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Electromigration-induced void drift and coalescence: Simulations and a dynamic scaling theory
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Electromigration-induced failure of conductors in integrated circuitry is precipitated by the formation, drift,
and coalescence of voids within the conductor. The kinetics of a collection of such voids is studied here
through the development of a dynamic scaling theory, as well as through Monte Carlo simulations. In our
model, voids originate at a source, drift with speeds inversely proportional to their radii, and coalesce accord-
ing to a capture cross section which accounts for the effects of current crowding around the voids in an
approximate fashion. The presence of a source leads to a spatially inhomogeneous distribution function
n(V,x,t) for voids of volumeV drifting in the x direction. We show thatn(V,x,t) obeys the scaling form
n(V,x,t)5V25/3f (Ve2rx,Vt23) wherer>0.054 andf is a scaling function. We also obtain scaling solutions
for the void fractionf(x,t) which agree well with the simulations. At a fixed time,f grows monotonically
with distance from the source, reaches a peak, and then decreases exponentially with distance. The position of
the peak is shown to move with a velocityv}1/t. @S0163-1829~97!08637-2#
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I. INTRODUCTION

Under normal operating conditions, the metal lines or
terconnects in a very-large-scale integrated~VLSI! circuit
carry high current densities, and this leads to drift of t
metal ions and to the eventual failure of the circuit. Th
ionic motion is known as electromigration~EM!.1–3 With the
progressive miniaturization of circuit components, EM fa
ure of aluminum interconnects remains one of the princi
factors limiting the reliability of integrated circuits. EM ca
lead to the failure of an interconnect in relatively short tim
reducing the circuit lifetime to an unacceptable level. It
therefore of great technological importance to underst
and control electromigration failure in thin films.

Two opposing forces act on an ion in a current-carry
wire. The momentum transfer from the conduction electro
results in a wind force, while the ambient electric field r
sults in a direct force on the ion. Both forces are proportio
to the electric field EW and it is customary to write
FW ion5Z* eEW . HereFW ion is the total force acting on an ion i
the bulk andZ* e is the effective charge of the ion.Z* is
positive if the direct force is dominant, and is negative if t
wind force is the stronger of the two forces. The latter p
sibility is not academic: Z* is negative for aluminum, and
aluminum ~alloyed with small amounts of copper and si
con! is universally used as the material for interconnects
modern VLSI technology. Ions at a metal surface also m
in the presence of an electrical current. In general, the ef
tive charge for surface electromigration,Zs* , differs from
Z* .

Unfortunately, this drift of matter is not homogeneous.
some points in the line, the divergence of the mass flux
positive and voids appear. The mass flux converges at o
points and this can lead to the formation of hillocks at t
surface of the conductor. Both of these types of defect
560163-1829/97/56~14!/8743~9!/$10.00
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lead to the failure of a VLSI circuit.4,5

In practice, the damage caused by the formation of h
ocks can be controlled by passivating the interconnect,
by covering the exposed surface of the line with a protect
layer of glass. On the other hand, passivating the line d
not prevent the formation and growth of voids and so o
postpones failure. Void-induced failure occurs in the follo
ing way: After a time, the vacancies in the line become
persaturated and small spherical voids nucleate within
aluminum film. EM causes the ions located on the surface
a void to move from the upstream part of the void to t
downstream one. As a result, the voids drift in the direct
of the ambient electric field. Ho’s analysis of this drift show
that an isolated spherical void preserves its shape as it m
and that its speed is inversely proportional to its radiu6

Moreover, it has recently been demonstrated that isola
voids are stable against small perturbations of their shap7,8

Since small voids drift more rapidly than large ones, vo
collide and coalesce. Ultimately, at the end of the failu
process, a void spans the line and interrupts the flow of e
trical current. While there have been some preliminary
perimental investigations of void statistics,9 there have been
no conclusive studies demonstrating general relations
between conductor lifetime and void distribution statistics

In the relatively wide metal interconnects used in ea
VLSI circuits, the interconnect width was several tim
greater than the mean grain size. In these wires, ionic tra
port proceeds mainly by grain boundary diffusion driven
electromigration.4 Typically, voids are formed at grain
boundary triple points, and these grow in size until electri
failure is complete. Since 1971, a number of simulations
the failure of such polycrystalline metal lines have be
performed.10–19 In each case, it was assumed that the vo
are stationary.

The failure of metal lines whose width approaches
grain size is quite different, as first shown by Vaidyaet al.20
8743 © 1997 The American Physical Society
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These workers fabricated a group of polycrystalline A
0.5% Cu wires with a range of widths but a common leng
thickness, and mean grain size. The wires were then
jected to EM lifetime testing with a fixed current densit
Vaidyaet al. found that as the linewidth is reduced, the lif
time at first decreases, but then begins to increase dram
cally.

The increase in lifetime begins as the width of the w
approaches the mean grain size. Wires with widths com
rable to the mean grain size are called bamboo lines. In c
trast with thicker wires, in bamboo or near bamboo lin
there is no continuous path of grain boundaries that runs
entire length of the wire. These lines have substantially
creased lifetimes as a result. In the near future, most in
connects will likely be bamboo aluminum lines, and so u
derstanding their failure is an important practical issue.
this paper, we considersingle-crystalmetal lines. An under-
standing of the failure of single-crystal metal lines is an i
portant first step toward an understanding of the failure
bamboo lines.

Little theoretical work has been devoted to the failure
single-crystal metal films through void drift and coalescen
Wickham and Sethna introduced a lattice model for v
nucleation, drift, and growth in a single-crystal metal th
film.21 Although this work represents an important first ste
the model of Wickham and Sethna suffers from some ser
deficiencies: For example, current crowding around void
entirely neglected, and the large voids drift more rapidly th
the smaller voids, contrary to Ho’s theory.

Recently, two of the present authors introduced a m
field theory of the drift and coalescence of circular voids in
current-carrying thin film.22 Current crowding around the
voids was explicitly accounted for, albeit in an approxima
fashion. The mean field equations were numerically sol
for the void size distribution. It was shown that the distrib
tion obeys a scaling form at long times. This prelimina
study has some limitations, however. In real current-carry
wires the voids are spherical, and only become cylindri
once they have grown to sufficient size. A more significa
limitation of the mean field theory of Boularot and Bradley22

is the assumption of a spatially homogeneous distribution
voids. In a real current-carrying wire, as mass leaves the w
at the anode, small voids appear within the film. These vo
drift toward the cathode, and as they do, they collide, c
lesce, and grow in size. The resulting void size distribut
has a nontrivial dependence on position.

In this paper, we develop a dynamic scaling theory for
size and spatial distribution of drifting and coalescing sph
cal voids in the bulk. By electing to study the problem in t
bulk, we sidestep the added complication of a thr
dimensional~3D! to 2D crossover as the volume of the voi
increases. This crossover could be incorporated in l
work; the present work is meant only to be a first step tow
understanding the behavior of a collection of many voi
We show that the usual scaling ansatz fails for the cas
which spatial variations are permitted, and that a marg
scaling hypothesis is necessary. Few studies of spatially
pendent coagulation equations exist in the literature,23–25and
little is known about the scaling properties or even the ex
tence of physical solutions. The theory developed here
resents an extension of standard coagulation models an
,
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lows us to derive asymptotic forms for the void siz
distributions which differ qualitatively from those obtaine
in the absence of spatial variations. We also present res
of simulations of the drift and coalescence of voids in lo
wires. We show that the predictions of the dynamic scal
theory for the asymptotic properties of the void distributio
are in good agreement with the simulations and we ob
scaling exponents which agree quite well with the theory

Simulations of a somewhat similar coalescence proc
have been performed by Meakin.26,27 In his work, bubbles of
sizes drift with speedsv(s)}sh. When two or more bubbles
touch, they coalesce and the resulting bubble’s volume is
sum of the constituent volumes. The caseh,0, of which
EM is a special case, was studied in one dimension only.
two- and three-dimensional simulations were carried out o
lattice to facilitate simulations with a large density
bubbles. In contrast, in our simulations of void drift, it
presumed that the void fraction is everywhere small. T
most important distinction between our work and Meakin
however, is that Meakin’s bubbles move ballistically, wh
in EM one void can be deflected by another.

This paper is organized as follows. In Sec. II, we pres
the mean field equation of motion governing the void kin
ics and obtain the coalescence cross section for two-v
interactions. In Secs. III and IV, scaling solutions are o
tained for the equation of motion, as well as the steady s
properties of the void size distribution. The algorithm for t
EM simulations and the simulation results are presented
Sec. V. In Sec. VI, we summarize our results.

II. MEAN FIELD EQUATION OF MOTION

In accordance with Ho,6 we will assume, first, that the
motion of an isolated spherical void is parallel to the elect
field, and, second, that its speedv is inversely proportional
to its radius. Thus, ifV is the volume of the void,
v5v(V)5kV21/3, where the constant of proportionalityk
depends on the film material, the temperature, and the
rent density. Since the smaller voids drift more rapidly th
the larger ones, collisions between voids will occur. Wh
two voids of volumeV1 andV2 collide, they coalesce and
deform rapidly ~instantaneously in our model! to form a
single spherical void of volumeV11V2 . In this way, the
surface energy is minimized subject to the constraint that
void volume is conserved. The position of the new void
volume V11V2 is known because the center of mass
unchanged by the coalescence event.

Consider the collision of two isolated spherical voids
volume V1 and V2 , where V2,V1 . Far from the larger
void, the electric field is essentially uniform. As a result, t
motion of the smaller void is nearly rectilinear when th
voids are far apart. The same is true of the motion of
larger void. The electrical current is crowded by the larger
the two voids, however. As a result, the smaller void is d
flected away from its initially linear trajectory as it ap
proaches the larger void. The capture cross sec
s(V2 ,V1) is therefore smaller than it would be if the motio
of the voids were simply rectilinear~the case of ballistic
coalescence!.

To account for this effect, we consider two isolated voi
in an ambient electric field. As the probability of collision
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between voids of comparable size is small, most coalesce
events will involve voids with quite disparate volumes. Wi
this in mind, we neglect the deflection of the larger vo
away from its linear trajectory. It is convenient to introduce
moving coordinate system with origin coincident with th
larger void’s center of mass. We orient the axes so that
electric field far from the voids lies in thex direction. In the
absence of the smaller void, the electrical current far fr
the large void is uniform and parallel to the ambient elec
field. The electrical potentialFe(r ,u) outside the large void
is

Fe~r ,u!52E0r F11
1

2 S R

r D 3Gcosu. ~1!

Here,E0 is the strength of the electric field far from the voi
R is the radius of the larger void, andr and u are polar
coordinates. We assume that the smaller void moves a
the streamlines created by the larger void, and that before
collision the shape and size of both voids are to a go
approximation unchanging. The coalescence cross sectis
is then

s~V2 ,V1!5pS 3

4p D 2/3F ~V1
1/31V2

1/3!22
V1

V1
1/31V2

1/3G .
~2!

This is smaller than the coalescence cross section for ball
motion,p(3/4p)2/3@(V1

1/31V2
1/3)2#.

The rate with which voids of volumeV coalesce with
voids of volumeV8 is proportional to their velocity differ-
ence as well as their coalescence cross section. Let us de
this rate byK(V,V8), and write

K~V,V8!5s~V, ,V.!Dv~V, ,V.!,

where the velocity difference is

Dv~V, ,V.![v~V,!2v~V.!5k~V,
21/32V.

21/3!,

and where we have definedV.[max(V,V8) and
V,[min(V,V8).

Now suppose that we have an infinitely long metal w
that occupies the region 0<x,`, 0<y<L, and 0<z<L.
A specified number distribution of voids enters the wire a
constant rate on the planex50 and each void drifts in thex
direction. Since voids of different radii travel at differe
speeds, voids collide and coalesce. Letn(V,x,t)dV denote
the average number of voids with volume betweenV and
V1dV per unit volume at a distancex away from the
source. Our mean field equation of motion describes the e
lution of n(V,x,t) by coalescence of pairs of voids of di
ferent sizes. It may be written as follows:

]n

]t
~V,x,t !1v~V!

]n

]x
~V,x,t !

5
1

2 E
0

V

K~V8,V2V8!n~V8,x,t !n~V2V8,x,t !dV8

2n~V,x,t !E
0

`

K~V,V8!n~V8,x,t !dV8. ~3!
ce

e

c

ng
he
d

tic

ote
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The void distributionn(V,x,t) is affected by convective
losses that occur at a rate which depends on the positiox.
This is accounted for by the second term on the left-ha
side of Eq.~3!. The first term on the right-hand side of E
~3! represents the increase inn(V,x,t) due to the coales-
cence of two voids of volumeV8 and (V2V8). The second
term on the right-hand side of Eq.~3! represents the reduc
tion in n(V,x,t) resulting from the collision of a void of
volumeV with another void.

A few comments on the form of Eq.~3! are in order. Note
first that we have neglected the possibility that three or m
voids simultaneously coalesce, and have taken only two v
interactions into account. These approximations are rea
able when the void fraction in the wire is small. We al
point out that whenn(V,x,t) is independent ofx, Eq. ~3!
reduces to the 3D analog of the mean field coagulation eq
tion studied by Boularot and Bradley22 Finally, note that
K(V,V8) is a homogeneous function of order 1/3, i.e
K(aV,aV8)5a1/3K(V,V8).

The number distribution is subject to the boundary con
tion n(V,0,t)5n0(V), wheren0(V) is determined by the
nature of the source. To completely specify the problem,
initial value n(V,x,0) is needed for allV and x>0. For
simplicity, we will assume thatn(V,x,0)50 for all V andx,
so that initially the wire is entirely free of voids. In this cas
the void size distribution for the entire system,

n~V,t ![E
0

`E
0

LE
0

L

n~V,x,t !dxdydz, ~4!

converges for allV and t.

III. DYNAMIC SCALING

In many coalescence processes, it is found that the clu
size distribution scales at long times.28 We therefore expec
that whent is large, the void size distributionn(V,t) will
follow the scaling form

n~V,t !5V2ugS V

tz D , ~5!

whereu and z are dynamic critical exponents andg is the
scaling function. We can go further and seek scaling so
tions for the position-dependent void size distribution of t
form

n~V,x,t !5V2uhS V

xD ,
V

tz D .

If this scaling form is used in our problem, the critical exp
nent D turns out to be infinite—the present problem rep
sents a singular limit of the general case.29 Therefore, we
will begin with the modified scaling ansatz

n~V,x,t !5V2u f S V

erx ,
V

tz D , ~6!

wherer is a positive constant that is to be determined.
serting this into the equation of motion~3! and setting
j5V/erx, h5V/tz, andz5V8/tz, we obtain



8746 56CROSBY, BRADLEY, AND BOULAROT
1

2 E
0

h
K~z,h2z!z2u~h2z!2u f S j

h
z,z D f S j

h
~h2z!,h2z Ddz2h2u f ~j,h!E

0

`

K~h,z!z2u f S j

h
z,z Ddz

52rktz~u25/3!jh2~u11/3!
]

]j
f ~j,h!2ztz~u24/3!21h12u

]

]h
f ~j,h!. ~7!
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Equation~7! shows that if a scaling solution of the form~6!
exists, we must have

u5
5

3
~8!

and

z53. ~9!

When these values for the dynamic critical exponents h
been inserted into Eq.~7!, we are left with a nonlinear
integro-differential equation which could in principle b
solved for the constantr and the scaling functionf .

Let us explore the consequences of our results~8! and~9!.
Let V0 be the mean volume of the voids injected atx50.
We will find it helpful to employ the dimensionless variabl
a[V/V0 andt[t/t0 , wheret0[V0

2/3/k. The scaling form
~6! can then be written

n~V,x,t!5
1

V0
2 a25/3FS a

erx ,
a

t3D ~10!

or, equivalently,

n~V,x,t!5
1

V0
2 t25GS a

erx ,
a

t3D . ~11!

The scaling functionsF and G are dimensionless and ar
easily related tof .

The total number of voids with volume betweenV and
V1dV at time t is n(V,t)dV, wheren(V,t) is given by
Eq. ~4!. Using the scaling form~11! and introducing the new
variable of integrationu5erx/a, we obtain

n~V,t!5
L2

rV0
2t5 E

1/a

`

GS 1

u
,

a

t3D du

u
. ~12!

Whena5V/V0@1, we may set the lower limit of the inte
gral in this expression to zero if*0

`G(u21,a/t3)u21du is
finite. We then have the scaling form

n~V,t!5t25HS V

t3D , ~13!

which is applicable forV@V0 .
The total volume occupied by the voids

V(t)5*0
`n(V,t)VdV, which @using Eq.~12!# may be writ-

ten

V~t!5
L2t

r
FS 1

t D . ~14!

Here we have defined
e

F~z![E
0

`E
z3/w

` w

u
GS 1

u
,wDdudw.

For t@1, we have

V~t!>
F~0!L2

r
t; ~15!

in other words,V}t for larget. This is certainly as it should
be. Note, however, that with the boundary and initial con
tions we have chosen,V(t)/t is equal to a constant for al
times, while it only tends to a constant ast→` in the scal-
ing solution. As a result, the system only scales for su
ciently large timest with our initial and boundary condi-
tions.

For V@V0 , the number of voids per unit volumeN is
obtained from

N~t![E
0

`

n~V,t!dV5E
0

`

t25HS V

t3D}t22.

We then have the result that the average void volu
^V&[V(t)/N(t)}t3 for t@1 andV@V0 .

The void size distributionn(V,x,t) has a nontrivial de-
pendence on the distance from the source which we will n
study. Letf(x,t)5*0

`n(V,x,t)VdV be the void fraction at
distancex from the source at timet. Using Eq. ~10! and
introducing the new variable of integrations5ae2rx, we
find that

f~x,t!5erx/3CS t3

erxD , ~16!

whereC(z)[*0
`F(s,s/z)s2 2/3ds.

Suppose thatC(z);Bzn whenz is large.~HereB andn

are constants.! We then havef(x,t)>Bt3nexp@(1
32n)rx# for

t3@erx. Now according to our boundary condition
f(0,t)5f0 , where f0[*0

`n0(V)VdV. Therefore n50
and

f~x,t!>f0erx/3 ~17!

for t3@erx. This means that for a fixed distancex from the
origin, the void fraction tends to a steady state valuef`(x)
as t→`, and, moreover, thatf`(x) grows exponentially
with x. Now consider the opposite limit in whicht3!erx.
We expect the scaling functionC(z) to be analytic at the
point z50, and so we may perform a Taylor series expans
of it about this point. If this is so, then we have

f~x,t!5erx/3FC~0!1
t3

erx C8~0!1••• G , ~18!
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whereC8(z)[dC(z)/dz. At any timet, the void fraction
will tend to zero asx→`. Equation~18! then shows that we
must haveC(0)50. We conclude that

f~x,t!>C8~0!t3e2 2rx/3 ~19!

for t3!erx: i.e., the void fraction falls off exponentially
with x whenx is large. Equations~17! and ~19!, as well as
the general scaling form~16!, are in excellent agreemen
with the results of the simulations described in Sec. V.

Equations~17! and~19! show that, for a fixed value oft,
the void fraction grows exponentially with distance from t
source, reaches a peak, and then decays exponentially
increasing distance. The larger, slower voids form a clot
traffic jam which captures most of the voids incident upon
The clot drifts in thex direction, slowing down as it grows
due to collisions with smaller voids. In fact, the position
the maximum of the void fraction is proportional to lnt. To
see this, let the position of the maximum off(x,t) at timet
be x5x* (t). Inserting Eq. ~16! into the relation
]f(x* ,t)/]x50, we find that

C~t3e2rx* !53t3e2rx* C8~t3e2rx* !.

Thus,t3e2rx* 5v0 , wherev0 is a dimensionless constan
We conclude that

x* ~t!;
3

r
ln t ~20!

for t@1.
Finally, we note that the analysis of this section is eas

extended to the two-dimensional case in which the voids
circular. In two dimensions, we findu53/2 andz53. The
number distribution for voids of areaa obeys the scaling
form

n~a,t!5t23H2S a

t2D ,

while the void fraction satisfies

f~x,t!5erx/2C2S t2

erxD ,

where H2 and C2 are scaling functions. The two
dimensional analogs to Eqs.~17! and ~19! are then

f~x,t!>f0erx/2 for t2@erx,

and

f~x,t!>C8~0!t2e2 rx/2 for t2!erx.

The average area of the voids increases linearly in time,22 in
contrast to the 3D result̂V&}t3. As in three dimensions
the total area occupied by the voids grows linearly in tim
These predictions agree well with simulations.30

IV. STEADY STATE SCALING SOLUTIONS

We now consider the steady state properties of our mo
At long times, the volume distributionn(V,x,t) should be-
come independent of time for a given value ofx. To study
the time-independent properties, we set]n/]t50 in Eq. ~3!
ith
r
.

y
re

.

l.

and make the following definitions:

K̃~V,V8![
K~V,V8!

v~V!v~V8!

and

ñ~V,x![v~V!n~V,x!.

Note that the new kernelK̃ is homogeneous with homogene
ity index l51. The equation of motion becomes

]ñ

]x
~V,x!5

1

2 E
0

V

K̃~V8,V2V8!ñ~V8,x!ñ~V2V8,x!dV8

2ñ~V,x!E
0

`

K̃~V,V8!ñ~V8,x!dV8. ~21!

If we make the formal replacementx→t, Eq. ~21! becomes
the coagulation equation of Schmolukowski with kernelK̃.31

As we have noted in Sec. I, there have been many studie
the scaling properties of Eq.~21! with particular choices of
the kernel. van Dongen and Ernst provide the most comp
accounting of the scaling properties of Eq.~21!.32 They ob-
tain scaling solutions classified by the homogeneity indel
and the large argument behavior of the kernel. Howev
their analysis is valid only forlÞ1. We now carry out an
analysis for our problem~in which l51! to obtain approxi-
mate scaling solutions to Eq.~21!.

We begin by constructing a scaling form forñ(V,x). Let
n(V,x)[ limt→`n(V,x,t). From Eq. ~10! we see that
n(V,x)5V25/3F0(V/erx) whereF0(j)[V0

21/3F(j,0). We
then haveñ(V,x)5kV22F0(V/erx) or, equivalently,

ñ~V,x!5e22rxH̃S V

erxD . ~22!

Our goal is to determine the form ofH̃(z) as z→`. Con-
sider the quantityJ(V,x,t) defined by

J~V,x,t ![E
0

V

V8v~V8!n~V8,x,t !dV8. ~23!

J(V,x,t) is the integrated flux of voids with volumes les
than or equal toV at positionx in the wire and at timet. The
total void flux J(x,t)[ limV→`J(V,x,t) must satisfy the
continuity equation

]J~x,t !

]x
1

]f~x,t !

]t
50.

In the steady state regime,]f(x,t)/]t50, so thatJ(x,t)
approaches a constant independent ofx for t→`. Call this
constantJ0 . We define the steady state analog toJ(V,x,t)
as

Js~V,x![ lim
t→`

J~V,x,t !5E
0

V

V8ñ~V8,x!dV8. ~24!

We then have the result thatJs(V,x) approachesJ0 as
V→`. Computing the divergence ofJs(V,x) results in
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2
]Js~V,x!

]x
52re22rxE

0

V

V8H̃S V8

erxDdV8

1re23rxE
0

V

~V8!2H̃8S V8

erxDdV8, ~25!

where H̃8(z)[dH̃/dz. We differentiate Eq.~25! with re-
spect toV and obtain

2
]

]x

]Js

]V
~V,x!52re22rxVH̃S V

erxD1re23rxV2H̃8S V

erxD .

~26!
As V→`, the left side of Eq.~26! tends to zero since
]Js /]V→0 asV→`. We then have the differential equa
tion

z
dH̃~z!

dz
12H̃~z!>0, ~27!

which is valid for largez[Ve2rx. Equation~27! has the
solution

H̃~z!>
c

z2 for z@1, ~28!

wherec is a constant.
Finally, we obtain the desired largeV steady state scaling

forms of the void volume distribution:

ñ~V,x!5e22rxH̃S V

erxD;V22

and

n~V,x!;V25/3, ~29!

which are applicable whenV@erx.
Equation ~28! implies that the scaling functionH @Eq.

~13!# also behaves as a power law in the scaling reg
(t@1) whenV@t3. To be explicit,

H~z!;z25/3 for z@1. ~30!

This leads to the result thatn(V,t) is independent oft for
V@t3 in the scaling regime.

V. MONTE CARLO SIMULATIONS

We begin by briefly describing the algorithm used
study the coalescence kinetics. Consider a long wire wit
square cross section of areaA[L2, i.e., Ly5Lz5L. We
choose the units of distance so thatL51, and the long di-
mension of the wireLx is chosen to be 200. The natural tim
scale is set byt0[V0

2/3/k. We choose the units of time s
that t051. At t50 a small number of voids are introduce
with their centers at random positions on the planex50 ~the
anode!. As the number of voids per injection step is qu
small, overlaps atx50 are exceedingly rare. If the rando
placement does result in an overlap, all of the injected vo
are removed from thex50 plane, and new random position
are obtained and used for placement. We will restrict
attention to the case in which the void fraction is small,
that the simultaneous interaction between more than
e

a

s

r
o
o

voids is a rare event. By choosing a sufficiently low rate
void injection and requiring thatV0!1, the void fraction in
the wire is kept small.

We choose the initial distribution function to b
n0(V)5exp(2V/200), so that the mean void volume
x50 is V05531023. While this is a convenient choice o
n0(V), the long-time properties of the model are indepe
dent of the particular form ofn0(V). More pathological
forms ofn0(V) result in longer computation time before th
scaling regime is reached. WithV05531023, the total void
fraction never exceeds 1023 and the local void fraction neve
exceeds 1022 in any region of the wire.

Having obtained an initial distribution of voids, the void
are advanced ballistically for a timedt I which we define as
the time between injections and which is chosen to
dt I510t0510. The injection process is repeated, and n
the potential for collisions arises. We adopt the rule that t
voids coalesce only if their impact parameter is smaller th
@s(V8,V)/p#1/2. In this way, the effects of current crowd
ing are taken into account in an approximate fashion. A
of voids sorted by theirx coordinates is used to construct, fo
each voidi , a small subset of voidsj for which a collision
may occur before the next injection. For each pair of vo
( i , j ), the time to their coalescence is computed, assuming
other collisions occur involving either voidi or void j . Let
this time interval for void pairs (i , j ) be tc

i j . All collision
timestc

i j ,t I ~if any! are obtained, and the voids are advanc
through a timetmin[min(tc

ij), whereupon the colliding voids
of volumeV i andV j are coalesced to obtain a new void
volume V i1V j . The coordinates of the new void are pr
scribed by the condition that the collision not alter the cen
of mass of the two voids. Collision times are again obtain
and the voids are advanced to the next coalescence.
process is repeated until the next injection time is reach
An injection then occurs, beginning a new iteration of t
algorithm. In practice, the void fraction is small enough th
there are typically zero, one, or two collisions between e
injection step. Voids whose centers have reached the p
x5Lx are discarded from the simulation volume.

The algorithm is iterated through 5000 coalescen
events. At regular intervals oft, the number and volume
distributions are calculated and used to constructf(x,t) and
n(V,t). We then average the distributions of 30 000 su
simulations to obtain the results described below.

In Fig. 1, n(V,t) is plotted againstV for 30 equally
spaced values oft in the interval 400<t<6000. Note that
the transition from the initial distributionn0(V) to a steady
state form is evident ast increases. The small-t curves do
not differ significantly from the exponential distributio
present att50, while the large-t behavior approaches
form independent oft. The dashed curve corresponds to t
distribution att5400, where the data still follows the form
of the initial distribution closely.

According to Eqs.~13! and ~30!, t5n(V,t) should scale
as a power law in the variableV/t3 for V@V0 andV@t3

in the scaling regimet@1. This power law scaling is con
firmed in Fig. 2. The slope of the log-log plot in Fig. 2
1.6760.01, in agreement with the prediction of the stea
state scaling analysis of Sec. IV, where we fou
H(z);z25/3. The data in Fig. 2 span the same range int as
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that in Fig. 1. The breakdown in scaling for very largeV/t3

occurs in the short-time regime, where the initial distributio
n0(V) dominatesn(V,t).

We now examine the scaling properties of the void fra
tion f(x,t). The essential predictions are contained in Eq
~16!, ~17!, and~19!. Figure 3 shows lnf(x,t) vs x for t in the
interval 5.03103<t<1.53104. As predicted by the scaling
theory, the void fraction increases exponentially withx,
reaches a maximum, and then decreases monotonically.
t3@erx, f(x,t) is clearly independent oft, and is exponen-
tial in x. For t3!erx, f(x,t) is again exponential inx, but
also displays some time dependence. Computing the slo
of ln f(x,t) in both scaling regimes, we find
r50.05460.002. A scaling plot off(x,t)/t3 vs x shows

FIG. 1. n(V,t) vs V is shown for 30 equally spaced values oft
in the range 400<t<6000. The dashed curve corresponds to th
distribution att5400 and shows the exponential character of th
initial distribution n0(V). The units on both axes are arbitrary.

FIG. 2. t5n(V,t) vs V/t3 is shown in a log-log plot for 30
equally spaced values oft in the range 400<t<6000. The thick
line has slope25/3. The units on both axes are arbitrary. Th
logarithms are basee.
-
.

or

es

good collapse of the data onto the scaling form~19! for
erx@t3 ~Fig. 4!. Measuring the slope of the curves, we aga
find r>0.054.

It is also useful to examine the validity of the gener
scaling form, Eq.~16!. In Fig. 5 f(x,t)/erx/3 is plotted
againstt3/erx for ten equally spaced values oft spanning
the range 7.03103<t<1.53104. Forr50.054, we find ex-
cellent collapse of the data. Thet3@erx scaling regime is
marked by the zero-slope region of the curves in Fig. 5.
Eq. ~17!, f(x,t)/erx/3 tends to the constantf0 in this re-
gime. In the opposite limit, t3!erx, we find that
f(x,t)e2 rx/3}t3/erx, in agreement with Eq.~19!. The solid
line in Fig. 5 has slope 1.0.

VI. SUMMARY

Electromigration failure of metal interconnects is pr
ceded by the formation, drift, and coalescence of a collect

e
e

FIG. 3. ln@f(x,t)# is plotted againstx for 20 values oft in the
range 5.03103<t<1.53104. The thick line has slope 0.018.

FIG. 4. ln@f(x,t)t23# vs x is shown for 20 values oft in the
range 5.03103<t<1.53104. The breakdown of scaling nea
x5150 is a finite-size effect. The thick line has slope20.036.
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of voids. That the dynamics of this collection bear directl
on the lifetime of the interconnect has been experimenta
verified by many workers.9,33 To date, however, there has
been relatively little attention directed toward understandin
the dynamics of such a collection.

In this paper, we have proposed an approximate me
field theory for the drift and coalescence of spherical voids
a single-crystal metal line. Our mean field equation take
explicit account of the spatial inhomogeneity of the void
distributions arising from the presence of a source of void
In the absence of a source of voids, our Eq.~3! reduces to a
special case of the much studied coagulation equation28 for
which scaling solutions exist for a variety of coagulation
kernels.32,34 The scaling properties of Eq.~3!, however, are
markedly different. While the void distributionn(V,x,t)
scales in both time and space, the spatial scaling is describ
by the marginal scaling variableVe2rx. Specifically,

n~V,x,t !5V2u f S V

erx ,
V

tz D ,

where the mean field values ofu and z were found to be
u55/3 andz53 in 3D. These values are in good agreeme
with the results of the Monte Carlo simulations described
Sec. V. The value ofr obtained in the simulations is
r50.05460.002.

The integrated void volume distributionn(V,t) was
shown to obey the scaling form

FIG. 5. A scaling plot off(x,t)e2 rx/3 vs t3e2rx shows col-
lapse of the data onto the scaling functionC for r50.054. The
thick line has slope 1.0. The units on both axes are arbitrary.
ts

l-
ly

g

n
n
s

s.

ed

t
n

n~V,t!5t25HS V

t3D ,

which is applicable forV@V0 . When V@t3, the scaling
function H(z) behaves asH(z)}z25/3, so that n(V,t)
}V25/3 for largeV/t3.

The void fractionf(x,t) is given by

f~x,t!5erx/3CS t3

erxD .

Approximate expressions forf(x,t) were obtained in the
two scaling limitserx!t3 and erx@t3. Whent3@erx, we
find f(x,t)>f0erx/3. In the opposite limit,t3!erx, we
havef(x,t)>C8(0)t3e2 2rx/3. In both scaling regimes, the
predictions of the scaling theory are in excellent agreem
with the results of the simulations. At a fixed value oft, the
void fraction increases monotonically withx, reaching a
peak where large, slow moving voids have formed. The v
flux downstream of this obstruction is reduced andf(x,t)
decreases monotonically withx beyond the position of the
largest void. The position of the maximum off(x,t) in-
creases as lnt.

It is worth emphasizing that our theory describes theini-
tial stages of failure due to electromigration in metallic i
terconnects. Early in the time evolution of the conductor,
voids are small compared to the interconnect dimensions
have a spherical form. In the later stages of the interc
nect’s failure, the voids are no longer spherical; their grow
is impeded by the surfaces of the interconnect. Our the
does not describe the void dynamics in the later stage
failure and therefore does not provide lifetime estimates. T
time evolution of the void size distribution in the early stag
of failure is, however, experimentally accessible. Transm
sion electron microscopy could be used to image migrat
voids in free-standing, current-carrying thick films, just as
is used to observe submicrometer-sized helium bubble
metal films that have been irradiated witha particles.35,36

While there have been preliminary investigations of EM
induced void dynamics in near-bamboo thin films,9 there is a
real need for experimental work on bulk, single-crys
samples in which the effects of the boundaries and of cr
talline disorder can be neglected. We hope that our work w
stimulate more quantitative experimental work on void d
namics in samples of this kind.
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