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Low-frequency phonon dynamics and spin-lattice relaxation time in the incommensurate phase
at low temperatures
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The low-frequency phonon-response functions, both for transverse~phason! and longitudinal~amplitudon!
fluctuations, are calculated for a displacive incommensurate system at low temperatures. The results obtained
are used to calculate the spin-lattice relaxation rate governed either by transverse or longitudinal fluctuations at
temperatures much lower than the Debye temperature but much higher than the energy corresponding to the
Larmor frequency. It is found that direct processes determine the spin-lattice relaxation rate in both cases. The
transverse spin-lattice relaxation rate is proportional to temperatureT and does not depend on the Larmor
frequency. The longitudinal contribution is proportional toT3 and does not depend on the Larmor frequency as
well. @S0163-1829~97!02137-1#
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I. INTRODUCTION

It is quite natural to expect that specific features of
lattice dynamics of incommensurate~IC! phases should mani
fest themselves specifically in their low-temperature beh
ior. Until recently, the only way to study this behavior was
work on quasi-one-dimensional compounds with Peie
transition.1,2 Now the low-T properties of the nonconductiv
molecular crystal bis~4-chlorophenyl!sulfone ~BCPS! have
attracted some attention.3–13This crystal has an IC phase th
exists in theT interval from 150 K down to the lowest tem
peratures investigated.5,8 35Cl NQR measurements hav
revealed5,6,8 a strong decrease in the spin-lattice relaxat
rate T1

21 below 110 K. Recently, measurements have b
extended12 down to several K and a monotonous decrease
T1

21 as the temperature decreases has been found. The
pretation of the experiments raises, however, some q
tions. The aim of this paper is to present a systematic dis
sion of the low-T and low-frequency lattice dynamics of IC
phases which is relevant to the interpretation of theT1 data.

It is known14 that NQR and NMR signals in IC phase
exhibit a broad spectrum and the spin-lattice relaxation
varies over the spectrum. This is due to different contrib
tions of the longitudinal and transverse fluctuations~to the
harmonic approximation—of the amplitudon and phas
ones! to the spin-lattice relaxation rate at different parts
the line.~We shall not consider this question but rather d
cuss the situations when the spin-lattice relaxation rate
governed completely either by the transverse or by the
gitudinal fluctuations.! In fact, what is calculated are definit
correlation functions. In the general case these correla
functions enter the formulas for the transition probabilit
defining the evolution of the level occupation numbers,
560163-1829/97/56~14!/8734~9!/$10.00
e

-

s

n
n
f

ter-
s-
s-

te
-

n
f
-
is
-

n

o

the generalization of the results of the present pape
straightforward but is beyond it. For the main part of t
spectrum the transverse fluctuations contribution is more
portant than that of longitudinal ones. That is why we beg
with the discussion of the first contribution. For the sake
brevity we shall use the notations of phason and amplitu
instead of transverse and longitudinal fluctuations ev
though we shall deal with anharmonic effects.

The paper is organized as follows. In Sec II we discu
the relative role of the direct and the Raman processes in
phason-mediated spin-lattice relaxation in the IC phase
come to the conclusion that the phason-governedT1

21 is pro-
portional toT in the low-temperature region whose bounda
is determined by theT-dependence of the phason dampi
constant. In Sec. III we investigate this temperature dep
dence in the low-T limit. In Sec IV we discuss the
T-dependence of the amplitudon contribution to the sp
lattice relaxation time. In Sec V we summarize the resu
obtained and discuss their relevance to the experimental d

II. THE PHASON-MEDIATED SPIN-LATTICE
RELAXATION RATE

We shall be interested in the spin-lattice relaxation rate
measured in NMR and NQR experiments at temperatu
from about 1 K. As 1 K corresponds to frequencies abo
1011 s21 and the NMR frequencies are normally of the ord
of 107 s21 ~the NQR ones can be much lower! we shall
assume in this paper that\VL!T whereVL is the Larmor
frequency. At the temperatures of our interest the effects
the phonon bottleneck can be neglected: according to R
12 the spin-lattice relaxation time for35Cl in BCPS atT
'1 K is about 1 s21 while the phason lifetime is much less
the same temperatures@see Eq.~22! below#. Thus one can
8734 © 1997 The American Physical Society
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use for the spin-lattice relaxation rate the same formulas a
Ref. 14.

The spin-lattice relaxation is determined by the probab
ties of transitions between the states of the Zeeman Ha
tonian due to perturbations caused by the latt
fluctuations.15 In general, the return of the nuclear magne
zation back to its thermal equilibrium value cannot be d
scribed by one exponent but in any case the temporal e
tions contain probabilities that are proportional to so
combinations of the spectral densities of local fluctuations
the electric field gradient~EFG! tensor. These spectral den
sities are proportional to the spectral densities of fluctuati
of the lattice variables among which we will single out tho
corresponding to the order parameter. It is, in effect, the lo
spectral density of the order parameter fluctuations that
be discussed in the present paper. To demonstrate its sp
features is enough to consider the simplest case. Here
can write the perturbation Hamiltonian as a productAF(t),
whereA is an operator acting on the spin variables andF(t)
is a function depending on the lattice variables. In this cas15

T1
215B^uF~VL!u2&, ~1!

whereB is a constant,VL is the Larmor frequency,F(v)
5*F(t)exp(2ivt)dt, and ^ & designates the statistical ave
age. Introducing the order parameter for normal-IC ph
transition,h5h11 ih2 , and assuming that the equilibrium
value ofh1 is nonzero in the IC phase but that ofh2 is zero
one associates the fluctuations ofh1 ~the longitudinal ones!
with amplitudons and those ofh2 ~the transverse ones! with
phasons. Then the phason contribution is singled out fr
the right-hand side~rhs! of Eq. ~1! as14

T1dph
21 5a1

2(
k

^uh2~k,VL!u2&, ~2!

where

h2~k!5
1

V E h2~r !exp~2 ikr !dr ,

V is the volume and the coefficienta1 appears in the expan
sion of the coefficientF:

F5F01a1h21a2h2
21••• . ~3!

For further calculations14 one takes into account that th
phason is overdamped and considers it as a relaxator, i.e
the classical limit one has

^uh2~k,VL!u2&5
g2T

pV~D2k41g2
2VL

2!
, ~4!

whereg2 is the phason ‘‘viscosity constant,’’g2/2m5G2 is
referred to as the phason damping constant,m is the phason
mass density, or, rather, the mass density correspondin
the soft mode normal coordinate, and (D/m)1/25c is re-
ferred to as the phason velocity.

As we are interested in the low-T region and the phaso
viscosity is expected to go to zero whenT→0 it is more
reasonable to use a less simplified formula than Eq.~4! and
represent the phason as an oscillator with damping.
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^uh2~VL ,k!u2&5
g2T

pV@~2mVL
21Dk2!21g2

2VL
2#

. ~5!

The classical expression is applicable as long as\VL!T.
Substituting Eq.~5! into Eq. ~2! one obtains

T1dph
21 5a1

2 T

23/2p2D3/2

1

VL
@„~mVL

2!21~g2VL!2
…

1/2

1mVL
2#1/2 ~6!

the inertial term becomes important, naturally, when

G2[g2/2m,VL . ~6a!

At low enough temperatures when this condition is satisfi

T1dph
21 5a1

2 Tm1/2

2p2D3/2, ~7!

i.e., the spin-lattice relaxation rate does not depend onVL .
Let us emphasize that the contribution of the phason di
processes to the spin-lattice relaxation rate@formula ~7!# is
quite different from the contribution of the ordinary acous
phonons direct processes.15 In the latter case the formula fo
the spin-lattice relaxation rate contains, comparing with E
~7!, a very small factor, (VL /vD)2, wherevD is the Debye
frequency, by the order of magnitude.15 The reason is tha
the spin-Hamiltonian depends directly on the transve
~phason! ‘‘displacement’’ @see Eq.~3!# unlike to the case of
acoustic phonons where the coefficients of the spin Ham
tonian depend on the strain tensor components, i.e., on
derivatives of the displacements. Therefore, the ‘‘ba
ground’’ due to ordinary phonons can be completely n
glected comparing with the phason governed contribution

Now we estimate the spin-lattice relaxation time due
the Raman processes. For the low-T region where the phaso
damping can be neglected it is the most straightforward
use the standard formula~see, e.g., Ref. 15! rewritten in our
terms, i.e., taking into account, once more, that the par
eters of the spin Hamiltonian depend on the ‘‘phason d
placement’’h2 . In the form where the classical limit is eas
ily obtainable one has

T1Rph
21 5a2

2E
0

`

dv
~\v!2g2

2

2p2 sinh22
\v

2T

3F(
k

1

~Dk22mv2!21g2
2v2G2

, ~8!

where the limitg2→0 will be taken in the final result. One
obtains

T1Rph
21 5a2

2 mT3

p4\D3 E
0

\vmax/T y2dy

sinh2 y
~9!

wherevmax
2 5Dkmax

2 /m, andkmax is the cutoff of the problem.
For T!TD the upper limit of the integral can be replaced
` and one obtains

T1Rph
21 5a2

2 mT3

16p4\D3 . ~10!
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Recall that the contribution of the Raman processes w
participation of ordinary acoustic phonons is proportional
T at T!TD ~see, e.g., Ref. 15!, i.e., the phason-mediate
Raman processes are far more effective. However, as
shall show now, they are still far less effective than the dir
processes due to phason.

Let us take into account that ifh25h2 max'd, whered is
the interatomic distance, all the terms in Eq.~3! are of the
same order of magnitude, i.e., one can seta1'a2d. Now we
can compare the contribution due to the Raman proce
@Eq. ~10!# and that due the direct ones in the low-T region
@Eq. ~7!#. One has

T1Rph
21

T1dph
5

a2
2

a1
2

T2m1/2

8p2\D3/2'
1

4p

T

TDph

T

Tat
, ~11!

whereTDph5\vDph5\(D/m)1/22p/d is of the order of mag-
nitude of the Debye temperature, andTat is the ‘‘atomic tem-
perature’’ (104– 105 K). It has been taken into account th
if one assumes (D/m)1/2, i.e., the phason velocity,c, to be of
order of magnitude of the sound velocity and the pha
mass density of the order of magnitude of ordinary m
density one finds thatD'Tat by the order of magnitude. On
sees from Eq.~12! that the Raman processes can be
glected and to find theT-dependence of the phason cont
bution toT1

21 it is quite enough to restrict ourselves by th
direct processes.

At high temperatures, instead of Eq.~7! one obtains, of
course, the well known formula14

T1dph
21 5

a1
2Tg2

1/2

23/2p2D3/2VL
1/2. ~12!

It is convenient to introduce an~albeit ill-defined! ‘‘bound-
ary’’ temperatureTb which separates the two temperatu
regions and is determined by the condition

G2~Tb!'VL . ~13!

To reveal the real meaning of this condition, th
T-dependence of the ‘‘viscosity coefficient’’g2 , is the topic
of the next section.

III. TEMPERATURE DEPENDENCE OF THE PHASON
DAMPING CONSTANT

General features of the phonon loss calculation at lowT
are well discussed elsewhere.16 Due to the limitation chosen
(\VL!T) we are interested in thev→0 limit of the viscos-
ity coefficient, i.e., only the part of loss that is proportional
v is of interest for us. This part is due to the so-called as
ciation processes: the phonon in question and a ther
one convert into two other phonons. As at lowT the thermal
phonons are the acoustic ones and due to the energy co
vation only acoustic phonons are created, it is enough to
into account the interaction of the vibration in question w
the acoustic phonons only. The phason branch in the IC c
tals is an additional acoustic branch, therefore, one can
pect that the phason-phason and the phason-acoustic int
tion is of interest for calculation of the ‘‘phason viscosity.
However, the phason branch is acoustic as to its disper
law but is optic as to its coupling with other branches. T
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difference results in much more importance of the phas
phason interaction than the phason-acoustic one. In fact
amplitudon branch is also acoustic-like due to t
amplitudon-phason interaction.17,18 Thus it is not so surpris-
ing that it is impossible to neglect the amplitudons, as
shall see from what follows.

We shall use the continuous medium approximat
which is especially relevant for the low-T region. To write
down the potential energy it is convenient to start with t
‘‘effective Hamiltonian’’ used in the fluctuation theory o
phase transitions~see, e.g., Ref. 19!. In our case the density
of the effective Hamiltonian, or, rather, the density of t
effective potential energy, as a function of the order para
eter introduced in Sec. II, is

u5
A

2
~h1

21h2
2!1

B

4
~h1

21h2
2!21

D

2
@~¹h1!21~¹h2!2#.

~14!

As in Sec. II we assume that the equilibrium value
h1(h1e) is nonzero whileh2e50, thus associatingh15h1
2h1e with amplitudons andh2 with phasons. When the
fluctuations are neglectedh1e

2 52A/B and one has

u5ue1
~2Bh1e

2 !h18
2

2
1

D

2
@~¹h18!21~¹h2!2#1Bh1eh18h2

2

1Bh1eh18
31

B

2
h18

2h2
21

B

4
h18

41
B

4
h2

4. ~15!

This form is more convenient than that of Eq.~14!: one can
considerh1e as the exact~and unknown! value to be found in
every approximation by minimizing the free energy of t
system calculated to the same approximation. The densit
the kinetic energy we shall assume to be as usual

1

2m
~p1

21p2
2!, ~16!

where p1(r ),p2(r ) are momenta corresponding toh1(r ),
h2(r ), and m is the ‘‘optical’’ mass introduced already in
Sec. II.

To demonstrate the problems that arise when calcula
the phason damping constant let us begin with the class
limit and an approximation that might seem to be reasona
at least far from the normal-IC phase transition. Having
mind that the amplitudon is more ‘‘hard’’ than the phas
which is quite analogous to the soft mode at a second o
phase transition point we shall omit all the terms contain
h18 in Eq. ~15!. Then one has as the equation of motion f
h2 :

mḧ22D¹2h21Bh2
350. ~17!

Apart from a renormalization of the stiffness constant, wh
is not important being compensated by the change ofh1e ,
the anharmonicity described by the last term in the rhs of
~15! provides a damping which is infinite. Indeed, Eq.~17! is
that for an ordinary soft mode at the phase transition te
perature~the mentioned compensation being taken into
count! and the soft mode damping at the phase transit
temperature is known to be infinite~see, e.g., Ref. 20!.
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In fact, it is not the case. The matter is that there are o
relevant anharmonicities. Indeed, the fourth term in the
of Eq. ~15! describes changes of the amplitudon coordin
due to the phason fluctuations as well as changes in the
son fluctuations due to changes in the amplitudon coo
nates. In other words it describes the indirect~via amplitu-
don! interaction of the phason fluctuations. That means t
to obtain the lower order result for the phason damping
low T one has to use the following potential energy dens

u5ue1
2Bh1e

2

2
h18

21
D

2
@~¹h18!21~¹h2!2#
nt
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1Bh1eh18h2
21

B

4
h2

4. ~18!

The calculation can be made using the Matsubara techn
of the temperature Green functions~see, e.g., Ref. 21!. More
details about the calculations are to be found in Appendix
We would like to mention that all the perturbation theo
terms are divergent but their sum is finite. Such a situatio
typical for IC phases~see, e.g., Refs. 17 and 22!.

For the low-frequency phason damping constant (\V
!T) one obtains
G2~q'0,V'0!5
p\3

m4T E E dk1dk2

~2p!6

B2F D~k11k2!22D~k11k2!2

2Bh1e
2 1D~k11k2!22D~k11k2!2G2

8v2~k1!v2~k2!v2~k11k2!

n2~k1!n2~k2!

12expS 2
\@v2~k1!1v2~k2!#

T D
3d@v2~k1!1v2~k2!2v2~k11k2!#, ~19!
e

e

im-
ntal

est.

on

ar-
where v2
2(k)5m21Dk2 and n2(k)5@exp(\v2(k)T21

21#21.
A rough estimation ofG2 can be made taking into accou

that the main contribution to the integral comes from t
region\v2(k);T, or v2;vT , k;kT . As a result one finds

G2~V'0,q'0!;1022
\3kT

10B2D2

m4TvT
4uAu2 ;1022vT

T2

uAu2 kT
2 B2

D2 ,

~20!

where uAu5Bh1e
2 . To estimateuAu,B,D for displacive sys-

tem one can follow Vaks23 to obtain

uA~T'0!u;Tcd
25, B;Tatd

27, D;Tatd
23, ~21!

where Tc is the temperature of phase transition from t
normal to the IC phase,Tat is a typical ‘‘atomic tempera-
ture’’ (Tat;104–105 K), d is the lattice constant, and th
order parameter is considered as an atomic displacem
Assuming that the ‘‘phason velocity’’c5(D/m)1/2 is of the
same order of magnitude as the sound one we find thakT
5d21(T/TD), whereTD is the Debye temperature. ForvT
one has, naturally,vT;VD(T/TD), whereVD is the Debye
frequency. As a result one finds

G2;~102121022!VDS T

TD
D 5

, ~22!

where it has been assumed thatTc;TD . To compare this
result with that for an ‘‘ordinary’’ optical phonon let us re
call, e.g., that the low-frequency damping constant for a
lar optical phonon~such a constant determines the lo
frequency dielectric losses! is proportional toT7 at T!TD if
the crystal is nonpolar,24 i.e., at low enough temperatures th
phason damping constant is much more than those of ‘‘o
nary’’ optical phonons.
nt.

-

i-

Using Eqs.~13! and ~22! one finds an estimation for th
‘‘boundary temperature’’Tb :

Tb;TDS VL

1022VD
D 1/5

. ~23!

According to Eq.~23! Tb can be one order of magnitud
lower thanTD . One sees from Eq.~23! thatTb depends very
weakly on the Larmor frequency albeit it does not seem
possible to detect this dependence. A careful experime
study of temperature dependence ofT1

21 at low temperatures
and for different Larmor frequencies seems to be of inter

IV. THE AMPLITUDON MEDIATED SPIN-LATTICE
RELAXATION TIME

On the same condition as in Sec. II (\VL!T) one has for
the amplitudon contribution to the spin-lattice relaxati
rate14

T1dam
21 5Ab1

2(
k

^uh1~k,VL!u2&, ~24!

^uh1~k,VL!u2&5
T

pVL
Im x1~k,VL!, ~25!

where x1(k,VL) is the longitudinal~amplitudon! response
function. To the zero approximation one can write

x1~k,VL!5x10~k,VL!

5
1

V~2mVL
212Bh1e

2 1Dk22 ig1VL!

5
1

Vm@v1
2~k!2VL

222iG1VL#
. ~26!

Here v1
2(k)5(2Bh1e

2 1Dk2)/m, G15g1/2m; g1 is due to
all the anharmonic interactions excluding those with the p
ticipation of the amplitudon and the phasons only.
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Now we shall study just the effect of interaction betwe
amplitudon and phasons. Specifically, we shall calculate
longitudinal response functionx1(VL ,k) taking into account
the phase fluctuations.

The response function in question is the same as the
tarded Green function as defined in Appendix A. The cal
lations of the amplitudon Green function for low temperatu
are to be found in Appendix B. One can write

x1~q,V!5
1

Vm@v1
2~q!2V222iG1V#

1
2T~Bh1e!

2

Vm4@v1
2~q!2V222iG1V#2 F~q,V!,

~27!

whereF(q,V) is found in Appendix B.
Using Eqs.~24! and ~25! one can calculate now the am

plitudon governed spin-lattice relaxation rate provided t
the functionx1(VL ,k) is known. To simplify the discussion
we shall first assume thatG1'0 and then discuss the limit
of this assumption. Within the limits of its validity the spin
lattice relaxation rate is determined by the imaginary par
F(q,V). It is shown in Appendix B that forV!vT the
value of ImF(q,V) is small forq.kT so that one can inte
grate up tok5kT in Eq. ~24!. Using Eqs.~24!, ~25!, ~27!, and
~B8! one finds the estimation

T1dam
21 ;b1

2 mT3

16p4\D3h1e
2 ~T'0!

. ~28!

We shall see below that it is, in fact, the main part of t
amplitudon-governed spin-lattice relaxation rate at low te
peratures. Taking into account23 that for displacive systems

h1e
2 ~T0!;d2

Ti

Tat
. ~29!

one obtains the estimation

T1dam
21 ;b2

2 mT3

16p4\D3

Tat

Ti
, ~30!

where b2'b1 /d. We can now compare this formula wit
Eqs. ~7! and ~10!. Assuming reasonably thatb2 is of the
same order of magnitude asa2 one sees that the amplitudon
mediated spin-lattice relaxation rate is much smaller than
phason-mediated one, the ratio is about (T/TD)2 assuming
that Ti'TD , but it is more that the phason-mediated sp
lattice relaxation time is due to the Raman processes,
ratio being of the order ofTat/Ti .

Let us now discuss the temperature dependence ofG1 .
This problem is more difficult than in the case of phaso
The matter is that the amplitudon vibrations are accompan
by the vibrations of temperature, unlike the phason ones.
quite natural because the amplitudon is a fully symmetr
vibration and in this aspect is similar to the longitudin
sound wave. However, for the frequency regionv.tN

21,
where tN is the relaxation time for normal processes~see,
e.g., Refs. 16 and 25!, the only important mechanism of th
longitudinal sound attenuation is that of Landau-Rume26

when the quantum many-phonon processes are consid
e

e-
-

t

f

-

e

-
he

.
d
is
l

l

red

~for the longitudinal sound the three-phonon ones prove to
the most important!. In this frequency region the concept o
temperature cannot be used: the thermalization time is
that the period of the vibrations.

The estimation fortN reads16

tN
21;

T5

r\4c5 . ~31!

This gives forT'1 K the value oftN
21 about 102– 103 s21

and forT'10 K the value about 107– 108 s21. Therefore it
seems reasonable to use the Landau-Rumer mechanis
estimateG1 having in mind the calculations of the spin
lattice relaxation rate in ordinary conditions whenVL is
about 107– 108 s21.

The most effective three-phonon interaction correspo
to the term which, in Eq.~15!, would have the form
rh1eh18h2

2uii , wherer is a coefficient andui j is the dilata-
tion @in Eq. ~14! the corresponding term would be (r /2)(h1

2

1h2
2)2uii #. A calculation similar to that of Appendix A

shows thatG1}T7. The same temperature dependence,
with a smaller coefficient, provides as well the coupling
the amplitudon with the acoustic phonons due to to the c
pling term h1eh18uii

2 . One sees that the corrections to sp
lattice relaxation rate due to the finite value ofG1 are pro-
portional at least toT8 and can be neglected, at low
temperatures, comparing with the contribution given by E
~30!.

V. CONCLUSIONS

We have shown that, in the low-T region, the
T-dependence of the spin lattice relaxation rates in IC pha
is quite different from that in ordinary crystal phases. Fir
the phason contribution is proportional toT and does not
depend on the Larmor frequencyVL while the linear inT
term due to the direct processes with acoustic phonon
proportional toVL

2. Second, the amplitudon, which is a
optical mode to the harmonic approximation, was found
provide a contribution to the spin-lattice relaxation ra
which is smaller than the phason one but is much larger t
any contribution of the acoustic phonons~at T.\VL!.

The treatment of the amplitudon contribution was referr
to high enoughVL . This is because we have not made c
culations of the ‘‘bare’’ amplitudon damping coefficien
G1(q,VL) for smallVL but largeq (q.kT) which is neces-
sary to calculate the low-frequency spin-lattice relaxat
time. Such a (q,VL) region corresponds to a nonhydrod
namic regime and should be treated separately. Thus
possible, in principle, that the conclusions of the present
per concerning the amplitudon contribution to the spin-latt
relaxation rate are not valid for smallVL ~e.g., for that char-
acteristic for some NQR experiments!. Still it is not very
probable taking into account that for higher frequencies
role of G1 has been found negligible.

APPENDIX A: THE PHASON DAMPING CONSTANT

Consideringh1(r ,t), h2(r ,t) as quantum operators on
has for the amplitudon or phason retarded Green functio
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Gj
R~r ,t !5

i

\
u~ t !^h j~r ,t !h j

1~0,0!2h j
1~0,0!h j~r ,t !&,

~A1!

wherej 51,2; u(t)51 for t.0 andu(t)50 for t,0; the^ &
is thermodynamic average. The Fourier transform of th
functions can be written as

Gj
R~q,V!5

1

Vm@v j
2~q!2V21S j~q,V!#

5
1

Vm@ṽ j
2~q!2V222iVG j~q,V!#

, ~A2a!

wherev j (q) is the dispersion law in the harmonic approx
mation, v1

2(q)5m21(2Bh1e
2 1Dq2), v2

2(q)5m21Dq2

5c2q2; ṽ j (q) is the renormalized dispersion law;S j (q,V)
is the self-energy andG j (q,V) is the damping constant, i.e
G j (q,V)52(2V)21 Im Sj(q,V). The Green functions
~A2a! are obtainable from corresponding thermal Gre
functions21,25 Gj (q,Vn), whereVn52pTn, n50,61,...,

Gj
R~q,V!5

1

T
Gj@q,2 i ~V1 id!\#, ~A3!

whered→10, i.e., in the upper half of the complexV plane,
where the retarded Green functionGj

R(q,V) is analytical,
T21Gj (q,Vn) and Gj

R(q,V) coincide atV5 iVn /\. Simi-
larly to Eq. ~A2a! one has

Gj~q,Vn!5
T

Vm

1

v j
2~q!1

Vn
2

\2 1S j~q,Vn!

. ~A2b!

The diagram technique for the thermal Green functions
standard.22,25 It is seen from Eq.~15! that the anharmonic
part of the Hamiltonian contains four different vortices~Fig.
1!.

To calculate the phason damping constant we find first
phason self-energy. The contribution of the lowest-order d
grams is of no interest for us. The diagram containing o
fourth-order vortex contributes to the real part of the se
energy only. The diagram with two third-order vertices co
tributes both to the real part and to the imaginary part but
last contribution is exponentially small at lowT. Important
lowest-order diagrams for the self-energy are represente
Fig. 2; their sum is a diagram with renormalized phaso
phason vertex~Fig. 3!. One finds

FIG. 1. Vertices of anharmonic part ofHeff : j, fourth-order
vertex B; s, third-order vertex Bh1e ; —, Green function
G1(vn ,k); v, Green functionG2(vn ,k).
e

n

is

e
-
e
-
-
e

in
-

S2~q,Vn!52
T

Vm (
k1 ,k2
m,1

G2,0~k1 ,vm!G2,0~k2 ,v l !

3G2,0~q2k12k2 ,Vn2Vm2v l !F S V

TD 2

36B̃2~k11k2 ,k1 ,vm1v l ,vm ,q,Vn!G
~A4!

where

B̃2~k11k2 ,k1 ,vm1v l ,vm ,q,Vn!

5B22
V

T
4B3h1e

2 G1,0~k11k2 ,vm1v l !

1S V

TD 2 4

3
B4h1e

4 G1,0
2 ~k11k2 ,vm1v l !

1S V

TD 2 8

3
B4h1e

4 G1,0~k11k2 ,vm1v l !

3G1,0~q2k1 ,Vn2vm! ~A5!

and

Gj ,0~k,vn!5
T

Vm

1

v j
2~k!1

vn
2

\2

. ~A6!

The summation overm,l can be made with the help of th
formula25

(
m52`

m5`

f ~ ivm!5
\

2pTi EC
f ~z!n~z!dz, ~A7!

FIG. 2. Compensation of divergent diagrams ofG2(vn ,k). The
second order of the perturbation theory.

FIG. 3. Renormalization of the phason-phason vertex.
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where n(z)5@exp(\z/T)21#21 and the contourC is taken
around the singularities of the functionf (z). The integral is
evaluated by the usual residue theorem. As the poles of
integrand are those of the Green functionsGj (k,ivn5z) and
function n(z) at the poles is the mean occupation of t
mode the contribution of the poles ofB̃ can be neglected
Indeed, it is seen from Eq.~A5! that they are due to the pole
of the harmonic amplitudon Green functionG1,0(k,z), i.e., at
z5v1(k) and for the temperatures under considerat
\v1(k)!T andn@v1(k)# is close to zero. Still the formula
for S2(q,vn) is fairly clumsy and we shall not write it down
he

n

The next step is to transform this formula to a continuo
variable such thatf (v)5 f ( ivn) when v5 ivn . This is
achieved by writingivn /\→v1 id where d→10. Then
one takes into account that

lim
d20

1

x2 id
2

1

~x!p
1 ipd~x!, ~A8!

where the subscriptp indicates the principal part, to obtai
for the imaginary part ofS2(q,V)
sted
zero at

c
mented for
2Im S2~q,V!5
p\2

m4 E E dk1dk2

~2p!6

9@n2~k1!n2~k2!2n2~ uq2k12k2u!~11n2~k1!1n2~k2!#

4v2~k1!v2~k2!v2~q2k12k2!
B̃2@k11k2 ,k1 ,v2~k1!

1v2~k2!,v~k1!,q,V#d@v2~k1!1v2~k2!2v2~q2k12k2!2V#, ~A9!

wheren2(k)5n@v2(k)#. Here only the phonon association processes16 have been taken into account because we are intere
in the low-frequency damping coefficient and the contribution of the neglected decay processes to this coefficient is
v→0. Settingq50 and taking into account that because of thed function

n2~ u2k12k2u!5expS \~V2v2~k1!2v2~k2!

T
21D 21

, ~A10!

one can show that

n2~k1!n2~k2!2n2~ u2k12k2u!@11n2~k1!1n2~k2!#5n2~k1!n2~k2!

expS \V

T
21D

12expS 2
\@v2~k1!1v2~k2!#

T D . ~A11!

Then, for\V!T, we obtain Eq.~19! from Eq. ~A9!.

APPENDIX B: THE AMPLITUDON RESPONSE FUNCTION

The amplitudon response function is the same as its retarded Green function as defined by Eqs.~A1!, ~A2a!, and~A2b!. The
method to calculate this Green function is, in principle, the same as for the case of phason~Appendix A!. However, it is more
convenient now to develop the perturbation expansion not forS1(q,vn) but for the Green function itself: it is a specifi
feature of IC systems that a compensation of some divergent higher order diagrams takes places as it has been com
the Heisenberg magnet17 and this compensation is revealed more easily in the perturbation expansion of the Green~response!
function.

The leading correction to the zeroth order Green function~A6! is

G1~q,Vn!5G1,0~q,Vn!1~2Bh1e!
2G1,0

2 ~q,Vn!S V

TD 2

(
k,vm

G2,0~k,vm!G2,0~q2k,Vn2vm!. ~B1!

Performing the summation overvm ~see Appendix A! and transforming the formula to the continious variableV@Vn→
2 i (V1 id)\# we find

G1
R~q,V!5

1

Vm@v1
2~q!2V222iVG1#

2
2T~Bh1e!

2

Vm4@v1
2~q!2V222iVG1#2 F~q,V!, ~B2!

whereG1 is the ‘‘bare’’ amplitudon damping constant~see Sec. IV! and
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Re F~q,V!5
\

T~2p!3 E dk

4v2~k!v2~q2k! F @n„v2~q2k!…2n„v2~k!…#S 1

v2~k!2v2~q2k!2V
1

1

v2~k!2v2~q2k!1V D
1@n„v2~k!…1n„v2~q2k!…11#S 1

v2~k!2v2~q2k!2V
2

1

v2~k!2v2~q2k!1V D G , ~B3a!

Im F~q!5
p\

T~2p!3 E dk@n„v2~q2k!…2n„v2~k!…#

4v2~k!v2~q2k!
@d„v2~k!2v2~q2k!2V…2d„v2~k!2v2~q2k!1V…#. ~B3b!

Here only the phonon association processes are taken into account~cf. Appendix A! as we are interested in the low-frequen
response function.

One sees that atT50

T Re F~q,V!5
p\

~2p!3 E dk

4v2~k!v2~q2k! F 1

v2~k!1v2~q2k!2V
1

1

v2~k!1v2~q2k!1V G , ~B4!

i.e., the real part of the response function diverges logarithmically atq→0, V→0. In other words the quantum fluctuations
phase, as well as the classical ones, lead to a divergence of the static amplitudon response function but the quant
gences are more weak than the classical ones.

Of more interest, within this paper, is the imaginary part of the response function. Let us calculate ImF(q,V). It is easy
to see that

n„v2~q2k!…2n„v2~k!…5
1

2

sinhF\„v2~k!2v2~q2k!…

2T G
sinhF\v2~k!

2T GsinhF\v2~q2k!

2T G . ~B5!

Taking into account then that because of thed functions in Eq.~B3b! one hasuv2(k)2v2(q2k)u5V, and reminding
ourselves that it is the low frequency region (V!vT5T/\) which is under the study we arrive at the formula

Im F~q,V→0!'
pV

~2p!3

\2

T2 E dkd@v2~k!2v2~q2k!#

8v2
2~k!sinh2F\v2~k!

2T G . ~B6!

One can see that the minimum vectork to contribute to the integral is of the lengthq/2 and the effective cutoff of the integra
is aboutT/\c5kT . One sees as well that the integral is very small forq.kT and, therefore, the integral can be estimated
small q. Introducing spherical polar coordinates with thez axis along the vectorq one has~for k.q/2!:

v2~k!2v2~k2q!'2
]v2

]k
q52cq cosu. ~B7!

We find that Eq.~B6! can be rewritten as

Im F~q,V!'
V

8p2qc5 E
q/2,k,kT

d~cosu!d sin uk2dk

k4 '
V

4p2q2c5 . ~B8!
m
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