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Electromigration-induced void drift and coalescence: Simulations and a dynamic scaling theory
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Electromigration-induced failure of conductors in integrated circuitry is precipitated by the formation, drift,
and coalescence of voids within the conductor. The kinetics of a collection of such voids is studied here
through the development of a dynamic scaling theory, as well as through Monte Carlo simulations. In our
model, voids originate at a source, drift with speeds inversely proportional to their radii, and coalesce accord-
ing to a capture cross section which accounts for the effects of current crowding around the voids in an
approximate fashion. The presence of a source leads to a spatially inhomogeneous distribution function
n(Q,x,t) for voids of volume() drifting in the x direction. We show than({},x,t) obeys the scaling form
n(Q,x,t)=0 "3 (Qe * 0t~ %) wherep=0.054 and is a scaling function. We also obtain scaling solutions
for the void fraction¢(x,t) which agree well with the simulations. At a fixed timg,grows monotonically
with distance from the source, reaches a peak, and then decreases exponentially with distance. The position of
the peak is shown to move with a velocity: 1/t. [S0163-18207)08637-3

. INTRODUCTION lead to the failure of a VLSI circuft®

In practice, the damage caused by the formation of hill-
Under normal operating conditions, the metal lines or in-ocks can be controlled by passivating the interconnect, i.e.,
terconnects in a very-large-scale integrat®l.Sl) circuit by covering the exposed surface of the line with a protective
carry high current densities, and this leads to drift of thelayer of glass. On the other hand, passivating the line does
metal ions and to the eventual failure of the circuit. Thisnot prevent the formation and growth of voids and so only

ionic motion is known as electromigrati¢BM).1 3 With the  postpones failure. Void-induced failure occurs in the follow-
progressive miniaturization of circuit components, EM fail- ing way: After a time, the vacancies in the line become su-
ure of aluminum interconnects remains one of the principapersaturated and small spherical voids nucleate within the
factors limiting the reliability of integrated circuits. EM can @luminum film. EM causes the ions located on the surface of

lead to the failure of an interconnect in relatively short times,@ Void to move from the upstream part of the void to the
reducing the circuit lifetime to an unacceptable level. It isdownstream one. As a result, the voids drift in the direction

therefore of great technological importance to understan@f the ambient electric field. Ho’s analysis of this drift shows
and control electromigration failure in thin films. that an isolated spherical void preserves its shape as it moves

Two opposing forces act on an ion in a current-carryingand that its speed is inversely proportional to its rafius.

wire. The momentum transfer from the conduction electroné\\lﬂ?(rjiogfr' ;t g}as re?ﬁ;tlymgﬁlen gsgogs:ategt;hziart ﬁ’glaeted
results in a wind force, while the ambient electric field re- 0 € siable aga S pe ations of their shdpe.

sults in a direct force on the ion. Both forces are proportiona?"n'?e small voids drift more rapidly than large ones, V.O'ds
collide and coalesce. Ultimately, at the end of the failure

to the electric fieldE and it is customary to write hrocess, a void spans the line and interrupts the flow of elec-
Fion=2*€eE. HereFy, is the total force acting on an ion in trical current. While there have been some preliminary ex-
the bulk andZ* e is the effective charge of the ioZ* is  perimental investigations of void statistitshere have been
positive if the direct force is dominant, and is negative if theno conclusive studies demonstrating general relationships
wind force is the stronger of the two forces. The latter pos-hetween conductor lifetime and void distribution statistics.
sibility is not academic: Z* is negative for aluminum, and In the relatively wide metal interconnects used in early
aluminum (alloyed with small amounts of copper and sili- VLSI circuits, the interconnect width was several times
con) is universally used as the material for interconnects ingreater than the mean grain size. In these wires, ionic trans-
modern VLSI technology. lons at a metal surface also moveort proceeds mainly by grain boundary diffusion driven by
in the presence of an electrical current. In general, the effecelectromigratiorf. Typically, voids are formed at grain
tive charge for surface electromigratior; , differs from  boundary triple points, and these grow in size until electrical
Z*. failure is complete. Since 1971, a number of simulations of
Unfortunately, this drift of matter is not homogeneous. Atthe failure of such polycrystalline metal lines have been
some points in the line, the divergence of the mass flux iperformed:®=*°In each case, it was assumed that the voids
positive and voids appear. The mass flux converges at othare stationary.
points and this can lead to the formation of hillocks at the The failure of metal lines whose width approaches the
surface of the conductor. Both of these types of defect cagrain size is quite different, as first shown by Vaidstaal 2°
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These workers fabricated a group of polycrystalline Al-lows us to derive asymptotic forms for the void size
0.5% Cu wires with a range of widths but a common length distributions which differ qualitatively from those obtained
thickness, and mean grain size. The wires were then sulid the absence of spatial variations. We also present results
jected to EM lifetime testing with a fixed current density. of simulations of the drift and coalescence of voids in long
Vaidyaet al. found that as the linewidth is reduced, the life- Wires. We show that the predictions of the dynamic scaling
time at first decreases, but then begins to increase dramatpeory for the asymptotic properties of the void distributions
cally. are _in good agreement with the simulations and we obtain
The increase in lifetime begins as the width of the wireSCaling exponents which agree quite well with the theory.

approaches the mean grain size. Wires with widths compa- Simulations of a somewhalléﬁszgmilar. coalescence process
rable to the mean grain size are called bamboo lines. In cor12V€ been performed by Meakif:"In his work, bubbles of

trast with thicker wires, in bamboo or near bamboo Iine:sSizes drift with speeds (s) <s”. When two or more bubbles

there is no continuous path of grain boundaries that runs thT@UCh' they coales_ce and the resulting bubble’s volum_e is the
sum of the constituent volumes. The cag& 0, of which

entire length of the wire. These lines have substantially in>""" : T ; .

: rI_EM is a special case, was studied in one dimension only. The

two- and three-dimensional simulations were carried out on a
attice to facilitate simulations with a large density of
ubbles. In contrast, in our simulations of void drift, it is

presumed that the void fraction is everywhere small. The

connects will likely be bamboo aluminum lines, and so un-
derstanding their failure is an important practical issue. |
this paper, we considetingle-crystalmetal lines. An under-

standing of the failure of single-crystal metal lines is an im- . distinction b K and Meakin’
portant first step toward an understanding of the failure o ost important |st|nct_|o,n etween our work and Meakin's,
bamboo lines owever, is that Meakin’s bubbles move ballistically, while

Little theoretical work has been devoted to the failure of'" E_';]/I one Vo'q can bg dzﬂethed" by ar:otger. "
single-crystal metal films through void drift and coalescence, | NS Paper is organized as follows. In Sec. I, we present

Wickham and Sethna introduced a lattice model for voidf[he mean field equation of motion governing the void kinet-

nucleation, drift, and growth in a single-crystal metal thin 'S and_ obta||n ?e co:lalllescznlc\(/a crosl_s sectllon_ for tWO'Vg'd
film.%! Although this work represents an important first Step,lnteractlons. n secs. il an » scaling solutions are ob-

the model of Wickham and Sethna suffers from some seriou ined for the equat_ion_of m_otiqn, as well as the.steady state
deficiencies: For example, current crowding around voids i ropgrUes O.f the void size @stnbyﬂon. The algorithm for the
M simulations and the simulation results are presented in

entirely neglected, and the large voids drift more rapidly tha )
the smaller voids, contrary to Ho's theory. Sec. V. In Sec. VI, we summarize our results.
Recently, two of the present authors introduced a mean
field theory o_f the d_rift z_ind coalescence of _circular voids in a Il. MEAN FIELD EQUATION OF MOTION
current-carrying thin filnf? Current crowding around the
voids was explicitly accounted for, albeit in an approximate In accordance with H8,we will assume, first, that the
fashion. The mean field equations were numerically solvednotion of an isolated spherical void is parallel to the electric
for the void size distribution. It was shown that the distribu-field, and, second, that its speeds inversely proportional
tion obeys a scaling form at long times. This preliminaryto its radius. Thus, if(Q} is the volume of the void,
study has some limitations, however. In real current-carrying =v () =kQ 3 where the constant of proportionaliky
wires the voids are spherical, and only become cylindricadepends on the film material, the temperature, and the cur-
once they have grown to sufficient size. A more significantrent density. Since the smaller voids drift more rapidly than
limitation of the mean field theory of Boularot and Bradiey the larger ones, collisions between voids will occur. When
is the assumption of a spatially homogeneous distribution ofwo voids of volume(); and(}, collide, they coalesce and
voids. In a real current-carrying wire, as mass leaves the wirdeform rapidly (instantaneously in our modeto form a
at the anode, small voids appear within the film. These voidsingle spherical void of volumé€),+Q,. In this way, the
drift toward the cathode, and as they do, they collide, coasurface energy is minimized subject to the constraint that the
lesce, and grow in size. The resulting void size distributionvoid volume is conserved. The position of the new void of
has a nontrivial dependence on position. volume Q,+€, is known because the center of mass is
In this paper, we develop a dynamic scaling theory for theunchanged by the coalescence event.
size and spatial distribution of drifting and coalescing spheri- Consider the collision of two isolated spherical voids of
cal voids in the bulk. By electing to study the problem in thevolume Q; and Q),, where Q,<Q,. Far from the larger
bulk, we sidestep the added complication of a threevoid, the electric field is essentially uniform. As a result, the
dimensional3D) to 2D crossover as the volume of the voids motion of the smaller void is nearly rectilinear when the
increases. This crossover could be incorporated in latevoids are far apart. The same is true of the motion of the
work; the present work is meant only to be a first step towardarger void. The electrical current is crowded by the larger of
understanding the behavior of a collection of many voidsthe two voids, however. As a result, the smaller void is de-
We show that the usual scaling ansatz fails for the case iflected away from its initially linear trajectory as it ap-
which spatial variations are permitted, and that a marginaproaches the larger void. The capture cross section
scaling hypothesis is necessary. Few studies of spatially der(),,(),) is therefore smaller than it would be if the motion
pendent coagulation equations exist in the literafdfé&and  of the voids were simply rectilineafthe case of ballistic
little is known about the scaling properties or even the exiscoalescenge
tence of physical solutions. The theory developed here rep- To account for this effect, we consider two isolated voids
resents an extension of standard coagulation models and ai an ambient electric field. As the probability of collisions
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between voids of comparable size is small, most coalescendéhe void distributionn(€2,x,t) is affected by convective
events will involve voids with quite disparate volumes. With losses that occur at a rate which depends on the position
this in mind, we neglect the deflection of the larger void This is accounted for by the second term on the left-hand
away from its linear trajectory. It is convenient to introduce aside of Eq.(3). The first term on the right-hand side of Eq.
moving coordinate system with origin coincident with the (3) represents the increase i{(},x,t) due to the coales-
larger void’s center of mass. We orient the axes so that theence of two voids of volum&’ and @Q—Q'). The second
electric field far from the voids lies in thedirection. In the  term on the right-hand side of E) represents the reduc-
absence of the smaller void, the electrical current far fromtion in n(€,x,t) resulting from the collision of a void of
the large void is uniform and parallel to the ambient electricvolume Q with another void.
field. The electrical potentiab.(r, §) outside the large void A few comments on the form of E¢3) are in order. Note
is first that we have neglected the possibility that three or more
R\3 voids simultaneously coalesce, and have taken only two void
13 5]

interactions into account. These approximations are reason-
able when the void fraction in the wire is small. We also

Here,E, is the strength of the electric field far from the void,

R is the radius of the larger void, ard and 6 are polar

point out that whem(Q,x,t) is independent ok, Eg. (3)
reduces to the 3D analog of the mean field coagulation equa-
coordinates. We assume that the smaller void moves alo
the streamlines created by the larger void, and that before t

tion studied by Boularot and Bradi&Finally, note that
collision the shape and size of both voids are to a goo

(92,Q") is a homogeneous function of order 1/3, i.e.,
(a02,a0’)=a*K(Q,0").

approximation unchanging. The coalescence cross segtion

is then

D (r,0)=—Eqr cos 0. (8]

The number distribution is subject to the boundary condi-
tion n(Q,01t)=ny(), whereny(() is determined by the
nature of the source. To completely specify the problem, the

3\ ) ) 1 initial value n(€,x,0) is needed for alk) and x=0. For
0(Q,,0,)= W(E) B[(Qf”r 03%2- W} simplicity, we will assume that(£2,x,0)=0 for all 2 andx,
1 2 @ so that initially the wire is entirely free of voids. In this case,
the void size distribution for the entire system,
This is smaller thg[n thlelscoalggczence cross section for ballistic -
motion, 7(3/4m)?q (Q 1>+ Q3%)?]. N

The rate with whiclh voiczis of volumé&) coalesce with n(Q,t)=JO fo JO n(Q.x,tydxdydz @
voids of volume()’ is proportional to their velocity differ-
ence as well as their coalescence cross section. Let us den&@nverges for all) andt.
this rate byK(Q,Q'), and write

[lI. DYNAMIC SCALING
K(Q,Q")=0(Q-,Q-)Av(Qc,Q),

o ) In many coalescence processes, it is found that the cluster
where the velocity difference is size distribution scales at long tim&sWe therefore expect

_ _ _ —13_ -13 that whent is large, the void size distribution((2,t) will

Av(0<,Q>)=0(0)~v(2-)=k(Q =07, follow the scaling form

and where we have definedl.=max{2,’') and
Q _=min(Q,Q").

Now suppose that we have an infinitely long metal wire
that occupies the region9x<<e, O<y=<L, and Osz=<L. o )
A specified number distribution of voids enters the wire at avhere 6 andz are dynamic critical exponents amdis the
constant rate on the plaxe=0 and each void drifts in the ~ Scaling function. We can go further and seek scaling solu-
direction. Since voids of different radii travel at different tions for the position-dependent void size distribution of the
speeds, voids collide and coalesce. hé€),x,t)dQ) denote  form
the average number of voids with volume betwe@rand
Q+dQ per unit volume at a distance away from the n(Q,x t)=Q”h(95 9)
source. Our mean field equation of motion describes the evo- o X2t
lution of n(€),x,t) by coalescence of pairs of voids of dif-
ferent sizes. It may be written as follows:

Q
n(Q,t)=Q"%

rk 5

If this scaling form is used in our problem, the critical expo-
nent A turns out to be infinite—the present problem repre-
sents a singular limit of the general c&SeTherefore, we

an an
E(Q,x,t)wtv(ﬂ)&(ﬂ,x,t) will begin with the modified scaling ansatz
1 ro e Q
=3 fo K(Q',Q—Q")n(Q’ ,x,H)n(Q—Q’' x,1)dQ’ n(Qx,0=0"" 2%, =], (6)
wherep is a positive constant that is to be determined. In-
—n(Q.xt f K(Q,Q)n(Q’ x,1)dQ’. 3 serting this into the equation of motlo(ﬁ) and setting
( ) 0 ( n( ) ® E=QJ/ef*, p=Qlt? and/=Q'/t?* we obtain
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1 (» B _
Zfo K(Z =0 -0~

_ _pktz(e—5/3)§n—(o+1/3) if(g, 7)— 20~

3

Equation(7) shows that if a scaling solution of the for(6)
exists, we must have

)

w| o

and

z=3. 9

CROSBY, BRADLEY, AND BOULAROT

56
et Jog— e [ koo | el
2ecltl 2 (p=0),n— — 0 K fl >
(ng.z ~(r=0.m=¢]de= &n | Ko " c.c)ac
P
4’3)*1771*"%1‘(6,77)- @)
[
o (o 1
<I>(§>Efo L3/W¥G<G,W)dudw.
For >1, we have
d(0)L2
V(7)= ) T (15

in other wordsV « r for large . This is certainly as it should

When these values for the dynamic critical exponents havbe. Note, however, that with the boundary and initial condi-

been inserted into Eq(7), we are left with a nonlinear

tions we have chosen/(7)/7 is equal to a constant for all

integro-differential equation which could in principle be times, while it only tends to a constant as> in the scal-

solved for the constani and the scaling functiof.
Let us explore the consequences of our reg@itand(9).
Let ), be the mean volume of the voids injectedxat O.

We will find it helpful to employ the dimensionless variables

a=0/0, and r=t/t,, wheret,=Q2%k. The scaling form
(6) can then be written

1 e @ @
n(Q,X,T): Q—zoa F @,;g (10)
or, equivalently,
1 . [a «a
n(Q,X,T)ZagT G @,;g . (11)

The scaling functiong= and G are dimensionless and are
easily related td.

The total number of voids with volume betweé&hand
Q+dQ at timet is n(Q,t)dQ, wheren(Q,t) is given by
Eq. (4). Using the scaling fornill) and introducing the new
variable of integrationn=e*/«, we obtain

1l «
ul

du

n(Q,r)= " (12

3

2 %
—= G
pQ57° L/a
Whena=Q/Qy>1, we may set the lower limit of the inte-

gral in this expression to zero ffi;G(u™t,a/7*)u~tdu is
finite. We then have the scaling form

Q
n(Q,T):TsH(F), (13
which is applicable fol)> Q.
The total volume occupied by the voids is

V(t)=[on(Q,t)QdQ, which[using Eqg.(12)] may be writ-
ten

L27 (1
V(T):7q>(—). (14)

T

Here we have defined

ing solution. As a result, the system only scales for suffi-
ciently large timesr with our initial and boundary condi-
tions.

For >, the number of voids per unit volum is
obtained from

-2

s
7'3)

We then have the result that the average void volume
(Q)Y=V(7)IN(7)x 7 for =1 andQ>Q,.

The void size distributiom({2,x,7) has a nontrivial de-
pendence on the distance from the source which we will now
study. Letg(x,7) = [on(Q,x,7)QdQ be the void fraction at
distancex from the source at time. Using Eq.(10) and
introducing the new variable of integrati®= ae™ "%, we
find that

N(7)= foxn(Q,T)dQ: f:7'75H

3
d)(x,r):ep"’e”\lf(T—),

o (16

whereW ({)=[F(s,s/{)s™ ?ds.

Suppose that (z) ~Bz” whenz is large.(Here B and v
are constantsWe then havep(x, 7) =B >"exd (3— v)px] for
>e’*. Now according to our boundary condition,
#(0,7)= ¢y, where po=[{ne(Q)QdQ. Therefore v=0
and

B(%,7)= o™ 17

for 7°>e*. This means that for a fixed distangdrom the
origin, the void fraction tends to a steady state vafugXx)

as r—, and, moreover, that..(x) grows exponentially
with x. Now consider the opposite limit in which®<e?*.

We expect the scaling functio¥ (z) to be analytic at the
pointz=0, and so we may perform a Taylor series expansion
of it about this point. If this is so, then we have

3

b(x,7)= "3 ‘P(O)+é\lf’(0)+-~ T
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whereV'(z)=dW¥(z)/dz. At any time 7, the void fraction and make the following definitions:
will tend to zero ax— 0. Equation(18) then shows that we
must have¥ (0)=0. We conclude that K(Q,Q")

K(Q,0D= T aw@n

d(x,7)=T"(0) e 2P (19

for °<ef*: i.e., the void fraction falls off exponentially
with x whenx is large. Equation$l7) and (19), as well as
the general scaling fornil6), are in excellent agreement

with the results of the simulations described in Sec. V. Note that the new kerné{ is homogeneous with homogene-
Equations(17) and(19) show that, for a fixed value of, v index A =1. The equation of motion becomes

the void fraction grows exponentially with distance from the

source, reaches a peak, and then decays exponentially withy 1 J‘QN

increasing distance. The larger, slower voids form a clot or&(ﬂ,x): > KQ,Q—-Q")nQ ,x)n(Q—-9Q’,x)dQ’

and

nQ,x)=v(Q)n(Q,x).

traffic jam which captures most of the voids incident upon it. 0

The clot drifts in thex direction, slowing down as it grows _ o _
due to collisions with smaller voids. In fact, the position of —n(Q,x)f K(Q,Q")n(Q',x)dQ’. (21
the maximum of the void fraction is proportional to4nTo 0

see this, let the position of the maximumfx, 7) attimer |t \ve make the formal replacement-t, Eq. (21) becomes
be )i:X/(T)_'O Inse]r;undg th' (16 into the relation o coagulation equation of Schmolukowski with kerkef*
9p(x*,7)/9x=0, we find that As we have noted in Sec. |, there have been many studies of
o - " the scaling properties of Eq21) with particular choices of
3a—pXT\ — 3a—pX 1 3a— pX
¥(re )=3r°e V(e ). the kernel. van Dongen and Ernst provide the most complete
Thus, 737" = w,, whereaw, is a dimensionless constant. accounting of the scaling properties of Hg1).% They ob-
We conclude that tain scaling solutions classified by the homogeneity index
and the large argument behavior of the kernel. However,
their analysis is valid only foh #1. We now carry out an

X* ()~ ;I” T (200 analysis for our problentin which A =1) to obtain approxi-
mate scaling solutions to EQ1).
for 7>1. We begin by constructing a scaling form fo¢(Q,x). Let

Finally, we note that the analysis of this section is easilyn(() x)=lim,_,..n(Q,x,7). From Eq. (10) we see that
extended to the two-dimensional case in which the voids arg (0, x) :Q—S/sFO(Q/er) WhereFo(g)Eﬂng(g 0). We

circular. In two dimensions, we find=3/2 andz=3. The o havén(Q,x) =kQ ~2F ,(Q/e™) or, equivalently
number distribution for voids of area obeys the scaling ’ 0 ' '

form -1 Q
nQ,x)= e‘z”xH<7> . (22)
a e
n(a,T):T_st(—z), -
T Our goal is to determine the form ¢f(z) asz—o. Con-
while the void fraction satisfies sider the quantity)({2,x,t) defined by
2 Q
¢(x,r)=epx’2\1f2(@), J(Q,x,t)zf Q'v(Q)NQ’ ,x,t)dQ’. (23
0

where H, and W, are scaling functions. The two- j(() x.t) is the integrated flux of voids with volumes less
dimensional analogs to Eq&l7) and(19) are then than or equal td) at positionx in the wire and at time. The
total void flux J(x,t)=limg_...J(Q,X,t) must satisfy the
$(x,7)= poe"™? for e, continuity equatif)n : -l : Y
and

aJ(x,t)  dP(x,t)
H(x,7)=V'(0)7%e” P2 for rP<erX. ——t o =0.

The average area of the voids increases linearly in tfhire,
contrast to the 3D resultQ)=7%. As in three dimensions,
the total area occupied by the voids grows linearly in time.
These predictions agree well with simulatiofis.

In the steady state regim@g(x,t)/dt=0, so thatJ(x,t)
approaches a constant independenk dbr t—o. Call this
constant]y. We define the steady state analogl{@,x,t)
as

IV. STEADY STATE SCALING SOLUTIONS Q
J(Q,x)=1lim J(Q,x,t)=f QRO x)dQ . (24)
0

s

We now consider the steady state properties of our model.
At long times, the volume distribution(€2,x,7) should be-
come independent of time for a given valuexofTo study We then have the result thak((},x) approaches], as
the time-independent properties, we 8efgt=0 in Eq.(3) () —. Computing the divergence df(2,x) results in
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3J4(Q,Xx) . Q' , voids is a rare event. By choosing a sufficiently low rate of
T ax 2e j Q' H( )dﬂ void injection and requiring tha®,<1, the void fraction in
the wire is kept small.
. e ! . We choose the initial distribution function to be
+tpe J (Q)H'| % |dQ’, (29 no(Q) =exp(—/200), so that the mean void volume at
_ _ x=0 is Qy=5%10"3. While this is a convenient choice of
where H'(z)=dH/dz. We differentiate Eq.(25 with re-  ny(Q), the long-time properties of the model are indepen-

spect to() and obtain dent of the particular form ohy(2). More pathological
9 2, Q Q forms ofng(Q) result in longer computation time before the

—— —2(Q,x)=2pe" ZPXQH< +pe 3 Q2H! ( px> scaling regime is reached. Wifb,=5x10"3, the total void
ax Q) e fraction never exceeds 16 and the local void fraction never

(26) exceeds 10 in any region of the wire.
As Q—o, the left side of Eq.(26) tends to zero since Having obtained an initial distribution of voids, the voids
dJs19Q0—0 asQ—oe. We then have the differential equa- are advanced ballistically for a timét, which we define as

tion the time between injections and which is chosen to be
- 6t,=10t,=10. The injection process is repeated, and now
H(z) -~ the potential for collisions arises. We adopt the rule that two
z +2H(z)=0, (27) ; . L )
dz voids coalesce only if their impact parameter is smaller than

[o(Q',Q)/7]Y2 In this way, the effects of current crowd-
ing are taken into account in an approximate fashion. A list
of voids sorted by theix coordinates is used to construct, for
c each voidi, a small subset of voidg for which a collision
H(z)— 2 for z>1, (28)  may occur before the next injection. For each pair of voids
(i,j), the time to their coalescence is computed, assuming no
wherec is a constant. other collisions occur involving either voidor void j. Let
Finally, we obtain the desired large steady state scaling this time interval for void pairsi(j) be t) . All collision
forms of the void volume distribution: timest/ <t, (if any) are obtained, and the voids are advanced
through a timet,,;,=min(t}), whereupon the colliding voids
AQ X):e—szﬁ(g) ~02 of volume(}; and(}; are coalesced to obtain a new void of
' erx volume );+();. The coordinates of the new void are pre-
scribed by the condition that the collision not alter the center
of mass of the two voids. Collision times are again obtained
n(Q,x)~Q 53 (290  and the voids are advanced to the next coalescence. This
process is repeated until the next injection time is reached.
which are applicable whefi>e”. An injection then occurs, beginning a new iteration of the
Equation (28) implies that the scaling functiol [Eq.  algorithm. In practice, the void fraction is small enough that
(13)] also behaves as a power law in the scaling regimehere are typically zero, one, or two collisions between each
(7>1) whenQ> 7. To be explicit, injection step. Voids whose centers have reached the plane
x=L, are discarded from the simulation volume.

which is valid for largez=Qe™ #*. Equation(27) has the
solution

and

__ #—5/3 s ) ; ;
H(O~¢ for £>1. (30 The algorithm is iterated through 5000 coalescence
This leads to the result that(Q,7) is independent of- for ~ €vents. At regular intervals of, the number and volume
Q> 72 in the scaling regime. distributions are calculated and used to constek(ct, 7) and
n(Q,7). We then average the distributions of 30 000 such
V. MONTE CARLO SIMULATIONS simulations to obtain the results described below.

In Fig. 1, n(Q,7) is plotted against) for 30 equally

We begin by briefly describing the algorithm used tospaced values of in the interval 408< r<6000. Note that
study the coalescence kinetics. Consider a long wire with ghe transition from the initial distributiony(Q) to a steady
square cross section of arde=L?, i.e., Ly=L,=L. We state form is evident as increases. The smatl-curves do
choose the units of distance so that 1, and the long di- not differ significantly from the exponential distribution
mension of the wird, is chosen to be 200. The natural time present atr=0, while the larger behavior approaches a
scale is set byOEQS’3/k. We choose the units of time so form independent of. The dashed curve corresponds to the
thatty=1. At t=0 a small number of voids are introduced distribution atr=400, where the data still follows the form
with their centers at random positions on the plared (the  of the initial distribution closely.
anod@. As the number of voids per injection step is quite  According to Eqs(13) and (30), 7°n(Q, ) should scale
small, overlaps ax=0 are exceedingly rare. If the random as a power law in the variab@/ 7> for O>Q, andQ> 7
placement does result in an overlap, all of the injected voidén the scaling regimer>1. This power law scaling is con-
are removed from the=0 plane, and new random positions firmed in Fig. 2. The slope of the log-log plot in Fig. 2 is
are obtained and used for placement. We will restrict ourl.67+0.01, in agreement with the prediction of the steady
attention to the case in which the void fraction is small, sostate scaling analysis of Sec. IV, where we found
that the simultaneous interaction between more than twdi(Z)~ ¢ °3. The data in Fig. 2 span the same range as
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15.0

in[$(x, D)}
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~10.0 ; . L
0.0 50.0 100.0 150.0 200.0

X

FIG. 1. n(Q,7) vs Q is shown for 30 equally spaced valuesrof FIG. 3. IM(x7)] is plotted againsk for 20 values ofr in the
in the range 408 <6000. The dashed curve corresponds to ther@nge 5.< 10°< 7<1.5x 10*. The thick line has slope 0.018.
distribution at7=400 and shows the exponential character of the

initial distribution ny(€2). The units on both axes are arbitrary. ~ good collapse of the data onto the scaling foff®) for

e”*> 73 (Fig. 4). Measuring the slope of the curves, we again
find p=0.054.
It is also useful to examine the validity of the general
scaling form, Eq.(16). In Fig. 5 ¢(x,7)/e”? is plotted
We now examine the scaling properties of the void frac-2gainstr®/e” for ten equally spaced values ofspanning
tion ¢(x, 7). The essential predictions are contained in Eqsthe range 7.810°< r<1.5x10%. Forp=0.054, we find ex-
(16), (17), and(19). Figure 3 shows Irb(x,7) vs x for rinthe ~ cellent collapse of the data. '_I'he°?>epx scaling regime is
interval 5.0< 10°< r<1.5x 10%. As predicted by the scaling marked by the zero/—gslope region of the curves in Fig. 5. By
theory, the void fraction increases exponentially with ~ Ed- (17), ¢(x,7)/e”™ tends to the constan, in this re-
reaches a maximum, and then decreases monotonically. Fg{me- In the opposite limit, 7°<e, we find that
7> e, $(x,7) is clearly independent of, and is exponen- (X, 7)€" P 7°/e”%, in agreement with Eq19). The solid
tial in x. For r3<e™, ¢(x,7) is again exponential ix, but  lin€ in Fig. 5 has slope 1.0.
also displays some time dependence. Computing the slopes
of In¢(x,7) in  both scaling regimgs, we find VI. SUMMARY
p=0.0540.002. A scaling plot ofp(x,7)/7* vs x shows Electromigration failure of metal interconnects is pre-

ceded by the formation, drift, and coalescence of a collection

that in Fig. 1. The breakdown in scaling for very laigé+°
occurs in the short-time regime, where the initial distribution
ng(Q) dominates((},7).

20.0

-12.0

-14.0

-16.0

Inft°n(2,7)]

Info(x, v/t

0.0 E ~18.0

-20.0 -

-10.0 ‘
~25.0 -20.0 -15.0 -10.0 -5.0 220
3, - | L 1 L
In(@7’) 0.0 50.0 100.0 150.0 200.0

X

FIG. 2. 7°n(Q,7) vs Q/7° is shown in a log-log plot for 30
equally spaced values ofin the range 40& 7<6000. The thick FIG. 4. If¢(x,7)7 3] vs x is shown for 20 values of in the
line has slope—5/3. The units on both axes are arbitrary. The range 5.X10°<7<1.5x10*. The breakdown of scaling near
logarithms are base. x=150 is a finite-size effect. The thick line has slop8.036.
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Q
n(Q,T):T_SH(?>,

which is applicable fof)>Q,. When Q> 7, the scaling
function H(z) behaves asH(z)xz °3, so thatn(Q,7)
()53 for large Q/ 7.

The void fractiong(x, 7) is given by

|
®
o

Info(x, 16"

7.3

100 - ¢(X, ’T) = er/?’\If(@) .
Approximate expressions fap(x,7) were obtained in the
two scaling limitse”< 7° and e”> 73, When 7°>e”, we
find ¢(x,7)=poe”™>. In the opposite limit,*<e”™, we
haveg(x,7)=W'(0)7%" 273, In both scaling regimes, the
140,00 50 00 5.0 predictions of the scaling theory are in excellent agreement

Infc7e™] with the results of the simulations. At a fixed valuemthe
void fraction increases monotonically with, reaching a
peak where large, slow moving voids have formed. The void
flux downstream of this obstruction is reduced apk, )
decreases monotonically with beyond the position of the
largest void. The position of the maximum @f(x,7) in-
creases as tn

of voids. That the dynamics of this collection bear directly It is worth emphasizing that our theory describes itfie
on the lifetime of the interconnect has been experimentallyjial stages of failure due to electromigration in metallic in-
verified by many worker&3 To date, however, there has terconnects. Early in the time evolution of the conductor, the

been relatively little attention directed toward understanding/0ids are small compared to the interconnect dimensions and
the dynamics of such a collection. ave a spherical form. In the later stages of the intercon-
In this paper, we have proposed an approximate meafe€ct's failure, the voids are no longer spherical; their growth
field theory for the drift and coalescence of spherical voids ifS impeded by the surfaces of the interconnect. Our theory
a single-crystal metal line. Our mean field equation take$l0€s not describe the void dynamics in the later stages of
explicit account of the spatial inhomogeneity of the void failure and therefore does not provide lifetime estimates. The
distributions arising from the presence of a source of voidstime evolution of the void size distribution in the early stages
In the absence of a source of voids, our E).reduces to a ©f failure is, however, experimentally accessible. Transmis-
special case of the much studied coagulation equition ~ SION electron microscopy could be used to image migrating

markedly different. While the void distributiom(€2,x,t) metal films that have been irradiated with particles:.*’5'35

scales in both time and space, the spatial scaling is describdfhile there have been preliminary investigations of EM-
by the marginal scaling variabe~?*. Specifically, induced void dynamlc_s in near-bamboo thin fll?n_i;l,ere isa
real need for experimental work on bulk, single-crystal
samples in which the effects of the boundaries and of crys-
H(Q,X,t)=ﬂ_0f<@, ?) : talline disorder can be neglected. We hope that our work will
stimulate more quantitative experimental work on void dy-
where the mean field values @fand z were found to be namics in samples of this kind.
0=5/3 andz=3 in 3D. These values are in good agreement
with the results of the Monte Carlo simulations described in
Sec. V. The value ofp obtained in the simulations is ACKNOWLEDGMENTS
p=0.054+0.002. We would like to thank S. Redner and M. Mahadevan for
The integrated void volume distribution(€},7) was  useful discussions. This work was supported in part by NSF
shown to obey the scaling form Grant No. DMR-9100257.

-12.0

FIG. 5. A scaling plot of¢(x,7)e” "3 vs 73%e™* shows col-
lapse of the data onto the scaling functighfor p=0.054. The
thick line has slope 1.0. The units on both axes are arbitrary.
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