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The low-frequency phonon-response functions, both for transyprseson and longitudinal(amplitudon
fluctuations, are calculated for a displacive incommensurate system at low temperatures. The results obtained
are used to calculate the spin-lattice relaxation rate governed either by transverse or longitudinal fluctuations at
temperatures much lower than the Debye temperature but much higher than the energy corresponding to the
Larmor frequency. It is found that direct processes determine the spin-lattice relaxation rate in both cases. The
transverse spin-lattice relaxation rate is proportional to temperdtuaad does not depend on the Larmor
frequency. The longitudinal contribution is proportionalftdand does not depend on the Larmor frequency as
well. [S0163-18207)02137-1

[. INTRODUCTION the generalization of the results of the present paper is
. . . straightforward but is beyond it. For the main part of the
It is quite natural to expect that specific features of theghectrym the transverse fluctuations contribution is more im-
lattice dynamics of incommensuréit€) phases should mani-  portant than that of longitudinal ones. That is why we begin
fest themselves specifically in their low-temperature behavwith the discussion of the first contribution. For the sake of
ior. Until recently, the only way to study this behavior was to brevity we shall use the notations of phason and amplitudon
work on quasi-one-dimensional compounds with Peierldnstead of transverse and longitudinal fluctuations even
transition™? Now the low-T properties of the nonconductive though we shall deal with anharmonic effects.
molecular crystal big-chlorophenyisulfone (BCPS have The paper is organized as follows. In Sec Il we discuss
attracted some attentidn'® This crystal has an IC phase that the relative role of the direct and the Raman processes in the
exists in theT interval from 150 K down to the lowest tem- Phason-mediated spin-lattice relaxation in the IC phase and
peratures investigatéd 3°CI NQR measurements have cOme to the c_onclusmn that the phasonfgover'hpﬂ is pro-
revealed®® a strong decrease in the spin-lattice relaxationPOrtional toT in the low-temperature region whose boundary
rate T; * below 110 K. Recently, measurements have beerS détermined by thd-dependence of the phason damping

extended” down to several K and a monotonous decrease 0?onstan_t. In Sec. Il we ?nvestigate this tempe_rature depen-
T, L as the temperature decreases has been found. The int -'ggeerllge:::ee L?‘V\il;le“g]rlrt{ IiItTJ dgﬁccgmri\l;vliio(:nlsfoustﬁetgein-
pretation of the experiments raises, however, some ques- P P P

fons. The amof 1 paper is o present  systematc dscuc [AOXGEn UTe, 1 Sec ¥ we sunarie e teeule
sion of the lowT and low-frequency lattice dynamics of IC P '

phases which Ls relevant to the interpretation of Thedata. Il. THE PHASON-MEDIATED SPIN-LATTICE
It is known** that NQR and NMR signals in IC phases RELAXATION RATE

exhibit a broad spectrum and the spin-lattice relaxation rate

varies over the spectrum. This is due to different contribu- We shall be interested in the spin-lattice relaxation rate as
tions of the longitudinal and transverse fluctuatidgtisthe  measured in NMR and NQR experiments at temperatures
harmonic approximation—of the amplitudon and phasorfrom about 1 K. A 1 K corresponds to frequencies about
ones to the spin-lattice relaxation rate at different parts of 10'* s™* and the NMR frequencies are normally of the order
the line.(We shall not consider this question but rather dis-of 10" s (the NQR ones can be much lowewe shall
cuss the situations when the spin-lattice relaxation rate iassume in this paper that), <T where(}, is the Larmor
governed completely either by the transverse or by the lonfrequency. At the temperatures of our interest the effects of
gitudinal fluctuations.In fact, what is calculated are definite the phonon bottleneck can be neglected: according to Ref.
correlation functions. In the general case these correlatioh2 the spin-lattice relaxation time foi°Cl in BCPS atT
functions enter the formulas for the transition probabilities~1 K is about 1 §* while the phason lifetime is much less at
defining the evolution of the level occupation numbers, sahe same temperatur¢see Eq.(22) below]. Thus one can
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use for the spin-lattice relaxation rate the same formulas as in v,T

Ref. 14. (|20 k)%= VI (—mO2+ DK22+ 2021
The spin-lattice relaxation is determined by the probabili- mVL(=mag )T+ 7200]

ties of transitions between the states of the Zeeman Hamilfhe classical expression is applicable as longifs <T.

tonian due to perturbations caused by the latticesubstituting Eq(5) into Eq.(2) one obtains

fluctuations:® In general, the return of the nuclear magneti-

zation back to its thermal equilibrium value cannot be de- 1 ) 1 200 o1/

scribed by one exponent but in any case the temporal equa- T 1dph™=a1 292,207 [((MOD) "+ (y202)7)

tions contain probabilities that are proportional to some

combinations of the spectral densities of local fluctuations of +mQ2]? (6)

the electric field gradienfEFG) tensor. These spectral den- ) ) )

sities are proportional to the spectral densities of fluctuationt® inértial term becomes important, naturally, when

of the lattice variables among which we will single out those _

corresponding to the order parameter. It is, in effect, the local 2=y /2m<, . (6a)

spectral density of the order parameter fluctuations that willt |ow enough temperatures when this condition is satisfied
be discussed in the present paper. To demonstrate its specific

®)

features is enough to consider the simplest case. Here one . ) Tmt2
can write the perturbation Hamiltonian as a prodd&(t), Tidpri=a1 5 23 ()

whereA is an operator acting on the spin variables &t
is a function depending on the lattice variables. In this ase i.e., the spin-lattice relaxation rate does not dependlpn
Let us emphasize that the contribution of the phason direct
T, '=B(|F(Q)?), (1)  processes to the spin-lattice relaxation riftemula (7)] is
. . quite different from the contribution of the ordinary acoustic
whereB is a constant{}, is the Larmor frequencyf-(w)  phonons direct processksin the latter case the formula for
=JF()exp(-iot)dt and() designates the statistical aver- i gpin_|attice relaxation rate contains, comparing with Eq.
age. Introducing the order parameter for normal-IC phas?7)’ a very small factor, @, /wp)?, wherewp is the Debye
transition, =7, +i7,, and assuming that the equilibrium eq.ency, by the order of magnitufeThe reason is that
value of 7, is nonzero in the IC phase but that 9§ is zero  the" gpin-Hamiltonian depends directly on the transverse
one assoqates the fluctuations f (the longitudinal ones (phasop “displacement” [see Eq(3)] unlike to the case of
with amplitudons and those of; (the transverse onewith  5cstic phonons where the coefficients of the spin Hamil-
phasons. Then the phason contrlbgtlon is singled out frongynian depend on the strain tensor components, i.e., on the
the right-hand sidérhs) of Eq. (1) as derivatives of the displacements. Therefore, the “back-
ground” due to ordinary phonons can be completely ne-
Tl—dlph: a2> (| .k, Q)|3, (2)  9lected comparing with the phason governed contribution.

k Now we estimate the spin-lattice relaxation time due to
the Raman processes. For the Idwegion where the phason
damping can be neglected it is the most straightforward to

1 use the standard formulaee, e.g., Ref. 25ewritten in our
7o(K) = v f no(r)exp(—ikr)dr, terms, i.e., taklng into _accc_)unt, once more, that the param-
eters of the spin Hamiltonian depend on the “phason dis-

V is the volume and the coefficieat appears in the expan- placement”7,. In the form where the classical limit is eas-

where

sion of the coefficient: ily obtainable one has
2.2
F=Fgt+aymptasnmst-- . 3 1 _ o7y o)y o, fe
0T A1727T A2 () T1Rph—azjo do Tsmh T
For further calculatior’§ one takes into account that the )
phason is overdamped and considers it as a relaxator, i.e., in % 2 1 %)
the classical limit one has Y (Dk’—mw?)?+ ys0?|
) voT where the limity,— 0 will be taken in the final result. One
k,Q = , 4 i
3 2
wherey, is the phason “viscosity constant},/2m=T, is -1 _ g2 mT fﬁ“’max” y“dy ©)
referred to as the phason damping constanis the phason IReNT2 245 D3 Jo sintf y

mass density, or, rather, the mass density corresponding to 5 )

the soft mode normal coordinate, anB/m)¥?=c is re- Wherews . =Dk,/m, andKyyyis the cutoff of the problem.

ferred to as the phason velocity. For T<Tp the upper limit of the integral can be replaced by
As we are interested in the loW-region and the phason © and one obtains

viscosity is expected to go to zero wh&n-0 it is more 3

reasonable to use a less simplified formula than (Bgand T-1 — 52 mT (10)

represent the phason as an oscillator with damping. RPN 2 16744 D3
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Recall that the contribution of the Raman processes withdifference results in much more importance of the phason-
participation of ordinary acoustic phonons is proportional tophason interaction than the phason-acoustic one. In fact, the
T at T<Tp (see, e.g., Ref. 15i.e., the phason-mediated amplitudon branch is also acoustic-like due to the
Raman processes are far more effective. However, as wamplitudon-phason interactidA® Thus it is not so surpris-
shall show now, they are still far less effective than the direcing that it is impossible to neglect the amplitudons, as we
processes due to phason. shall see from what follows.

Let us take into account that #,= 7, ma=d, Whered is We shall use the continuous medium approximation
the interatomic distance, all the terms in Eg) are of the  which is especially relevant for the loiv-region. To write
same order of magnitude, i.e., one canaggeta,d. Now we  down the potential energy it is convenient to start with the
can compare the contribution due to the Raman procességffective Hamiltonian” used in the fluctuation theory of
[Eg. (10)] and that due the direct ones in the Idwregion  phase transitionésee, e.g., Ref. 19In our case the density

[Eq. (7)]. One has of the effective Hamiltonian, or, rather, the density of the
L effective potential energy, as a function of the order param-
Tirpn a5 T?m'? 1 T 7T eter introduced in Sec. Il is

Trgpn @2 87°ADY2 4 Tpp, To (1) A 5 5

— 2 2 2 2\2 2 2
whereTpy=fiwppy=%(D/m)¥2m/d is of the order of mag- U= 5 (7T 7))+ 7 (miF72)"+ 5 [(V7) + (V)]
nitude of the Debye temperature, ahgis the “atomic tem- (14)
perature” (10—1C K). It has been taken into account that _ -
if one assumes¥/m)*2 i.e., the phason velocitg, to be of As in Sec. Il we assume that the equilibrium value of
order of magnitude of the sound velocity and the phasorf7i(71e) iS nonzero whilen;.=0, thus associatingy; = 7,
mass density of the order of magnitude of ordinary mass~ 71e With amplitudons andz, with phasons. When the
density one finds thd~T,, by the order of magnitude. One fluctuations are neglectegf,= — A/B and one has
sees from Eq(12) that the Raman processes can be ne-

2 12
glected and to find th@-dependence of the phason contri-  _ (2B71e) 71 2 D YV (V24 B! 2
bution toTl’1 it is quite enough to restrict ourselves by the Ue 2 2 [(V7)™+ (V) "1+ Bnsemy 72
direct processes. B B B

At high temperatures, instead of E() one obtains, of +B 134 — 12,20 — 4y 4 15
course, the well known formuta M T Ty g e 19

a2-|—y1/2 This form is more convenient than that of E@i4): one can

TIdlph:m' (120  considern,, as the exactand unknownvalue to be found in

27 DT every approximation by minimizing the free energy of the

It is convenient to introduce afalbeit ill-defined “bound- system calculated to the same approximation. The density of

ary” temperatureT, which separates the two temperature € kinetic energy we shall assume to be as usual
regions and is determined by the condition

To(To)~Q . (13 >m (PIFP3), (16)

To reveal the real meaning of this condition, thewhere p,(r),p,(r) are momenta corresponding te,(r),
T-dependence of the “viscosity coefficienty,, is the topic  7,(r), andm is the “optical” mass introduced already in

of the next section. Sec. Il
To demonstrate the problems that arise when calculating
1. TEMPERATURE DEPENDENCE OF THE PHASON the phason damping constant let us begin with the classical
DAMPING CONSTANT limit and an approximation that might seem to be reasonable

_ at least far from the normal-IC phase transition. Having in

General features of the phonon loss calculation at Tow mind that the amplitudon is more “hard” than the phason
are well discussed elsewhefeDue to the limitation chosen which is quite analogous to the soft mode at a second order

(AQ <T) we are interested in the— 0 limit of the viscos-  phase transition point we shall omit all the terms containing

w is of interest for us. This part is due to the so-called asso;,

ciation processes: the phonon in question and a thermeﬂz'

one convert into two other phonons. As at Igwhe thermal m7,—DV27,+Bn3=0. (17)
phonons are the acoustic ones and due to the energy conser-

vation only acoustic phonons are created, it is enough to tak&part from a renormalization of the stiffness constant, which
into account the interaction of the vibration in question withis not important being compensated by the changeqf

the acoustic phonons only. The phason branch in the IC cryghe anharmonicity described by the last term in the rhs of Eq.
tals is an additional acoustic branch, therefore, one can ex15) provides a damping which is infinite. Indeed, E&j7) is
pect that the phason-phason and the phason-acoustic interdbat for an ordinary soft mode at the phase transition tem-
tion is of interest for calculation of the “phason viscosity.” perature(the mentioned compensation being taken into ac-
However, the phason branch is acoustic as to its dispersiotoun) and the soft mode damping at the phase transition
law but is optic as to its coupling with other branches. Thistemperature is known to be infinitsee, e.g., Ref. 20
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In fact, it is not the case. The matter is that there are other B
relevant anharmonicities. Indeed, the fourth term in the rhs +Bnienins+ 7 75 (18)
of Eq. (15) describes changes of the amplitudon coordinate
due to the phason fluctuations as well as changes in the pha-
son fluctuations due to changes in the amplitudon coordiThe calculation can be made using the Matsubara technigue
nates. In other words it describes the indiréda amplitu-  of the temperature Green functio(see, e.g., Ref. 21More
don) interaction of the phason fluctuations. That means thatletails about the calculations are to be found in Appendix A.
to obtain the lower order result for the phason damping aWe would like to mention that all the perturbation theory
low T one has to use the following potential energy densityterms are divergent but their sum is finite. Such a situation is
B2 5 typical for IC phasegsee, e.g., Refs. 17 and )22
7’ ! ’ - i
U=u + . le 7712+ (V)2 (V)] <_I_F)ocr)ntgeoblto{:lvivnfsrequency phason damping constafaf)(

B2 D(k;+ky)2—D(ky+ky)? 2
I (q00~0)= whSJJ o||<1o||<2 2B7fe+ D(ky+ky)2—D(k;+ky)?

Na(kq)na(ky)
(277 Bwa(ky) wa(ka) wa(ky+ky) F{ fil wy(Kqp) + wa(ky) ]
l1-exp —
T
X ol wa(ky) + wa(kp) —wa(ki ko) ], (19
|
where w3(k)=m~!Dk?> and n,(k)=[expfw(k)T* Using Egs.(13) and(22) one finds an estimation for the
-1]% “boundary temperature'T,,:
A rough estimation of ', can be made taking into account Q 15
that the main contribution to the integral comes from the Tb~TD(+) (23
regionfiw,(k)~T, or w,~ w7, k~Ky. As a result one finds 10770
According to Eq.(23) T, can be one order of magnitude
-, #°k31°B2D? o, T? ,B? lower thanTp, . One sees from Eq23) that T, depends very
I'»(Q~0,0~0)~10 m”lo ©T A2 kr 5z:  weakly on the Larmor frequency albeit it does not seem im-

(20) possible to detect this dependence. A careful experimental
study of temperature dependenceT@‘l at low temperatures
where|A|=B72,. To estimatdA|,B,D for displacive sys- and for different Larmor frequencies seems to be of interest.
tem one can follow VakKs to obtain
IV. THE AMPLITUDON MEDIATED SPIN-LATTICE
[A(T=0)|~Td™%, B~Tyd 7, D~Tud 3 (1) RELAXATION TIME
On the same condition as in Sec. le((zL<T) one has for
where T, is the temperature of phase transition from thethe amplltudon contribution to the spin-lattice relaxation
normal to the IC phaseT,, is a typical “atomic tempera- rate
ture” (T,~10°-1CK), d is the lattice constant, and the
order parameter is considered as an atomic displacement. Tl —Ap2 (k,Q,)|2 (24)
Assuming that the “phason velocityt = (D/m)? is of the L~ E (@0,
same order of magnitude as the sound one we findkhat -
—d-1 i
d *(T/Tp), whereTy is the Debye tempe_rature. Farr (| 71k, Q)|2)= Im x1(k,Q,) (25)
one has, naturallypt~Qp(T/Tp), whereQp is the Debye (O

frequency. As a result one finds where x1(k,Q,) is the longitudinal(amplitudon response

5 function. To the zero approximation one can write
T
~(10_1—10_2)Qp(ﬁ) , (22 X1(K, Q)= x10(k, )

1
where it has been assumed tiat~Tp. To compare this = _
result with that for an “ordinary” optical phonon let us re- V(_mQE+ZB’7§e+Dk2_ Fya(h)
call, e.g., that the low-frequency damping constant for a po- 1
lar optical phonon(such a constant determines the low- = > R~ .
frequency dielectric lossgss proportional toT” at T<Tp, if Vi wi(k) = Q=210 ]
the crystal is nonpole i.e., at low enough temperatures the Here w2(k) = (2B 73,+ Dk?)/m, I';=y,/2m; v, is due to
phason damping constant is much more than those of “ordiall the anharmonic interactions excluding those with the par-
nary” optical phonons. ticipation of the amplitudon and the phasons only.

(26)
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Now we shall study just the effect of interaction between(for the longitudinal sound the three-phonon ones prove to be
amplitudon and phasons. Specifically, we shall calculate théhe most important In this frequency region the concept of
longitudinal response functiog, (2, ,k) taking into account temperature cannot be used: the thermalization time is less
the phase fluctuations. that the period of the vibrations.

The response function in question is the same as the re- The estimation forry reads®
tarded Green function as defined in Appendix A. The calcu-

lations of the amplitudon Green function for low temperature T5
are to be found in Appendix B. One can write ™'~ prEng (32)
1 L -1 -1
x1(9,Q)= 5 - This gives forT~1K the value ofry* about 16-10° s
Vmlwi(q) = Q=2 0] and forT~10 K the value about 6-10® s™*. Therefore it
2T(B 710)> seems reasonable to use the Landau-Rumer mechanism to

®(q,Q), estimatel’; having in mind the calculations of the spin-
lattice relaxation rate in ordinary conditions whéh is
(27)  about 16-10° s,
The most effective three-phonon interaction corresponds

Using Egs.(24) and (25) one can calculate now the am- o the’ t;aLrl_r_n vv\\/lﬁlecrzyr 'IZ aEgé(elf?i)éievr\:?lgg djhai\;ethtgedn]:t;nj
plitudon governed spin-lattice relaxation rate provided tha{.nl‘ﬂ.]l”E2 " ’14 h ding t " Id be/ 2
the functiony4(€ ,k) is known. To simplify the discussion |on2[|£1 g.(14) the corresponding term would be 2)(_771
we shall first assume th&t,~0 and then discuss the limits T 72) Uil A ca;culatlon similar to that of Appendix A
of this assumption. Within the limits of its validity the spin- SNows thafl’;=T". The same temperature dependence, but
lattice relaxation rate is determined by the imaginary part ofVith @ smaller coefficient, provides as well the coupling of
®(q,Q). It is shown in Appendix B that foQl<w; the the amplitudon wgh the acoustic phonons due to to the cou-
value of Imd(q,Q) is small forq>kr so that one can inte- PG term 7,7;uj;. One sees that the corrections to spin-
grate up tk= Kk in Eq. (24). Using Egs(24), (25), (27), and lattice relaxation rate due to the finite value Iof are pro-

TV el(q) - 02— 2T, 0]

where®(q,Q) is found in Appendix B.

(B8) one finds the estimation portional at least toT® and can be neglected, at low
temperatures, comparing with the contribution given by Eq.
. 5 mT3 (30).
Tiganb (28

1167 nD3ni(T~0)

We shall see below that it is, in fact, the main part of the V. CONCLUSIONS

amplitudon-governed spin-lattice relaxation rate at low tem- \We have shown that, in the loW- region, the
peratures. Taking into accodhthat for displacive systems T-dependence of the spin lattice relaxation rates in IC phases
is quite different from that in ordinary crystal phases. First,
T L . .
72(TO)~d? i (29) the phason contribution is proportional o and does not
te at depend on the Larmor frequen€y, while the linear inT
term due to the direct processes with acoustic phonons is

one obtains the estimation . : S
proportional toQE. Second, the amplitudon, which is an

mT T optical mode to the harmonic approximation, was found to
Tihn 02 g — (30) i ibuti in-latti i
1dam P2 76,7753 T provide a contribution to the spin-lattice relaxation rate

which is smaller than the phason one but is much larger than

where b,~b,/d. We can now compare this formula with any contribution of the acoustic phonote T>#(},).
Egs. (7) and (10). Assuming reasonably thdt, is of the The treatment of the amplitudon contribution was referred
same order of magnitude as one sees that the amplitudon- to high enough}, . This is because we have not made cal-
mediated spin-lattice relaxation rate is much smaller than theulations of the “bare” amplitudon damping coefficient
phason-mediated one, the ratio is abotitTp)? assuming I'1(g,Q.) for smallQ, but largeq (q>k;) which is neces-
that T;~Tp, but it is more that the phason-mediated spin-sary to calculate the low-frequency spin-lattice relaxation
lattice relaxation time is due to the Raman processes, thi#me. Such a ¢,{),) region corresponds to a nonhydrody-
ratio being of the order of /T, . namic regime and should be treated separately. Thus it is

Let us now discuss the temperature dependencE;of possible, in principle, that the conclusions of the present pa-
This problem is more difficult than in the case of phason.per concerning the amplitudon contribution to the spin-lattice
The matter is that the amplitudon vibrations are accompanietelaxation rate are not valid for smdl, (e.g., for that char-
by the vibrations of temperature, unlike the phason ones. It igcteristic for some NQR experimentsStill it is not very
guite natural because the amplitudon is a fully symmetricaprobable taking into account that for higher frequencies the
vibration and in this aspect is similar to the longitudinal role of I'; has been found negligible.
sound wave. However, for the frequency region> 7y Y
where 7y is the relaxation timg for normal procgss(eszee, APPENDIX A: THE PHASON DAMPING CONSTANT
e.g., Refs. 16 and 25the only important mechanism of the
longitudinal sound attenuation is that of Landau-Ruther  Consideringz,(r,t), 7,(r,t) as quantum operators one
when the quantum many-phonon processes are considerbds for the amplitudon or phason retarded Green functions
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FIG. 1. Vertices of anharmonic part ¢&f.;: B, fourth-order
vertex B; O, third-order vertexBzn,.; —, Green function
Gi(wp,k); =, Green functiorG,(wp, ,k).

0 (ny(1,0) 7] (00— 7] (0.0 74(r.1),
(A1)

1,2; (t)=1 fort>0 andd(t)=0 fort<O0; the()

GR(r,t)=

wherej =

is thermodynamic average. The Fourier transform of these 22(0,Q,)=—

functions can be written as
1
VM w?(q)—02+3(q,Q)]

1
0%-2i0T(q,0)]’

Gii(q,0)=

Vm@i(a) - (A2a
WherewJ(q) is the dispersion law in the harmonic approxi-
mation, wi(q)=m 1(2B75.+Dq?), wj3(q)=m 'Dg?
=c?qg?; ®;(q) is the renormalized dispersion la;(q,{2)
is the self-energy anti;(q,(}) is the damping constant, i.e.,
Ii(9,Q)=-(20)* ImE i(0,Q). The Green functions
(A2a) are obtainable from corresponding thermal Green
functiong*G;(q,Q,), whereQ,=27Tn, n=0,+1,...,

where

1

G[(a.Q)= < Gj[a,~i(Q+id)h], (A3)
whereé— +0, i.e., in the upper half of the compléX plane,
where the retarded Green functi@t (qg,(}) is analytical,
T‘lGj(q,Qn) and GJ-R(q,Q) coincide atQ)=iQ,/A. Simi-

larly to Eq. (A2a) one has and

1

vm Q3
(@) + 77 +%j(A,2n)

Gj(a,Q2n)=

(A2b)

8739

Bl
RS
—

FIG. 2. Compensation of divergent diagrams3f( w, k). The
second order of the perturbation theory.

V. E Gy oKy, 0m)Ga oKy, o))

; v

X B6B2(ky+ Ky, Ky, 0+ w|,wm,q,Qn)}

XGod—Ki—ky, Q= Qp— )

(A4)

B2(Ky+ Ky, Ky, 0+ 0, 0m, 0, Q1)

=|32—!4B3 2 Giokytky,wmt @)
T M1eP1,00K1T K, Oy I

2

4 4
= B*7l, 1,o(k1+k2,wm+w|)

T 3

T

2
+

T
XGydq—Ky,Qn— o)

B477£11eG1,0(k1+ Ky, wmt o))

3
(A5)

1
Gjolkwn)=y-— 2

w?(k)+ 5;

(AB)

The summation ovem,l can be made with the help of the

The diagram technique for the thermal Green functions |§ rmulé

standard®?® It is seen from Eq(15) that the anharmonic
part of the Hamiltonian contains four different vortiogsg.
1).

To calculate the phason damping constant we find first the
phason self-energy. The contribution of the lowest-order dia-
grams is of no interest for us. The diagram containing one
fourth-order vortex contributes to the real part of the self-
energy only. The diagram with two third-order vertices con-
tributes both to the real part and to the imaginary part but the
last contribution is exponentially small at low. Important
lowest-order diagrams for the self-energy are represented in
Fig. 2; their sum is a diagram with renormalized phason-
phason vertexFig. 3). One finds

(A7)

m h
:2 flom =5 fcf(z)n(z)dz,

X -3
- X

FIG. 3. Renormalization of the phason-phason vertex.
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where n(z) =[exp:zZT)—1] ! and the contouC is taken The next step is to transform this formula to a continuous
around the singularities of the functiditz). The integral is variable such thatf(w)=f(iw,) when w=iw,. This is
evaluated by the usual residue theorem. As the poles of thechieved by writingi w,/#— w+i6 where — +0. Then
integrand are those of the Green functi@¢k,iw,=2z) and  one takes into account that

function n(z) at the poles is the mean occupation of the

mode the contribution of the poles & can be neglected. 1
Indeed, it is seen from E@A5) that they are due to the poles lim i WJr i 78(x), (A8)
of the harmonic amplitudon Green functién (k,z), i.e., at 6-0 P

z=w4.(k) and for the temperatures under consideration
hw1(k)<T andn[w,(k)] is close to zero. Still the formula where the subscrigb indicates the principal part, to obtain
for ,(q, w,) is fairly clumsy and we shall not write it down. for the imaginary part o¥,(q,Q)

|
_ wh? dkdky 9[Na(Ky)Na(Ka) —Na(|g—ky—Ka| ) (1+na(ky) +np(ky) ]
~Im 22(q.0)= f f @m® 40Ky wo(Kp) (G — Ky~ Kp)
+ w(Kz),0(K1),0,Q ][ wa(Ky) + wo(Ka) — wa(q—ky— k) =], (A9)

wheren,(k) = n[ w,(k)]. Here only the phonon association proce¥skave been taken into account because we are interested
in the low-frequency damping coefficient and the contribution of the neglected decay processes to this coefficient is zero at
w—0. Settingg=0 and taking into account that because of thieinction

Ez[k1+ kKa,Ky,0a(ky)

h(Q— ky)— k -1
n2(|_k1_k2|):eXF( ( wZ(Tl) waka) 1) , (A10)
one can show that
hQ)

ex T_l

Na(K1)Na(ky) —Na(]| — kg — ko[ 1+ ny(ky) +Nna(ky) 1= na(ke)na(ky) APRCAET AR (A11)
1—ex;{— )
T

Then, forh ) <T, we obtain Eq(19) from Eq. (A9).

APPENDIX B: THE AMPLITUDON RESPONSE FUNCTION

The amplitudon response function is the same as its retarded Green function as defined A EG52a), and(A2b). The
method to calculate this Green function is, in principle, the same as for the case of pappendix A). However, it is more
convenient now to develop the perturbation expansion no&fd,»,) but for the Green function itself: it is a specific
feature of IC systems that a compensation of some divergent higher order diagrams takes places as it has been commented fo
the Heisenberg magriéiand this compensation is revealed more easily in the perturbation expansion of the(i@spense
function.

The leading correction to the zeroth order Green func(i®®) is

\VJ 2
Gl<q,ﬂn>=Gl,aq,na+<25nle)zei,o<q.ﬂn>(?) S GodkomGrda—kQy= wn). ®1)

Performing the summation oves,, (see Appendix A and transforming the formula to the continious variablg(,—
—i(Q+id)h] we find

1 2T(B71e)?
VM wi(q)—Q2-2i0T;] Vmiwi(q)—Q2-2iQr;]?

G(9,0)= ®(q,Q), (B2)

wherel’; is the “bare” amplitudon damping constafgee Sec. IY and
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dk

Re®(q.0)= 55 53 f 4wy(K)wo(q—k)

1
@Gt = 0@ 00wy ea-k 70

1 1
wa(K)— wo(q—K)—Q  w,(K)—wy(q—k)+Q

h J dk[n(wo(q—k))—n(w,(k))]
T(2m)° 4wy(K)wa(q—K)
Here only the phonon association processes are taken into adcbulyppendix A as we are interested in the low-frequency

response function.
One sees that =0

+[n(wz(k))+n(wa(q—k))+1] , (B3a)

Im & (q)= [8(w2(K) = wa(q—k) = 0) = 8(wa(K) — wa(q—k) +2)]. (B3b)

Th J dk 1 N 1
(2m)3 4w(K)wa(g—K) | wa(K)+02(q—K)—Q  wy(K)+w(g—k)+Q [

i.e., the real part of the response function diverges logarithmically-ad, () — 0. In other words the quantum fluctuations of
phase, as well as the classical ones, lead to a divergence of the static amplitudon response function but the quantum diver-
gences are more weak than the classical ones.
Of more interest, within this paper, is the imaginary part of the response function. Let us calcufhfg,}). It is easy
to see that

T Re®(q,Q2)=

(B4)

. }{ﬁ(ﬂ)z(k)_wz(q_k))}
sin 5T
N(©(d4=K)=N(@2(K)= 5 — T
sinr{ 22T }sim{ 22T }

(B5)

Taking into account then that because of #dunctions in Eq.(B3b) one has|w,(k) — w,(q—k)|=, and reminding
ourselves that it is the low frequency regiofl € w=T/%) which is under the study we arrive at the formula

Im ®(q,Q1—0)~

2 _ —
70 & fdk5[w2(k) wa(q k)]. (B6)

(2m)3 T? fwo(K)
2T

8w3(k)sint?

One can see that the minimum veckoto contribute to the integral is of the lengf2 and the effective cutoff of the integral
is aboutT/Ac=ky. One sees as well that the integral is very smallfforkt and, therefore, the integral can be estimated for
small g. Introducing spherical polar coordinates with thexis along the vectoq one hagfor k>q/2):

(9(1)2
wz(k)—wz(k—q)~—a—kq=—cq cos 6. (B7)
We find that Eq(B6) can be rewritten as
i B(a.0 f 8(cos 0)d sin ak2dk Q B8
m &(q, )WW I KA = An2qPcs (B8)
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