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Electron-spin resonance in spin-1 planar magnetic chains
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We present a theoretical study of electron-spin resondB&R in spin-1 chains with a strong planar
anisotropy and an exchange interaction that is either ferromagnetic or antiferromagnetic. For a sufficiently
weak bias field, the ground state carries vanishing azimuthal spin and the resonance spectrum is dominated by
transitions to excitons and antiexcitons with azimuthal spih When the field exceeds a certain critical value,
the ground state is a fully saturated ferromagnet and the relevant elementary excitations are ordinary magnons.
The contribution of a two-magnon bound state, often referred to as the single-ion bound state, is of special
importance and is analyzed in detail. These theoretical results are consistent with available ESR measurements
on Ni(C,HgN,),Ni(CN), and suggest more detailed experimef80163-18207)05438-6

I. INTRODUCTION chains with a strong planar anisotropy provide an appropriate
setting for a more or less direct observation of the single-ion
There exist several experimental realizations of spin-Ibound state. We shall further argue that available ESR'data
chains with an easy-plane anisotropy of strenBttthat is ~ from Ni(C,HgN,),Ni(CN),, usually referred to with the ab-
significantly larger than the exchange constdntFor D breviated symbol NENC, are consistent with the above as-
>J, the elementary excitations are separated from th&ertion. The problem is formulated in Sec. Il and solved for
ground state by a nonvanishing energy gap irrespective dfM and AFM exchange in Secs. Il and IV, respectively. The
whether the exchange interaction is ferromagnéfkl) or ~ main conclusions are summarized in Sec. V, whereas the
antiferromagneti¢AFM). The gap vanishes at a critical an- Appendix is devoted to a survey of the calculation of the
isotropy D~J, while a clear distinction between FM and Single-ion bound state.
AFM chains emerges in the weak-anisotropy regida.J.

The former are characterized by gapless modes, as expected, Il. FORMULATION
but the latter exhibit an unexpected Haldane gap studied ex- . ] . )
tensively in recent years. We consider the class of spin-1 magnetic chains governed

Experimental investigations of spin-1 chains with super-PY the Hamiltonian
critical anisotropy D>J) have also been carried out by a
variety of techniques, such as neutron scattering, specific W= D(SZ)2+ J(S.. + H. 21
heat and susceptibility measurements, and electron-spin ;[ (S0)7= (S Shra) Fape(H-S)T (2.0
resonancé.> On the other hand, some theoretical predic-

tions have been obtained by a mean-field approach adapté¢here both the anisotropy constdntand the exchange con-
to strong anisotrogy and by a direct strong-coupling stantJ are taken to be positive and the distinction between

expansior. AFM and FM chains is made explicit by the choice in Eqg.
Our current aim is to provide a calculation of ESR for (2.1). Since our aim is to study mainly the case of strong
D>J systems at low temperature that probes directly thednisotropy, it is convenient to scale out the anisotropy con-
elementary excitations. Spin resonance is monitored by &tant by measuring energy in units Bf The remaining in-
uniform bias field applied along the symmetilyard axis dependent parameters are the dimensionless ratios
and varied over a wide range of values. The weak-field re-
gime is dominated byAm=+1 transitions between the p=J/D, h=gugH/D. (2.2
ground state anthntiexcitons that are accurately accounted
for by the strong-coupling expansion whérsJ. Above a
certain critical value of the bias field the ground state is
ordered and the main contributions originate in transitions to ! T .
magnons, as well as transitions between magnons and tw uencye is applied n the basal plane an,r)g, say, shaxis.
magnon states. A distinct role is played by the single-ion he power absorption is propo_rt_lon_al iy (w) where the
bound state originally calculated by Silberglitt and Torr&nce Imaginary part of the susceptibility is given by
for easy-axis ferromagnets and later extended to easy-plane 1 .
lr;ggnaer:hc s?:llgsl(ig?ove the spin-flop transition by Papanico- ¥ (@)= 5 (1—67&")J’imdte'wth(t)#x(o))r
The main assertion of the present paper is that spin-1 (2.3

The region of current interest jg<1 but no restriction is
imposed on the strength of the bias fiéld
In a typical ESR experiment a microwave field of fre-
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Here (---)7 is the usual thermal average apg=3 .S, is 3 5 p
the total spin in the direction. To complete the description P g/
of rationalized units we note thg#@=1/T, whereT is the /
temperature in units dd, and the unit for the frequenay is /
D/f. Therefore neither the anisotropy nor the Planck con- o |
stant will appear explicitly in our calculations. /

An exact calculation of”(w) is out of question except in s | A,
the limit of vanishing exchange constanpt=0). This limit /
provides a valuable guide for understanding magnetic chains /
with p<1 and is discussed in some detail in the present ,
section. Thus, ap=0, spins uncouple and the trace in Eq.
(2.3) may be restricted to the eigenstates of the single-spin T
HamiltonianW= (S?%)2+ (h- S) written in rationalized units. /- B
Let us consider the case of a bias field applied along the hard 0 : : :
axis; h=(0,0h). The eigenstates are then given by the ca- h
nonical spin-1 basifl, 0), |1,=1) with eigenvalues

e e FIG. 1. Field dependence of the resonance lines at vanishing
£0=0, e.=1xh; z=1+e F++e ", (2.4 exchange interaction and a bias field pointing along the hard axis.

where we also quote the expression for the partition functionThe Am=2 resonance is depicted by a dashed line to indicate

. . . L that its intensity vanishes within the single-spin model. Here and in
z at a single site. A straightforward application of E@.3 all subsequent illustrations the frequengys measured in units of

yields D/# and the fieldh in units of D/gus .
N7
X' ()= >, [(1—e #+)8(e.—w)+(1—e F-) A notable feature of the first term in E@2.5) is that the
intensity of the transition1,0)—|1,1) vanishes at zero tem-
X8(e_—w)+ (e Pr—1)8(e, +w) perature, because the transition takes place between excited
states, except at the critical fiell=1 where the intensity
+(e =1 de_+w)], (2.9 remains finite even af=0.

whereN is the total number of sites and appears as an overall T_he dp_r e(I::e_dmlg erl]_erﬂerlltz:rytr:esults are scpematlcally sum-
factor. As expectedy”(w) is an odd function of frequency marized in Fig. 1 which plots the resonance frequen@ed

and only two out of the four terms survive at positive fre- and (2.7) as a functions of the bias field de.<1 andh .
quencies. However the terms that survive depend on th>1, respectively. In all cases the resonance lines are straight

strength of the bias field because level crossing occurs at tl,%ecause the bias field Preserves the_ az|mutha_l symmetry.
critical valueh=h,=1. ne should also note that lii2 for h>1 is the continuation

For h<1, the energy levels are ordered as>s > of line A for h<<1. However the temperature dependence of
—0 and on'Iy the first two terms in Ed2.5) survive_whé)n the corresponding intensities is significantly different in the
w>0. The first term corresponds todam=1 transition be- two regions; for example, lin® looses its intensity at

tween the ground staié, 0) and the “exciton” |1, 1) while =0Trf10r all fields excepttthe crigcal on(lje_= lNENC o
the second to &am=—1 transition betweefd, 0) and the € resonance spectrum observed in agrees wi

“antiexciton” |1,—1). The resonance frequencies are givenFig- 1 in its gross features, with two important deviatiénis.
by First, the experimentally observed lin2 is no longer the

continuation of lineA apparently due to the effect of a small
wp=e,—eo=1+h, wg=e_—go=1—h (2.6 but nonvanishing exchange interaction, which will be ana-
lyzed in detail in Secs. Il and IV. Second, there is evidence
and the corresponding intensities may be inferred from théor an additional resonance that corresponds (ncamally)
coefficients of thed functions in Eq.(2.5 multiplied by the  forbidden Am=2 transition. Within the single-spin model
frequencyw. One should note that the intensities of the ex-discussed so far such a transition would yield a frequency
citon and the antiexciton are different at nonvanishing field;
in particular, the intensity of the antiexciton vanishes at the
critical field h=1 for all temperatures. Fdr>1, the energy
levels are ordered as, >e,=0>¢_ and the stat¢l,—1) is
now the ground state. At positive frequencies only the firsdepicted as lineE in Fig. 1, which is in rough agreement
and fourth terms in E¢(2.5) survive. The fourth term corre- With experiment. Of course, the intensity of this resonance
sponds to a\m=1 transition between the “ferromagnetic” Vanishes within the single-spin model. A nonvanishing inten-
ground staté1,— 1) and the “magnon”|1, 0) while the first ~ Sity could be achieved through mixing of states of definite
to a transition between the magnon and the “single-ionazimuthal spin produced by the combined effect of an in-
bound state”|1, 1). (This terminology will become more plane anisotropy of the fornE[(S*)*~($)?] and the ex-
meaningful when the exchange interaction is turned 8he  change interaction. For simplicity, the potential effects of the
respective resonance frequencies are E term will not be discussed further in the present paper.
This section is completed with a brief discussion of the
wc=gp—e_=h—-1, wp=e,—ego=h+1. (2.7 case of a bias field applied in the basal plane; ehg.,

wg=¢,—¢e_=2h, (2.8
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p=0 W=; [(S5)2—p(Sy-She1) +SE]. (3.2

1 A direct calculation of the susceptibility from E.3) is no

2 4 longer possible but we will, instead, locate the most impor-
2 tant contributions at low temperature using the equivalent
expressioft

1 1 X'(w)= g ;) (e FEr—e FEa)|(a| uy| b)|?8(Ea— Ep— w),
’ 3.2

where sums extend over all eigenstaftas of Hamiltonian

(3.1 andE, are the corresponding eigenvalues. Accordingly

0 1 2 3 Z is the total partition function that should be distinguished
h from the single-site partition function of Sec. .

In order to arrive at a successful strategy fer <1, itis
Bseful to briefly analyze the=0 results of Sec. Il from the
point of view of Eq.(3.2) that entails sums over all eigen-
states of the complete chain wibhspins. Thus, ap=0 and
h<1, the ground stat€) is nondegenerate and such that all
sites carry vanishing azimuthal spim&Q) and vanishing

energy E,=0). An exciton @) or antiexciton €) state is
_ :E+ E 2 obtained by exciting any single site to an azimuthal spin
80 1! St - + h 1 (29) . . .

2 4 =1 or —1; there existN independene states, each with
energyE.=¢ . =1+h, and an equal number efstates with
energyEz=¢_=1—h. The process may be continued in an
obvious way to construdd(N—1)/2 two-exciton €€) states

with m=2 and E,.=2¢,, an equal number of two-

W=, —8_ =21 /£+h2, antiexciton ge) states withm=—2 andEgz=2s_, N(N
4 —1) exciton-antiexciton €€) states withm=0 and E &

=g, +e_, and so on. One may then identify tidem=1

FIG. 2. Field dependence of the resonance lines at vanishin
exchange interaction and a bias field applied in the basal plane.

=(h,0,0). At p=0, the relevant single-spin Hamiltonian is
W=($9)?+h< and its eigenvalues

are ordered as_<egg<e, for all values of the bias field.
The possible resonance frequencies are then given by

/1 , 1 transitions in Eq.(3.2 asQ)—e, e—ee e—ee,..., all of
Wr=Ep—E_= Z+h +§’ which lead to a common resonance frequency s, , as
well as theAm= —1 transitions()—e, e—ee, e—eg,...,
with resonance ab=¢_. A straightforward calculation of
1 1 i . .
W3= e, —E0= \ /Z+h2_ > (2.10 :ge corresponding matrix elements in £8.2) atp=0 leads
and are plotted in Fig. 2 as functions of the applied field. We N7
shall not quote here the complete expressionyfffw) but X' (w)= 27 [1+(N—1)(e Pe++e Pe)+.--]
mention that the intensities of the various modes depend on
the relative orientation of the bias and microwave fields, both X[(1—e P+)8(e,.— w)
lying in the basal plane. Figure 2 already provides a rough
approximation of the observed resonances in chains with a +(1-e P -)o(e_—w)]. (3.3

small exchange interaction immersed in a transverse bi

field2=® In particular, line 3 was termed a “single-ion”

modé? and involves transitions between excited states and [1+(N—1)(e Pe+t+e Be)+...1=2N"1 (3.9

thus its intensity vanishes @t=0; in this respect, resonance

3 in Fig. 2 is analogous to resonanbein Fig. 1. Actually ~ When all higher-order processes are included. Equd8d)

the latter is a better candidate for a detailed study of théhen reduces to Ed2.5) applied forh<1 andw>0.

single-ion mode at nonvanishing exchange. Therefore the ef- The main feature of the preceding elementary calculation

fects of a transverse bias field will not be considered furthets that all Am=1 (or Am=—1) transitions lead to a com-

in this paper. mon resonance frequency in B§.3) and the corresponding

contributions to the intensity add up coherently in Eg}4)

to produce the correct linear dependenceNoanticipated in

Eg. (2.5. When the exchange interaction is turned on, the
We now come to the main point, namely the calculationvarious processes do not lead to a common transition fre-

of the effect of a small but nonvanishing exchange interacquency, thus causing the familiar line broadening. However,

tion. Throughout this section we consider ferromagnetic exat low temperature, the basic resonance is still due to the

change and a bias field that points along the hard axis. EXundamental()—e transition, while the higher-order pro-

pressed in rationalized units the relevant Hamiltonian is  cessese—ee, e—ee,..., areresponsible for the observed

4o make contact with Eq2.5) we note thaZ=2z" and

Ill. FERROMAGNETIC EXCHANGE



56 ELECTRON-SPIN RESONANCE IN SPIN-1 PLANR. . . 8789

finite linewidth and possibly a mild temperature-dependent 3
frequency shift of the maximum of the intensity. FM
Therefore, forp#0, the main effect at low temperature
may be obtained by keeping only the first few terms in Eq.
(3.2 and by calculating the necessary energy eigenvalues
and matrix elements using the strong-coupling expansion of 2r
Ref. 7. Because the bias field preserves the azimuthal sym- .

metry, the energy of an exciton or antiexciton at crystal mo- 3
mentumk is given by

p=0.1

e.(K)=e(k)*h,

e(k)=1—2 cokp+ (1+ 2 sirfk)p?

1
+5(1+8 sirfk)cok— 2 sirfk | p3+ -+ -, 0 h, 1 2 3
h

(3.9
. . . . FIG. 3. Field dependence of the ESR spectrum for a ferromag-
Where_s(k) Is the comm_on(aptbexuton d'Sp‘?r_S'O” calcu- netic chain with a small exchange interactign<0.1). The exciton
lated in Ref. 7 at vanishing field. ESR. transitions fr.om 'the"ne A is continued as a dashed line into the spin-flop regiime (
ground state take place only k=0 excitons and antiexci- —p<p_ =1) to indicate our present lack of knowledge of the low-
tons and the corresponding resonance frequencies are lying excitation spectrum for such field values; see the text for

further explanations.
+h,

1
= =0)=[1-2p+p%+ = p3+--- - . ;
wa=e(k=0) (1 2ptp 2P limits of the resonances actually observed in an experiment

at finite temperature where line broadening occurs thanks to

higher-order processes. A related fact is that the maxima of
—h, 36  the power absorption may acquire a mild temperature depen-

dence, and a field dependence that deviates from a straight
which generalize Eqg2.6) to finite p. The most important  |ine, because the intensities of higher-order processes do not
contributions in Eq(3.2) are then given by thek(=0) tran-  add up coherently whep+0. The essence of the above

1
wB=8_(k=O)=<1—2p+p2+§ P+

sitions()—e and()—e that lead to remarks is captured by a self-consistent approximation em-
ployed in Ref. 10 for the analysis of ESR data from CskeCl
¥'(0)~ N7fo [(1—e B°n) 8(wa— ) Line broadening of exciton and antiexciton spectra will not
27 be discussed further in the present paper. In particular, we do

~Bog) 5 not consider the effect of exciton bound statediose ESR
+(1-e )o(wg—w)], (3.7 signal may add some interesting fine structure to the ob-
where the amplitudé, may be inferred from Eq4) of Ref. served broadened resonances but is not expected to be con-

7 applied fork=0: spicuous. ' o
Instead, we return to Fig. 3 and note that the antiexciton

branchB terminates on the horizontal axis at a field value

fo=1+2p+5 pPtee (3.8)  h=h,. Since the smallest gap occurs at the zone center the
critical field hy is determined from the condition_(k=0)
One should further note the total partition functidncan =0 or

also be calculated within the strong-coupling expandion.
However it is not especially meaningful to use the result of
the above reference in E@R.7) because the latter neglects

higher-order processes and is strictly validTat0 where .
7=1 and where level crossing occurs and the ground state ceases to be

an(azimutha) spin singlet. Abovén, the chain enters a spin-
1 flop phase where the ground state becomes increasingly fer-
T=0; x"(w)= > N7fo[ S(wp— w)+ S(wg— w)]. romagnetic. Complete ferromagnetic order is achieved above
(3.9 a critical fieldh, that coincides with the value.=1 of the
' single-spin model of Sec. IIl. The remainder of this section is
The only approximation remaining in E¢3.9) is related to  devoted to the calculation of the ESR spectrum above the
the fact that the frequencies, , wg and the amplitudé, are  spin-flop transition >1) where detailed theoretical infor-
given by the truncated seri€¢8.6) and (3.8) that are fairly mation is available on the low-lying excited statesd is
accurate fop<1. briefly reviewed in the Appendix.
The calculated frequenci€8.6) are plotted as lineA and The excitation spectrum is depicted in Fig. 4 for a typical
B in Fig. 3, which are still straight lines and differ from those small exchange constapt=0.1 and a bias fielth=3/2>h.
of Fig. 1 only by a downward parallel displacement due to=1. The low-lying spectrum consists of the usual magnon
the exchange interaction. To be sufeandB are theT—0  with a dispersion

1
h0=l—2p+p2+§p3+“'<l, (3.10
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4 . which is actually exact at the zone boundaky=() for all
FM p=0.1,h=1.5 p, and fairly accurate at the zone centé&r=(0) for p<1.
Ex This approximate dispersion may be used safely in the range
Single-ion bound state p=0.3 that encompasses most known magnetic chains with

supercritical anisotropy. Otherwise one must resort to the
exact dispersiori3.12) which is valid for all p including p
>1.

For h>1, the only ESR transition that survives in the
limit T—0 is the one between the ferromagnetic ground state
and a single magnon witk=0. It is thus useful to write the
susceptibility as

w
T
|

Two-magnon continuum

Excitation energy
n

] X"(0)=x1(0)+ x3(w), (3.19

where ] is the single-magnon contribution and contains
& B X o
all other (Am=1) processes that acquire a nonvanishing in-
magnon tensity at finite temperature. The former is easily calculated
0 . by identifying the single-magnon term in the sum of Eq.
- 0 T (3.2) to obtain
k
FIG. 4. One- and two-magnon excitation energi@sunits of Xi(w)= % (1—e A20) f(we— w),

D) for a ferromagnetic chain with a small exchange interactjon (
=0.1) and a typical field above the spin-flop reginte=(h.+ 1/2
=1.5). For this small value gf the single-ion bound state is well wc=¢gx-o=h—1, (3.16

separated above the continuum while the exchange bound stateh incid ith th ding f in th
branches off below the continuum near the zone boundary. Wheréwc conciaes wi € corresponding frequency in the

limit p=0, see Eq(2.7), and is plotted as lin€ in Fig. 3 for
h>1. For future reference we also quote the total power

ex=h—1+2p(1-cox) 31D apsorbed by the single-magnon process:

that confirms the critical fieldh,=1; for h<<1, the magnon o
energy becomes negative lat 0, thus signaling instability pl~f wxi(w)dw= c
of the fully ordered ground state. Furthermore two-magnon 2Z

states come in three varieties: a two-magnon continuum wit; -, yanishes at the critical fiekd=1 for all temperatures,

boundaries at 2(—1)+4p[1+cos/2)], an “gaxchange” because a magnon witt=0 becomes degenerate with the
bound state that branches off below the continuum near th round state, but increases wittfor h> 1. Finally we recall

zone boundary, and a “single-ion”bound state that extend hat Eqs.(3.16 and (3.17) are strictly appropriate af=0

throughout the zone and is well separated above the con- : e g
. ) . . S h th Id th let tibilit
tinuum whenp<<1. The single-ion mode is of special impor- where they yield thecomplete susceptibility x"(w) and

. . . . _power absorptiorP:
tance in the following and its exact energy-momentum dls—p W PA

persion is given by

(1—e Awc), (3.1

1 1
T=0; x'(w)= > N7é(we— w), PNE N7wc.

cosE ., (312 (3.18

L
"2 2

Ex=2(h—1)+4p| 1+ 5

1
X+ =
X

] ] ] ) Thus we turn our attention thm=1 processes that occur
wherex is the appropriate root of the cubic equati®8) 4 finite temperature. The simplest possibility is a transition
discussed in the Appendix, whose accurate numerical calCyenyeen a single-magnon and a two-magnon state. Inspec-
lation is straightforward. Nevertheless, for all practical pur-tion of Fig. 4 suggests that a transition between a magnon
poses in the parameter region of current interest, an excellegjyq 5 state in the two-magnon continuum yields a signal that
approximation is obtained by is roughly superimposed with the basic magnon ihand
contributes to its broadening, in analogy with the line broad-
ening of excitons and antiexcitons discussed earlier in the
text. Similarly a transition between a magnon and an ex-
change bound state yields a signal in the same frequency
In fact, in order to be consistent with our earlier discussion Ofrange; hence the exchange bound state is not expected to be
excitons and antiexcitons, the single-ion dispersi8l2  conspicuous in the observed resonance spectrum. On the
may be approximated by inserting E(B.13 and consis- contrary, it is evident from Fig. 4 that a transition between a

3

x~p( 1+ 2 cog 5

k
245 CcoS+. (3.13

2

tently expanding to third order ip to obtain magnon and a single-ion bound state makes a distinct con-
tribution to x5(w) that is clearly separated from the magnon
1 k resonanceC. In fact, such a pr i ible for th
o 2 * 3 K . , process is responsible for the
Bi=2(h=1)+2/1+2p+ 2P cos 2}’ p-dependent deformations of line of Fig. 1 and will be

(3.19 calculated in detail.
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©
”

the zone boundary for ap, and the same value for al
when p—0. On the other hand, significant departures from
the free-spin model occur at the zone center with increasing
p. At p=3/4 the matrix element vanishes fke=0, so does
the energy gap between the single-ion bound state and the
upper side of the two-magnon continuum. The fate of the
bound-state spectrum fgr>3/4 is further discussed in the
Appendix but is irrelevant for the parameter region of current
interest where the single-ion bound state is well separated
from the continuum and both its dispersiBpand the matrix
element f(k)|? are nearly flat through the zone. Nonetheless
sufficient structure persists at smallthat should lead to a
clear ESR signal for the single-ion bound state.

Indeed, we now return to E43.19 and note that absorp-
tion occurs for frequencies that satisfy the resonance condi-
tion

Squared matrix element

k

FIG. 5. The squared matrix eleme(®.22 as a function of —A 3.2
crystal momentum for a ferromagnetic chain with various values of W= 8k (3.23

p=JID. i.e., for frequencies in the bandp<w<wp:, where wp

- o and wp: can be calculated from Eq63.23 and (3.20 ap-
Specifically, the contribution of the above process may beplied fork= andk=0:

isolated in Eq(3.2) to write

w = = Zp 2
X’é(w)%;(l—eﬁw)fo dke*38k|f(k)|2§(Ak_w)' wp h+1, wp h—1+ X (1+X) . (324)
(3.19  The first relation was obtained by using the fact that the root
] - ) ) X vanishes at the zone boundaky- 7, as x~p cosk/2),
where Z is the total partition functiong, is the magnon \yhereas the second relation contains the sooglculated at
dispersion(3.1D, A, =E,—¢ is the energy difference be- e zone center. A good approximation of the latter is given
tween the single-ion mode and the magnon at crystal MOpy Eq. (3.13, applied fork=0, and a corresponding third-

mentumk (see Fig. 4 and (k) =(y2(K)|uxl#1(K)) is the  orger approximation of the edge frequenciB24) reads
matrix element of the total moment between the correspond-

ing normalized wave functions. The exact expressionpr wp=h+1, wp=h+1+4p+2p>—p3+---,
is readily computed from Eq$3.11) and(3.12: (3.2

k which are plotted in Fig. 3 as lind3 andD’, respectively.
cos, (320  The lineD coincides with itsp=0 counterpart in Fig. 1 but

is no longer the continuation of the exciton likethat ac-
and may be approximated to third order by quires a nontriviap dependence given by E@.6). There-
fore absorption by the single-ion bound state is distributed
over a frequency band with a width

k
142X cos= + X2

2p
A=h—1+-—- 5

k
A=h+1+(4p+2p2—p3cog 5 (3.2
A=wp —wp=4p+2p>—p3+--- (3.2
Also using the explicit wave functions constructed in the

Appendix we have calculated thiexac) matrix element that remains finite even at very low temperatures and van-
ishes only wherp=0. In other words, the single-ion band-

width A must not be confused with ordinary line broadening
[f(k)|?= oy of elementary excitations.
Our last task is to determine the detailed distribution of

2 power absorption over thBD’ band of Fig. 3. Performing
X=|1— 2 x+ codk/2)] 5 | X+ E_ ; the k integration in Eq(3.19 yields
1+2x cogk/2)+x x pcogk/2)) |’
n N —_ —
ve1 1 1 2 - Xo(w)~— (1-e Boye™Fekd(k), (3.27
ST XX peosky) 0 822
where
which may be approximated at smallthrough Eq.(3.13.
Incidentally, in all of the ensuing graphical illustrations we |f(k)|?
have used a precise numerical calculation of the xowitthe d(k)= A, (3.28

cubic equation.
For example, the result of E¢3.22 is plotted in Fig. 5 as  is the “density of states” and\, is thek derivative ofA,.

a function of crystal momentum for various valuespofThe It is understood that the crystal momentum is expressed as a

squared matrix element approaches the free-spin value 1/2 fatnction of frequency through the resonance condit®23
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5 T 5 T
FM p=0.1 FM p=0.1
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FIG. 6. The density of state8.25 as a function of frequency FIG. 7. The relative intensity3.30 as a function of frequency
for a ferromagnetic chain witp=0.1. The specific value of the for a ferromagnetic chain witp=0.1 and a typical field above the
applied field f=h.+1/2=1.5) does not affect the shape of the spin-flop regime =1.5). The intensity of the single-ion mode
density but merely sets the relative position of B’ band along  decreases with decreasing temperat{re=1/2, T,=1/3, andT,
the frequency axis. =1/4, in units ofD) and eventually vanishes &@t=0.

viewed as an algebraic equation for-k(w). Actually we  second, multimagnon states with a significant “single-ion”
need not solve this equation explicitly because the necessapomponent should cause further broadening of Eh@’
graphs can be produced by calculating H§27 and(3.28  pand, beyond it§ =0 width A of Eq. (3.26), and possibly
over a dense set of points indk< 7 and by determining the  normalize the square-root singularities of Fig. 7 to two
corresponding frequencies from Hg.23. _ rounded peaks that might merge into one at high tempera-
The density of state$3.28 is plotted as a function of tyres. We have also not carried out a study of the spin-flop
frequency in Fig. 6 and exhibits the characteristic square-rogihase f,<h<h,) and thus cannot ascertain how the exci-

fact completely explicit we may use the analytical approxi-gpectrum, fo=>1.

mation for A, given by Eq.(3.2) to calculateA and sub- Nevertheless our theoretical calculation is sufficiently de-
sequently enforce the resonance conditidr23 to obtain tailed to guide current experiments. In order to achieve a
, 12 favorable experimental situation, one needs a ferromagnetic
Al =[(wp — @)(@—wp)]"™ (3.29 compound with a smalp=J/D, so that theDD’ band is

Therefore, although nonvanishing absorption occurslearly separated from th@roadenefimagnon resonance,
throughout theDD’ band, a significant enhancement shouldand a critical fieldh.=1 or H.=D/gug that is accessible.
be expected around the band edges. CsFeC} is a candidate with a measuréctritical field H.

Now the intensity of the single-ion process vanishes a=11.5T that is not terribly large. However ESR
T=0, except forh=1, and an absolute statement cannot beexperiments® have so far been carried out in the regidn
made at finite temperature because we have neglectedH. and generally confirm the exciton and antiexciton lines
higher-order processes that are, nonetheless, reflected in tAeandB of Fig. 3 but yield no information on the spectrum
total partition functionZ present in Eq(3.27). Yet the es- calculated in the present paper fe>H.. Furthermore a
sential point of this calculation can be made by consideringonsiderable uncertainty exists concerning the precise values
the relative intensity, of the parameters. The parameters extracted from the mean-
field approximation of Lindgaftidiffer from those obtained
within the strong-coupling expansibas well as those in the
self-consistent approach of Suzuki and MakificA more
favorable situation seems to be provided at present by the

with respect to the total absorptid?y of the single-magnon  antiferromagnetic compound NENC studied in the following
process given by Eq3.17). The relative intensity is then section.

plotted as a function of frequency, in Fig. 7, for three char-

acteristic values of3=1/T in the low-temperature region

(T<1=D). The net conclusion is that absorption should IV. ANTIFERROMAGNETIC EXCHANGE

indeed be observed throughout the band, but with a visible - hext aim is to adapt the calculation of Sec. Il to the

enhancement around the band edges. case of spin-1 planar magnetic chains with antiferromagnetic
The effect of the neglected higher-ordem=1 processes exchange, i.e.,

is twofold. First, multimagnon states with a dominant “ex-

change” component should contribute to normal line broad-

ening of the basic magnon resonan€e with a possibly W= )24+ . +h 4.1
interesting fine structure due to the exchange bound state. ; ()™ p(Sy S ThS], @b

e w)(g(w)_Z o l-—e Be

P, macl_e Pt dk). (330
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FIG. 8. Field dependence of the ESR spectrum for an antiferro- 0 C])
magnetic chain with a small exchange interactipr=0.1). The —n K n
resonance lineé, B, andC are continued as dashed lines into the
spin-flop regime I(19<h<h_c) t_o indicate our present Igck of knowl- FIG. 9. One- and two-magnon excitation energigsunits of
edge of the low-lying excitation spectrum for such field values; seey) for an antiferromagnetic chain with a small exchange interaction
the text for further explanations. (p=0.1) and a typical field above the spin-flop regime=(t,

+1/2=1.9). For this small value gb the single-ion bound state is
where p=J/D is again positive. For smalp and h the  well separated above the continuum while the exchange bound state
ground state is still an azimuthal-spin singlat€0) and the  branches off also above the continuum near the zone boundary.
elementary excitations ama=1 excitons andn=—1 anti-

excitons with dispersions The picture becomes slightly more involved with increas-
ing bias fieldh. Thus the ground state ceases to be a singlet
e+ (k)=¢e(k)*h, above a critical fieldh, determined from the condition
e_(k=m)=0, because the smallest gap occurs at the zone
e(k)=1+2 cokp+ (1+2 sirtk)p? boundary, or
1 . : 3 1
- 5(1+8st k)cok—2 sirtk|p3+ -+ (4.2 h0:1_2p+pz+§pa+... , (4.5

that differ from those of Eq(3.5) by the simple replacement which is identical to the corresponding FM value of Eq.
p— —p. Therefore the elementary excitations are again3.10), at least to third order ip. As a consequence, an AFM
separated from the ground state by a finite energy gap, exhain will enter the spin-flop phase well before the antiexci-
cept that the gap is now smallest at the zone boundary (ton line B of Fig. 8 touches the field axis. Furthermore the
=) rather than the zone centek<€0). Nevertheless ESR ground state of an AFM chain orders ferromagnetically
transitions occur ak=0 and the corresponding frequencies above a critical fieldh, that does not coincide with the
are =0 valueh.=1. To locateh, we note that a completely
ordered state is always an eigenstate of the AFM Hamil-

1 tonian (4.1) and the dispersion of the single-magnon excita-
- —0)= 2_ 7 34...
wp=¢e(k=0)=|1+2p+ 5P + +h, tion reads
, 1, ex=h—h.+2p(1l+cok), h.=1+4p. (4.6)
=¢_(k=0)=|1+2p+p =z p>+---|—h, (4.3 .
wp=e( ) prp T3P .3 The smallest magnon gap occurs at the zone boundary and is

, ) o ) equal toh—h,. Therefore,h,=1+4p is the upper critical
which are plotted as lines and B in Fig. 8. These lines fie|d and now depends gn
differ from both theirp=0 ano! FM counterparts in Figs. 1 The magnon dispersidi.6) is depicted in Fig. 9 together
and 3 by an upward parallel displacement that depends on yith the two-magnon spectrum of an AFM chain calculated
Otherwise the discussion of FM excitons and antiexcitons ofy, the Appendix. The spectrum consists of a two-magnon
Sec. Il applies here with minor modifications. For example,continuum with boundaries at BEhy) +4p[ 1+ cosk/2)],
the low-temperature intensities may be inferred from Eq.gp, exchange bound state that branchesabffvethe con-
(3.7 or (3.9 applied with frequencies), andwg given by tinyum near the zone boundary, and a single-ion bound state
Eg. (4.3 and an amplitude that is well separated also above the continuum and displays
a shape similar to the corresponding FM dispersion of Fig. 4.
More precisely, the energy-momentum dispersion of the

3
=1— — 524 ...
fo=1=2p+ 7 p"F ' (4.9 AFM single-ion bound state is given by

2



8794 N. PAPANICOLAOU, A. ORENDACOVA, AND M. ORENDAC 56

1 1 k 2.0
Ey=2(h—ho)+4p| 1+ 5 | x+ - |cos5], 4.7 AFM

i<
wherex is the appropriate root of the cubic equati@xl9) g

discussed in the Appendix. Fer<1, an excellent approxi- Q9 45
mation is provided by 2
3 T
ol 1o P o2 Xcost £

x~p|1 2_pcosz2 cos (4.9 3.,
and the exact dispersidd.7) may be approximated to third %
order by ]

1 k
Ex~=2(h—ho)+2[1+2p+| p?+ = p3>0052 5| (4.9 05 T

2 K

Accordingly an exact expression for the energy difference 5 19 The squared matrix elemef@.13 as a function of

Ay=Ey— gy is given by crystal momentum for an antiferromagnetic chain with various val-
ues ofp=J/D.
2p k k
Akzh—1+7 1-2x cos§+x cosy (4.10

A simple inspection of Fig. 9 suggests that absorption
) o takes place over a finite frequency rangg, <w<wp
and a third-order approximation by where the edge frequencies are the values oét k=0 and
K k=, respectively, or
A=h+1+(—4p+2p>+p®cod > (4.11 2p
wp=h—1+ ~ (1-x)?2, wp=h+1, (4.14
which is actually exact at the zone boundary for @land
fairly accurate at the zone center whew1. wherex is the root atk=0. A third-order approximation is

From this point on the analysis is similar to that of Sec. Ill given by
and will not be repeated in detail. Thus, for-h., the only

transition that persists =0 is the one between the ordered wpr=h+1—4p+2p*+p*+---, wp=h+1,

ground state and &=0 magnon, with resonance at fre- (4.19

quency and the calculated width of the’'D band,
wc=gx—o=h—hc+4p=h—1, (4.12 A=wp—wp =4p—2p*—p3+---, (4.19

which is p independent and is again plotted as ldén Fig.  remains finite even af=0. However nonvanishing absorp-

8. The single-magnon intensity is still given by BE8.17)  tion is possible only at finite temperature.

and remains finite at =0, as shown in Eq(3.18. The temperature dependence of the intensity is governed

Leaving aside broadening effects of the magnon resoby Eq. (3.27 whereg, is the magnon dispersio@.6) and

nanceC, including the effect of the exchange bound statethe density of stated(k) is calculated from Eq(3.28 ap-

we consider next the deformation of the single-ion resonancplied with an energy differenc&, from Eqg.(4.10 or (4.11)

D due to the exchange interaction. The contribution of theand a matrix elemenitf (k)|?> from Eq. (4.13. The latter is

single-ion bound state is again given by E8.19 applied plotted in Fig. 10 in order to point out an important differ-

with an energy differencé, from Eq. (4.10 and a matrix ence from the FM result of Fig. 5; the squared matrix ele-

element ment is greater than the free-spin value 1/2, except at the
zone boundary, and increases without bound, at the zone
center, with increasing. Such a behavior is intimately re-

[f(k)[?= 7Y’ lated to the fate of the bound-state spectrum for lgsger
weak anisotropy, and is further discussed in the Appendix.
2Tx—cogk/2 1 1 2 For the region of current interest it is sufficient to note that
Xz[l— [ hi2)] 5 | X+ —— —” , |f(k)|? exhibits a mildk dependence throughout the zone.
1—2x cogk/2)+x X p cogk/2) Therefore the structure of the density of stat8s28 is

(4.13 mainly determined byA,| for which a good approximation

1 1 2 is obtained from Eqs(4.11) and (4.15:
y=1+ 1-x2 (X+ X p cos(k/2)>
that differs in its details from the corresponding FM result of As a consequence, the density of states is similar to the FM

Eqg. (3.22 and by the fact thak now satisfies a different density of Fig. 6, except that the frequeney, now pre-
cubic equation. ceedswp . Accordingly the temperature dependence of the

Al =[(0— wp)(0p—w)]*2 (4.17)
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intensity is also similar to the one displayed in Fig. 7 and the 1

qualitative picture discussed in Sec. Ill applies here almost X"(w)’*g N7Bw[ (e~ w)+d(e_—~w)
unchanged. In particular, the intensity of the single-ion reso-

nance diminishes with decreasing temperature but should ex- +o(estw)tdle_tw)l. (5.0

hibit an increasingly sharp double-peak structure around the
edges of thé®'D band. In the extreme low-temperature limit

the intensity vanishes but the bandwidthiemains finite and Therefore the field dependence of the resonance lines is the

is given by Eq.(4.16 same as in Fig. 1 and the mair_l simplification_ at high tem-
A . . . peratures concerns the intensities of the various modes. It
W.e now: examine whether or not the derived .p|gture 'Swould thus be useful to study the deformations of Exl)
consistent with existing ESR data from NENCThis is @ ofrecieq by the exchange interaction, by calculating a num-
spin-1 chain with antiferromagnetic exchange, an anisotropyer of moments at finite and then reconstructing the sus-
constantD~6 K, and a ratiop=J/D~0.13 that lies well  ¢eptipility by standard method4.However, although a re-
within the domain of validity of the present theoretical cal- spectable number of moments is available for spin-1/2
culation. Furthermore the measured critical fielth;  chains, we are not aware of a corresponding calculation for
~4.47T, is not too large and thus experiments were perspin-1 chains.
formed for bothH<H. andH>H,. Perhaps the most important element of our analysis is the
One of the main features of the available data is that th&uggestion that the single-ion bound state makes a distinct
observed single-ion resonance fdr>H, does indeed fall contribution to the ESR spectrum fét>H_ and its effect
below the continuation of the exciton lind observed for can be unambiguously identified. It would be interesting to
H<H,, in qualitative agreement with Fig. 8. Moreover the carry out a similar analysis for easy-axis ferromagnetic
observed intensity decreases with decreasing temperaturhains, originally studied by Silberglitt and Torrarfoehere
also in qualitative agreement with the current the single-ion bound state lies below the two-magnon con-
interpretation> However a quantitative comparison would tinuum. Another related problem is that of a spin-1 chain
require more detailed experiments that should clarify the folwith an additional biquadratic exchange interaction, studied

lowing issuesi(@) provide an accurate fit of the exciton and PY Chiu-Tsao, Levy, and Paulséﬁ_,where the single-ion
antiexciton resonances andB of Fig. 8 in the limitT—0 bound state occurs within the continuum and is thus an un-

(b) yield more detailed information on the lower and upperSt.ab.le’ yet conspicuous, resonance. A bound-state resonance
critical fields hy and h. and their relation to the stated ex- within the continuum was also found by Hodgson and

: . ) Parkinsor® for spin-1 chains with Ising anisotropy.
perimental valud,~4.4 T in Refs. 4 and &c)_ obtain fu_r- Finally, there is a potential connection of the single-ion
ther data on the magnon resonari@nd possibly examine

) Lo : ) -~ mode with the intrinsic localized spin modes found classi-
the manner in which it interpolates into the spin-flop regime,caly by Wallis, Mills, and Boardmah for ferromagnetic

and (d) resolve the predicted double-peak structure of thepains with an easy-plane single-ion anisotropy, and by Lai,
single-ion bandD’D and study the temperature dependencekiselev, and Sieveté for antiferromagnetic chains with an
of the corresponding intensity. easy-axis single-ion anisotropy. It would certainly be inter-
esting to illuminate such a connection, even though it is dif-
ficult to imagine how classical arguments would match in
V. CONCLUDING REMARKS detail the quantum calculation presented in this paper.

We have described but the bare-bones structure of the
ESR spectrum at low temperatures for spin-1 planar mag-
netic chains with either ferromagnetic or antiferromagnetic ACKNOWLEDGMENT
EXChange interaction. Although the derived theoretical re- This work was Supported in part by a bilateral Greek-
sults are sufficiently detailed to guide current experimentsg|oyvak research program996-97.
the program should be completed with some further theoret-
ical work aimed at the following issue&) a study of line-
broadenin_g effects, including' the potentially interesting fine APPENDIX: TWO-MAGNON STATES
structure induced by two-exciton as well as two-mageghn
changebound stategp) a calculation in the spin-flop regime ~ There exist several methods for calculating the two-
(hp<h<h,) that would bridge the results for the two re- magnon spectrum in spin-1 chains, the most direct one being
gions (h<hgy andh>h,) obtained in this paper, an@) in- based on an elementary Bethe anddfzFor chains with
clusion of the effects of a weak in-plane anisotropy that isferromagnetic exchange interaction we merely adapt the
present in realistic compounds and activates normally forbidwork of Ref. 9 to current notation and then calculate matrix
den (Am=2) transitions, such as the resonarceepicted elements that are necessary for the study of the ESR spec-
in Fig. 1 and actually observed in NENE. trum in Sec. lll. We further extend the calculation to chains
It would also be of interest to determine the high- with antiferromagnetic exchange interaction and thus pro-
temperature limit of the ESR spectrum, for such a limitvide the basis for the discussion of Sec. IV.
might be accessible to a detailed theoretical analysis using Forh>1, the ground state of the FM Hamiltoni&B.1) is
the method of frequency moments of the imaginary part ogiven by|Q)=|1,-1)®|1,-1)®---®|1,—1), i.e., all spins
the susceptibility'> A good starting point is the single-spin point along the negative axis, and its energy i€,=N(1
result of Eq.(2.5 whose high-temperature limit reads —p—h). The single-magnon normalized eigenstate is
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N in the thermodynamic limitl—o), wherex=e~" may be

restricted to the range<Ox<<1 without loss of generality.
Accordingly the excitation energfA7) reads

1
|¢1>:\/_N P2

wherek is the crystal momentum and the state differs 1
from the ground stati}) by the fact that the azimuthal spin 1—=
at siten is equal to 0 instead of 1. The eigenvalue dfi/;) 2
is Eq+ £ Whereg, is the magnon excitation energy already Therefore, for any given value af= (k;+k,)/2 for which
quoted in Eq.(3.11). Similarly two-magnon eigenstates are gq (A8) has a rook in the interval0,1], Eq.(A9) yields the
searched for in the form excitation energy of the corresponding bound state param-
etrized by the total crystal momentukp+ k,=k folded into
the fundamental Brillouin zone.

The nature of the bound-state spectrum is revealed by first
considering Eq.(A8) near the zone boundary (aes0)
where two real roots emerge

e'*"n), (A1)

1
E=2(h—1)+4p x+; cosu|. (A9)

N—-1 N N

[o)=2 2 cominmy+ > diln,n),  (A2)
n=1 m=n+1 n=1

where [n,m), with n#m, differs from the ground state at

sitesn and m where the azimuthal spin is equal to zero,

while |n,n) differs only at siten where the azimuthal spin is

equal to+ 1. The coefficientg, , are given by the familiar

Bethe ansatz

(A10)

that lie in the interval0,1] provided that cas<0 in the first
case and cas>0 in the second. These roots correspond to

X~—p CcO2 oOr 2cos

Cp = €' (KaNTkaM*+6/2) 4 gi(kym+kon=¢/2) (A3) the limiting cases of the single-ion and exchange bound
h he sinale-si ficient i state$ and are examined in turn. The first equation in Eq.
whereas the single-site coetficient is (A10) suggests the change of variables
cogk,— ¢/2)+codky,+ Hl2) 33002
- (ky+ko)n Z°p°cosu
n cosk;+cosk,+1/p et (Ad) X=—pcoldz z=1+ ke (AlD

2+pz '’
and differs from the one obtained by extending E&3) to
n=m. To complete the ansatz we note that the phaseust
satisfy the constraint

and the condition cas<0 is equivalent to stating that

=k, +k, must take values outside the fundamental zone. We
thus effect the usual folding of the zone by the simple pre-
scriptionu=k/2—k/2— 7 in Eq. (A11) to obtain

Cotfz (1+Q)sin (k;—kz)/2]

2 2cog(kit+ky)/2]=(1+Q)sin (ky—kp)/2]" k 22p3cog(k/2)

X=p cosz z, z=1+ ot (A12)
_ 1+cogk;+ky) Pz

Q= cok,+cok,+1/p’ (AS) while the excitation energyA9) is rewritten in the form
.. . . given earlier in Eq.(3.12. Now, for eachk in the range
and periodic boundary conditions are enforced if [— 7], the cubic equation in EqAL2) is solved by a
Nk,— p=2mN;, Nkotd=2m\,, (A6) simple iteration process starting witl+= 1. Actually a single

iteration yields a sufficiently accurate description of the
where\; and \, are integers that may be restricted to thesingle-ion bound state, fgs<<1, and the result was already

range Gs\;<\,<N-—1. Finally the eigenvalue ofis,) is
equal toEy+ E whereE, is the ground-state energy and

1
E=2(h—-1)+4p 1—§(coskl+cod<2) (A7)

is the two-magnon excitation energy. The preceding results

quoted in Eq.3.13. Similarly the exchange bound state is
obtained by starting with the second equation in EL0)
which suggests the change of variables

4pwicogu
p+2w

X=2cosuw, w=1— (A13)

summarize all necessary information for a complete analysislo folding of the zone is required in this case, so we may

of the two-magnon spectrum by standard methdds.

An immediate consequence of E&7) is that the bound-
aries of the two-magnon continuum are located dt-2{)
+4p[ 1+ cosk/2)] where k=k;+k, (mod 27) is the total

simply setu=k/2 in Egs.(A9) and(A13) and again solve the
cubic equation by simple iteration starting with=1. It is
understood that a root in [0,1] may not be possible for all
values ofk in the fundamental zone, for either the single-ion

crystal momentum restricted to the fundamental Brillouinor the exchange bound state. The calculated spectrum was
zone (see Fig. 4 In the following we shall focus on two- illustrated in Fig. 4, for a typical choice of parameters of
magnonbound statesharacterized by complex wave num- current interest, and was discussed in Sec. lll. Here we com-
bersk;=u+iv and k,=u—iv that may occur wher\,  plete the description by noting that the single-ion bound state
=\j Or A, =N;+1, in Eq.(A6), which lead top=iNv or  ceases to exist throughout the zone, wher3/4, and
7+iNv, respectively. In both cases the algebraic constrainbranches off above the continuum at some minimlm
(A5) reduces to the cubic equation =Kk(p); see Fig. 2 of Ref. 9. In the extreme limit of vanish-
ing anisotropy p— ) the single-ion bound state disappears
from the spectrum, while the exchange bound state extends
throughout the zone, just below the continuum.

2

X
px3+@+(p—2)x—2p cou=0, (A8)
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We now consider the calculation of matrix elements thatstate with excitation energy given by E@.6). The excita-
are necessary for the discussion of ESR in Sec. lll. First wéion energy of the two-magnon bound states reads
restrict the general two-magnon wave functiéh3) and
(A4) to bound states by setting=u+iv, k,=u—iv and

¢=iNv; the casep==+iNv leads to identical results in P 1 1
the thermodynamic limit and will not be considered explic- E=2(h=hc)*+4p 1+ 2 X+ x) O (AL8)
itly. Hence . . .
wherex is any root of the cubic equation
Cn’m:[meanIZ_,_(1/X)mfan/2]e|u(n+m), . X2 ) ) ; o
PX*— coq T (PT2)X—2p cosl (A19)

g cosl
" 1/p+cosu(x+ 1/x)

N/2—1 N/2—1742iun
X +(1/X e!tn, . _ .
[ (15) I in the interval[0,1]. The relevant roots are approximated

(Al4)  near the zone boundary (aes0) by

Using this completely explicit form of the wave function,
matrix elements can be calculated by straightforward sum-
mations of geometric progressions. For example, the normand again correspond to a single-ion and an exchange bound
N, = (i, 4,) is found to be state. A technical difference from the FM case is that both
roots lie in[0,1] for coau>0. As a consequence, no folding

of the zone is required for either mode and we may simply
N,= ngl m:2n+1 |Cn,m|2+ nZl |d|? setu=k/2 in Egs.(A18)—(A20) wherek takes values in the

fundamental zone.

X~p cOxu Or 2cosl (A20)

N—-1 N N

Nx2 1 cosl 2 The single-ion bound state is studied efficiently by the
T | Tp+ com(x+ 1) | | (A15)  change of variables

where we have neglected in the bracket terms that vanish S

exponentially in the limitN—o; e.g.,xN—0 because, ge- B k_—_  p’z°cos(k/2)

nerically, 0<x<1. X=p COS5 Z, z=1- R E— (A21)

The required matrix elemefity,|u,| 1) between the nor-

malized one- and two-magnon states is now effected by nothere the cubic equation can be solved accurately by simple
ing that iteration starting wittz=1. The result of a single iteration is

sufficiently accurate fop<<1 and was stated in Eq4.8).
Similarly the exchange bound state is sorted out by the
N change of variables

N—1 N
1
=— Ch mln,m)+ d/|n,n
Mx|'/’1> \/m ( nzl m:EnJrl n,ml > nzl n| > K 4pW30052(k/2)
x=2cos=w;, w=l-— (A22)
2 p—2wW
+ \/; S(k)12), and by iterating the cubic equation starting with=1. The
resulting spectrum was illustrated in Fig. 9 for a typical
¢, n=e"k+emk  d/=ekn (A16)  choice of parameters of current interest for which the single-
' ion dispersion is again well separated above the continuum.
Therefore The main difference from the FM results of Fig. 4 is that the

exchange bound state now branches off above the con-
1 — — tinuum. As a result, the bound-state spectrum is significantly
(ol s ¢1>:W(nzl m§+1 Cn,m<3n,m+nZl dndy | different for large p. Thus the single-ion dispersion ap-
2000 - (A17)  Proaches but never touches the upper side of the continuum.
Instead, the single-ion and exchange dispersions merge at the
whereN, is the norm of Eq(A15). A tedious but straight- zone boundary fop=2 and exchange roles fgr>2. For
forward calculation of the sums shows that a nonvanishinginy finite p, however large, there is finite gap between the
matrix element is obtained only when the crystal momenturcontinuum and the bound state at the zone center; the gap
of the two-magnon state is equéiod 27) to the one- behaves as 1/8for largep and vanishes only in the extreme
magnon momentunk, as expected. Hence we may write limit of vanishing anisotropy 4— ) where the bound-state
(| uy| 1)="F(k) whose explicit form for the single-ion spectrum degenerates into a single dispersion that extends
bound state was already quoted in E§.22. One should throughout the zone, just above the continuum. A related fact
recall that for this state cas- —cos{/2), in accord with the is that the matrix element quoted in E.13 and plotted in
zone folding discussed earlier. Fig. 10 differs significantly from the FM results of Fig. 5, for
The generalization of the preceding results to an antiferit increases without bound at the zone center with increasing
romagnetic chain is more or less straightforward. The fullyp. The picture described above for largenay prove to be
ordered state is again an eigenstate of the Hamilto@al)  useful for the study of antiferromagnetic chains in the
and becomes the lowest-ener@round state forh>h.=1 Haldane phasep= 1) immersed in a sufficiently strong bias
+4p. Similarly the single-magnon staté1) is an eigen- field (h>1+4p).
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