable also to
strongly correlated electrons and spins systems. The dia-
Since the discovery of high-temperature superconductivgrammatic methods fail or are not appropriate, because gen-
ity the investigation of ground-state properties of two-eralized Feynman rules are too complex for practical, i.e.,
dimensional Heisenberg antiferromagnets has again beconamalytical purposes. It was applied before to the Heisenberg
of central theoretical interest. In this paper, we study theantiferromagnet with nearest-neighbor interactibn (Ref.
ground-state energy of a two-dimensional Heisenberg antit1l) as well as to a number of other systems. The method
ferromagnet on a quadratic lattice with competing neareststarts from an unperturbed ground state to which successive
and next-nearest-Heisenberg interactions fluctuations are added by applying the perturbation. For the
Heisenberg antiferromagnet, the dlestate is taken as an
unperturbed ground state. By application of the transverse
Hlegj:) S Si+‘]2<<i§j:>> S S (1) part of H, pairs of spin defects are generated. They give rise
' to the true ground state for the Heisenberg model. For the
The bracketgi, j) and((i,j)) denote summations over near- J, —J, model(1) we also start from the N state being the
est and next-nearest-neighbors, respectively. As is easilypproximate ground state fal;>J,. Application of spin
seen, the model has the following asymptotic behavior: Fofyctuation proportional taJ; along either rows or columns
J1>J, the usual antiferromagnetic ground state for nearestgenerates new states, denoted as strings These new states
neighbor interactions is found, whereas fd4<J, a so- also tend to minimize the next-nearest-neighbor exchange
called Iayered antiferromagnetic ground state is expected. |FL‘]2 (Compare F|g 2 The transition to the |ayered antifer-
the latter phase, next-nearest-neighbor spins are approXiomagnet can be described by taking into account longer and
mately aligned antiparallel on two interpenetrating sublationger strings since their weight increases with increasing
tices, as shown in Fig. 1. The transition between the twqgy,/J, .
limits was eXtenSiVEly studied in the "terature, mainly by The paper is Organized as follows. In the next section
numerical method&:® For classical spins§—x) the tran-  (Sec. 1) the cumulant method will be briefly reviewed as

sition takes place exactly a,=J,/2. This was shown by well as the above mentioned previous application to the
Einarsonet al! by transforming the Hamiltoniafl) to the

nonlinearo model. The same value fdy /J; was also found
for quantum spinsS=1/2 if one neglects spin fluctuations, /I\ \l, I]\ \I, I]\ \l, 1\
i.e., if one reduces the model to that of pure Ising interac-
tions. Dagottoet al.” were the first who suggested the ap-
pearance of an additional phase in the intermediate range \l, 1\ \l, 1\ 'ﬂ U, 'ﬂ‘ U
between the two competing antiferromagnetic phases. They
believed this phase to be a spin liquid. Especially since
Anderson’s suggestion of a resonating valence b@\B) 1\ \I/ 1\ \l/ 1\ \l/ ll\ \I/
state for high-temperature superconductors the properties o
spin liquids have attracted large interest. Recently, a possible \l, 1‘ \l, ']\ ﬂ U ﬂ U
chiral order was also concluded from numerical investiga-
tions of different spiral order parametérs.

In this paper, we study the ground state of the Hamil-
tonian (1) in the framework of a new analytical method

which is based on the introduction of cumulaht§. This FIG. 1. Neel state forJ;>J, (left) and layered Nel state for
approach automatically guarantees size consistency. Anoth@s>J, (right).
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culties existing in strongly correlated systems or Hamilto-

nians like Eq.(1). For each of these systems one would have
1\ \]/ 1\ \I/ to introduce generalized diagrams as has been done for spins.

However, the underlying new correspondence between
ﬂ U m, graphs and analytical expressions are usually far from being
2.
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simple and cannot easily be applied. In all these cases the
cumulant method, as used in this paper, provides an alterna-
tive theoretical approach. The advantage of the method is
that only cumulant expressions enter in any physical quanti-
ties. Cumulants can be considered as a generalization of con-
nected diagram techniques and guarantee that all physical
quantities turn out to be size consistent, i.e., that they scale
properly with the size of the system. The occurrence of cu-
mulants corresponds to the famous linked-cluster theorem.
The method starts from the definition of a functibf\)
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f(N)=In(¢olexd —N(Ho+Hq)lexpAHg)|[do)  (2)

1\ \l' 1\ \Il 1\ \I, 1\ \I/ from which an expression for the ground state in terms of
cumulants can be derived. We start from a separation of the
FIG. 2. This figure shows three strings of various lengths whichtotal HamiltonianH into an unperturbed paH, and into a
are created by in each second row. The sitg is the starting perturbationH;. In Eq. (2) the state ¢,) is the ground state
position for a string in rowm, and n, denotes the length of this ¢ H, with eigenvalueey, i.e., Ho|¢o>: €0|¢o>- Introducing
string [compare Eq(31)]. The diagonal line shows a pair of next- the Liouville operatol,, which is defined by jA=[Hg,A]
nearest-neighbor spins which can be flipped by applicatiodof for any operator of the unitary space, Eq2) can be trans-

formed intg"1°
Heisenberg model with nearest-neighbor exchangé;

only. Section lll represents the main part of the paper. Here,

the cumulant approach is applied to the—J, model by f(N)=In{polexd —N(Hi+Lg)]| Po)- (3
introducing generalized string operators. At the end of this

section the layered antiferromagnet g/ J,> 1 will be dis- -

cussed. Its ground state can be considered as the new layerg@r the Laplace transforn(x),

Neel state to which spin fluctuations are induced by applying -

the transverse part of thi exchange. This is in complete f(x)= —J f(A)exp(Ax) dN, Re{x}<0, (4)
analogy to the case of the nearest-neighbor exchange model. 0

one can show that the shift of the ground-state eneifgy

Il. CUMULANT APPROACH with respect to the unperturbed energyis given by
In this section, we briefly review the basic ideas of the o
cumulant approachi’® Note that the spin operato& in Eq. OBg=Eqy~ EO_)'('TOX F(x). ®)

(1) do not obey simple commutation or anticommutation re-

lations. Therefore the usual diagrammatic techniques whickh, the other hand Eq(3) suggests the introduction of

are based on the validity of Wick's theorem are not easily,,mjants2 One is led to the following cumulant expression
applied. This situation is quite similar to that of strongly ¢, the ground-state energy:

correlated electrons where so-called Hubbard operators are
introduced which describe the creation or annihilation of <¢
0

electrons. Due to the strong local Coulomb repulsion, the OEy= ”mo
X—

X—(Hy+Lo) Hl) ¢°> - ©

Hl( 1+
Hubbard operators are only defined in a subspace of the Hil-
bert space which does not contain doubly occupied siteddere and in the following, the indeg denotes cumulant

Therefore, the Hubbard operators do not obey simple antiexpectation values formed with the unperturbed ground state
commutation relations. This is why, for systems like E).  of Hy. As is well known, cumulants can be considered as a
it is not possible to apply the well-established Feynman techgeneralization of connected diagrams known from usual dia-
nigue and to relate perturbation processes of any order tgram techniques. They can be defined in terms of usual ex-

Feynman diagrams. This is the deeper reason for the diffipectation values according to

.

m

[T expniA)

=1

(7)

n Nm
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mulant ordering procedure according(@. For the follow-
ing, it is also convenient to introduce a bilinear form of op-

eratorsA andB b
y = Eg< do SIex;{ > aMSM) ¢0> . (16)
“

(b0l ATB| ho)°= (AIB). ®) o , .
] ] . At first sight, the set of equationd6) looks similar to a
Note, the last equation does not define a mathematical scalggriational problem with a variational wave function
product since the bilinear forr8) is not positive definite. exp(,a,S,)|¢o). However, a comparison to an eigenvalue
The expression fobE, is rewritten as equation is more adequate since Ef)6) can be used to
determine both the parametetg and the ground-state en-

In Eqg. (6) both quantitiesH, andL, are subject to the cu- <¢
0

SIH exr(% aﬂsﬂ)

SEq=(H4|0), ©) ergy E5. However, note that E|16) is always size consis-
tent, in contrast to equations obtained for instance by a con-
10)=lim|1+ H, |, (10  figuration interaction(Cl) approach?®
X—0 X—=(Hi+Lo) As a simple example let us discuss the Heisenberg anti-

. ferromagnet with nearest-neighbor exchange in two dimen-
where we have introduced a new quanfitycalled the wave  gjons. According to the above procedure, we start by divid-

operator or Moeller operator, which is known from scatteringjng the Hamiltonian into the Ising and the transverse part,
theory. Obviously, the physical meaning@fis to transform  genoted byH, andH;

the unperturbed ground staté,) into the full ground state

| W) of H. In the past, Eqs(9) and (10) have been used to Ho=J; 2 SIZSJ-Z

evaluate ground-state properties for a number of different ({0

physical system§'%14One possibility to further evaluate 3

Egs. (9) and (10) is based on a projection technique. Re- Hl:?;‘) (S'S +H.c). 17)
i

cently, a different evaluation scheme was proposed in, Ref.
17 which we shall use in the following. This starts from an For the wave operatdi, we choose
exponential ansatz for the wave operator
=:|e9). (11 (18)

ex;{ E a,S,

a By applyingQ on the Nel state, i.e., the unperturbed ground
Here, a set of the so-called relevant operatgshave been state ofH, pairs of spin fluctuations are generated. Note, in
introduced which has to be chosen in such a way thaSthe the fluctuation operatok the sites andj are taken from the
can generate, but not annihilate, fluctuations in the unperdown spin and up spin sublattices, respectively. This is im-
turbed ground state. As is easily seen, this guarantees that thertant for the power series ¢ to stop after a few terms.
power series of the exponential usually stops after a fewote, this would not be the case if also the adjoint spin-flip
steps. The unknown parameterg in Eq. (11) have to be operators would be present M An improved ansatz fof)
evaluated from the following additional set of equations  was used in Refs. 17 and 16 which allows the parameter

also to depend on the distance betwéeamdj. In this case
(S,/HQ)=0 forall S, from the set{S,}. (12  not only accurate values for the ground-state energy but also

Note the close analogy of E€L1) to the usual exponential [0 the sublattice magnetization restiitt® Following the

ansatz for the ground-state wave function within the soutlined procedure, Eq¢17) and(18) lead to

called coupled-cluster method. For a closer review of this _

method see the review articlé Equations(9), (11), and(12) Eg=eoth (HilA), (19

allow the evaluation of the ground-state energy. Due to thavheree, is the Neel energy. Note that the power series(bf

introduction of cumulants the result will always be size con-has stopped after the first order Ansince higher spin fluc-

sistent. tuations, induced by higher powersAg cannot be remedied
In the next section, we shall use these equations to evaligain byH. The equation for the parameteris given by

ate the ground-state energy for the—J, model. Note that

the cumulants can be eliminated again. Assuming (Al(Ho+H)(1+NA+ 3 A%A%))=0. (20)

|Q)=|exp(AA)) with A=> S"S™ , iel, jel.
in
Q)=

(¢0(S)"bo)=0  for all integer n>0, (13)  The first-order term ir\ creates pairs of spin fluctuations on
. .“ nearest-neighbor sites in the ®estate which are healed
it was shown in Ref. 18 that Eqé9), (11), and(12) can be  again by application ofA". This term measures the differ-

rewritten as ence in Ising energy between the éllstate with one addi-
s tional pair of spin fluctuations and the puré éllstate. The
Eq=(H[Q)=(o|He o), (14 contribution from\? describes processes with two pairs of
_ _ ts i s spin fluctuations which are healed bl andA" on the left.
0=(S,|HQ)=(¢o| S;HE™ o) — (0| S, d0o) Since in the cumulant formation size consistency is main-
X( o|HES| o), (15) tained only pairs of spin fluctuations close to each other can

contribute. For later reference let us rewrite E2D) explic-
or by combining both equations itly by eliminating the cumulant expressions
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1
SN2 ((bol ATHIAA] o) = 2( ol ATA| o) hol H1A] o)) + N ({ ol ATHoA| o)

—(po|Ho| po)( ol ATA| o)) + (ol ATH 4| ¢ho) = 0. (21

From Eq.(21) it is easy to evaluate the parameterOne layered Nel state lead to a further gain in energy, similar to
findsA=—0.1771. This is close te- 1/6, a value one would spin fluctuations for the case of the usual antiferromagnet.
obtain by neglecting the term-\? altogether. For the Let us now introduce generalized string operators in order
ground-state energi, already a very good value results to construct the wave operator. For simplicity, let us disre-
from this simple approact:® As was mentioned before for gard at first the transverse part of the exchadgei.e., we

the staggered magnetization, one would have to extend theplaceH by

ansatz for() by allowing the parametex to depend on the

! o J
distanceR,— R , HF%E (S'S +H.c)=:Hi. (24)
i

Q)=

exp( 2 Ajj S.+Sj> ) . (22 Moreover, we only consider strings along one row in order to
b clarify the construction scheme of string operators. A string

S and S, are now spin fluctuations on sitesandj on the An of length n is defined by
down and up sublattices, respectively, which can be located

arbitrarily away from each othéf: y- S (S'S71Sh S s+ S'an»Sion 1):
yL/2 ie]
Ill. INTRODUCTION OF GENERALIZED
STRING STATES L

(25
We are now in the position to evaluate the ground-state
energy of theJ; —J, model. As unperturbed Hamiltonidt,  where the summation ovérruns over all sites of the down

we choose the Ising part of EQ), i.e., sublattice within one row only. Application oA, to the
original Neel state shows that strings ohZpin defectgor n
HoZle S.ZSJ-Z+J2 2 SIZSJ-Z=:H“. (23) pairs of overtgrned neig_hporing spin paigﬂe gengrated in
{,i) ) one row starting from sité. The summation over in Eq.
) i i o . (25 means that strings may start from any site of the down
In wo dimensions, this Hamiltonian was discussed bygypjattice in the considered row. Obviously, by applying op-
Baxter.” For smallJ,<J,, the ground state is approximately eratorsA, on every second row a layered antiferromagnetic

tmhz l:fg:i%l lll'\lglsstgtee;/vﬁlo(;elcglrsgiggz ;Gl}alyz/;are; ggg{f;o' state can be constructed. This is exactly the scheme we are
9 P 9. y going to follow. For the presenibne-dimensionalcase the

to the usual Nel state which is twofold degenerate, the lay- L
ered ground state is fourfold degenerate. Parallel strings e\I/yave operator, for the moment denoted®y, is given by
L/2
exp( > an’An>). (26)

ther in the horizontal or in the vertical direction are possible.
Therefore, with the time reversed states altogether four lay- 1Q,)=
ered states result. Note, in the lindif— o0 also noncollinear n=1

antiferromagnetic states are possible. They are again formed . _
by two antiferromagnetic sublattices on next-nearest(i(iis’mgJ Egs.(14) and (15) the equations for the ground-state

neighbor sites. The two sublattices, however, may have afineray and the coefficients, read

arbitrary angle with each other. In what followd,/J, will
always be finite so that noncollinear states do not occur.
Our aim is to describe the ground state of EL.in both _
limits J,>J, and J,<J; by a proper choice of the wave 0=(As(HI+H) Q). (28)
operator(). Our starting point is the usual Eestate. The

Eq=(HI+H|Qy), (27)

As discussed before, due to the introduction of cumulants

intermediate regimé, ~J, is described by an extrapolation only connected diagrams contribute to physical quantities
between the two antiferromagnetic states. The layeresl NeThis property can be used to simplify Eq&7) and (28).

state will be built up by local string operators applied on the X . .
usual Nel state. Tf?es)é new stategs CF())ntain striﬁgs of flippe(JiEXpand'.ng the e'xponentlal 41, also, St"’!tes will _be gener-
spins in every second royor column, as shown in Fig. 2. ated Wh_'(?h consist of more than one string starting at_d|ﬁer-
The physical picture is as follows: For increasihg longer ent p05|t|0n§ within the~con5|dered row. However, |.n Eq.
strings become more and more important since they are lead2?) only string operator#\; of length one with one pair of
ing to a gain in energy. The layered antiferromagnéeiNe flipped spins can contribute. The reason is tHat in the
state is formed when all strings in parallel roges columng ~ “bra” of Eq. (27) can at most annihilate one pair of spin
have infinite length. Additional spin fluctuations around thedefects. However, due to the appearance of the stkiﬁl(_in
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the bra also longer strindgsf length h—2 and 7h+2) may also the new coefficienty,, are determined by the set of
contribute to Eq(28). Moreover, states from the expansion equationg28). This leads to a system of linear equations for
of Q; with two strings of total length 2—2 could contrib-  the y,.

ute, in case that they can be connected by the expligiin Next, let us generalize the concept of string operators to
Eq. (28). For simplicity, we shall neglect this possibility. the full two-dimensional case, i.e., to all rodar columns.
Having this simplification in mind, the exponential fol@6) In the following we discuss the case of string operators along

is equivalent to a linear ansatz rows. As noted before, strings can be generated in every
a second row. Thé./2 rows are denoted by, ,m,, ... m.
Again L is the linear length of the lattice. Moreover, we
ex a R =1+ Al 29 introduce an index vectorn with L/2 components
p(zn: o ‘ n§=:1 n n) @9 N,,N,, ...,n.. The components; indicate the string length

within the rowsm; and are integer numbers. The complete
where new coefficients, have been introduced. Like thg,  string operator is defined b#,

5 1
AEZWiZ ig.iL S'+2(m2)$2+1(m2)' ' 'Si+z+2”z—2(m2)$2+2”2‘1(m2)
L

XS (My)S 1(Mg)- -S4 2, 2(M)S 1 2n,— 1(Ma)

X S|T_(mL)S|_L+1(mL)' : 'St+2nL—2(mL)Si_|_+2nL—l(mL) (30

The summation indices;,i, to i; denote the starting points H=Hy+H,,
of the strings in the corresponding row thus generalizing th%vhere
notation of Eq.(25) (Fig. 2). The lengths of the strings are

given by then;’s. Obviously, the string operatdk,, as de- Hi=Hj+H3, (34)

fined by Eq.(30), generates strings ib/2 rows, where also whereH, is again given by Eq23). In analogy to the treat-

strings of length zero are allowed. Therefore, situations 8Snent of the nearest-neighbor exchange from Sec. II, the

for instance, shown in Fig. 2 are described. Note that the,5ye operator will be generalized to include also spin fluc-
starting site of any string within a row is not important. DUe ¢ ziions due tdH

to the summation over all lattice sites a string of a given

length may start from any lattice sites. _ ~
The new exponential ansatz for the wave operator corre- Q)= ex 'U“A//-+2 an A (35
sponds to that of E¢26): n
. A,=> S's . (36)
|Ql)= eXF{; aEAE)) (31) K <<||J>> (]

Note, the summation overj in the fluctuation operatoh ,
As in Eq. (29) we assume the strings to form a completeOnly runs over next-nearest-neighbor sites, where the prime
basis, so thaf), is equivalent to 2’ indicates tha#\, can only generate pairs of spin fluctua-
tions on next-nearest-neighbor sites in the layered! e
_ der. ObviouslyA, like H5 applied on the original N state
|Ql):‘l+2 ')’nAn)- (320 gives zero. Therefore, befork, can be applied, the new
no-- layered Nel state has to be generated. Note that the spin

The new coefficientsy, depend on the index vectar. As  fluctuation operatoA, and the string operator&, do not
before they can be determined from a linear set of equationg®mmute with each other so that the wave operator does not
(28). Equation(33) together with Eqs(27) and(28) modified factorize into a product of a spin fluctuation and a string part.
for the present case give a complete evaluation scheme fgfowever, to simplify the further calculations we shall hence-
the ground-state energy. Up to now we have neglected th#®rth use such a product form,

transverse pafti; of the next-nearest-neighbor exchange N
e Al

|0)=

1+2 ’ynr’/E\nr) ) (37)
J2 L.
1__“ + o—
H2= 2«%) (S +H.c). (33 Here, already the approximation from E@1) to Eq. (32)
has been used. A more formal justification for E§7) is

Now we are able also to consider the full Hamiltonidn given in Appendix A. There, by a slight generalization of the
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string operatord\,, it can be shown that the forif85) can  “bra” vector A, acts on the original N state. Only then
indeed be reduced to E(7). the spin fluctuation operatok,, can be applied. Replacing

Next, the cumulant equations for evaluating the groundthe cumulant averages by the usual expectation values in
state energy can be given. In analogy to the introductoryanalogy to Sec. Il one finds

example from the preceding section they read - -
£~ (HIO) - (dolATHOQ o) —(bo| AT ho)Eg=0, (41
g: ]

(ol A TATHO o) — (ol AJAT Q| hg)Eg=0,  (42)

0=(A,[HQ), @9 . N
- with Q given by Eq.(37). The ground-state energy is again

O=(AMI5\E|HQ). (40 Eg={bo|HQ| o). (43

The first equation gives the ground-state energy as beforghe only condition used to derive Eq&1) and (42) is
whereas the unknown parametgyandu are determined by (¢o|S”| o) =0 for all powersy>0 andA,|$¢)=0. Let us
the second and third equations. As mentioned above in Egliscuss in some detail the first equati¢fl). Expanding()
(40), first a local layered Nal state has to be formed. In the in terms of string operators one finds

. s

Here, the parHH from the HamiltoniarH = H/+ H1 +H; measures the Ising contributions of the strings. The Hareither
enlarges or cuts the strings by one pair of flipped spins. The contributionHrprare virtual spin flips, as shown in Fig. 2.
Finally, the prefactor of the energy term represents the expectation value of strings withethstde. Equatiort44) can
formally also be written as

1+Z ’ynrxnr)
n - -

ANHI+HT+H)exppA,)

Alexp(uA,)

1+2[ ’ynrﬂnr)
n - -

¢0> E,=0. (44

L L L
> yn/([E“<n>+uE§<n>—Eg], II 6w tEi(n) > (nnatdnw-o) I 6 n.r)=o (45
n - — — i=13... i — i=13,... i i =13 (i) 1

with obvious definitions foE!l,E} , andE7 . As discussed before, there are altogethi@rows, where strings can be created.

The different terms still depend on the length of the strings as indicated by the index weetodn’. Obviously, there are

no fluctuations which connect different rows. Therefore, we can restrict the calculations to contributions from one row only.
Defining €4 as the ground-state energy contribution from one row, Eg= (L/2) €4, Eqg.(45) leads to

€(0)—¢q Jq4/2 0 o .- Yo 0
J4/2 €(1) — ¢4 J4/2 o -- Y1 0
0 Jq/2 €(2)—€g Jy/2 - Yo 0
= (46)
Here we have used the following definitions:
e(n)=el(n)+uez(n),
where
&(n)=4Jn (47)
and
_(‘]1_‘]2) I_, n=0,
J,—J L+1J+2 J;—2J 0< <L
iy = (J1—J2) 5 (J1—23)n, n<z. 48)
JoL L
—JoL, n—E

The new coefficientgzn, introduced in Eq(46), are related to the former coefficienig by
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~ L/2
ye=2t n=123...L2 with 3 2=1. (49)
Yo n=0

Note that the set of equatior46) defines an eigenvalue problem from whicl? eigenvalues, and eigenvectorgﬁ can be
determined. The number of possible eigenvalues and eigenvectors are given by the number of independent string states within
one row. BeingL the length of a string there is altogethef2 independent string states. Therefore the dimension of the
eigenvalue problem ik/2 as well. Its lowest energy gives the ground-state eneggye are looking for. The ground-state

wave function is found from the corresponding eigenve&ﬁ)r In the next section the solution of E@L6) will be discussed
in more detail.

Next, let us proceed with the discussion of E4R) which is much simpler to evaluate than E41). From this equation the
spin fluctuation parameter can be found. Inserting expressi@i’) for () one is led to

2
~ ~ ~ ~ M ~ ~ ~ ~
(bolAgALHZ Aol o) + i{ dol AIALHIA, Aol o) + - (o ATALHZ AZA| o) — Egr{ o ATALA, Aq| o) =0. (50

Note, none of the spin fluctuations changes the length of the strings. We extract the valué&dar the case of maximum
string lengthL, i.e., n=L/2 frustrated bonds, when the string extends over the whole lattice. If5Bgqwe have already
eliminated all cumulants in favor of usual expectation values formed with the origirell $tate. Therefore, formally also
nonconnected contributions enter E§0). One finds

wA(8LAJ,+4L%0,) + u(—4L%,+ 123,12~ 8L2E ) + 2L.2J,=0. (51)

The contributions to the first bracket are caused by application of twice the fluctuation opg&fatdrhe contributions
proportional toL* are due to nonconnected spin fluctuations whereas terin$ ame caused by neighboring fluctuations, i.e.,

by connected contributions. Similarly, in the next bracket there is one term from the Ising energy arising from the whole
lattice, which is also proportional th*. The second one can be interpreted as the difference in Ising energy between the
layered Nel state and the same state in which one pair of spins is flipped. Finally, the last term(§1Egpresents one pair

of spin fluctuations in the layered Kestate. Note that all terms of ordef exactly cancel, if the largd, result for the
ground-state energiAppendix B is used

JoL? )
Eg:_T+MJ2L . (52)
The remaining terms form an equation ferwhich exactly coincides with the equation for the spin fluctuation parameter we
already know from the discussion of the usual antiferromagnet from Sec. Il. This is the justification tdat Jpr1 the
layered Nel state is reached. To make this more explicit we may also insert expréd8jdior E into the original equation
(42) for u. Taking into account only contributions from the maximal string lerigtive find

2
~ ~ ~ ~ Mmoo~ ~ ~ ~
(ALidol ALHZ AL jpbo) + (Aol ALHIA A p¢h0) + 7<AL/2¢0|ALH§A;2L|AL/2¢0> — w((AL ol HIAL2600)

+ (AL a0l HLA|KL/2¢O>)<:&L/2¢O|ALAM|"E‘L/2¢O> =0. (53

The action ofA, ,, applied on the original N state gener- J2 only between 0 and;. For J,<J; the lowest state is
ates the layered ¢ state| ¢,). Note that Eq(53) is com-  always the usual N state, whereas in the opposite limit the
pletely equivalent to Eq.(21) for the nearest-neighbor layered Nel state has the lowest energy. The eigenvectors of
Heisenberg antiferromagnet from Sec. Il. One also finds thaEd. (46) coincide in this case with the string statag|¢o)
u varies betweenw=0 (for J,=0) and approximately 1/6 The eigenvalues are given by the Ising energihs-(2J,)n.
(for J,/3,>1). In the next section we shall discuss the so-Thus the energy spectrum as function Bf is symmetric
lutions for the ground-state energy of the full Hamiltonian, with respect toJ,=J;/2. Going through this point, the
as given by Eqs(46) and(50). ground state and the state with highest energy change their
role. The ground-state energy has its maximum value here
and therefore also frustration has its maximum value.
Next, let us include spin fluctuations from the nearest-
For a better understanding of the results let us start witmeighbor exchangkl} . The exchangél is still kept zero,
the pure Ising system and neglect at first all contributionsso that the parameter remainsu=0. Also in this case the
fom H; and H;. For the Ising system energy spectrum as function 8§ is symmetric with respect
H“=E<i,j>SZSJ-Z+ 21,inSTS]» the energies are not degenerateto J,=J;/2. This property can be understood from the form
except forJ,=J,/2. As is usually done in literature, we vary of Eq. (46) if u is set to 0. From this symmetry follows that

IV. RESULTS
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TABLE I. Ground-state energyH;) and first excited-state en-

ergy (E;) per spin as function al, of the present work. For com-
parison the respective valueEg) and (E'f) of Dagottoet al. (Ref.
7) are also shown.

05} ] Jz

E, Eg =

-0.6

E/J,

071

energy per spin

6

7

8

0.475
0.55

0.575
0.
0.6625
0.
0.75
0.
0.875

—0.4984 —-0.532989 —0.5080
—0.5135 -0.523595 —0.5127
—0.5190 -—0.523592 -0.5154
—0.5277 —0.525896 —0.5190
—0.5428 —0.544653 —0.5402
—0.5610 —0.563858 —0.5585
—0.5889 —0.594282 —0.5846
—0.6125 —0.627335 —0.6117
—0.6715 —0.679219 —0.6536

observed by Dagotfoand was taken as evidence for the

08t 1 X ; . :
BT A s e e possible existence of a new phase in the region between the
Jo/ s Neel phase and the layered &lgphase. It is also interesting
to consider the weight of the strings with different length
which contribute to the ground-state wave function. Starting
%0 02 0.4 06 038 10 again fromJ,=0 and increasing the value 8§, longer and

o/ dq longer strings contribute. In the transition region, i.e., at

J,~0.54],, strings of all lengths are equally important and
FIG. 3. Ground-state energy per spin in unitsfvs J,/J,.  contribute to the ground-state wave function. This may be an
The small figure contains the numerical results of Rickigef, §.  indication for the tendency of the ground state to show dis-

For details compare this reference.

order. Finally, for still largerd, the longest string has also

the largest weight. As discussed before it extends over the

within the present approximation the model wih=0, i.e.,
with nearest neighbor exchange only, has the same groun
state energy as thi—J, model atJ,=J,. For the two cor-
responding ground states the Ising contribution to the energv
is the same. In addition the same contributions from spir
fluctuations are added. As is easily seen, for the model witt
J,=0 spin fluctuations~H, enlarge the length of the
strings, whereas fad,=J; spin fluctuations always shorten
the string length.

Finally, we also include spin fluctuations from the next-
nearest-neighbor exchangl, . The respective spin fluctua-
tion paramete changes from Qfor J,=0) to ~1/6 (for
J,=J,). The ground-state energy as functionJefis shown
in Fig. 3. For comparison the figure also contains the numeri
cal results obtained from exact diagonalization of small
clusters® Note that the ground-state energy is no longer sym-
metric with respect td,=J,/2. Instead it has its maximum
value close tal,~0.54], in almost perfect agreement with
the numerical result. At this point again frustration has its
maximum value.

It may also be worthwhile to discuss the other solution
of the eigenvalue probler¥6). We assume that its eigen-
vectors can also be considered as approximate excite
states of theJ;—J, model. This is concluded from Eg.
(44) which tells us that the linear combinations of strings

EXF(,LLAlL)(l-i-En’yn—An) applied on the Nel state|¢,) are
eigenstates dfl in the subspace formed by the strings. Table

| shows the energy differences between the first excited stat
and the ground state. Note that approaching to the maximum
value of the ground-state energyJt=J,/2 the first excita-

1.0

09t

0.8 |

0.7 t/77

0.6}

057t

03r

02+

0.1}

0.0

whole lattice and forms the layered &lestate(see Fig. 4 In
ig. 5 the staggered magnetizatiods, and M _ are shown.
hese quantities are the respective order parameters for the

04|

FIG. 4. Eigenvectorsy; of Eq. (50) for various numbers of
tion approaches the ground state. This behavior was alreadychange constantls /J; (J;=1).
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either in up or in down direction. This property is used to
0.7 ; . 0.7 . .
My define a projectoQ

_ 1
0=1-P with P=]] s(1-of o)), (AD)

by which one can decide whether a string is present in a
given state or not. Here{ is the Pauli spin operator and the
indexi runs over all sites of the considered row. If there is a
pair of two neighboring spins the corresponding factor in the
projectorP gives zero. Thus it follows th&® applied on any
string state gives 0 where& gives 1. Vice versa, if? and

Q is applied on the original Ne state one obtains 1 and 0.
To be able also to enlarge a given string it should be possible
to identify the beginning or end of a string. We therefore
introduce a local projectaf;

My/ pg
&1 1IN

1. R
&=5(1-of_p(A-oh. (A2)

& gives 1 if it is applied on that side of the string which is
formed by two neighboring down spins, located at positions
i—1 andi. With this definition we define a generalized

FIG. 5. Staggered magnetizatioks, (Néel stat¢ andM, (lay-  String creation operator by
ered Nel state in units of Bohr magnetons. The small figure shows
the results of Dagottet al. (Ref. 7) for the expectation values of ~ 1 Y " B
the square of the respective staggered magnetizations as function of AfﬁZ (S'Sii1Shan-2S12n- (P EQ).
J,/2J,. Note thatM; of Dagottoet al. (Ref. 7) corresponds td A3
andM, to M . (A3)

70.0 0.2 0.4 0.6 0.8 1.0
Ja/ dy

] ] ] Note that Eq(A3) can only generate connected strings. The
nearest-neighbor and next-nearest-neighbor antiferromagngjst term creates a string of lengti2n the Neel state

The results are found from a ground-state calculation by addyhereas the second term enlarges an already present string
ing to the Hamiltonian the respective staggered magnetlgy adding 2 overturned spins. Obviously the definition

fields for the two antiferromagnetic phases. Again, note thQA3) leads to the desired linearizati¢@7) of the wave op-
remarkable agreement of our analytical results with thosg atorq.

from numerical evaluation. As before for the energy, the
asymmetry for the two order parameters as functiod,dl,

is caused by the spin fluctuationsy induced byH; . Es-
pecially, the maximum value ofl, at J,~J, is strongly From the tridiagonal form of the eigenvalue problé46)
reduced by bothi; andH; as compared to the value My it follows that three adjacent coefficieris,_1, 71,7 ns1 are
at J,~0. The value forM at J,=0 is close to results ob- always connected with each other:

tained from spin-wave theory and also from numerical

APPENDIX B: RIGOROUS BOUNDS OF EIGENVALUES

methods. Note, however, that our approach is completely — J;_ ~  Ji~
different from linear spin-wave theory. > V-1 @nein1¥nt 5 ¥ne1=0, n=123....
(B1)
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number of stimulating discussions. if y_, is set identical to zero. Starting with=0 and insert-
ing successively the preceding equation in the next equation
APPENDIX A: DEFINITIONS OF GENERALIZED one can always eliminate the lowest coefficient. In this way
STRING OPERATORS one is led to the following sequence of equations:

As was mentioned below, E¢33) the definition(26) of

string operators can be generalized so that the transformation Pivo+ ﬁ Poy1=0,

to the linearized form(33) of the wave operator becomes 2

exact. To show this, we again consider strings which are

embedded in an antiferromagnetic surroundiRig. 5). For ~ J1_~

simplicity, we consider the one-dimensional case with P2y1t 5 P17.=0. ... (B2)

strings defined in one row. Note that next to both sides of a
given string there is always a pair of parallel spins directecor in general
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J1

2 I:)nfl':).;n: 0.

Pn¥n-1+ (B3)

The quantitiesP,, obey the following recursion relation:
Jq, 2
2
where we have defineBy=1 andP_;=0. The first three
equations of Eq(B4) read explicitly

Pr=a,nPn-1— Po-o, n=123..., (B4

Pi=as,

Jqg 2
Py=aza11— > (B5)
J; 2

P3:a33 ? all,

Jg
Az~ >

Remember, the coefficients,, are functions of energy.
Therefore, thé?,,’s are polynomials of ordem in the energy.

8885

correspond exactly to the./2 eigenvaluese, of the
L/2-dimensional eigenvalue proble6). The sequence of
polynomes(B5) is called a “Sturm chain.” In the literature,
there are given some exact theoréMer Sturm chains from
which one can conclude exact properties for the eigenvalues:
All eigenvalues of Eq.(46) are nondegenerate. Moreover,
they are located in intervals, given by
lex—e(n)|<J; (B6)
with e(n)=e”(n)+,ue§(n) given by Egs.(46) and (47).
Note that for lattice sizé.?>— o the relative differences be-
tween two excited states goes to zero whereas the absolute

difference does not. For the lowest eigenvaliiye=(L/2)¢,
one finds from Eq(B6)

J,L2
3= |Eg+ —5——

> J,L2.

(B7)

SinceJ; on the LHS can be neglected for largethis in-

Note thatP,;, is the highest polynome possible. Its zerosequality turns into the former Eq52).
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