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Analytical approach to the Heisenberg antiferromagnet with nearest-
and next-nearest-neighbor exchange

Holger Köhler and Klaus W. Becker
Institut für Theoretische Physik, Technische Universita¨t Dresden, D-01062 Dresden, Germany

~Received 13 November 1996!

We investigate the ground-state energy of a two-dimensional Heisenberg antiferromagnet with competing
nearest- and next-nearest-neighbor exchange interactionsJ1 and J2. On the basis of a recently introduced
cumulant technique we describe the transition from the usual antiferromagnetic phase to a so-called layered
antiferromagnetic phase as a function of the ratioJ2 /J1. Whereas in the former phase the spins are approxi-
mately aligned antiparallel along the up and down sublattice, in the layered phase each of the two sublattices
forms an antiferromagnetic lattice by itself. The result for the ground-state energy and for respective order
parameters agree well with findings obtained from numerical methods.@S0163-1829~97!00937-5#
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I. INTRODUCTION

Since the discovery of high-temperature superconduc
ity the investigation of ground-state properties of tw
dimensional Heisenberg antiferromagnets has again bec
of central theoretical interest. In this paper, we study
ground-state energy of a two-dimensional Heisenberg a
ferromagnet on a quadratic lattice with competing near
and next-nearest-Heisenberg interactions

H5J1(
^ i , j &

Si Sj1J2 (
^^ i , j &&

Si Sj . ~1!

The bracketŝ i , j & and^^ i , j && denote summations over nea
est and next-nearest-neighbors, respectively. As is ea
seen, the model has the following asymptotic behavior:
J1@J2 the usual antiferromagnetic ground state for near
neighbor interactions is found, whereas forJ1!J2 a so-
called layered antiferromagnetic ground state is expected
the latter phase, next-nearest-neighbor spins are app
mately aligned antiparallel on two interpenetrating sub
tices, as shown in Fig. 1. The transition between the t
limits was extensively studied in the literature, mainly
numerical methods.2–8 For classical spins (S→`) the tran-
sition takes place exactly atJ25J1/2. This was shown by
Einarsonet al.1 by transforming the Hamiltonian~1! to the
nonlinears model. The same value forJ2 /J1 was also found
for quantum spinsS51/2 if one neglects spin fluctuations
i.e., if one reduces the model to that of pure Ising inter
tions. Dagottoet al.7 were the first who suggested the a
pearance of an additional phase in the intermediate ra
between the two competing antiferromagnetic phases. T
believed this phase to be a spin liquid. Especially sin
Anderson’s suggestion of a resonating valence bond~RVB!
state for high-temperature superconductors the propertie
spin liquids have attracted large interest. Recently, a poss
chiral order was also concluded from numerical investi
tions of different spiral order parameters.6

In this paper, we study the ground state of the Ham
tonian ~1! in the framework of a new analytical metho
which is based on the introduction of cumulants.9,10 This
approach automatically guarantees size consistency. Ano
560163-1829/97/56~14!/8876~10!/$10.00
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advantage is that this method is easy applicable also
strongly correlated electrons and spins systems. The
grammatic methods fail or are not appropriate, because g
eralized Feynman rules are too complex for practical, i
analytical purposes. It was applied before to the Heisenb
antiferromagnet with nearest-neighbor interactionJ1 ~Ref.
11! as well as to a number of other systems. The meth
starts from an unperturbed ground state to which succes
fluctuations are added by applying the perturbation. For
Heisenberg antiferromagnet, the Ne´el state is taken as a
unperturbed ground state. By application of the transve
part ofH, pairs of spin defects are generated. They give r
to the true ground state for the Heisenberg model. For
J12J2 model~1! we also start from the Ne´el state being the
approximate ground state forJ1@J2. Application of spin
fluctuation proportional toJ1 along either rows or columns
generates new states, denoted as strings These new
also tend to minimize the next-nearest-neighbor excha
;J2 ~compare Fig. 2!. The transition to the layered antifer
romagnet can be described by taking into account longer
longer strings since their weight increases with increas
J2 /J1.

The paper is organized as follows. In the next sect
~Sec. II! the cumulant method will be briefly reviewed a
well as the above mentioned previous application to

FIG. 1. Néel state forJ1@J2 ~left! and layered Ne´el state for
J2@J1 ~right!.
8876 © 1997 The American Physical Society
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56 8877ANALYTICAL APPROACH TO THE HEISENBERG . . .
Heisenberg model with nearest-neighbor exchange;J1
only. Section III represents the main part of the paper. He
the cumulant approach is applied to theJ12J2 model by
introducing generalized string operators. At the end of t
section the layered antiferromagnet forJ2 /J1@1 will be dis-
cussed. Its ground state can be considered as the new la
Néel state to which spin fluctuations are induced by apply
the transverse part of theJ2 exchange. This is in complet
analogy to the case of the nearest-neighbor exchange m

II. CUMULANT APPROACH

In this section, we briefly review the basic ideas of t
cumulant approach:9,10 Note that the spin operatorsSW i in Eq.
~1! do not obey simple commutation or anticommutation
lations. Therefore the usual diagrammatic techniques wh
are based on the validity of Wick’s theorem are not eas
applied. This situation is quite similar to that of strong
correlated electrons where so-called Hubbard operators
introduced which describe the creation or annihilation
electrons. Due to the strong local Coulomb repulsion,
Hubbard operators are only defined in a subspace of the
bert space which does not contain doubly occupied si
Therefore, the Hubbard operators do not obey simple a
commutation relations. This is why, for systems like Eq.~1!
it is not possible to apply the well-established Feynman te
nique and to relate perturbation processes of any orde
Feynman diagrams. This is the deeper reason for the d

FIG. 2. This figure shows three strings of various lengths wh
are created byH1

' in each second row. The sitei 2 is the starting
position for a string in rowm2 and n2 denotes the length of this
string @compare Eq.~31!#. The diagonal line shows a pair of nex
nearest-neighbor spins which can be flipped by application ofH2
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culties existing in strongly correlated systems or Hamil
nians like Eq.~1!. For each of these systems one would ha
to introduce generalized diagrams as has been done for s
However, the underlying new correspondence betw
graphs and analytical expressions are usually far from be
simple and cannot easily be applied. In all these cases
cumulant method, as used in this paper, provides an alte
tive theoretical approach. The advantage of the metho
that only cumulant expressions enter in any physical qua
ties. Cumulants can be considered as a generalization of
nected diagram techniques and guarantee that all phy
quantities turn out to be size consistent, i.e., that they s
properly with the size of the system. The occurrence of
mulants corresponds to the famous linked-cluster theore

The method starts from the definition of a functionf (l)

f ~l!5 ln^f0uexp@2l~H01H1!#exp~lH0!uf0& ~2!

from which an expression for the ground state in terms
cumulants can be derived. We start from a separation of
total HamiltonianH into an unperturbed partH0 and into a
perturbationH1. In Eq. ~2! the stateuf0& is the ground state
of H0 with eigenvaluee0, i.e.,H0uf0&5e0uf0&. Introducing
the Liouville operatorL0, which is defined byL0A5@H0 ,A#
for any operatorA of the unitary space, Eq.~2! can be trans-
formed into9,10

f ~l!5 ln^f0uexp@2l~H11L0!#uf0&. ~3!

For the Laplace transformf̃ (x),

f̃ ~x!52E
0

`

f ~l!exp~lx! dl, Re $x%,0, ~4!

one can show that the shift of the ground-state energydEg
with respect to the unperturbed energye0 is given by

dEg5Eg2e05 lim
x→0

x2 f̃ ~x!. ~5!

On the other hand, Eq.~3! suggests the introduction o
cumulants.12 One is led to the following cumulant expressio
for the ground-state energy:

dEg5 lim
x→0

K f0UH1S 11
1

x2~H11L0!
H1D Uf0L c

. ~6!

Here and in the following, the indexc denotes cumulan
expectation values formed with the unperturbed ground s
of H0. As is well known, cumulants can be considered a
generalization of connected diagrams known from usual d
gram techniques. They can be defined in terms of usual
pectation values according to

h

^f0uA1
n1

•••Am
nmuf0&

c5
]n1

]l1
n1

•••

]nm

]lm
nm

lnK f0U)
i 51

m

exp~l iAi !Uf0L U
l15•••5lm50

. ~7!
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In Eq. ~6! both quantitiesH1 and L0 are subject to the cu
mulant ordering procedure according to~7!. For the follow-
ing, it is also convenient to introduce a bilinear form of o
eratorsA andB by

^f0uA†Buf0&
c5~AuB!. ~8!

Note, the last equation does not define a mathematical sc
product since the bilinear form~8! is not positive definite.
The expression fordEg is rewritten as

dEg5~H1uV!, ~9!

uV)5 lim
x→0U11

1

x2~H11L0!
H1D , ~10!

where we have introduced a new quantityV, called the wave
operator or Moeller operator, which is known from scatteri
theory. Obviously, the physical meaning ofV is to transform
the unperturbed ground stateuf0& into the full ground state
uC0& of H. In the past, Eqs.~9! and ~10! have been used to
evaluate ground-state properties for a number of differ
physical systems.11,13,14 One possibility to further evaluat
Eqs. ~9! and ~10! is based on a projection technique. R
cently, a different evaluation scheme was proposed in, R
17 which we shall use in the following. This starts from
exponential ansatz for the wave operator

uV)5UexpS (
m

amSmD D 5:ueS). ~11!

Here, a set of the so-called relevant operatorsSm have been
introduced which has to be chosen in such a way that theSm
can generate, but not annihilate, fluctuations in the unp
turbed ground state. As is easily seen, this guarantees tha
power series of the exponential usually stops after a
steps. The unknown parametersam in Eq. ~11! have to be
evaluated from the following additional set of equations

~SnuHV!50 for all Sn from the set $Sn%. ~12!

Note the close analogy of Eq.~11! to the usual exponentia
ansatz for the ground-state wave function within the
called coupled-cluster method. For a closer review of t
method see the review article.16 Equations~9!, ~11!, and~12!
allow the evaluation of the ground-state energy. Due to
introduction of cumulants the result will always be size co
sistent.

In the next section, we shall use these equations to ev
ate the ground-state energy for theJ12J2 model. Note that
the cumulants can be eliminated again. Assuming

^f0u~Sm!nuf0&50 for all integer n.0, ~13!

it was shown in Ref. 18 that Eqs.~9!, ~11!, and~12! can be
rewritten as

Eg5~HuV!5^f0uHeSuf0&, ~14!

05~SnuHV!5^f0uSn
†HeSuf0&2^f0uSn

†eSuf0&

3^f0uHeSuf0&, ~15!

or by combining both equations
lar
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K f0USn
†H expS (

m
amSmDUf0L

5EgK f0USn
†expS (

m
amSmDUf0L . ~16!

At first sight, the set of equations~16! looks similar to a
variational problem with a variational wave functio
exp((mamSm)uf0&. However, a comparison to an eigenval
equation is more adequate since Eq.~16! can be used to
determine both the parametersam and the ground-state en
ergy Eg . However, note that Eq.~16! is always size consis
tent, in contrast to equations obtained for instance by a c
figuration interaction~CI! approach.15

As a simple example let us discuss the Heisenberg a
ferromagnet with nearest-neighbor exchange in two dim
sions. According to the above procedure, we start by div
ing the Hamiltonian into the Ising and the transverse p
denoted byH0 andH1

H05J1 (
^ i , j &

Si
zSj

z

H15
J1

2 (
^ i , j &

~Si
1Sj

21H.c.!. ~17!

For the wave operatorV, we choose

uV)5uexp~lA!… with A5(
^ i , j &

Si
1 Sj

2 , i P↓, j P↑.
~18!

By applyingV on the Néel state, i.e., the unperturbed groun
state ofH0, pairs of spin fluctuations are generated. Note,
the fluctuation operatorA the sitesi and j are taken from the
down spin and up spin sublattices, respectively. This is
portant for the power series ofV to stop after a few terms
Note, this would not be the case if also the adjoint spin-fl
operators would be present inA. An improved ansatz forV
was used in Refs. 17 and 16 which allows the parameterl i j
also to depend on the distance betweeni and j . In this case
not only accurate values for the ground-state energy but
for the sublattice magnetization result.18,16 Following the
outlined procedure, Eqs.~17! and ~18! lead to

Eg5e01l ~H1uA!, ~19!

wheree0 is the Néel energy. Note that the power series ofV
has stopped after the first order inA since higher spin fluc-
tuations, induced by higher powers inA, cannot be remedied
again byH. The equation for the parameterl is given by

(Au~H01H1!(11lA1 1
2 l2A2))50. ~20!

The first-order term inl creates pairs of spin fluctuations o
nearest-neighbor sites in the Ne´el state which are heale
again by application ofA†. This term measures the differ
ence in Ising energy between the Ne´el state with one addi-
tional pair of spin fluctuations and the pure Ne´el state. The
contribution froml2 describes processes with two pairs
spin fluctuations which are healed byH1 andA† on the left.
Since in the cumulant formation size consistency is ma
tained only pairs of spin fluctuations close to each other
contribute. For later reference let us rewrite Eq.~20! explic-
itly by eliminating the cumulant expressions
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1

2
l2~^f0uA†H1AAuf0&22^f0uA†Auf0&^f0uH1Auf0&!1l~^f0uA†H0Auf0&

2^f0uH0uf0&^f0uA†Auf0&)1^f0uA†H1uf0&50. ~21!
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From Eq. ~21! it is easy to evaluate the parameterl. One
findsl520.1771. This is close to21/6, a value one would
obtain by neglecting the term;l2 altogether. For the
ground-state energyEg already a very good value resul
from this simple approach.11,18 As was mentioned before fo
the staggered magnetization, one would have to extend
ansatz forV by allowing the parameterl to depend on the
distanceRi2Rj ,

uV)5UexpS (
i , j

l i j Si
1Sj

2D D . ~22!

Si
1 andSj

2 are now spin fluctuations on sitesi and j on the
down and up sublattices, respectively, which can be loca
arbitrarily away from each other.16,18

III. INTRODUCTION OF GENERALIZED
STRING STATES

We are now in the position to evaluate the ground-st
energy of theJ12J2 model. As unperturbed HamiltonianH0
we choose the Ising part of Eq.~1!, i.e.,

H05J1(
^ i , j &

Si
zSj

z1J2 (
^^ i , j &&

Si
zSj

z5:H uu. ~23!

In two dimensions, this Hamiltonian was discussed
Baxter.19 For smallJ2!J1, the ground state is approximate
the usual Ne´el state. For increasingJ2 a layered antiferro-
magnetic Ne´el state will develop~compare Fig. 2!. Contrary
to the usual Ne´el state which is twofold degenerate, the la
ered ground state is fourfold degenerate. Parallel strings
ther in the horizontal or in the vertical direction are possib
Therefore, with the time reversed states altogether four
ered states result. Note, in the limitJ2→` also noncollinear
antiferromagnetic states are possible. They are again for
by two antiferromagnetic sublattices on next-neare
neighbor sites. The two sublattices, however, may have
arbitrary angle with each other. In what follows,J1 /J2 will
always be finite so that noncollinear states do not occur.

Our aim is to describe the ground state of Eq.~1! in both
limits J1@J2 and J2!J1 by a proper choice of the wav
operatorV. Our starting point is the usual Ne´el state. The
intermediate regimeJ1'J2 is described by an extrapolatio
between the two antiferromagnetic states. The layered N´el
state will be built up by local string operators applied on t
usual Néel state. These new states contain strings of flipp
spins in every second row~or column!, as shown in Fig. 2.
The physical picture is as follows: For increasingJ2, longer
strings become more and more important since they are l
ing to a gain in energy. The layered antiferromagnet N´el
state is formed when all strings in parallel rows~or columns!
have infinite length. Additional spin fluctuations around t
he

d

e

y

i-
.
y-

ed
t-
n

d

d-

layered Ne´el state lead to a further gain in energy, similar
spin fluctuations for the case of the usual antiferromagne

Let us now introduce generalized string operators in or
to construct the wave operator. For simplicity, let us dis
gard at first the transverse part of the exchangeJ2, i.e., we
replaceH1 by

H1⇒
J1

2 (
^ i , j &

~Si
1Sj

21H.c.!5:H1
' . ~24!

Moreover, we only consider strings along one row in order
clarify the construction scheme of string operators. A str
An of length 2n is defined by

Ãn5
1

AL/2
(
i P↓

~Si
1Si 11

2 Si 12
1 Si 13

2
•••Si 12n22

1 Si 12n21
2 !,

n51,2, . . . ,
L

2
, ~25!

where the summation overi runs over all sites of the down
sublattice within one row only. Application ofÃn to the
original Néel state shows that strings of 2n spin defects~or n
pairs of overturned neighboring spin pairs! are generated in
one row starting from sitei . The summation overi in Eq.
~25! means that strings may start from any site of the do
sublattice in the considered row. Obviously, by applying o
eratorsÃn on every second row a layered antiferromagne
state can be constructed. This is exactly the scheme we
going to follow. For the present~one-dimensional! case the
wave operator, for the moment denoted byV1, is given by

uV1)5UexpS (
n51

L/2

anÃnD D . ~26!

Using Eqs.~14! and ~15! the equations for the ground-sta
energy and the coefficientsan read

Eg5~H uu1H1
'uV1!, ~27!

05„Ãnu~H uu1H1
'!V1…. ~28!

As discussed before, due to the introduction of cumula
only connected diagrams contribute to physical quantit
This property can be used to simplify Eqs.~27! and ~28!.
Expanding the exponential ofV1 also, states will be gener
ated which consist of more than one string starting at diff
ent positions within the considered row. However, in E
~27! only string operatorsÃ1 of length one with one pair of
flipped spins can contribute. The reason is thatH' in the
‘‘bra’’ of Eq. ~27! can at most annihilate one pair of sp
defects. However, due to the appearance of the stringÃ n

† in
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the bra also longer strings~of length 2n22 and 2n12) may
contribute to Eq.~28!. Moreover, states from the expansio
of V1 with two strings of total length 2n22 could contrib-
ute, in case that they can be connected by the explicitH1

' in
Eq. ~28!. For simplicity, we shall neglect this possibility
Having this simplification in mind, the exponential form~26!
is equivalent to a linear ansatz

UexpS (
n

anÃnD D 5U11 (
n51

gnÃnD , ~29!

where new coefficientsgn have been introduced. Like thean
s
th
e

a
th
e

en

rr

te

io

t

also the new coefficientsgn are determined by the set o
equations~28!. This leads to a system of linear equations f
the gn .

Next, let us generalize the concept of string operators
the full two-dimensional case, i.e., to all rows~or columns!.
In the following we discuss the case of string operators alo
rows. As noted before, strings can be generated in ev
second row. TheL/2 rows are denoted bym2 ,m4 , . . . ,mL .
Again L is the linear length of the lattice. Moreover, w
introduce an index vectorn with L/2 components
n2 ,n4 , . . . ,nL . The componentsni indicate the string length
within the rowsmi and are integer numbers. The comple
string operator is defined byÃn
Ãn5
1

AS 2

L
D L/2 (

i 2 i 4••• i L

Si 2
1~m2!Si 211

2 ~m2!•••Si 212n222
1 ~m2!Si 212n221

2 ~m2!

3Si 4
1~m4!Si 411

2 ~m4!•••Si 412n422
1 ~m4!Si 412n421

2 ~m4!

3Si L
1~mL!Si L11

2 ~mL!•••Si L12nL22
1 ~mL!Si L12nL21

2 ~mL! ~30!
the
c-

ime
a-

pin

not
rt.
e-

he
The summation indicesi 2 ,i 4 to i L denote the starting point
of the strings in the corresponding row thus generalizing
notation of Eq.~25! ~Fig. 2!. The lengths of the strings ar
given by theni ’s. Obviously, the string operatorAn , as de-
fined by Eq.~30!, generates strings inL/2 rows, where also
strings of length zero are allowed. Therefore, situations
for instance, shown in Fig. 2 are described. Note that
starting site of any string within a row is not important. Du
to the summation over all lattice sites a string of a giv
length may start from any lattice sites.

The new exponential ansatz for the wave operator co
sponds to that of Eq.~26!:

uV1)5UexpS (
n

anÃnD D . ~31!

As in Eq. ~29! we assume the strings to form a comple
basis, so thatV1 is equivalent to

uV1)5U11(
n

gnÃnD . ~32!

The new coefficientsgn depend on the index vectornI . As
before they can be determined from a linear set of equat
~28!. Equation~33! together with Eqs.~27! and~28! modified
for the present case give a complete evaluation scheme
the ground-state energy. Up to now we have neglected
transverse partH2

' of the next-nearest-neighbor exchange

H2
'5

J2

2 (
^^ i , j &&

~Si
1Sj

21H.c.!. ~33!

Now we are able also to consider the full Hamiltonian~1!
e

s,
e

e-

ns

for
he

H5H01H1 ,

where

H15H1
'1H2

' , ~34!

whereH0 is again given by Eq.~23!. In analogy to the treat-
ment of the nearest-neighbor exchange from Sec. II,
wave operator will be generalized to include also spin flu
tuations due toH2

'

uV)5UexpS mAm1(
n8

an8Ãn8D D ~35!

Am5 (
^^ i , j &&

8
Si

1Sj
2 . ~36!

Note, the summation overi , j in the fluctuation operatorAm
only runs over next-nearest-neighbor sites, where the pr
(8 indicates thatAm can only generate pairs of spin fluctu
tions on next-nearest-neighbor sites in the layered Ne´el or-
der. Obviously,Am like H2

' applied on the original Ne´el state
gives zero. Therefore, beforeAm can be applied, the new
layered Ne´el state has to be generated. Note that the s
fluctuation operatorAm and the string operatorsÃn do not
commute with each other so that the wave operator does
factorize into a product of a spin fluctuation and a string pa
However, to simplify the further calculations we shall henc
forth use such a product form,

uV)5U e2mAm S 11(
n8

gn8Ãn8D D . ~37!

Here, already the approximation from Eq.~31! to Eq. ~32!
has been used. A more formal justification for Eq.~37! is
given in Appendix A. There, by a slight generalization of t
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string operatorsÃn , it can be shown that the form~35! can
indeed be reduced to Eq.~37!.

Next, the cumulant equations for evaluating the grou
state energy can be given. In analogy to the introduct
example from the preceding section they read

Eg5~HuV!, ~38!

05~ ÃnuHV!, ~39!

05~AmÃnuHV!. ~40!

The first equation gives the ground-state energy as bef
whereas the unknown parameteran andm are determined by
the second and third equations. As mentioned above in
~40!, first a local layered Ne´el state has to be formed. In th
-
y

re,

q.

‘‘bra’’ vector ÃnI acts on the original Ne´el state. Only then
the spin fluctuation operatorAm can be applied. Replacing
the cumulant averages by the usual expectation value
analogy to Sec. II one finds

^f0uÃ nI
†HVuf0&2^f0uÃ nI

†Vuf0&Eg50, ~41!

^f0uÃ nI
†Am

† HVuf0&2^f0uÃ nI
†Am

† Vuf0&Eg50, ~42!

with V given by Eq.~37!. The ground-state energy is aga

Eg5^f0uHVuf0&. ~43!

The only condition used to derive Eqs.~41! and ~42! is
^f0uSnuf0&50 for all powersn.0 andAmuf0&50. Let us
discuss in some detail the first equation,~41!. ExpandingV
in terms of string operators one finds
.

d.

w only.
K f0UÃ n
†~H uu1H1

'1H2
'!exp~mAm!S 11(

n8
gn8Ãn8D Uf0L 2K f0UÃn

†exp~mAm!S 11(
n8

gn8Ãn8D Uf0L Eg50. ~44!

Here, the partH uu from the HamiltonianH5H i1H1
'1H2

' measures the Ising contributions of the strings. The partH1
' either

enlarges or cuts the strings by one pair of flipped spins. The contribution fromH2
' are virtual spin flips, as shown in Fig. 2

Finally, the prefactor of the energy term represents the expectation value of strings with the Ne´el state. Equation~44! can
formally also be written as

(
n8

gn8S @Euu~n!1mE2
'~n!2Eg# )

i 51,3, . . .

L

dni n
i8
1E1

'~n8! (
i 51,3, . . .

L

~dni n
i8111dni n

i821! )
j 51,3, . . .~Þ i !

L

dnj n
j8D 50 ~45!

with obvious definitions forEuu,E2
' , andE1

' . As discussed before, there are altogetherL/2 rows, where strings can be create
The different terms still depend on the length of the strings as indicated by the index vectorsn andn8. Obviously, there are
no fluctuations which connect different rows. Therefore, we can restrict the calculations to contributions from one ro
Defining eg as the ground-state energy contribution from one row, i.e.,Eg5(L/2) eg , Eq. ~45! leads to

S e~0!2eg J1/2 0 0 •••

J1/2 e~1!2eg J1/2 0 •••

0 J1/2 e~2!2eg J1/2 •••

• • • • •••

• • • • •••

• • • • •••

D S g̃ 0

g̃ 1

g̃ 2

•

•

•

D 5S 0

0

0

•

•

•

D . ~46!

Here we have used the following definitions:

e~n!5e i~n!1me2
'~n!,

where

e2
'~n!54J2n ~47!

and

e uu~n!55
2~J12J2! L, n50,

2~J12J2! L1
1

2
J112 ~J122J2!n, 0,n,

L

2
,

2J2L, n5
L

2
.

~48!

The new coefficientsg̃n , introduced in Eq.~46!, are related to the former coefficientsgn by
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gn5
g̃n

g̃0

, n51,2,3, . . .L/2 with (
n50

L/2

g̃n
251. ~49!

Note that the set of equations~46! defines an eigenvalue problem from whichL/2 eigenvaluesel and eigenvectorsg̃n
l can be

determined. The number of possible eigenvalues and eigenvectors are given by the number of independent string sta
one row. BeingL the length of a string there is altogetherL/2 independent string states. Therefore the dimension of
eigenvalue problem isL/2 as well. Its lowest energy gives the ground-state energyeg we are looking for. The ground-stat
wave function is found from the corresponding eigenvectorg̃n

g . In the next section the solution of Eq.~46! will be discussed
in more detail.

Next, let us proceed with the discussion of Eq.~42! which is much simpler to evaluate than Eq.~41!. From this equation the
spin fluctuation parameterm can be found. Inserting expression~37! for V one is led to

^f0uÃn
†Am

† H2
'Ãnuf0&1m^f0uÃn

†Am
† H uuAmÃnuf0&1

m2

2
^f0uÃn

†Am
† H2

'Am
2 Ãnuf0&2Egm^f0uÃn

†Am
† AmÃnuf0&50. ~50!

Note, none of the spin fluctuations changes the length of the strings. We extract the value form from the case of maximum
string lengthL, i.e., n5L/2 frustrated bonds, when the string extends over the whole lattice. In Eq.~50! we have already
eliminated all cumulants in favor of usual expectation values formed with the original Ne´el state. Therefore, formally als
nonconnected contributions enter Eq.~50!. One finds

m2~8L4J214L2J2!1m~24L4J2112J2L228L2Eg!12L2J250. ~51!

The contributions to the first bracket are caused by application of twice the fluctuation operatorAm . The contributions
proportional toL4 are due to nonconnected spin fluctuations whereas terms inL2 are caused by neighboring fluctuations, i.
by connected contributions. Similarly, in the next bracket there is one term from the Ising energy arising from the
lattice, which is also proportional toL4. The second one can be interpreted as the difference in Ising energy betwe
layered Ne´el state and the same state in which one pair of spins is flipped. Finally, the last term in Eq.~51! represents one pai
of spin fluctuations in the layered Ne´el state. Note that all terms of orderL4 exactly cancel, if the largeJ2 result for the
ground-state energy~Appendix B! is used

Eg52
J2L2

2
1mJ2L2. ~52!

The remaining terms form an equation form which exactly coincides with the equation for the spin fluctuation paramete
already know from the discussion of the usual antiferromagnet from Sec. II. This is the justification that forJ2 /J1@1 the
layered Ne´el state is reached. To make this more explicit we may also insert expression~43! for Eg into the original equation
~42! for m. Taking into account only contributions from the maximal string lengthL we find

^ÃL/2f0uAm
† H2

'uÃL/2f0&1m^ÃL/2f0uAm
† H uuAmuÃL/2f0&1

m2

2
^ÃL/2f0uAm

† H2
'Am

2 uÃL/2f0&2m~^ÃL/2f0uH uuuÃL/2f0&

1m^ÃL/2f0uH'AuÃL/2f0&!^ÃL/2f0uAm
† AmuÃL/2f0&50. ~53!
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The action ofÃL/2 applied on the original Ne´el state gener-
ates the layered Ne´el stateuf0&. Note that Eq.~53! is com-
pletely equivalent to Eq.~21! for the nearest-neighbo
Heisenberg antiferromagnet from Sec. II. One also finds
m varies betweenm50 ~for J250) and approximately 1/6
~for J2 /J1@1). In the next section we shall discuss the s
lutions for the ground-state energy of the full Hamiltonia
as given by Eqs.~46! and ~50!.

IV. RESULTS

For a better understanding of the results let us start w
the pure Ising system and neglect at first all contributio
from H1

' and H2
' . For the Ising system

H uu5(^ i , j &Si
zSj

z1(^^ i , j &&Si
zSj

z , the energies are not degenera
except forJ25J1/2. As is usually done in literature, we var
at

-
,

h
s

J2 only between 0 andJ1. For J2!J1 the lowest state is
always the usual Ne´el state, whereas in the opposite limit th
layered Ne´el state has the lowest energy. The eigenvector
Eq. ~46! coincide in this case with the string statesAñuf0&
The eigenvalues are given by the Ising energies (J122J2)n.
Thus the energy spectrum as function ofJ2 is symmetric
with respect toJ25J1/2. Going through this point, the
ground state and the state with highest energy change
role. The ground-state energy has its maximum value h
and therefore also frustration has its maximum value.

Next, let us include spin fluctuations from the neare
neighbor exchangeH1

' . The exchangeH2
' is still kept zero,

so that the parameterm remainsm50. Also in this case the
energy spectrum as function ofJ2 is symmetric with respec
to J25J1/2. This property can be understood from the for
of Eq. ~46! if m is set to 0. From this symmetry follows tha
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within the present approximation the model withJ250, i.e.,
with nearest neighbor exchange only, has the same gro
state energy as theJ1–J2 model atJ15J2. For the two cor-
responding ground states the Ising contribution to the ene
is the same. In addition the same contributions from s
fluctuations are added. As is easily seen, for the model w
J250 spin fluctuations;H1 enlarge the length of the
strings, whereas forJ25J1 spin fluctuations always shorte
the string length.

Finally, we also include spin fluctuations from the nex
nearest-neighbor exchangeH2

' . The respective spin fluctua
tion parameterm changes from 0~for J250) to '1/6 ~for
J25J1). The ground-state energy as function ofJ2 is shown
in Fig. 3. For comparison the figure also contains the num
cal results obtained from exact diagonalization of sm
clusters.6 Note that the ground-state energy is no longer sy
metric with respect toJ25J1/2. Instead it has its maximum
value close toJ2'0.54J1 in almost perfect agreement wit
the numerical result. At this point again frustration has
maximum value.

It may also be worthwhile to discuss the other soluti
of the eigenvalue problem~46!. We assume that its eigen
vectors can also be considered as approximate exc
states of theJ1–J2 model. This is concluded from Eq
~44! which tells us that the linear combinations of strin
exp~mAm)~11(ngnÃn) applied on the Ne´el stateuf0& are
eigenstates ofH in the subspace formed by the strings. Tab
I shows the energy differences between the first excited s
and the ground state. Note that approaching to the maxim
value of the ground-state energy atJ2'J1/2 the first excita-
tion approaches the ground state. This behavior was alre

FIG. 3. Ground-state energy per spin in units ofJ1 vs J2 /J1.
The small figure contains the numerical results of Richter~Ref. 6!.
For details compare this reference.
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observed by Dagotto7 and was taken as evidence for th
possible existence of a new phase in the region between
Néel phase and the layered Ne´el phase. It is also interestin
to consider the weight of the strings with different leng
which contribute to the ground-state wave function. Start
again fromJ250 and increasing the value ofJ2, longer and
longer strings contribute. In the transition region, i.e.,
J2'0.54J1, strings of all lengths are equally important an
contribute to the ground-state wave function. This may be
indication for the tendency of the ground state to show d
order. Finally, for still largerJ2 the longest string has als
the largest weight. As discussed before it extends over
whole lattice and forms the layered Ne´el state~see Fig. 4!. In
Fig. 5 the staggered magnetizationsMN andML are shown.
These quantities are the respective order parameters fo

FIG. 4. Eigenvectorsg i of Eq. ~50! for various numbers of
exchange constantsJ2 /J1 (J151).

TABLE I. Ground-state energy (Eg) and first excited-state en
ergy (E1) per spin as function ofJ2 of the present work. For com
parison the respective values (Eg

D) and (E1
D) of Dagottoet al. ~Ref.

7! are also shown.

J2 Eg E1 Eg
D E1

D

0.475 20.523845 20.4984 20.532989 20.5080
0.55 20.522227 20.5135 20.523595 20.5127
0.575 20.525096 20.5190 20.523592 20.5154
0.6 20.530000 20.5277 20.525896 20.5190
0.6625 20.552126 20.5428 20.544653 20.5402
0.7 20.571055 20.5610 20.563858 20.5585
0.75 20.601411 20.5889 20.594282 20.5846
0.8 20.635938 20.6125 20.627335 20.6117
0.875 20.691635 20.6715 20.679219 20.6536
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nearest-neighbor and next-nearest-neighbor antiferromag
The results are found from a ground-state calculation by a
ing to the Hamiltonian the respective staggered magn
fields for the two antiferromagnetic phases. Again, note
remarkable agreement of our analytical results with th
from numerical evaluation. As before for the energy, t
asymmetry for the two order parameters as function ofJ2 /J1

is caused by the spin fluctuations;m induced byH2
' . Es-

pecially, the maximum value ofM̃L at J2'J1 is strongly
reduced by bothH1

' andH2
' as compared to the value ofMN

at J2'0. The value forMN at J250 is close to results ob
tained from spin-wave theory and also from numeri
methods.7 Note, however, that our approach is complete
different from linear spin-wave theory.
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APPENDIX A: DEFINITIONS OF GENERALIZED
STRING OPERATORS

As was mentioned below, Eq.~33! the definition~26! of
string operators can be generalized so that the transforma
to the linearized form~33! of the wave operator become
exact. To show this, we again consider strings which
embedded in an antiferromagnetic surrounding~Fig. 5!. For
simplicity, we consider the one-dimensional case w
strings defined in one row. Note that next to both sides o
given string there is always a pair of parallel spins direc

FIG. 5. Staggered magnetizationsMN ~Néel state! andML ~lay-
ered Néel state! in units of Bohr magnetons. The small figure show
the results of Dagottoet al. ~Ref. 7! for the expectation values o
the square of the respective staggered magnetizations as functi
J2/2J1. Note thatM1 of Dagottoet al. ~Ref. 7! corresponds toMN

andM2 to ML .
et.
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either in up or in down direction. This property is used
define a projectorQ

Q512P with P5)
i

1

2
~12s i 21

z s i
z!, ~A1!

by which one can decide whether a string is present i
given state or not. Heres i

z is the Pauli spin operator and th
index i runs over all sites of the considered row. If there is
pair of two neighboring spins the corresponding factor in
projectorP gives zero. Thus it follows thatP applied on any
string state gives 0 whereasQ gives 1. Vice versa, ifP and
Q is applied on the original Ne´el state one obtains 1 and 0
To be able also to enlarge a given string it should be poss
to identify the beginning or end of a string. We therefo
introduce a local projectorEi

Ei5
1

4
~ 1̂2s i 21

z !~ 1̂2s i
z!. ~A2!

Ei gives 1 if it is applied on that side of the string which
formed by two neighboring down spins, located at positio
i 21 and i . With this definition we define a generalize
string creation operator by

Ãn5
1

AL/2
(

i
~Si

1Si 11
2

•••Si 12n22
1 Si 12n21

2 !~P1EiQ!.

~A3!

Note that Eq.~A3! can only generate connected strings. T
first term creates a string of length 2n in the Néel state
whereas the second term enlarges an already present s
by adding 2n overturned spins. Obviously the definitio
~A3! leads to the desired linearization~37! of the wave op-
eratorV.

APPENDIX B: RIGOROUS BOUNDS OF EIGENVALUES

From the tridiagonal form of the eigenvalue problem~46!

it follows that three adjacent coefficientsg̃n21 , g̃n ,g̃ n11 are
always connected with each other:

J1

2
g̃n211an11,n11g̃ n1

J1

2
g̃n1150, n51,2,3, . . . .

~B1!

Here we have abbreviated the diagonal elements of Eq.~46!
by ann , i.e.,ann5en2e. Relation~B1! is also valid forn50
if g̃ 21 is set identical to zero. Starting withn50 and insert-
ing successively the preceding equation in the next equa
one can always eliminate the lowest coefficient. In this w
one is led to the following sequence of equations:

P1g̃01
J1

2
P0g̃150,

P2g̃11
J1

2
P1g̃250, . . . ~B2!

or in general

of
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Png̃n211
J1

2
Pn21g̃n50. ~B3!

The quantitiesPn obey the following recursion relation:

Pn5annPn212
J1

2

2

Pn22 , n51,2,3, . . . , ~B4!

where we have definedP051 andP2150. The first three
equations of Eq.~B4! read explicitly

P15a11,

P25a22a112
J1

2

2

, ~B5!

P35a33S a22a112
J1

2 D2
J1

2

2

a11, . . . .

Remember, the coefficientsann are functions of energye.
Therefore, thePn’s are polynomials of ordern in the energy.
Note thatPL/2 is the highest polynome possible. Its zer
en
correspond exactly to theL/2 eigenvaluesel of the
L/2-dimensional eigenvalue problem~46!. The sequence o
polynomes~B5! is called a ‘‘Sturm chain.’’ In the literature
there are given some exact theorems20 for Sturm chains from
which one can conclude exact properties for the eigenval
All eigenvalues of Eq.~46! are nondegenerate. Moreove
they are located in intervals, given by

uel2e~n!u<J1 ~B6!

with e(n)5e uu(n)1me2
'(n) given by Eqs.~46! and ~47!.

Note that for lattice sizeL2→` the relative differences be
tween two excited states goes to zero whereas the abs
difference does not. For the lowest eigenvalueEg5(L/2)eg
one finds from Eq.~B6!

J1>UEg1
J2L2

2
2mJ2L2U. ~B7!

SinceJ1 on the LHS can be neglected for largeL this in-
equality turns into the former Eq.~52!.
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