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Electron-spin resonance in spin-1 planar magnetic chains
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~Received 9 May 1997!

We present a theoretical study of electron-spin resonance~ESR! in spin-1 chains with a strong planar
anisotropy and an exchange interaction that is either ferromagnetic or antiferromagnetic. For a sufficiently
weak bias field, the ground state carries vanishing azimuthal spin and the resonance spectrum is dominated by
transitions to excitons and antiexcitons with azimuthal spin61. When the field exceeds a certain critical value,
the ground state is a fully saturated ferromagnet and the relevant elementary excitations are ordinary magnons.
The contribution of a two-magnon bound state, often referred to as the single-ion bound state, is of special
importance and is analyzed in detail. These theoretical results are consistent with available ESR measurements
on Ni~C2H8N2!2Ni~CN!4 and suggest more detailed experiments.@S0163-1829~97!05438-6#
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I. INTRODUCTION

There exist several experimental realizations of spi
chains with an easy-plane anisotropy of strengthD that is
significantly larger than the exchange constantJ. For D
.J, the elementary excitations are separated from
ground state by a nonvanishing energy gap irrespective
whether the exchange interaction is ferromagnetic~FM! or
antiferromagnetic~AFM!. The gap vanishes at a critical an
isotropy D;J, while a clear distinction between FM an
AFM chains emerges in the weak-anisotropy regionD,J.
The former are characterized by gapless modes, as expe
but the latter exhibit an unexpected Haldane gap studied
tensively in recent years.1

Experimental investigations of spin-1 chains with sup
critical anisotropy (D.J) have also been carried out by
variety of techniques, such as neutron scattering, spe
heat and susceptibility measurements, and electron-
resonance.2–5 On the other hand, some theoretical pred
tions have been obtained by a mean-field approach ada
to strong anisotropy6 and by a direct strong-couplin
expansion.7

Our current aim is to provide a calculation of ESR f
D.J systems at low temperature that probes directly
elementary excitations. Spin resonance is monitored b
uniform bias field applied along the symmetry~hard! axis
and varied over a wide range of values. The weak-field
gime is dominated byDm561 transitions between th
ground state and~anti!excitons that are accurately account
for by the strong-coupling expansion whenD@J. Above a
certain critical value of the bias field the ground state
ordered and the main contributions originate in transitions
magnons, as well as transitions between magnons and
magnon states. A distinct role is played by the single-
bound state originally calculated by Silberglitt and Torranc8

for easy-axis ferromagnets and later extended to easy-p
magnetic chains above the spin-flop transition by Papan
laou and Psaltakis.9

The main assertion of the present paper is that sp
560163-1829/97/56~14!/8786~13!/$10.00
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chains with a strong planar anisotropy provide an appropr
setting for a more or less direct observation of the single-
bound state. We shall further argue that available ESR da4,5

from Ni~C2H8N2!2Ni~CN!4, usually referred to with the ab
breviated symbol NENC, are consistent with the above
sertion. The problem is formulated in Sec. II and solved
FM and AFM exchange in Secs. III and IV, respectively. T
main conclusions are summarized in Sec. V, whereas
Appendix is devoted to a survey of the calculation of t
single-ion bound state.

II. FORMULATION

We consider the class of spin-1 magnetic chains gover
by the Hamiltonian

W5(
n

@D~Sn
z!26J~Sn•Sn11!1gmB~H•Sn!#, ~2.1!

where both the anisotropy constantD and the exchange con
stantJ are taken to be positive and the distinction betwe
AFM and FM chains is made explicit by the6 choice in Eq.
~2.1!. Since our aim is to study mainly the case of stro
anisotropy, it is convenient to scale out the anisotropy c
stant by measuring energy in units ofD. The remaining in-
dependent parameters are the dimensionless ratios

r5J/D, h5gmBH/D. ~2.2!

The region of current interest isr!1 but no restriction is
imposed on the strength of the bias fieldh.

In a typical ESR experiment a microwave field of fr
quencyv is applied in the basal plane along, say, thex axis.
The power absorption is proportional tovx9(v) where the
imaginary part of the susceptibility is given by

x9~v!5
1

2
~12e2bv!E

2`

`

dteivt^mx~ t !mx~0!&T .

~2.3!
8786 © 1997 The American Physical Society
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56 8787ELECTRON-SPIN RESONANCE IN SPIN-1 PLANAR . . .
Here ^•••&T is the usual thermal average andmx5SnSn
x is

the total spin in thex direction. To complete the descriptio
of rationalized units we note thatb51/T, whereT is the
temperature in units ofD, and the unit for the frequencyv is
D/\. Therefore neither the anisotropy nor the Planck c
stant will appear explicitly in our calculations.

An exact calculation ofx9(v) is out of question except in
the limit of vanishing exchange constant (r50). This limit
provides a valuable guide for understanding magnetic ch
with r!1 and is discussed in some detail in the pres
section. Thus, atr50, spins uncouple and the trace in E
~2.3! may be restricted to the eigenstates of the single-s
HamiltonianW5(Sz)21(h•S) written in rationalized units.
Let us consider the case of a bias field applied along the h
axis; h5(0,0,h). The eigenstates are then given by the
nonical spin-1 basisu1, 0&, u1,61& with eigenvalues

«050, «6516h; z511e2b«11e2b«2, ~2.4!

where we also quote the expression for the partition func
z at a single site. A straightforward application of Eq.~2.3!
yields

x9~v!5
Np

2z
@~12e2b«1!d~«12v!1~12e2b«2!

3d~«22v!1~e2b«121!d~«11v!

1~e2b«221!d~«21v!#, ~2.5!

whereN is the total number of sites and appears as an ove
factor. As expected,x9(v) is an odd function of frequency
and only two out of the four terms survive at positive fr
quencies. However the terms that survive depend on
strength of the bias field because level crossing occurs a
critical valueh5hc51.

For h,1, the energy levels are ordered as«1.«2.«0
50 and only the first two terms in Eq.~2.5! survive when
v.0. The first term corresponds to aDm51 transition be-
tween the ground stateu1, 0& and the ‘‘exciton’’ u1, 1& while
the second to aDm521 transition betweenu1, 0& and the
‘‘antiexciton’’ u1,21&. The resonance frequencies are giv
by

vA5«12«0511h, vB5«22«0512h ~2.6!

and the corresponding intensities may be inferred from
coefficients of thed functions in Eq.~2.5! multiplied by the
frequencyv. One should note that the intensities of the e
citon and the antiexciton are different at nonvanishing fie
in particular, the intensity of the antiexciton vanishes at
critical field h51 for all temperatures. Forh.1, the energy
levels are ordered as«1.«050.«2 and the stateu1,21& is
now the ground state. At positive frequencies only the fi
and fourth terms in Eq.~2.5! survive. The fourth term corre
sponds to aDm51 transition between the ‘‘ferromagnetic
ground stateu1,21& and the ‘‘magnon’’u1, 0& while the first
to a transition between the magnon and the ‘‘single-
bound state’’ u1, 1&. ~This terminology will become more
meaningful when the exchange interaction is turned on.! The
respective resonance frequencies are

vC5«02«25h21, vD5«12«05h11. ~2.7!
-
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A notable feature of the first term in Eq.~2.5! is that the
intensity of the transitionu1,0&→u1,1& vanishes at zero tem
perature, because the transition takes place between ex
states, except at the critical fieldh51 where the intensity
remains finite even atT50.

The preceding elementary results are schematically s
marized in Fig. 1 which plots the resonance frequencies~2.6!
and ~2.7! as a functions of the bias field forh,1 and h
.1, respectively. In all cases the resonance lines are stra
because the bias field preserves the azimuthal symm
One should also note that lineD for h.1 is the continuation
of line A for h,1. However the temperature dependence
the corresponding intensities is significantly different in t
two regions; for example, lineD looses its intensity atT
50 for all fields except the critical oneh51.

The resonance spectrum observed in NENC agrees
Fig. 1 in its gross features, with two important deviations4,5

First, the experimentally observed lineD is no longer the
continuation of lineA apparently due to the effect of a sma
but nonvanishing exchange interaction, which will be an
lyzed in detail in Secs. III and IV. Second, there is eviden
for an additional resonance that corresponds to a~normally!
forbidden Dm52 transition. Within the single-spin mode
discussed so far such a transition would yield a frequenc

vE5«12«252h, ~2.8!

depicted as lineE in Fig. 1, which is in rough agreemen
with experiment. Of course, the intensity of this resonan
vanishes within the single-spin model. A nonvanishing inte
sity could be achieved through mixing of states of defin
azimuthal spin produced by the combined effect of an
plane anisotropy of the formE@(Sx)22(Sy)2# and the ex-
change interaction. For simplicity, the potential effects of t
E term will not be discussed further in the present paper

This section is completed with a brief discussion of t
case of a bias field applied in the basal plane; e.g.h

FIG. 1. Field dependence of the resonance lines at vanis
exchange interaction and a bias field pointing along the hard a
The Dm52 resonanceE is depicted by a dashed line to indica
that its intensity vanishes within the single-spin model. Here and
all subsequent illustrations the frequencyv is measured in units of
D/\ and the fieldh in units of D/gmB .
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8788 56N. PAPANICOLAOU, A. ORENDÁČOVÁ, AND M. ORENDÁČ
5(h,0,0). At r50, the relevant single-spin Hamiltonian
W5(Sz)21hSx and its eigenvalues

«051, «65
1

2
6A1

4
1h2, ~2.9!

are ordered as«2,«0,«1 for all values of the bias field
The possible resonance frequencies are then given by

v15«12«252A1

4
1h2,

v25«02«25A1

4
1h21

1

2
,

v35«12«05A1

4
1h22

1

2
, ~2.10!

and are plotted in Fig. 2 as functions of the applied field. W
shall not quote here the complete expression forx9(v) but
mention that the intensities of the various modes depend
the relative orientation of the bias and microwave fields, b
lying in the basal plane. Figure 2 already provides a rou
approximation of the observed resonances in chains wi
small exchange interaction immersed in a transverse
field.2–5 In particular, line 3 was termed a ‘‘single-ion’
mode10 and involves transitions between excited states
thus its intensity vanishes atT50; in this respect, resonanc
3 in Fig. 2 is analogous to resonanceD in Fig. 1. Actually
the latter is a better candidate for a detailed study of
single-ion mode at nonvanishing exchange. Therefore the
fects of a transverse bias field will not be considered furt
in this paper.

III. FERROMAGNETIC EXCHANGE

We now come to the main point, namely the calculati
of the effect of a small but nonvanishing exchange inter
tion. Throughout this section we consider ferromagnetic
change and a bias field that points along the hard axis.
pressed in rationalized units the relevant Hamiltonian is

FIG. 2. Field dependence of the resonance lines at vanis
exchange interaction and a bias field applied in the basal plane
e

n
h
h
a

as

d

e
f-
r

-
-
x-

W5(
n

@~Sn
z!22r~Sn•Sn11!1hSn

z#. ~3.1!

A direct calculation of the susceptibility from Eq.~2.3! is no
longer possible but we will, instead, locate the most imp
tant contributions at low temperature using the equival
expression11

x9~v!5
p

Z (
a,b

~e2bEb2e2bEa!u^aumxub&u2d~Ea2Eb2v!,

~3.2!

where sums extend over all eigenstatesua& of Hamiltonian
~3.1! andEa are the corresponding eigenvalues. According
Z is the total partition function that should be distinguish
from the single-site partition functionz of Sec. II.

In order to arrive at a successful strategy for 0,r!1, it is
useful to briefly analyze ther50 results of Sec. II from the
point of view of Eq.~3.2! that entails sums over all eigen
states of the complete chain withN spins. Thus, atr50 and
h,1, the ground stateV is nondegenerate and such that
sites carry vanishing azimuthal spin (m50) and vanishing
energy (E050). An exciton (e) or antiexciton (ē) state is
obtained by exciting any single site to an azimuthal spinm
51 or 21; there existN independente states, each with
energyEe5«1511h, and an equal number ofē states with
energyEē5«2512h. The process may be continued in a
obvious way to constructN(N21)/2 two-exciton (ee) states
with m52 and Eee52«1 , an equal number of two-
antiexciton (ē ē) states withm522 andEē ē52«2 , N(N
21) exciton-antiexciton (eē) states withm50 and Ee ē
5«11«2 , and so on. One may then identify theDm51
transitions in Eq.~3.2! as V→e, e→ee, ē→eē,..., all of
which lead to a common resonance frequencyv5«1 , as
well as theDm521 transitionsV→ē, ē→ē ē, e→eē,...,
with resonance atv5«2 . A straightforward calculation of
the corresponding matrix elements in Eq.~3.2! at r50 leads
to

x9~v!5
Np

2Z
@11~N21!~e2b«11e2b«2!1•••#

3@~12e2b«1!d~«12v!

1~12e2b«2!d~«22v!#. ~3.3!

To make contact with Eq.~2.5! we note thatZ5zN and

@11~N21!~e2b«11e2b«2!1•••#5zN21, ~3.4!

when all higher-order processes are included. Equation~3.3!
then reduces to Eq.~2.5! applied forh,1 andv.0.

The main feature of the preceding elementary calculat
is that all Dm51 ~or Dm521! transitions lead to a com
mon resonance frequency in Eq.~3.3! and the corresponding
contributions to the intensity add up coherently in Eq.~3.4!
to produce the correct linear dependence onN anticipated in
Eq. ~2.5!. When the exchange interaction is turned on,
various processes do not lead to a common transition
quency, thus causing the familiar line broadening. Howev
at low temperature, the basic resonance is still due to
fundamentalV→e transition, while the higher-order pro
cessese→ee, ē→eē,..., areresponsible for the observe

g
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56 8789ELECTRON-SPIN RESONANCE IN SPIN-1 PLANAR . . .
finite linewidth and possibly a mild temperature-depend
frequency shift of the maximum of the intensity.

Therefore, forrÞ0, the main effect at low temperatur
may be obtained by keeping only the first few terms in E
~3.2! and by calculating the necessary energy eigenva
and matrix elements using the strong-coupling expansio
Ref. 7. Because the bias field preserves the azimuthal s
metry, the energy of an exciton or antiexciton at crystal m
mentumk is given by

«6~k!5«~k!6h,

«~k!5122 coskr1~112 sin2k!r2

1F1

2
~118 sin2k!cosk22 sin2kGr31••• ,

~3.5!

where «(k) is the common~anti!exciton dispersion calcu
lated in Ref. 7 at vanishing field. ESR transitions from t
ground state take place only tok50 excitons and antiexci
tons and the corresponding resonance frequencies are

vA5«1~k50!5S 122r1r21
1

2
r31••• D1h,

vB5«2~k50!5S 122r1r21
1

2
r31••• D2h, ~3.6!

which generalize Eqs.~2.6! to finite r. The most important
contributions in Eq.~3.2! are then given by the (k50) tran-
sitionsV→e andV→ē that lead to

x9~v!'
Np f 0

2Z
@~12e2bvA!d~vA2v!

1~12e2bvB!d~vB2v!#, ~3.7!

where the amplitudef 0 may be inferred from Eq.~4! of Ref.
7 applied fork50:

f 05112r1
3

2
r21••• . ~3.8!

One should further note the total partition functionZ can
also be calculated within the strong-coupling expansio7

However it is not especially meaningful to use the result
the above reference in Eq.~3.7! because the latter neglec
higher-order processes and is strictly valid atT50 where
Z51 and

T50; x9~v!5
1

2
Np f 0@d~vA2v!1d~vB2v!#.

~3.9!

The only approximation remaining in Eq.~3.9! is related to
the fact that the frequenciesvA , vB and the amplitudef 0 are
given by the truncated series~3.6! and ~3.8! that are fairly
accurate forr!1.

The calculated frequencies~3.6! are plotted as linesA and
B in Fig. 3, which are still straight lines and differ from thos
of Fig. 1 only by a downward parallel displacement due
the exchange interaction. To be sure,A andB are theT→0
t

.
es
of
m-
-

.
f

limits of the resonances actually observed in an experim
at finite temperature where line broadening occurs thank
higher-order processes. A related fact is that the maxima
the power absorption may acquire a mild temperature dep
dence, and a field dependence that deviates from a stra
line, because the intensities of higher-order processes do
add up coherently whenrÞ0. The essence of the abov
remarks is captured by a self-consistent approximation
ployed in Ref. 10 for the analysis of ESR data from CsFeC3.
Line broadening of exciton and antiexciton spectra will n
be discussed further in the present paper. In particular, we
not consider the effect of exciton bound states7 whose ESR
signal may add some interesting fine structure to the
served broadened resonances but is not expected to be
spicuous.

Instead, we return to Fig. 3 and note that the antiexci
branchB terminates on the horizontal axis at a field val
h5h0 . Since the smallest gap occurs at the zone center
critical field h0 is determined from the condition«2(k50)
50 or

h05122r1r21
1

2
r31•••,1, ~3.10!

where level crossing occurs and the ground state ceases
an~azimuthal! spin singlet. Aboveh0 the chain enters a spin
flop phase where the ground state becomes increasingly
romagnetic. Complete ferromagnetic order is achieved ab
a critical fieldhc that coincides with the valuehc51 of the
single-spin model of Sec. II. The remainder of this section
devoted to the calculation of the ESR spectrum above
spin-flop transition (h.1) where detailed theoretical infor
mation is available on the low-lying excited states9 and is
briefly reviewed in the Appendix.

The excitation spectrum is depicted in Fig. 4 for a typic
small exchange constantr50.1 and a bias fieldh53/2.hc
51. The low-lying spectrum consists of the usual magn
with a dispersion

FIG. 3. Field dependence of the ESR spectrum for a ferrom
netic chain with a small exchange interaction (r50.1). The exciton
line A is continued as a dashed line into the spin-flop regimeh0

,h,hc51) to indicate our present lack of knowledge of the low
lying excitation spectrum for such field values; see the text
further explanations.
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8790 56N. PAPANICOLAOU, A. ORENDÁČOVÁ, AND M. ORENDÁČ
«k5h2112r~12cosk! ~3.11!

that confirms the critical fieldhc51; for h,1, the magnon
energy becomes negative atk50, thus signaling instability
of the fully ordered ground state. Furthermore two-magn
states come in three varieties: a two-magnon continuum w
boundaries at 2(h21)14r@16cos(k/2)#, an ‘‘exchange’’
bound state that branches off below the continuum near
zone boundary, and a ‘‘single-ion’’bound state that exten
throughout the zone and is well separated above the
tinuum whenr!1. The single-ion mode is of special impo
tance in the following and its exact energy-momentum d
persion is given by

Ek52~h21!14rF11
1

2 S x1
1

xD cos
k

2G , ~3.12!

wherex is the appropriate root of the cubic equation~A8!
discussed in the Appendix, whose accurate numerical ca
lation is straightforward. Nevertheless, for all practical p
poses in the parameter region of current interest, an exce
approximation is obtained by

x'rS 11
r3

21r
cos2

k

2D cos
k

2
. ~3.13!

In fact, in order to be consistent with our earlier discussion
excitons and antiexcitons, the single-ion dispersion~3.12!
may be approximated by inserting Eq.~3.13! and consis-
tently expanding to third order inr to obtain

Ek'2~h21!12F112r1S r22
1

2
r3D cos2

k

2G ,
~3.14!

FIG. 4. One- and two-magnon excitation energies~in units of
D! for a ferromagnetic chain with a small exchange interactionr
50.1) and a typical field above the spin-flop regime (h5hc11/2
51.5). For this small value ofr the single-ion bound state is we
separated above the continuum while the exchange bound
branches off below the continuum near the zone boundary.
n
th

e
s
n-

-

u-
-
nt

f

which is actually exact at the zone boundary (k5p) for all
r, and fairly accurate at the zone center (k50) for r!1.
This approximate dispersion may be used safely in the ra
r&0.3 that encompasses most known magnetic chains
supercritical anisotropy. Otherwise one must resort to
exact dispersion~3.12! which is valid for all r including r
.1.

For h.1, the only ESR transition that survives in th
limit T→0 is the one between the ferromagnetic ground s
and a single magnon withk50. It is thus useful to write the
susceptibility as

x9~v!5x19~v!1x29~v!, ~3.15!

wherex19 is the single-magnon contribution andx29 contains
all other (Dm51) processes that acquire a nonvanishing
tensity at finite temperature. The former is easily calcula
by identifying the single-magnon term in the sum of E
~3.2! to obtain

x19~v!5
Np

2Z
~12e2bvC!d~vC2v!,

vC5«k505h21, ~3.16!

wherevC coincides with the corresponding frequency in t
limit r50, see Eq.~2.7!, and is plotted as lineC in Fig. 3 for
h.1. For future reference we also quote the total pow
absorbed by the single-magnon process:

P1;E vx19~v!dv5
NpvC

2Z
~12e2bvC!, ~3.17!

which vanishes at the critical fieldh51 for all temperatures,
because a magnon withk50 becomes degenerate with th
ground state, but increases withh for h.1. Finally we recall
that Eqs.~3.16! and ~3.17! are strictly appropriate atT50
where they yield thecomplete susceptibility x9(v) and
power absorptionP:

T50; x9~v!5
1

2
Npd~vC2v!, P;

1

2
NpvC .

~3.18!

Thus we turn our attention toDm51 processes that occu
at finite temperature. The simplest possibility is a transit
between a single-magnon and a two-magnon state. Ins
tion of Fig. 4 suggests that a transition between a mag
and a state in the two-magnon continuum yields a signal
is roughly superimposed with the basic magnon lineC and
contributes to its broadening, in analogy with the line broa
ening of excitons and antiexcitons discussed earlier in
text. Similarly a transition between a magnon and an
change bound state yields a signal in the same freque
range; hence the exchange bound state is not expected
conspicuous in the observed resonance spectrum. On
contrary, it is evident from Fig. 4 that a transition between
magnon and a single-ion bound state makes a distinct c
tribution tox29(v) that is clearly separated from the magn
resonanceC. In fact, such a process is responsible for t
r-dependent deformations of lineD of Fig. 1 and will be
calculated in detail.

ate
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Specifically, the contribution of the above process may
isolated in Eq.~3.2! to write

x29~v!'
N

Z
~12e2bv!E

0

p

dke2b«ku f ~k!u2d~Dk2v!,

~3.19!

where Z is the total partition function,«k is the magnon
dispersion~3.11!, Dk5Ek2«k is the energy difference be
tween the single-ion mode and the magnon at crystal
mentumk ~see Fig. 4!, and f (k)5^c2(k)umxuc1(k)& is the
matrix element of the total moment between the correspo
ing normalized wave functions. The exact expression forDk
is readily computed from Eqs.~3.11! and ~3.12!:

Dk5h211
2r

x S 112x cos
k

2
1x2D cos

k

2
, ~3.20!

and may be approximated to third order by

Dk'h111~4r12r22r3!cos2
k

2
. ~3.21!

Also using the explicit wave functions constructed in t
Appendix we have calculated the~exact! matrix element

u f ~k!u2[
X

2Y
,

X5F12
2@x1cos~k/2!#

112x cos~k/2!1x2 S x1
1

x
2

1

r cos~k/2! D G
2

,

Y511
1

12x2 S x1
1

x
2

1

r cos~k/2! D
2

, ~3.22!

which may be approximated at smallr through Eq.~3.13!.
Incidentally, in all of the ensuing graphical illustrations w
have used a precise numerical calculation of the rootx of the
cubic equation.

For example, the result of Eq.~3.22! is plotted in Fig. 5 as
a function of crystal momentum for various values ofr. The
squared matrix element approaches the free-spin value 1

FIG. 5. The squared matrix element~3.22! as a function of
crystal momentum for a ferromagnetic chain with various values
r5J/D.
e

o-

d-

at

the zone boundary for allr, and the same value for allk
when r→0. On the other hand, significant departures fro
the free-spin model occur at the zone center with increas
r. At r53/4 the matrix element vanishes fork50, so does
the energy gap between the single-ion bound state and
upper side of the two-magnon continuum. The fate of
bound-state spectrum forr.3/4 is further discussed in th
Appendix but is irrelevant for the parameter region of curre
interest where the single-ion bound state is well separa
from the continuum and both its dispersionEk and the matrix
elementu f (k)u2 are nearly flat through the zone. Nonethele
sufficient structure persists at smallr that should lead to a
clear ESR signal for the single-ion bound state.

Indeed, we now return to Eq.~3.19! and note that absorp
tion occurs for frequencies that satisfy the resonance co
tion

v5Dk , ~3.23!

i.e., for frequencies in the bandvD,v,vD8 , where vD
and vD8 can be calculated from Eqs.~3.23! and ~3.20! ap-
plied for k5p andk50:

vD5h11, vD85h211
2r

x
~11x!2. ~3.24!

The first relation was obtained by using the fact that the r
x vanishes at the zone boundaryk;p, as x;r cos(k/2),
whereas the second relation contains the rootx calculated at
the zone center. A good approximation of the latter is giv
by Eq. ~3.13!, applied fork50, and a corresponding third
order approximation of the edge frequencies~3.24! reads

vD5h11, vD85h1114r12r22r31••• ,
~3.25!

which are plotted in Fig. 3 as linesD andD8, respectively.
The lineD coincides with itsr50 counterpart in Fig. 1 but
is no longer the continuation of the exciton lineA that ac-
quires a nontrivialr dependence given by Eq.~3.6!. There-
fore absorption by the single-ion bound state is distribu
over a frequency band with a width

D5vD82vD54r12r22r31••• ~3.26!

that remains finite even at very low temperatures and v
ishes only whenr50. In other words, the single-ion band
width D must not be confused with ordinary line broadeni
of elementary excitations.

Our last task is to determine the detailed distribution
power absorption over theDD8 band of Fig. 3. Performing
the k integration in Eq.~3.19! yields

x29~v!'
N

Z
~12e2bv!e2b«kd~k!, ~3.27!

where

d~k!5
u f ~k!u2

uDk8u
~3.28!

is the ‘‘density of states’’ andDk8 is thek derivative ofDk .
It is understood that the crystal momentum is expressed
function of frequency through the resonance condition~3.23!

f
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viewed as an algebraic equation fork5k(v). Actually we
need not solve this equation explicitly because the neces
graphs can be produced by calculating Eqs.~3.27! and~3.28!
over a dense set of points in 0<k<p and by determining the
corresponding frequencies from Eq.~3.23!.

The density of states~3.28! is plotted as a function o
frequency in Fig. 6 and exhibits the characteristic square-
singularities at the two edges of theDD8 band. To make this
fact completely explicit we may use the analytical appro
mation forDk given by Eq.~3.21! to calculateDk8 and sub-
sequently enforce the resonance condition~3.23! to obtain

uDk8u'@~vD82v!~v2vD!#1/2. ~3.29!

Therefore, although nonvanishing absorption occ
throughout theDD8 band, a significant enhancement shou
be expected around the band edges.

Now the intensity of the single-ion process vanishes
T50, except forh51, and an absolute statement cannot
made at finite temperature because we have negle
higher-order processes that are, nonetheless, reflected i
total partition functionZ present in Eq.~3.27!. Yet the es-
sential point of this calculation can be made by consider
the relative intensity,

R5
vx29~v!

P1
5

2

p

v

vC

12e2bv

12e2bvC
e2b«kd~k!, ~3.30!

with respect to the total absorptionP1 of the single-magnon
process given by Eq.~3.17!. The relative intensity is then
plotted as a function of frequency, in Fig. 7, for three ch
acteristic values ofb51/T in the low-temperature region
(T,1[D). The net conclusion is that absorption shou
indeed be observed throughout the band, but with a vis
enhancement around the band edges.

The effect of the neglected higher-orderDm51 processes
is twofold. First, multimagnon states with a dominant ‘‘e
change’’ component should contribute to normal line bro
ening of the basic magnon resonanceC, with a possibly
interesting fine structure due to the exchange bound s

FIG. 6. The density of states~3.25! as a function of frequency
for a ferromagnetic chain withr50.1. The specific value of the
applied field (h5hc11/251.5) does not affect the shape of th
density but merely sets the relative position of theDD8 band along
the frequency axis.
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Second, multimagnon states with a significant ‘‘single-ion
component should cause further broadening of theDD8
band, beyond itsT50 width D of Eq. ~3.26!, and possibly
normalize the square-root singularities of Fig. 7 to tw
rounded peaks that might merge into one at high temp
tures. We have also not carried out a study of the spin-fl
phase (h0,h,hc) and thus cannot ascertain how the ex
ton spectrum, forh,h0 , will join smoothly with the magnon
spectrum, forh.1.

Nevertheless our theoretical calculation is sufficiently d
tailed to guide current experiments. In order to achieve
favorable experimental situation, one needs a ferromagn
compound with a smallr5J/D, so that theDD8 band is
clearly separated from the~broadened! magnon resonanceC,
and a critical fieldhc51 or Hc5D/gmB that is accessible
CsFeCl3 is a candidate with a measured12 critical field Hc
511.5 T that is not terribly large. However ES
experiments2,3 have so far been carried out in the regionH
,Hc and generally confirm the exciton and antiexciton lin
A andB of Fig. 3 but yield no information on the spectrum
calculated in the present paper forH.Hc . Furthermore a
considerable uncertainty exists concerning the precise va
of the parameters. The parameters extracted from the m
field approximation of Lindgard6 differ from those obtained
within the strong-coupling expansion7 as well as those in the
self-consistent approach of Suzuki and Makino.10 A more
favorable situation seems to be provided at present by
antiferromagnetic compound NENC studied in the followi
section.

IV. ANTIFERROMAGNETIC EXCHANGE

Our next aim is to adapt the calculation of Sec. III to t
case of spin-1 planar magnetic chains with antiferromagn
exchange, i.e.,

W5(
n

@~Sn
z!21r~Sn•Sn11!1hSn

z#, ~4.1!

FIG. 7. The relative intensity~3.30! as a function of frequency
for a ferromagnetic chain withr50.1 and a typical field above the
spin-flop regime (h51.5). The intensity of the single-ion mod
decreases with decreasing temperature~T151/2, T251/3, andT3

51/4, in units ofD! and eventually vanishes atT50.
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where r5J/D is again positive. For smallr and h the
ground state is still an azimuthal-spin singlet (m50) and the
elementary excitations arem51 excitons andm521 anti-
excitons with dispersions

«6~k!5«~k!6h,

«~k!5112 coskr1~112 sin2k!r2

2F1

2
~118 sin2 k!cosk22 sin2kGr31••• ~4.2!

that differ from those of Eq.~3.5! by the simple replacemen
r→2r. Therefore the elementary excitations are ag
separated from the ground state by a finite energy gap,
cept that the gap is now smallest at the zone boundaryk
5p) rather than the zone center (k50). Nevertheless ESR
transitions occur atk50 and the corresponding frequenci
are

vA5«1~k50!5S 112r1r22
1

2
r31••• D1h,

vB5«2~k50!5S 112r1r22
1

2
r31••• D2h, ~4.3!

which are plotted as linesA and B in Fig. 8. These lines
differ from both theirr50 and FM counterparts in Figs.
and 3 by an upward parallel displacement that depends or.
Otherwise the discussion of FM excitons and antiexcitons
Sec. III applies here with minor modifications. For examp
the low-temperature intensities may be inferred from E
~3.7! or ~3.9! applied with frequenciesvA andvB given by
Eq. ~4.3! and an amplitude

f 05122r1
3

2
r21••• . ~4.4!

FIG. 8. Field dependence of the ESR spectrum for an antife
magnetic chain with a small exchange interaction (r50.1). The
resonance linesA, B, andC are continued as dashed lines into t
spin-flop regime (h0,h,hc) to indicate our present lack of knowl
edge of the low-lying excitation spectrum for such field values;
the text for further explanations.
n
x-
(

f
,
.

The picture becomes slightly more involved with increa
ing bias fieldh. Thus the ground state ceases to be a sin
above a critical fieldh0 determined from the condition
«2(k5p)50, because the smallest gap occurs at the z
boundary, or

h05122r1r21
1

2
r31••• , ~4.5!

which is identical to the corresponding FM value of E
~3.10!, at least to third order inr. As a consequence, an AFM
chain will enter the spin-flop phase well before the antiex
ton line B of Fig. 8 touches the field axis. Furthermore t
ground state of an AFM chain orders ferromagnetica
above a critical fieldhc that does not coincide with ther
50 value hc51. To locatehc we note that a completely
ordered state is always an eigenstate of the AFM Ham
tonian ~4.1! and the dispersion of the single-magnon exci
tion reads

«k5h2hc12r~11cosk!, hc[114r. ~4.6!

The smallest magnon gap occurs at the zone boundary a
equal toh2hc . Therefore,hc5114r is the upper critical
field and now depends onr.

The magnon dispersion~4.6! is depicted in Fig. 9 togethe
with the two-magnon spectrum of an AFM chain calculat
in the Appendix. The spectrum consists of a two-magn
continuum with boundaries at 2(h2hc)14r@16cos(k/2)#,
an exchange bound state that branches offabove the con-
tinuum near the zone boundary, and a single-ion bound s
that is well separated also above the continuum and disp
a shape similar to the corresponding FM dispersion of Fig
More precisely, the energy-momentum dispersion of
AFM single-ion bound state is given by

-

e
FIG. 9. One- and two-magnon excitation energies~in units of

D! for an antiferromagnetic chain with a small exchange interact
(r50.1) and a typical field above the spin-flop regime (h5hc

11/251.9). For this small value ofr the single-ion bound state i
well separated above the continuum while the exchange bound
branches off also above the continuum near the zone boundar



c

II

d
-

so
te
nc
th

o
t

ion

-

ned

r-
le-
the
one
-

dix.
at
e.

FM

he

al-

8794 56N. PAPANICOLAOU, A. ORENDÁČOVÁ, AND M. ORENDÁČ
Ek52~h2hc!14rF11
1

2 S x1
1

xD cos
k

2G , ~4.7!

wherex is the appropriate root of the cubic equation~A19!
discussed in the Appendix. Forr!1, an excellent approxi-
mation is provided by

x'rS 12
r3

22r
cos2

k

2D cos
k

2
~4.8!

and the exact dispersion~4.7! may be approximated to third
order by

Ek'2~h2hc!12F112r1S r21
1

2
r3D cos2

k

2G . ~4.9!

Accordingly an exact expression for the energy differen
Dk5Ek2«k is given by

Dk5h211
2r

x S 122x cos
k

2
1x2D cos

k

2
~4.10!

and a third-order approximation by

Dk'h111~24r12r21r3!cos2
k

2
, ~4.11!

which is actually exact at the zone boundary for allr and
fairly accurate at the zone center whenr!1.

From this point on the analysis is similar to that of Sec.
and will not be repeated in detail. Thus, forh.hc , the only
transition that persists atT50 is the one between the ordere
ground state and ak50 magnon, with resonance at fre
quency

vC5«k505h2hc14r5h21, ~4.12!

which isr independent and is again plotted as lineC in Fig.
8. The single-magnon intensity is still given by Eq.~3.17!
and remains finite atT50, as shown in Eq.~3.18!.

Leaving aside broadening effects of the magnon re
nanceC, including the effect of the exchange bound sta
we consider next the deformation of the single-ion resona
D due to the exchange interaction. The contribution of
single-ion bound state is again given by Eq.~3.19! applied
with an energy differenceDk from Eq. ~4.10! and a matrix
element

u f ~k!u2[
X

2Y
,

X5F12
2@x2cos~k/2!#

122x cos~k/2!1x2 S x1
1

x
2

1

r cos~k/2! D G
2

,

~4.13!

Y511
1

12x2 S x1
1

x
2

1

r cos~k/2! D
2

that differs in its details from the corresponding FM result
Eq. ~3.22! and by the fact thatx now satisfies a differen
cubic equation.
e

I

-
,
e

e

f

A simple inspection of Fig. 9 suggests that absorpt
takes place over a finite frequency rangevD8,v,vD
where the edge frequencies are the values ofDk at k50 and
k5p, respectively, or

vD85h211
2r

x
~12x!2, vD5h11, ~4.14!

wherex is the root atk50. A third-order approximation is
given by

vD85h1124r12r21r31••• , vD5h11,
~4.15!

and the calculated width of theD8D band,

D5vD2vD854r22r22r31••• , ~4.16!

remains finite even atT50. However nonvanishing absorp
tion is possible only at finite temperature.

The temperature dependence of the intensity is gover
by Eq. ~3.27! where«k is the magnon dispersion~4.6! and
the density of statesd(k) is calculated from Eq.~3.28! ap-
plied with an energy differenceDk from Eq. ~4.10! or ~4.11!
and a matrix elementu f (k)u2 from Eq. ~4.13!. The latter is
plotted in Fig. 10 in order to point out an important diffe
ence from the FM result of Fig. 5; the squared matrix e
ment is greater than the free-spin value 1/2, except at
zone boundary, and increases without bound, at the z
center, with increasingr. Such a behavior is intimately re
lated to the fate of the bound-state spectrum for larger, or
weak anisotropy, and is further discussed in the Appen
For the region of current interest it is sufficient to note th
u f (k)u2 exhibits a mildk dependence throughout the zon
Therefore the structure of the density of states~3.28! is
mainly determined byuDk8u for which a good approximation
is obtained from Eqs.~4.11! and ~4.15!:

uDk8u'@~v2vD8!~vD2v!#1/2. ~4.17!

As a consequence, the density of states is similar to the
density of Fig. 6, except that the frequencyvD8 now pre-
ceedsvD . Accordingly the temperature dependence of t

FIG. 10. The squared matrix element~4.13! as a function of
crystal momentum for an antiferromagnetic chain with various v
ues ofr5J/D.
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intensity is also similar to the one displayed in Fig. 7 and
qualitative picture discussed in Sec. III applies here alm
unchanged. In particular, the intensity of the single-ion re
nance diminishes with decreasing temperature but should
hibit an increasingly sharp double-peak structure around
edges of theD8D band. In the extreme low-temperature lim
the intensity vanishes but the bandwidthD remains finite and
is given by Eq.~4.16!.

We now examine whether or not the derived picture
consistent with existing ESR data from NENC.4,5 This is a
spin-1 chain with antiferromagnetic exchange, an anisotr
constantD'6 K, and a ratior5J/D'0.13 that lies well
within the domain of validity of the present theoretical ca
culation. Furthermore the measured critical field,Hc

'4.4 T, is not too large and thus experiments were p
formed for bothH,Hc andH.Hc .

One of the main features of the available data is that
observed single-ion resonance forH.Hc does indeed fall
below the continuation of the exciton lineA observed for
H,Hc , in qualitative agreement with Fig. 8. Moreover th
observed intensity decreases with decreasing tempera
also in qualitative agreement with the curre
interpretation.13 However a quantitative comparison wou
require more detailed experiments that should clarify the
lowing issues:~a! provide an accurate fit of the exciton an
antiexciton resonancesA andB of Fig. 8 in the limitT→0,
~b! yield more detailed information on the lower and upp
critical fields h0 and hc and their relation to the stated ex
perimental valueHc'4.4 T in Refs. 4 and 5,~c! obtain fur-
ther data on the magnon resonanceC and possibly examine
the manner in which it interpolates into the spin-flop regim
and ~d! resolve the predicted double-peak structure of
single-ion bandD8D and study the temperature dependen
of the corresponding intensity.

V. CONCLUDING REMARKS

We have described but the bare-bones structure of
ESR spectrum at low temperatures for spin-1 planar m
netic chains with either ferromagnetic or antiferromagne
exchange interaction. Although the derived theoretical
sults are sufficiently detailed to guide current experimen
the program should be completed with some further theo
ical work aimed at the following issues:~a! a study of line-
broadening effects, including the potentially interesting fi
structure induced by two-exciton as well as two-magnonex-
changebound states,~b! a calculation in the spin-flop regim
(h0,h,hc) that would bridge the results for the two re
gions ~h,h0 andh.hc! obtained in this paper, and~c! in-
clusion of the effects of a weak in-plane anisotropy tha
present in realistic compounds and activates normally forb
den (Dm52) transitions, such as the resonanceE depicted
in Fig. 1 and actually observed in NENC.4,5

It would also be of interest to determine the hig
temperature limit of the ESR spectrum, for such a lim
might be accessible to a detailed theoretical analysis u
the method of frequency moments of the imaginary part
the susceptibility.11 A good starting point is the single-spi
result of Eq.~2.5! whose high-temperature limit reads
e
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x9~v!'
1

6
Npbv@d~«12v!1d~«22v!

1d~«11v!1d~«21v!#. ~5.1!

Therefore the field dependence of the resonance lines is
same as in Fig. 1 and the main simplification at high te
peratures concerns the intensities of the various mode
would thus be useful to study the deformations of Eq.~5.1!
effected by the exchange interaction, by calculating a nu
ber of moments at finiter and then reconstructing the su
ceptibility by standard methods.14 However, although a re-
spectable number of moments is available for spin-
chains, we are not aware of a corresponding calculation
spin-1 chains.

Perhaps the most important element of our analysis is
suggestion that the single-ion bound state makes a dis
contribution to the ESR spectrum forH.Hc and its effect
can be unambiguously identified. It would be interesting
carry out a similar analysis for easy-axis ferromagne
chains, originally studied by Silberglitt and Torrance,8 where
the single-ion bound state lies below the two-magnon c
tinuum. Another related problem is that of a spin-1 cha
with an additional biquadratic exchange interaction, stud
by Chiu-Tsao, Levy, and Paulson,15 where the single-ion
bound state occurs within the continuum and is thus an
stable, yet conspicuous, resonance. A bound-state reson
within the continuum was also found by Hodgson a
Parkinson16 for spin-1 chains with Ising anisotropy.

Finally, there is a potential connection of the single-i
mode with the intrinsic localized spin modes found clas
cally by Wallis, Mills, and Boardman17 for ferromagnetic
chains with an easy-plane single-ion anisotropy, and by L
Kiselev, and Sievers18 for antiferromagnetic chains with a
easy-axis single-ion anisotropy. It would certainly be inte
esting to illuminate such a connection, even though it is d
ficult to imagine how classical arguments would match
detail the quantum calculation presented in this paper.
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APPENDIX: TWO-MAGNON STATES

There exist several methods for calculating the tw
magnon spectrum in spin-1 chains, the most direct one be
based on an elementary Bethe ansatz.9,16 For chains with
ferromagnetic exchange interaction we merely adapt
work of Ref. 9 to current notation and then calculate mat
elements that are necessary for the study of the ESR s
trum in Sec. III. We further extend the calculation to chai
with antiferromagnetic exchange interaction and thus p
vide the basis for the discussion of Sec. IV.

For h.1, the ground state of the FM Hamiltonian~3.1! is
given byuV&5u1,21& ^ u1,21& ^ ••• ^ u1,21&, i.e., all spins
point along the negativez axis, and its energy isE05N(1
2r2h). The single-magnon normalized eigenstate is
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uc1&5
1

AN
(
n51

N

eiknun&, ~A1!

wherek is the crystal momentum and the stateun& differs
from the ground stateuV& by the fact that the azimuthal spi
at siten is equal to 0 instead of21. The eigenvalue ofuc1&
is E01«k where«k is the magnon excitation energy alrea
quoted in Eq.~3.11!. Similarly two-magnon eigenstates a
searched for in the form

uc2&5 (
n51

N21

(
m5n11

N

cn,mun,m&1 (
n51

N

dnun,n&, ~A2!

where un,m&, with nÞm, differs from the ground state a
sites n and m where the azimuthal spin is equal to zer
while un,n& differs only at siten where the azimuthal spin i
equal to11. The coefficientscn,m are given by the familiar
Bethe ansatz

cn,m5ei ~k1n1k2m1f/2!1ei ~k1m1k2n2f/2!, ~A3!

whereas the single-site coefficient is

dn5
cos~k12f/2!1cos~k21f/2!

cosk11cosk211/r
ei ~k11k2!n ~A4!

and differs from the one obtained by extending Eq.~A3! to
n5m. To complete the ansatz we note that the phasef must
satisfy the constraint

cot
f

2
5

~11Q!sin@~k12k2!/2#

2 cos@~k11k2!/2#2~11Q!sin@~k12k2!/2#
,

Q[
11cos~k11k2!

cosk11cosk211/r
, ~A5!

and periodic boundary conditions are enforced if

Nk12f52pl1 , Nk21f52pl2 , ~A6!

wherel1 and l2 are integers that may be restricted to t
range 0<l1<l2<N21. Finally the eigenvalue ofuc2& is
equal toE01E whereE0 is the ground-state energy and

E52~h21!14rF12
1

2
~cosk11cosk2!G ~A7!

is the two-magnon excitation energy. The preceding res
summarize all necessary information for a complete anal
of the two-magnon spectrum by standard methods.19

An immediate consequence of Eq.~A7! is that the bound-
aries of the two-magnon continuum are located at 2(h21)
14r@16cos(k/2)# where k5k11k2 ~mod 2p! is the total
crystal momentum restricted to the fundamental Brillou
zone ~see Fig. 4!. In the following we shall focus on two
magnonbound statescharacterized by complex wave num
bers k15u1 iv and k25u2 iv that may occur whenl2
5l1 or l2 5l111, in Eq. ~A6!, which lead tof5 iNv or
p1 iNv, respectively. In both cases the algebraic constr
~A5! reduces to the cubic equation

rx31
x2

cosu
1~r22!x22r cosu50, ~A8!
,

ts
is

t

in the thermodynamic limit (N→`), wherex5e2v may be
restricted to the range 0,x,1 without loss of generality.
Accordingly the excitation energy~A7! reads

E52~h21!14rF12
1

2 S x1
1

xD cosuG . ~A9!

Therefore, for any given value ofu5(k11k2)/2 for which
Eq. ~A8! has a rootx in the interval@0,1#, Eq.~A9! yields the
excitation energy of the corresponding bound state par
etrized by the total crystal momentumk11k25k folded into
the fundamental Brillouin zone.

The nature of the bound-state spectrum is revealed by
considering Eq.~A8! near the zone boundary (cosu;0)
where two real roots emerge

x'2r cosu or 2 cosu ~A10!

that lie in the interval@0,1# provided that cosu,0 in the first
case and cosu.0 in the second. These roots correspond
the limiting cases of the single-ion and exchange bou
states9 and are examined in turn. The first equation in E
~A10! suggests the change of variables

x52r cosu z; z511
z3r3cos2u

21rz
, ~A11!

and the condition cosu,0 is equivalent to stating thatk
5k11k2 must take values outside the fundamental zone.
thus effect the usual folding of the zone by the simple p
scriptionu5k/2→k/22p in Eq. ~A11! to obtain

x5r cos
k

2
z; z511

z3r3cos2~k/2!

21rz
, ~A12!

while the excitation energy~A9! is rewritten in the form
given earlier in Eq.~3.12!. Now, for eachk in the range
@2p,p#, the cubic equation in Eq.~A12! is solved by a
simple iteration process starting withz51. Actually a single
iteration yields a sufficiently accurate description of t
single-ion bound state, forr!1, and the result was alread
quoted in Eq.~3.13!. Similarly the exchange bound state
obtained by starting with the second equation in Eq.~A10!
which suggests the change of variables

x52 cosu w; w512
4rw3cos2u

r12w
. ~A13!

No folding of the zone is required in this case, so we m
simply setu5k/2 in Eqs.~A9! and~A13! and again solve the
cubic equation by simple iteration starting withw51. It is
understood that a rootx in @0,1# may not be possible for al
values ofk in the fundamental zone, for either the single-io
or the exchange bound state. The calculated spectrum
illustrated in Fig. 4, for a typical choice of parameters
current interest, and was discussed in Sec. III. Here we c
plete the description by noting that the single-ion bound s
ceases to exist throughout the zone, whenr.3/4, and
branches off above the continuum at some minimumk
5k(r); see Fig. 2 of Ref. 9. In the extreme limit of vanish
ing anisotropy (r→`) the single-ion bound state disappea
from the spectrum, while the exchange bound state exte
throughout the zone, just below the continuum.
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We now consider the calculation of matrix elements t
are necessary for the discussion of ESR in Sec. III. First
restrict the general two-magnon wave function~A3! and
~A4! to bound states by settingk15u1 iv, k25u2 iv and
f5 iNv; the casef5p1 iNv leads to identical results in
the thermodynamic limit and will not be considered expl
itly. Hence

cn,m5@xm2n2N/21~1/x!m2n2N/2#eiu~n1m!,

dn5
cosu

1/r1cosu~x11/x!
@xN/2211~1/x!N/221#e2iun.

~A14!

Using this completely explicit form of the wave function
matrix elements can be calculated by straightforward su
mations of geometric progressions. For example, the n
N25^c2uc2& is found to be

N25 (
n51

N21

(
m5n11

N

ucn,mu21 (
n51

N

udnu2

5
Nx2

xN H 1

12x2 1F cosu

1/r1cosu~x11/x!G
2J , ~A15!

where we have neglected in the bracket terms that va
exponentially in the limitN→`; e.g., xN→0 because, ge
nerically, 0,x,1.

The required matrix element^c2umxuc1& between the nor-
malized one- and two-magnon states is now effected by
ing that

mxuc1&5
1

A2N
S (

n51

N21

(
m5n11

N

cn,m8 un,m&1 (
n51

N

dn8un,n& D
1AN

2
d~k!uV&,

cn,m8 5eink1eimk, dn85eikn. ~A16!

Therefore

^c2umxuc1&5
1

A2NN2
S (

n51

N21

(
m5n11

N

c̄n,mcn,m8 1 (
n51

N

d̄ndn8D ,

~A17!

whereN2 is the norm of Eq.~A15!. A tedious but straight-
forward calculation of the sums shows that a nonvanish
matrix element is obtained only when the crystal moment
of the two-magnon state is equal~mod 2p! to the one-
magnon momentumk, as expected. Hence we may wri
^c2umxuc1&[ f (k) whose explicit form for the single-ion
bound state was already quoted in Eq.~3.22!. One should
recall that for this state cosu52cos(k/2), in accord with the
zone folding discussed earlier.

The generalization of the preceding results to an anti
romagnetic chain is more or less straightforward. The fu
ordered state is again an eigenstate of the Hamiltonian~4.1!
and becomes the lowest-energy~ground! state forh.hc51
14r. Similarly the single-magnon state~A1! is an eigen-
t
e

-
m

sh

t-

g

r-
y

state with excitation energy given by Eq.~4.6!. The excita-
tion energy of the two-magnon bound states reads

E52~h2hc!14rF11
1

2 S x1
1

xD cosuG , ~A18!

wherex is any root of the cubic equation

rx32
x2

cosu
1~r12!x22r cosu50 ~A19!

in the interval @0,1#. The relevant roots are approximate
near the zone boundary (cosu;0) by

x'r cosu or 2 cosu ~A20!

and again correspond to a single-ion and an exchange bo
state. A technical difference from the FM case is that b
roots lie in @0,1# for cosu.0. As a consequence, no foldin
of the zone is required for either mode and we may sim
setu5k/2 in Eqs.~A18!–~A20! wherek takes values in the
fundamental zone.

The single-ion bound state is studied efficiently by t
change of variables

x5r cos
k

2
z; z512

r3z3cos2~k/2!

22rz
, ~A21!

where the cubic equation can be solved accurately by sim
iteration starting withz51. The result of a single iteration i
sufficiently accurate forr!1 and was stated in Eq.~4.8!.
Similarly the exchange bound state is sorted out by
change of variables

x52 cos
k

2
w; w512

4rw3cos2~k/2!

r22w
, ~A22!

and by iterating the cubic equation starting withw51. The
resulting spectrum was illustrated in Fig. 9 for a typic
choice of parameters of current interest for which the sing
ion dispersion is again well separated above the continu
The main difference from the FM results of Fig. 4 is that t
exchange bound state now branches off above the c
tinuum. As a result, the bound-state spectrum is significa
different for large r. Thus the single-ion dispersion ap
proaches but never touches the upper side of the continu
Instead, the single-ion and exchange dispersions merge a
zone boundary forr52 and exchange roles forr.2. For
any finite r, however large, there is finite gap between t
continuum and the bound state at the zone center; the
behaves as 1/8r for larger and vanishes only in the extrem
limit of vanishing anisotropy (r→`) where the bound-state
spectrum degenerates into a single dispersion that ext
throughout the zone, just above the continuum. A related
is that the matrix element quoted in Eq.~4.13! and plotted in
Fig. 10 differs significantly from the FM results of Fig. 5, fo
it increases without bound at the zone center with increas
r. The picture described above for larger may prove to be
useful for the study of antiferromagnetic chains in t
Haldane phase (r*1) immersed in a sufficiently strong bia
field (h.114r).
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