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Nonzero-temperature transport near quantum critical points
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~Received 30 April 1997!

We describe the nature of charge transport at nonzero temperatures (T) above the two-dimensional (d)
superfluid-insulator quantum-critical point. We argue that the transport is characterized by inelastic collisions
among thermally excited carriers at a rate of orderkBT/\. This implies that the transport at frequencies
v!kBT/\ is in the hydrodynamic, collision-dominated~or incoherent! regime, whilev@kBT/\ is the colli-
sionless~or phase-coherent! regime. The conductivity is argued to bee2/h times a nontrivial universal scaling
function of \v/kBT, and not independent of\v/kBT, as has been previously claimed or implicitly assumed.
The experimentally measured dc conductivity is the hydrodynamic\v/kBT→0 limit of this function, and is a
universal number timese2/h, even though the transport is incoherent. Previous work determined the conduc-
tivity by incorrectly assuming it was also equal to the collisionless\v/kBT→` limit of the scaling function,
which actually describes phase-coherent transport with a conductivity given by adifferent universal number
timese2/h. We provide a computation of the universal dc conductivity in a disorder-free boson model, along
with explicit crossover functions, using a quantum Boltzmann equation and an expansion ine532d. The case
of spin transport near quantum-critical points in antiferromagnets is also discussed. Similar ideas should apply
to the transitions in quantum Hall systems and to metal-insulator transitions. We suggest experimental tests of
our picture and speculate on a route to self-duality at two-dimensional quantum-critical points.
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I. INTRODUCTION

The charge transport properties of systems near a z
temperature quantum phase transition have been the su
of a large number of experimental studies in the last f
years. Systems in two spatial dimensions have been of
cial interest, and important examples are the superflu
insulator transition in disordered thin films1–5 and Josephson
junction arrays,6 the transitions from quantized Ha
plateaus,7,8 a quantum-critical point in the doped cupra
compounds,9 and a recent quantum transition in Si met
oxide-semiconductor field-effect transistors~MOSFET’s!.10

In three dimensions, the metal-insulator transition in dop
semiconductors has seen many years of study,11 and evi-
dence for scaling collapse of data near the quantum-crit
point has finally begun to emerge.12 We shall present the
results of this paper using the language of the superfl
insulator transition in thin films in zero external magne
field, but we believe our ideas are much more general
also have significant implications for the other systems no
above. We shall also discuss the extension of our result
the case ofspin transport near quantum-critical points
two-dimensional antiferromagnets.13

A particular focus of the experiments on the superflu
insulator transition has been the theoretical prediction, m
in the seminal work of Fisheret al.14 and Chaet al.,15 that
the conductivity at the critical point in two dimensions
nonzero and equals the quantum unit of conductance (e2/h)
times a universal number. However, there remains an im
tant dichotomy between experimental and theoretical stu
of the superfluid-insulator transition in disordered thin film
which is crucial to our discussion. All experiments are p
formed at a low, but nonzero temperatureT and have mea-
sured~dc! conductivities at frequenciesv, which easily sat-
560163-1829/97/56~14!/8714~20!/$10.00
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isfy \v!kBT. In contrast, all of the theoretica
analytical14–20 and exact diagonalization21 work has com-
puted the universal conductivity atT50, which is equivalent
to the regime\v@kBT. Numerical Monte Carlo work has
also measured the universal conductivity,15,22–25 but it in-
volves an analytical continuation from imaginary Matsuba
frequenciesi2ppkBT/\ (p>1, integer! to real frequencies:
Such a procedure is insensitive to any structure in the c
ductivity at \v!kBT, and so these measurements are eff
tively also in the regime\v@kBT. This discrepancy, be
tween theory and experiment, in the orders of limit ofv→0
andT→0 was noted by Chaet al.15 and Wallinet al.,25 but
they asserted that the conductivity approaches a unive
value, at low temperatures and frequencies, which isinde-
pendentof the value of the ratio\v/kBT.

In this paper, we shall argue that the critical conductiv
is in factnot independent of\v/kBT, and is instead a highly
nontrivial, but universal, function of\v/kBT; this shall be
explicitly demonstrated in a computation of the crosso
function in a model of disorder-free bosons. We shall sh
that the physics of the\v@kBT and\v!kBT regimes are
quite distinct, and shall provide a model computation of t
universal properties in the limit\v!kBT relevant to dc
transport measurements. We hope that our results will sti
late experimental measurements of the ac conductivity at
quencies which can explore the crossover at\v;kBT.

Our arguments rely on the physical picture of theT.0
dynamics at quantum-critical points developed in the cont
of quantum antiferromagnets.26,13,28,29It was argued in these
works that the order parameter dynamics isrelaxational,
with a relaxation rate;kBT/\. Using the orientation of the
order parameter to define a phase, we then obtain a p
relaxation rate 1/tw;kBT/\, and this rate is analogous to th
phase relaxation rate of disordered metals30 ~the latter rate is
8714 © 1997 The American Physical Society
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56 8715NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM . . .
much smaller thankBT/\ in the disordered metal,30 but be-
comes of orderkBT/\ at the metal insulator transition—se
Sec. IV D!. At time scales of ordertw , the relaxational dy-
namics cannot be described by effective classical model
the types discussed in Ref. 31, as a necessary condition
classical behavior is that the relaxation rate be much sma
thankBT/\: The dynamics was therefore dubbed ‘‘quantu
relaxational.’’ Related ideas were applied to charge trans
in the insightful article by Sondhiet al.7 Dynamic order pa-
rameter fluctuations also carry charge, and therefore inela
collisions between thermally excited charge-carrying exc
tions will lead to a transport relaxation timet tr . As the typi-
cal energy exchanged in a collision iskBT, t tr is also of order
tw , and therefore32

1

t tr
;

kBT

\
. ~1.1!

The missing coefficient in Eq.~1.1! is a universal numbe
whose value will depend upon the precise definition of 1/t tr .
It is perhaps worth noting explicitly here that Eq.~1.1! holds
for all values of the dynamic exponentz. @A scenario under
which Eq.~1.1! could be violated is discussed in Sec. IV B#.
The collisions leading to Eq.~1.1! conserve total energy and
in the case of translationally invariant systems, total mom
tum. Note that conservation of total momentum should
be confused with conservation of the totalcharge current—
the latter is not conserved in any of the systems of inte
here, even in the continuum scaling limit~the totalcharge
densityis, of course, always conserved!.

Now general considerations33 suggest that there are tw
qualitatively different regimes of charge transport at nonz
frequencies: ~i! vt tr!1: the hydrodynamic, incoheren
collision-dominated regime, where charge transport is c
trolled by repeated, inelastic scatterings between preexis
thermally, excited carriers; the conductivity should exhibi
‘‘Drude’’ peak as a function of frequency.~ii ! vt tr@1: the
high-frequency, phase-coherent, collisionless regime, wh
the excitations created by the external perturbation are so
responsible for transport, and collisions with thermally e
cited carriers can be neglected. Essentially all previous
oretical analyses have been restricted to the collisionless
gime.

We can sharpen our description of the crossovers in
vicinity of v;1/t tr by expressing them in universal scalin
forms. We will consider systems where the order param
quanta carry ‘‘charge’’Q. For the superfluid-insulator tran
sition of bosons, we haveQ52e and we measure charg
transport by the dynamic conductivitys(v). For the Ne´el-
paramagnet transition in antiferromagnets, we haveQ5gmB
(mB is the Bohr magneton andg is the gyromagnetic ratio!
we and measure spin transport by the ‘‘spin conductivit
@also denoted bys(v)# which determines the spin current
response to a uniform gradient in an external magnetic fi
In d spatial dimensions the dynamic conductivitys obeys at
the quantum-critical coupling

s~v!5
Q2

\ S kBT

\c D ~d22!/z

SS \v

kBTD , ~1.2!

wherez is the dynamic critical exponent,c is a nonuniversal
microscopically determined quantity with the dimensions
of
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(length)z( time)21 ~for z51, c is a velocity!, andS(v̄) is a
universal scaling function~note that we are using\ rather
thanh to define the scale of the conductivity!. We note again
that the dependence on a universal function of\v/kBT, with
no arbitrary frequency scale factors, holds for all values
the dynamic exponentz.26 Scaling as a function of\v/kBT
was also noted recently by Sondhiet al.,7 but they used it
only to establish the frequency dependence of the conduc
ity away from the critical coupling, with an eye to unde
standing recent dynamical conductivity measurements in
quantum Hall system34 ~we will comment on these measure
ments in Sec. IV D!. Indeed, their scaling forms are consi
tent with a conductivity which is independent of\v/kBT
right at the critical point, and hence with implicit or explic
assumptions in earlier theoretical results.14–25 One of our
points here is that there is a nontrivial dependence
\v/kBT alreadyat the critical coupling, and that this depen
dence means that previous analyses of the universal con
tivity at the critical coupling either did not compute,14–21 or
were not particularly sensitive to,22–25 the value of the dc
conductivity.

Let us now turn to the expected dependence of the c
ductivity on the\v/kBT as expressed in the universal fun
tion S(v̄). The discussion here will apply to realistic sy
tems at their critical point for\v andkBT much less than a
noncritical microscopic energy scale, e.g., the repulsion
ergy U between two bosons on the same site of a latt
model. The physical arguments below Eq.~1.1! have been
recast in a qualitative sketch of the real part of the funct
S(v̄) in Fig. 1. The dc conductivity is determined by th
value of the real universal numberS(0). At small v̄ there is
a Drude-like peak coming from the energy-exchanging c
lisions among thermally excited carriers. At larger freque
cies there is crossover to transport by particle-hole pairs
ated by the external source. Asv̄→` we expect that
S(v̄);(2 i v̄)(d22)/z so thats becomes independent ofT in
the collisionless regime. Ind52, S(`) is a real, finite, uni-
versal number determining the high-frequency conductiv
S(`) was the number computed in earlier analyses,14–21and

FIG. 1. A sketch of the expected form of the real partS8 of the
universal scaling functionS appearing in the scaling form~1.2! for

the conductivity, as a function ofv̄5\v/kBT. There is a Drude-
like peak from the inelastic scatterings between thermally exc

carriers atv̄ of order unity. At largerv̄, there is a crossover to th

collisionless regime whereS8;v̄ (d22)/z as v̄→`.
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8716 56KEDAR DAMLE AND SUBIR SACHDEV
not the dc conductivity which is given byS(0). This is
illustrated in Fig. 2 which plots the form o
(\/Q2)s(v,T→0) in d52: Its value atv50 is given by
S(0), while for all v.0 it equalsS(`). It is likely, al-
though not established, thatS(0).S(`). Note the differ-
ence from Fermi liquid theory, where the Drude peak b
comes ad function with nonzero weight asT→0. In the
present situation, the weight in the Drude-like peak vanis
like ;T(d1z22)/z as T→0, and ind52 and the Drude-like
peak reduces to thesinglepoint v50 where the conductivity
is given byS(0). Thescaling properties of thed51, z51
case are similar to those of a Fermi liquid.

There is a certain critical phenomena and scaling pers
tive in which the result~1.2!, and its implications discusse
above, may seem quite natural, and even somewhat ‘‘trivi
as they follow directly from the fact thatv andT have the
same scaling dimension. Nevertheless, its importance
been overlooked in essentially all previous work. This
probably because there are complementary perspect
more common among investigators in this field, from whi
Eq. ~1.2! implies physics that is surprising and even som
what radical. In particular, current ideas in quantum transp
theory35 and dissipative quantum mechanics36 can lead one
to rather different picture, as we now itemize explicitly.

~i! There have been a number of previous situations
which charge transport properties have been found to be
versally related to the quantum unit of conductance,e2/h;
these include the quantized Landauer conductance of ba
tic transport in one-dimensional wires, and the universal c
ductance fluctuations of mesoscopic metals.35,37However, in
all previous cases, these universal properties have arisen
‘‘phase-coherent’’ regime, i.e., they are associated w
physics at scales shorter than the mean distance betwee
elastic scattering events between the carriers. For the ca
a d52 quantum-critical point discussed above, the univer
numberS(`) is associated with quantum coherent transp
and is therefore the analog of these earlier results. In c
trast, the value ofS(0) is controlled by repeated inelast
scattering events, and therefore the dc transport is clear
what would traditionally be identified as the ‘‘incoheren
regime. Nevertheless, we have argued above thatS(0) is a

FIG. 2. Universal form of the conductivitys(v,T→0) in d52;
the vertical scale is measured in units of\/Q2. Only the v50
value is given by the universal numberS(0). For all v.0,
(\/Q2)s5S(`). Q is the ‘‘charge’’ of the order parameter: Fo
the superfluid-insulator transitionQ52e, while for quantum anti-
ferromagnetsQ5gmB .
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universal number, and remarkably, the dc conductance
mains universally related toe2/h.

~ii ! The community has gained much intuition on th
nonzero-temperature transport properties of interacting qu
tum systems from recent studies of dissipative quantum
chanics and a number of related quantum-impurity
problems.36,38–40The scaling properties of such models a
given by the theory ofboundarycritical phenomema, in con
trast to thebulk critical phenomena of interest in this pape
We discuss the transport properties of a class of bound
problems in Appendix A: The leading term in the transp
coefficient is found to be independent ofv/T, and depen-
dence onv/T arises only upon consideration of subleadi
terms at lowT. However, as we argue in Appendix A, th
behavior is understood by the fact that the fixed point c
trolling the low-T behavior is simply afree-fieldtheory, and
v/T dependence arises only upon considering the lead
irrelevant operator. In contrast, the bulk theories of inter
here differ in a crucial respect: They haveinteractingcritical
theories and therefore, we argue, containv/T dependence
already in the leading term, before the inclusion of any irr
evant operators.

~iii ! Scaling as a function ofv/T does not hold for the
Anderson localization transition of noninteracting electro
The frequency obeys conventional scaling with dimensionz,
but the behavior of temperature is rather different and n
universal. Analytic theories for such transition are availa
only for d.2, and in these the primary effect of temperatu
is in the nonuniversal, superlinear inT dependence of the
phase-breaking rate which acts like a finite-size-like infra
cutoff to the critical properties. See also Sec. IV B. In co
trast, the models of interest here have interactions, and
elastic scattering is central to understanding their unive
critical properties; in some respects scaling with respec
temperature is simpler, as its naive scaling dimension ofz is
now valid.

In this paper we will provide explicit results for the cros
over functionS(v̄) in a simple, disorder-free field-theoreti
model for the superfluid insulator transition that was intr
duced by Chaet al.15 Near the quantum-critical point, thi
model becomes equivalent to the familiar particle-ho
symmetricf4 field theory with the effective imaginary time
(t) action

S5E
0

\/kBT

dtE ddxH 1

2
@~]tfa!21c2~¹xfa!2

1~m0c
2 1t0!fa

2 #1
u0

4!
~fa

2 !2J . ~1.3!

Here fa is a n-component field and the action hasO(n)
symmetry @the O(n) index a is implicitly summer over#.
The spatial and temporal gradient terms are both second
der, and so the action has a ‘‘Lorentz’’ invariance withc the
velocity of light, and as a result the dynamic critical exp
nent z51. The bare ‘‘mass’’ term has been written a
m0c

2 1t0 so that theT50 quantum-critical point is att050,
andu0 measures the strength of the quartic nonlinearity. T
superfluid-insulator transition is described by the casen52
where C5f11 if2 is the usual complex superfluid orde
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56 8717NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM . . .
parameter. We shall also be interested in the casen53
which applies to quantum-critical points in quantu
antiferromagnets.29

It should be noted that the continuum modelS for n52,
with its double time derivative term, differs from the usu
continuum action for nonrelativistic bosons41 which has only
a single time derivative of a complex scalar field. The to
momentum and charge current of the latter model are p
portional to each other. When these nonrelativistic bos
are placed under the influence of an effective lattice pot
tial, with an average of an integer number of bosons
lattice site, then after integrating out certain local hig
energy modes, one obtains the continuum modelS as a low-
energy effective theory.42 The charge current and momentu
operators ofS are now no longer simply related to each oth
asS has excitations with both positive and negative charg
As we will see in Sec. III, the total momentum is propo
tional to thesumof the currents of the positive and negati
charges, while the total charge current is proportional to th
difference. This lack of a direct relationship between th
charge current and the momentum should not seem sur
ing as lattice effects were required to obtainS, and are there-
fore implicitly accounted for in the continuum theory.

It was asserted by Chaet al.15 that theT.0 transport
properties ofS were ‘‘pathological’’ in that there was zer
resistance to charge transport in the continuum field theor
Eq. ~1.3!; they suggested that a nonzero resistance appe
only upon considering additional lattice corrections~beyond
those required to derive the continuum theoryS), in which
momentum could jump in units of reciprocal lattice vecto
at scattering events~the so-called ‘‘umklapp’’ scattering
events!. We shall show here that this is incorrect. The mo
S has a finite, and universal, dc resistance at anyT.0 al-
ready in the scaling, continuum limit. Indeed, this is alrea
clear from a recent study43 of S for the cased51 n53,
where a simple and physically transparent argument obta
the exact~and finite! low-temperature value of the spin di
fusivity. Rather than being pathological, we claim that t
transport properties of the disorder-free boson modelS are
generic, and essentially identical in their scaling structure
those of disordered boson systems. The error in Chaet al.15

appears to be due to their ignoring the presence of inde
dent positive and negative charge excitations, and the re
ing difference between the total momentum and the to
charge current ofS.44

As T appears inS only in the upper limit of the imaginary
time integral, it is clear that the scaling form~1.2! is nothing
but a standard finite-size scaling result for observables
function of ‘‘wave vector’’v and ‘‘inverse size’’T. It might
then seen that our job is relatively straightforward, and
merely have to obtain standard finite-size scaling results
the familiar modelS. This is far from being the case. Th
point is that these standard results exist only at imagin
frequenciesi2ppkBT/\ (p>1, integer!, and we are espe
cially interested in real frequencies!kBT/\. More impor-
tantly, it has been shown26,13,29that the operations of analyti
continuation and expansion in 1/n or e532d ~which are the
only non-numeric tools for analyzing the critical point ofS)
do not commute.

The proper tool for analyzing transport at the critical po
of S is a quantum Boltzmann equation~QBE! for the charge
l
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carriers. In general, solution of such a QBE is a dauntin
difficult task, but we shall find that it is possible to reduce t
solution to a simple linear integral equation in a
expansion19,29 in e532d ~very similar results can be ob
tained in a related analysis ofS in an expansion in 1/n;15,26,13

this will be described elsewhere, and we will only discuss
n5` results here!. For smalle, the nonlinearities are weak
and it becomes possible to give a quasiparticlelike interp
tation to the excitations ofS at the quantum-critical point
Such an interpretation will be useful in our intuitive unde
standing, and will help us use standard methods to simp
the QBE in the\v!kBT limit. Although the quasiparticle
interpretation fails for the physical casee51, we do not
expect any qualitative change in the structure of our res
for largere. The QBE formulation is quite general, and th
quasiparticle representation is mainly a useful technical t
towards obtaining its numerical solution. In a more gene
context, our approach may considered as an expansio
powers of the anomalous dimensionh, which is responsible
for replacing the quasiparticle pole by a continuum at
T50 critical point. The continuum associated with a nonze
h is important only for\v@kBT, while for \v;kBT very
different thermal damping processes quench the crit
fluctuations,28 and are best treated by the QBE. This therm
damping also acts as an effective infrared cutoff which
sures that no qualitatively new physics emerges at hig
orders in the expansion in powers ofh.

The basic structure of the dynamical conductivity at t
critical point ofS for small e is illustrated in Fig. 3. Notice
the presence of ‘‘boundary layers’’ which make the analy
of the e→0 limit quite subtle, and is responsible for th
noncommutativity of analytic continuation and the naivee
expansion noted earlier. The hydrodynamic regime of
conductivity~denoted later in the paper bys I) is represented
by a Drude peak of width in frequencyv;e2kBT/\ and has
a height of order 1/e2. In particular, the dc conductivity is
determined by the universal numberS(0), for which we find
for n52

FIG. 3. Structure of the real partS8 of the universal scaling
function S in Eq. ~1.2! for the conductivity at the quantum-critica
coupling of the modelS defined in Eq.~1.3!. The spatial dimen-
sionality d532e, and e is assumed to be small. As befor

v̄5\v/kBT. The Drude peak at smallv̄ has a width of ordere2

and a height of order 1/e2: This feature of the conductivity is de
noted later in the paper bys I . The collisionless contribution~de-

noteds II later! begins atv̄ of ordere1/2; asv̄→`, this contribution

is a number of order unity timesv̄12e.
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8718 56KEDAR DAMLE AND SUBIR SACHDEV
S~0!5
0.1650

e2
, ~1.4!

to leading order ine; the structure of the higher-order co
rections to Eq.~1.4! is quite complex, and was general
discussed in Ref. 29. Determination of the coefficient in E
~1.4! required the numerical solution of a QBE, and the u
certainty in the numerics is believed to be restricted to
fourth decimal place. Ind52, Eq. ~1.4! implies a universal
dc conductivity

s~0!52pS~0!
4e2

h
'1.037

4e2

h
~1.5!

at the superfluid-insulator transition. This result is rema
ably close to the self-dual value 4e2/h,16,17and to the results
of many experiments;2 we will comment further on this in
Sec. IV E.

There is a clean separation between the hydrodyna
and collisionless regimes ofs: the latter does not begin unt
v;e1/2kBT/\ ~Fig. 3!. The T50 collisionless transport is
characterized byS(v̄→`) for which19 we have atn52,3

S8~v̄→`!5
2122dp12d/2

dG~d/2!
@11O~e2!#v̄12e. ~1.6!

As noted earlier, fore51 (d52) S(`) is a pure number,
but notice that it bears no relationship toS(0); indeedS(`)
is of order unity ase→0, and so these two quantities are
distinct orders ine. For the superfluid-insulator transition i
d52, Eq. ~1.6! gives a high-frequency conductivity o
0.39273(4e2/h), which is in rough agreement with othe
analyses in the collisionless regime.19

The body of the remainder of the paper is devoted
obtaining the above properties of the modelS. Readers not
interested in calculations specific to the modelS should now
go directly to the concluding Sec. IV where we discuss i
plications of our results for a number of experimental s
tems. In Sec. II we will obtain one loop results for the tran
port properties ofS using the familiar Kubo formalism. Then
Sec. III will include two-loop effects using a quantum tran
port analysis needed to describe the hydrodynamic reg
and obtain Eq.~1.4!.

In all of Secs. II and III and the appendixes we will wo
in units in which\5kB5c51; we will reinstate these con
stants in Sec. IV.

II. ONE-LOOP RESULTS FROM THE KUBO FORMULA

We will begin our analysis of the transport properties oS
by examining the results of a direct evaluation from t
Kubo formula,15,19 but now working atT.0. The physical
interpretation of the results will motivate an analysis usin
quantum Boltzmann equation33,46,47which will be carried out
in subsequent sections.

The standard Kubo formula relates the conductivity to
two-point correlator of the conservedO(n) current. We in-
troduce an external vector potentialA associated with the
O(n) generator which rotatesfa in the 1,2 plane; the spatia
gradient term inS then undergoes the mapping
.
-
e

-

ic

o

-
-
-

-
e,

a

a

(
a51

n

~¹xfa!2→~¹xf12QAf2!21~¹xf21QAf1!2

1 (
a53

n

~¹xfa!2. ~2.1!

The associatedO(n) current is thendS/dA. We evaluate its
two-point correlator using standard diagrammatic pertur
tion theory to first order inu0 in the expansion ine, or to
leading order in the largen expansion~in which u0;1/n).
The first-order vertex correction vanishes because the in
action is momentum independent and the result in both ca
is given simply by15,19 ~recall we are using units here i
which \5kB5c51)

s~ ivn!52
2Q2

vn
T(

en

E ddk

~2p!d

3F 2kx
2

~en
21k21m2!@~en1vn!21k21m2#

2
1

en
21k21m2G . ~2.2!

The first term is the ‘‘paramagnetic’’ contribution, while th
second is the ‘‘diamagnetic’’ term proportional to th
density.48 Hereen ,vn are Matsubara frequencies,kx is thex
component of thed dimensional momentumk, andk5uku.
The ‘‘mass’’ m in the propagators is computed in Append
D @where it is referred to asm(T)# using thee532d ex-
pansion developed in Ref. 29, and depends universally u
T and an energy scale measuring the deviation of the gro
state from the critical ground state. At the critical couplin
to leading order ine,

m25eS n12

n18D2p2T2

3
at t050. ~2.3!

The result~2.2! holds for alln, and there is non dependence
at this order in thee expansion, other than that throughm.
The largen expansion has an identical structure atn5`, the
only difference being in the value ofm. Detailed universal
expressions form were given in Ref. 13 ind52; at the
critical coupling, the analog of Eq.~2.3! at n5` is

m52 lnSA511

2 DT at t050, d52. ~2.4!

The remaining analysis of this section will apply both to t
e and 1/n expansions, the only difference being in the valu
of m given above.

Now insert 15]kx /]kx in front of the diamagnetic term
in Eq. ~2.2! and integrate by parts. The surface terms van
in dimensional or lattice regularization, and the express
for the conductivity becomes
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s~ ivn!52
2Q2

vn
T(

en

E ddk

~2p!d

2kx
2

en
21k21m2

3F 1

~en1vn!21k21m2
2

1

en
21k21m2G . ~2.5!

We now evaluate the summation over Matsubara frequ
cies, analytically continue to real frequencies. The result
s(v) is complex, and we decompose it into its real a
imaginary parts s(v)5s8(v)1 is9(v). We will only
present results for the real parts8(v), and the imaginary
part s9(v) can be obtained via the standard dispersion re
tion.

We find that the result fors8(v) has two distinct contri-
butions of very different physical origin. We separate the
by writing

s8~v!5s I8~v!1s II8~v!. ~2.6!

The first part,s I8(v), is ad function at zero frequency:

s I8~v!52pQ2d~v!E ddk

~2p!d

kx
2

«k
2S 2

]n~«k!

]«k
D , ~2.7!

wheren(«) is the Bose function,

n~«!5
1

e«/T21
, ~2.8!

and the excitations have the energy-momentum relation

«k[Ak21m2. ~2.9!

We will discuss the physical meaning of thed function in
Eq. ~2.7! below, and obtain a separate and more phys
derivation of its weight in Sec. III A. The second pa
s II8 (v) is a continuum above a threshold frequency of 2m:

s II8~v!5pQ2E ddk

~2p!d

kx
2

2«k
3 @112n~«k!#d~ uvu22«k!

5
pQ2Sd

d
u~ uvu22m!S v224m2

4v2 D d/2

3@112n~v/2!#uvud22, ~2.10!

whereSd52/@G(d/2)(4p)d/2# is a standard phase space fa
tor.

At the critical point, t050, it can be verified that the
above results fors(v) obey the scaling form~1.2! with
z51; explicit results for the functionS(v̄) will appear be-
low and are sketched in Fig. 4.

We now discuss the physical and scaling properties of
two components of the conductivity in turn.

A. s I

This is a zero-frequencyd function, and is present only
for T.0. Clearly, it must be interpreted as the contributi
of thermal excitations which propagate ballistically. Indee
to first order ine,29 or at n5`,13 the excitations are simply
n-
g

-

e

al

-

e

,

undamped particles and holes with an infinite lifetime a
energy momentum relation«k . It is necessary to go to sec
ond order ine, or to first order in 1/n, to include collisions
which will give the quasiparticles a finite lifetime. We wi
show in Sec. III that these collisions also broaden thed func-
tion in s I . The magnitude of the broadening is expected
be determined by the inverse lifetime of the quasiparticles
the critical point, this inverse lifetime is of ordere2T Ref. 29
in the e expansion, or of orderT/n Ref. 13 in the large-n
theory. The typical energy of a quasiparticle at the critic
point is of orderT, and so the quasiparticles are well define
at least within thee or 1/n expansion. Notice, however, tha
the quasiparticle interpretation breaks down at the physic
important value ofe51, n52. The discussion in Sec. II
will take place within the context of thee expansion, and
will use the quasiparticle interpretation and the arsena
powerful techniques available33,46,47 to describe their quan
tum transport.

The expression~2.7! is valid everywhere in the norma
phase, but here we evaluate it explicitly only att050. Con-
sider first thee expansion. The coefficient of thed function
is a function of the ratiom/T, but notice from Eq.~2.3! that
m!T at for small e. Evaluating Eq.~2.7! in this limit we
find for e small

s I8~v!52pQ2Td21d~v!F 1

18
2

m

8pT
1••• G

52pQ2Td21d~v!F 1

18
2

Ae

8 S 2~n12!

3~n18! D
1/2

1•••G .
~2.11!

Actually the expression~2.7! is good to ordere but we have
refrained from displaying the next term as it is rath
lengthy. The first term in Eq.~2.11! is obtained by evaluating
Eq. ~2.7! at m50, d53; the second term is from an integr
dominated by smallk;m!T and hence the Bose functio

FIG. 4. The real partS8 of the universal scaling functionS @see
Eq. ~1.2!# for the conductivity at the quantum-critical coupling o
the modelS, correct to first order ine532d. The numerical values
are obtained from Eq.~2.3! and ~2.10! with d52 (e51). There is
a d function precisely atv/T50 represented by the heavy arrow
The weight of thisd function is given in Eq.~2.7! and ~2.11!. The
d function contributes tos I , and the higher-frequency continuum
to s II .
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8720 56KEDAR DAMLE AND SUBIR SACHDEV
can be replaced by its classical limit. An important point
note is that the current carried by the thermally excited c
riers is dominated in the leading term of Eq.~2.11! by mo-
mentak;T@m. This will be useful to us in the analysis o
collisions in Sec. III where we will simply be able to s
m50 to obtain the leading term.

Turning to the largen theory, we evaluate Eq.~2.7! in
d52 using the value ofm in Eq. ~2.4!, and obtain after an
integration by parts and rescaling of variables

s I8~v!5
Q2T

2
d~v!F E

Q

`

d«S 11
Q2

«2 D 1

e«21
G

5
Q2T

2
d~v!30.689 402 548 116 632 . . . ,

~2.12!

whereQ52ln@(A511)/2# is a number which plays a centra
role in the largen theory.13,49 Notice that asm;T, we have
now been unable to approximate«k'k to get the leading
result, as was done in thee expansion.

An interesting numerical property of the above results
d52 is worth noting explicitly. The spectral weight of thed
function to leading order in thee expansion is, from Eq
~2.11!, Q2T timesp/950.3491 . . . ~recall that this number
was obtained by evaluating a momentum space integra
d53). The same quantity atn5`, from Eq. ~2.12!, is Q2T
times 0.3447 . . . ~obtained now by evaluating a differen
momentum space integral ind52), which is remarkably
close. Later in Sec. III, we will consider broadening of thed
function in thee expansion, and we will work in the approx
mation in which the spectral weight isQ2T times p/9 @see
Eq. ~3.34! later#; the present numerical ‘‘coincidence’’ sug
gests that the numerical values of the leading ordere result
are quite accurate.

B. s II

This is the continuum contribution tos which vanishes
for v,2m. At this order ine (1/n) there is a sharp threshol
at v52m but we expect that this singularity will be rounde
out when collisions are included at ordere2 (1/n): We will
not describe this rounding out it in this paper, however.
though they have a strong effect at the threshold, collisi
are not expected to significantly modify the form ofs II8 (v)
at higher frequencies where the transport is predomina
collisionless. In particular, thev→` limit is precisely the
T50 result obtained earlier:19

s II8~v→`!5
pQ2Sd

2dd
uvud22. ~2.13!

III. QUANTUM TRANSPORT EQUATIONS

The general analysis of higher-order corrections tos is
quite complex, and so we will confine ourselves in this s
tion to the answer to a single question: How does thed(v)
term in s I8(v) broaden?

We will address this question exclusively in the context
thee expansion, and generalization to the 1/n expansion will
r-

in

-
s

ly

-

f

be discussed elsewhere. In principle, the answer can be
tained by including theO(e2) correction to the self-energy
and accounting for the associated infinite-ladder ver
corrections.48 However, this method is quite inconvenient
it does not allow for easy separation of the distinct pheno
ena in different frequency regimes. Instead, we shall use
~in principle! equivalent48 quantum transport formalism o
Kadanoff and Baym.33,46,47The physical content of this for
malism is transparent at all stages, and the approximat
necessary to focus on the low-frequency conductivity
readily apparent. In particular, we can drop the terms lead
to s II(v) at an early stage.

The transport equation is best studied in the Hamilton
formalism by casting it in terms of the weakly interactin
‘‘normal modes.’’ So we begin by writing down the Hami
tonian associated withS ~remember that we are using uni
in which \5kB5c51):

H5H01Hint1Hext. ~3.1!

The first term,H0, is the free-particle part ofS,

H05
1

2E @pa
21~¹xfa!21m2fa

2 #, ~3.2!

wherepa(x,t) (t is real time! is the canonically conjugate
momentum to the quantum fieldfa(x,t) and satisfies the
equal-time commutation relations

@fa~x,t !,pb~x8,t !#5 idabdd~x2x8!. ~3.3!

For future convenience, we have already included
Hartree-Fock correction from the interactions into t
‘‘mass’’ m2 ~these correspond to self-consistently summ
all the one-loop tadpole diagrams, as discussed in Appen
D!. The second term,Hint , is the quartic interaction

Hint5
u0

4!E ddx~fa
2 !2, ~3.4!

and it is understood that the Hartree-Fock term arising fr
Hint will be omitted. Finally,Hext contains the coupling to
the external space and time-dependent potentialsUa(x,t)
@a51•••n(n21)/2#:

Hext5QE ddxUa~x,t !Lab
a pa~x,t !fb~x,t !. ~3.5!

Here theLa aren3n real, antisymmetric matrices that arei
times the generators of the Lie algebra ofO(n). TheUa are
coupled to the conservedO(n) charge densities50 of H 1
Hint . We shall be interested only in the linear response of
current to the ‘‘electric field’’Ea52¹W xU

a(x,t), and it will
be assumed below thatEa is independent ofx. Notice that
we are making a gauge choice different from that in E
~2.1!, and coupling now to the scalar and not the vector p
tential; this is for convenience, and should not change
final gauge-invariant results. The ‘‘charge’’ currentJa is de-
fined by the expectation value50

Ja5QLab
a ^fa¹W xfb&, ~3.6!

and it will also be independent ofx. Making the Fourier
expansion
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Ea~ t !5E dv

2p
Ea~v!e2 ivt, ~3.7!

and similarly forJa, we can define the dynamical conducti
ity s(v) by the expected linear response relation

Ja~v!5s~v!Ea~v!. ~3.8!

For completeness, let us also note here the expressio
the total momentum50 P:

P5^pa¹W xfa&. ~3.9!

Notice that it is quite distinct fromJa. In particular, in the
absence of an external potential,P is conserved~i.e., it obeys

an equation of the form] tP1¹W •TI50 for someTI), while Ja

is not.
We now make the mode expansion

fa~x,t !5E ddk

~2p!d

1

A2«k

3@aa~k,t !eik•x1aa
†~k,t !e2 ik•x#,

pa~x,t !52 i E ddk

~2p!d
A«k

2

3@aa~k,t !eik•x2aa
†~k,t !e2 ik•x#, ~3.10!

where thea(k,t) operators satisfy the equal-time commu
tion relations

@aa~k,t !,ab
†~k8,t !#5dab~2p!ddd~k2k8!,

@aa~k,t !,ab~k8,t !#50. ~3.11!

It can now be verified that Eq.~3.3! is satisfied, andH0 is
given by

H05E ddk

~2p!d
«k@aa

†~k,t !aa~k,t !11/2#. ~3.12!

We will also need the expression for the currentJa in terms
of thea anda†. We will only be interested in the case whe
the system carries a position-independent current: For
case, inserting Eq.~3.10! into Eq. ~3.6!, we find

Ja~ t !5JI
a~ t !1JII

a~ t !,

JI
a~ t !5 iQLab

a E ddk

~2p!d

k

«k
^aa

†~k,t !ab~k,t !&,

JII
a~ t !52 iQLab

a E ddk

~2p!d

k

2«k
^aa

†~2k,t !ab
†~k,t !&1H.c.

~3.13!

It should be evident that processes contributing toJII
a require

a minimum frequency of 2m, and soJII
a only contributes to

s II(v). We will therefore drop theJII
a contribution below and

approximate Ja'JI
a . The ease with which the high
for

-

is

frequency components ofs(v) can be separated out is a
important advantage of the present formulation of the qu
tum transport equations.

A central object in transport theory is the Green
function33,47

gab
, ~k,V,R,t !

5E ddK

~2p!dE dt1eiK•R1 iVt1

3^ab
†~k2K /2,t2t1/2!aa~k1K /2,t1t1/2!&.

~3.14!

For the case of a system carrying a spatially independ
current,g, will be independent ofR and this will implicitly
be assumed below by dropping theR argument. We also
define the particle distribution function

f ab~k,t !5E dV

2p
gab

, ~k,V,t !, ~3.15!

in terms of which the current is

Ja~ t !5 iQLab
a E ddk

~2p!d

k

«k
f ab~k,t !. ~3.16!

The corresponding expression for the momentum density

P~ t !5E ddk

~2p!d
k f aa~k,t !. ~3.17!

Notice the difference in the structure of theO(n) indices
between Eqs.~3.16! and ~3.17!.

We note here that our formulation of the transport theo
in terms of Green’s functions of theaa , aa

† rather than those
of the fa , pa was motivated in part by recent exact resu
in d51 for time-dependent correlations of models equival
to S for n51,3.51,43 In the latter cases it was evident that th
physics is most simply described by following the propag
tors of particles created or annihilated byaa

†/aa through their
collisions.

A. Collisionless transport

In this section we will examine the transport equations
the collisionless case whereHint50; we remind the reade
that interactions have already been included at the Hart
Fock level inH0 ~see Appendix D!. Strictly speaking, we
also have to remember that the massm can in general depend
uponEa; however, for the case of a momentum-independ
local interactionu0, such a ‘‘vertex’’ correction vanishes to
lowest order inEa, and will therefore be omitted from ou
discussion.

While it is possible to discuss the generalO(n) case, in
the interest of simplicity and to keep the physical conte
transparent, we will restrict our attention here to the spe
casen52. The generalization ton.2 is discussed in Ap-
pendix B.

For n52 (a51,2), there is only one real antisymmetr
matrix, and therefore the indexa can be dropped. We choos
L1,252L2,151 andL1,15L2,250. This matrix is off diago-
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nal and it is helpful to transform to a basis where the exter
field is diagonal. We therefore define

a6~k,t ![
a1~kt !6 ia2~k,t !

A2
. ~3.18!

The current now becomes

J5QE ddk

~2p!d(l
l

k

«k
^al

†~k,t !al~k,t !&

5QE ddk

~2p!d(l
l

k

«k
f l~k,t !, ~3.19!

where the indexl is assumed here and below to extend o
the values61, andf l are the particle distribution function
which are now diagonal inl space. Notice that there are tw
species of charged particles with charges6Q: These are the
particlelike and holelike excitations of the bosonic insulat
Let us also note the expression for the momentum dens

P5E ddk

~2p!d(l
k f l~k,t !. ~3.20!

An important difference between Eqs.~3.19! and ~3.20! is
the l inside the summation in Eq.~3.19! which is absent
from Eq. ~3.20!. Thus the ‘‘charge’’ current is proportiona
to the difference of the particle and hole number curren
while the momentum density is proportional to their sum

It is now easy to use standard methods33,47 to derive the
following transport equation in the collisionless limit d
scribed earlier:

S ]

]t
1lQE~ t !•

]

]kD f l~k,t !50. ~3.21!

In deriving this equation we have made approximations
the charge density appearing inHext similar to those made
for J: Upon expressingHext in terms of thea,a† we have
dropped all terms involving the product of twoa’s or a†’s as
these will only contribute to the high-frequencys II . Equa-
tions ~3.19! and~3.21! are therefore accurate to first order
u0 provided we are limiting ourselves to frequenciesv!2m.

Let us now solve Eqs.~3.19! and~3.21! in linear response
In the absence ofE, the distribution function has the equ
al

r

.
:

s,

o

librium value given by Bose functionf l(k,t)5n(«k). We
Fourier transform from timet to frequencyv, and param-
etrize to linear order inE:

f l~k,v!52pd~v!n~«k!1lQk•E~v!c~k,v!,
~3.22!

where we have used the fact that onlyE breaks spatial rota-
tion invariance andO(2) symmetry to conclude thatc is
independent ofk/k andl. Now inserting in Eq.~3.21!, and
using ]«k/]k5k/«k it is simple to solve forc to leading
order inE:

c~k,v!5
1

2 iv

1

«k
S 2

]n~«k!

]«k
D . ~3.23!

Finally we insert in Eq.~3.19! and deduce the conductivity

s~v!5
2Q2

2 ivE ddk

~2p!d

kx
2

«k
2S 2

]n~«k!

]«k
D . ~3.24!

The real part of this agrees with Eq.~2.7!. Notice that the
leading factor of 2 comes from the sum overl. The current
is therefore carried equally by the thermally excited partic
and holes: They move in opposite directions to create a s
with vanishing momentum but non-zero charge current.

We will see in the next section that this charge current c
be relaxed by collisions among the particles and holes. Th
is no need to invoke umklapp scattering as a momentum
and source~as was done by Chaet al.15! as the current-
carrying state does not have a net momentum to begin w

B. Collision-dominated transport

We have seen in Sec. III A that to orderu0(e) the trans-
port is described by the ballistic motion of undamped p
ticles of two charges. We now consider the collisions
these particles which appear at ordere2. As we noted in the
discussion below Eq.~2.11! the typical energy of a particle
contributing to the transport was of orderT. Their collisions
will lead to a broadening of the single-quasiparticle pole
order e2T;29 for e small, this broadening is weak, and it
then permissible to argue in terms of a quasiparticle interp
tation.

Applying the standard methods of transport theory d
cussed in Refs. 33 and 47, we generalize Eq.~3.21! to in-
clude the collision term which appears at orderu0

2, and ob-
tain to linear order inE:
S ]

]t
1lQE•

]

]kD f l~k,t !52
2u0

2

9 E ddk1

~2p!d

ddk2

~2p!d

ddk3

~2p!d

1

16«k«k1
«k2

«k3

~2p!dd~k1k12k22k3!2pd~«k1«k1
2«k2

2«k3
!

3$2 f l~k,t ! f 2l~k1 ,t !@11 f l~k2 ,t !#@11 f 2l~k3 ,t !#1 f l~k,t ! f l~k1 ,t !@11 f l~k2 ,t !#

3@11 f l~k3 ,t !#22@11 f l~k,t !#@11 f 2l~k1 ,t !# f l~k2 ,t ! f 2l~k3 ,t !2@11 f l~k,t !#

3@11 f l~k1 ,t !# f l~k2 ,t ! f l~k3 ,t !%. ~3.25!
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The collision term on the right-hand side of Eq.~3.25! can
also be obtained by a simple argument based on Fer
golden rule of the type described in Ref. 33. A number
simplifications have been made in deriving Eq.~3.25!, and
we now describe and justify them.

~i! The collision term is initially expressed in terms of fu
two-point Green’s functions likegab

, . However, as is
conventional,33,47 we assume we can neglect damping
these Green’s functions and express them in terms of
particle distribution functionsf ab . This is permissible for a
system with well-defined quasiparticles, as is the case h
for small e. This approximation will not affect the conduc
tivity at ordere2.

~ii ! In addition to the collision terms, there are also se
energy terms affecting the quasiparticle energies at orderu0

2.
These include terms that couple the usual Green’s funct
to the anomalous ones~involving expectation values of pair
of creation or annihilation operators!. Such terms will, in
general, modify the conductivity at ordere2. However, they
do not affect the nature of broadening of thed function in
s I8(v). The total spectral weight ins I8(v) will change from
that in Eq. ~2.11! at ordere2 due to these terms, but th
functional form of ofs I8(v) at frequencies of ordere2T will
not be affected.

~iii ! We have neglected collisions which involve creati
or annihilation of particle-hole pairs as they have negligi
phase space. Thus a collision in which, e.g., a positiv
charged particle of momentumk turns into two positively
charged particles and a negatively charged hole with m
mentak1, k2, andk3, respectively, is permitted by the sym
metries of the problem. However, it remains to evaluate
phase space over which such collisions conserve total en
and momentum. Notice that the ‘‘mass’’m of the particles
and holes is of orderAeT @Eq. ~2.3!# while their momentum
is of orderT. So to leading order ine we may just replace
the energy-momentum relation~2.9! by @see also the discus
sion below Eq.~2.11!#

«k5k. ~3.26!

We will use this simplified energy-momentum relatio
throughout this subsection. The particle-hole pair-creat
collision now requires that k5k11k21k3 and
k5k11k21k3. This is only possible if all three moment
are collinear, and this process therefore has vanishing p
space. More generally, for a nonzerom, the phase spac
vanishes ase→0.

We now insert the parametrization~3.22! in Eq. ~3.25!,
linearize the resulting equation in the external electric fi
E, and obtain a linear integral equation for the unkno
function c(k,v). Further, to leading order ine, we may set
d53 in the collision term in Eq.~3.25!, and replace the
couplingu0 by its fixed point value forn52 ~see Appendix
D!:

u05
24p2e

5
. ~3.27!

Further details of this linearization procedure are given
Appendix C. The final integral equation forc(k,v) can be
written as
i’s
f

e

re

-

ns

ly

o-

e
gy

n

se

d

n

2 ivc~k,v!1
1

k

]n~k!

]k
52e2E

0

`

dk1@F1~k,k1!c~k,v!

1F2~k,k1!c~k1 ,v!#. ~3.28!

The expressions for the functionsF1,2 are quite lengthy and
are discussed in Appendix C.

It is now useful to scale out the dependence of all fun
tions one andT so that the final integral equation is writte
in dimensionless form, and has all couplings of order un
From the expressions in Appendix C we know thatF1,2 are
homogeneous functions of momenta andT which satisfy

Fi~k,k1!5F i~k/T,k1 /T! ~3.29!

for some F i , with i 51,2. ~Here, and everywhere in thi
section, the dimensional analysis is performed for atd53: It
is not difficult to extend it to generald, but we will not in the
interests of simplicity, and because it is unnecessary to
tain results to leading order ine.! Now by examining Eq.
~3.28! we see that it is useful to introduce the functionC
defined by

c~k,v!5
1

e2T3
CS k

T
,

v

e2T
D . ~3.30!

In terms of F i , C the integral equation~3.28! takes the
dimensionless form

2 i ṽC~ k̄ ,ṽ !2
1

4 k̄sinh2~ k̄ /2!

52E
0

`

d k̄1@F1~ k̄ , k̄ 1!C~ k̄ ,ṽ !

1F2~ k̄ , k̄ 1!C~ k̄ 1 ,v!#, ~3.31!

where k̄ 5k/T andṽ5v̄/e25v/e2T. Now, from Eq.~3.19!
we see that the conductivitys I(v) obeys

s I~v!5
Q2Td22

e2
S IS v

e2T
D , ~3.32!

where the scaling functionS I is given by

S I~ṽ !5
1

3p2E0

`

k̄ 3d k̄C~ k̄ ,ṽ !. ~3.33!

We can now already see from the structure of Eq.~3.32! that
s I8(v50) has a value of orderTd22/e2, and that the width
of the ‘‘Drude’’ peak will be of orderv;e2T. Further, the
collision term will not modify the total spectral weight ins I ,
which will therefore be identical to that in Eq.~2.11!; this
implies that the functionS I , as defined by Eqs.~3.31! and
~3.33! should satisfy

E
0

`

dṽS I8~ṽ !5
p

18
. ~3.34!

It should be noted that this sum rule is special to the lead
order ine being considered here. Fore of order unity, there
is no sharp distinction betweens I and s II and there is no
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8724 56KEDAR DAMLE AND SUBIR SACHDEV
sum rule: Indeed the integral in Eq.~3.34! when carried out
over the totals will be divergent. For any realistic lattice
model there is a large microscopic energy scale (;U the
repulsion between bosons on the same site! beyond which
the universal scaling results do not apply, and the en
spectral weight~including frequencies beyondU) is not di-
vergent; this latter spectral weight satisfies a sum rule rela
to nonuniversal microscopic quantities, and is unrelated
the universal result~3.34!.

It now remains to numerically solve Eq.~3.31! to deter-
mine C( k̄ ,ṽ), and then to obtainS I from Eq. ~3.33!. The
integral equation~3.31! was solved by a straightforward nu
merical iteration, and we found very rapid convergence to
unique solution. We show a plot of its solution at a fe
values ofṽ in Fig. 5. The final result for the universal func
tion S18(ṽ) is shown in Fig. 6.

IV. CONCLUSIONS

The central message of this paper is simply stated: Un
standing the universal dc conductivity of a two-dimensio
system at its quantum-critical point requires a nonzero te
perature analysis of the hydrodynamic, collision-domina
regime where\v!kBT. The transport in this low-frequenc
regime is incoherent, but nevertheless the remarkable fa
that the conductivity is still a universal number times e2/h.
Computations carried out exactly atT50, with v→0, do
not yield the dc conductivity, and are controlled by ve
different physical processes involving phase-coherent, c
sionless transport. A related comment is that a theoret
analysis for the dc conductivity must necessarily be form
lated in real time, as the imaginary-time Matsubara frequ
cies are of order 2pkBT/\ or larger, and cannot easily cap
ture the singular structure in Fig. 2. These criticisms ap
not only to computations of the universal conductivity at t
superfluid-insulator transition14–25 but also to the transitions
between the Hall plateaus,52,53 all of whom computed the
analog of S(`). There are also mappings between the

FIG. 5. Real part of the universal functionk̄ 3C( k̄ ,ṽ) as a

function of k̄ for a few values ofṽ. The functionC is defined in
Eqs. ~3.30! and ~3.22!, and was obtained by numerical solution

the linearized quantum Boltzmann equation~3.31!. At ṽ50, C is

real, but is complex for generalṽ. Here k̄ 5k/T, and

ṽ5v̄/e25v/e2T ~in physical unitsk̄ 5\ck/kBT, ṽ5\v/e2kBT).
e

d
to
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d
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li-
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models,54 but they presumably hold for all values of the rat
\v/kBT. There are also special self-dual models55,56 in
which the conductivity is claimed57 to be independent o
\v/kBT, but this is not expected to be the generic physi
situation. The computation of the finiteT conductivity at the
superfluid-insulator transition in one dimension by Giam
chi and Schulz58 ~and close to one dimension by Herbut59!
seems closer in spirit to our approach, but it would be use
to have an explicit computation as a function of\v/kBT to
verify this.

Many experiments on two-dimensional films appear n
to observe a universal conductivity at the superfluid-insula
transition. Our results imply that this is very likely due
crossovers caused byinelastic scattering mechanisms othe
than those contained in the critical theory. Measurement
the conductivity as a function of frequency~Sec. IV D!
should help disentangle these effects.

In the remainder of this section we comment on so
general experimental and theoretical issues related to the
sults of the paper.

A. Imaginary time Monte Carlo simulation

Most existing numerical studies15,22–25 of s at a two-
dimensional quantum-critical point used a Monte Ca
simulation in imaginary time. The simulation measures
values ofs at the nonzero Matsubara frequencies, i.e.,
s(2pnTi) wheren is a nonzero, positive integer. The lim
S(z,uzu→`) is expected to be the same numberS(`) for all
values of the phase ofz, and therefore its value can be d
duced from a relatively straightforward analysis of the n
merical data. The value ofS(0) is more problematical. All
of the interesting structure inS(z) discussed in this pape
occurs forz of order, or less than unity, and it is difficult t
extract this information from its values at the nonzero qu
tized Matsubara frequencies. Chaet al.15 numerically exam-
ined the modelS and found little dependence onvn /T. Note

FIG. 6. The real part of the universal functionS I(ṽ), which is
related to the low-frequency part of the conductivity@s I(v)# by Eq.
~3.32!. The results are obtained by the numerical solution of E
~3.31!, followed by the integration in Eq.~3.33!. This function de-
scribes the inelastic collision-induced broadening of thev50 d
function in Fig. 4 at a frequency scale of ordere2T. The conduc-
tivity has an additional continuum contribution@s II(v)# at frequen-
cies larger thanv;e1/2T which is not shown above~see Fig. 3!.
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that this is the model for which we have computed t
stronglyv/T-dependent conductivity here, but, as expect
this is apparently not evident at the imaginary Matsub
frequencies. Similarly, Wallinet al.25 also found little evi-
dence for a significant dependence of the critical conduc
ity of disordered models onvn /T.

We are of the opinion that it will be difficult to determin
S(0) from this method, unless highly accurate numeri
results are obtained at the imaginary frequencies. The d
culty is also apparent by a glance at Fig. 2: AtT50, the
value of S(0) appears only at a single point which carri
zero weight under any integral over frequencies. The ac
rate numerical data should then be analyzed in the follow
manner. First, from observations at a number of differ
values ofvn andT, the universal scaling part ofs, depen-
dent only on the ratiovn /T, should be obtained. Note tha
this universal scaling part reaches a constant va
@(4e2/\)S(`)# asvn→`, while the fulls vanishes as 1/vn

2

for frequencies larger than a microscopic lattice scale. The
Padéanalysis, general enough to allow the structure in F
1, should be used to analytically continueonly the universal
scaling part to real frequencies.

It would also be interesting to explore newer metho
perhaps examining an open system in which it is possibl
have a net current in thermodynamic equilibrium, or doin
computation in real time. The exact diagonalization appro
of Runge21 can perhaps be extended toT.0 without a great
deal of difficulty.

B. Dangerously irrelevant interactions

It is possible to violate the basic scaling result~1.1! if
quantum-mechanical interactions between the elemen
critical excitations happen to be dangerously irrelevant;60 in
that case we expect

1

t tr
;uT11uu /z, ~4.1!

whereu is proportional to some power of the irrelevant i
teraction,uu.0 is the associated crossover exponent, anz
is the dynamic critical exponent. Anderson localization tra
sitions, with interactions leading only to a infrared cutoff
a phase-breaking rate, are a realization of such a scen
~Quantum-impurity critical points36,38–40have some similari-
ties to bulk systems with dangerously irrelevant interactio
and are discussed in more detail in Appendix A.! However,
this scenario is much less likely to be realized atbulk two-
dimensional quantum-critical points, and we consider it u
likely that interactions can be neglected for the superflu
insulator transition. The quantum Hall transition h
primarily been studied using noninteracting electrons,61 but
there is evidence that Coulomb interactions are relevan
quantum Hall transitions.62,63Experimental measurements
z in the quantum Hall system64 indicate the valuez51 for
the dynamic critical exponent, and this is incompatible w
free-electron models. The ac conductivity measurement
Engelet al.34 in a quantum Hall system~discussed further in
Sec. IV D below! show a characteristic frequency sca
v;kBT/\ which is inconsistent with the result~4.1! for the
case of irrelevant interactions, but is consistent with the
teracting theory result~1.1!.
,
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C. Luttinger liquids

A well-studied critical system ind51 is the gapless
Luttinger-liquid ground state of interacting fermions
bosons away from commensurate filling fractions. Here
discuss how this familiar system fits into the general fram
work of this paper. The nonzero-T conductivity of the criti-
cal theory of the Luttinger liquid is given by

s8~v!5Kd~\v!, ~4.2!

whereK is someT-independent constant. Notice that there
no broadening of thed function, even forT.0, in the scal-
ing limit. ~Related considerations also apply to Fermi liqui
in d.1,65,66 but for many purposes these are better thou
of as the analog of Goldstone phases rather than crit
phases.! Let us now rewrite Eq.~4.2! as

s8~v!5K~kBT!21dS \v

kBTD . ~4.3!

Now notice that Eq.~4.3! is consistent with the general sca
ing form ~1.2! for d51, and the known dynamic exponen
z51. The scaling functionS takes the simple and singula
form S8(v̄)5d(v̄). For this special form ofS, the limits
v→0 andT→0 do happen to commute.

These singular properties of the critical theory of the L
tinger liquid are clearly a consequence of the absence
scattering between carriers in the critical theory: Like ma
other critical theories ind51, it is conformally invariant,
and correlation functions~including those forT.0) factor-
ize into independent components given by the left and ri
movers. In contrast, for critical theories ind.1, like the one
studied in this paper, no such analogous factorization ex
Further, ford.1 models below their upper critical dimen
sion, there is scattering between the carriers already in
scaling limit. To introduce scattering in the Luttinger liqui
it is necessary to go beyond the scaling limit, and consi
corrections to scaling.45 There corrections are therefore da
gerously irrelevant, and will destroy simpled function form
of the conductivity in Eq.~4.2!, and the limitsv→0 and
T→0 will no longer commute.45

D. Measurements of the ac conductivity

A finite-v measurement of the conductivity in a situatio
related to that discussed in this paper has been carried ou
Engelet al.34 They examined the transition between integ
quantum Hall plateaus by studying the dependence of
conductivity onv, and the deviation of the field from its
critical valued[(B2Bc)/Bc . This should obey7 the scaling
form

s5
e2

\
S̃S \v

kBT
,

d

T1/nzD , ~4.4!

which generalizes Eq.~1.2! to dÞ0. In their analysis, Enge
et al.34 focused mainly on thed dependence at\v@kBT:
They measured the width of the transition region ind5DB,
and foundDB;v1/nz, in agreement with Eq.~4.4!. Further,
the v dependence ofDB saturated forv,kBT/\, in agree-
ment with the ideas we have discussed here.29,7 However,
Engelet al.34 did not analyze thev andT dependence ofs
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8726 56KEDAR DAMLE AND SUBIR SACHDEV
precisely at the critical fieldd50. It appears to us that i
should be relatively straightforward to extend their measu
ments atd50 to test the validity of the scaling form~1.2!.
Further, it should also be possible to theoretically determ
the expected form of the scaling functionS in the models for
the quantum Hall transitions considered in Refs. 52 and

A limited test of Eq.~1.2! should also be possible in mea
surements of the ac conductivity at relatively low freque
cies at which\v!kBT. At such frequencies, we can expan
the scaling functionS(v̄) about v̄50, and analyticity of
T.0 properties then implies the form

s8~v!5
Q2

\ S kBT

\c D ~d22!/zFS~0!2
1

2
S~2!~0!S \v

kBTD 2

1••• G ,
~4.5!

whereS(0) andS (2)(0) are expected to be positive unive
sal numbers of order unity. Experimentally, one can tes
the frequency-dependent correction tos has the 1/T2 depen-
dence predicted by Eq.~4.5!.

There do not appear to be any existing measurement
the ac conductivity near quantum-critical points in other s
tems. The results~1.2! and ~4.5! should apply also to the
superfluid-insulator transition in thin films,1,2 to the quantum
transition in the doped cuprates9 and two-dimensiona
MOSFET’s,10 and to the metal-insulator transition in thre
dimensional Si:P;11,12 we hope that experiments will be un
dertaken, as the results will be central to our theoretical
derstanding of these systems. In particular, if scaling a
function of \v/kBT is observed, it would establish quit
conclusively that interactions are an essential ingredien
the critical theory.

Also, we note that our picture suggests a rather interes
nonmonotonicv dependence ofs in at the metal-insulator
transition in d53: For small \v/kBT s should decrease
with increasingv as predicted by Eq.~4.5!, but for larger
\v/kBT it should increase as;v1/z. It would be worthwhile
to undertake analytic calculations for disordered, interact
electronic systems to search for this nonmonotonicv depen-
dence: There are cases where the critical theory is acces
at low orders in the 21e expansion.11 There are existing
calculations for thev andT dependence of the conductivit
in the weakly disordered metal30 in which 1/tw!kBT/\;
these need to be extended to the critical point where
expect that 1/tw;kBT/\.

E. Self-duality

Of great current interest is the issue of ‘‘boson-vort
duality’’ at two-dimensional quantum-critical points. At th
superfluid-insulator transition, many of the experimenta
measured values ofS(0) appear to be tantalizingly close2 to
a value predicted by self-duality arguments.16,17 For the
quantum Hall transitions, experimental evidence for se
duality has been presented recently.67 This self-duality ap-
pears rather surprising as there is no fundamental reaso
an equivalence between the underlying boson and vo
Hamiltonians.16 We suggest here that these inequivale
Hamiltonians will be apparent in the value of theT50 con-
ductivity, given byS(`), which, incidentally, is the quantity
that has been explicitly or implicitly studied in earlie
-

e
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work.14–25,52–56In contrast, the dc conductivity, given b
S(0), is controlled by the crossover to the hydrodynam
collision-dominated regime, and we propose that this co
be less sensitive to the details of the boson-vortex Ham
tonian. This proposal is easily subject to experimental te
MeasureS(`) by determining the conductivity in the regim
\v@kBT, and see if the self-duality predictions continue
hold—we predict they willnot.

Our suggestion thatS(0) could be insensitive to differ-
ences in the interaction Hamiltonian of bosons and vorti
is motivated by the expectation that an important role
interactions is in the collisions that establish local thermo
namic equilibrium.33,68 As a result, the equations governin
the net hydrodynamic flow of bosons and vortices in t
collision-dominated regime could be more symmetrical th
the underlying Hamiltonian. In other words, we are propo
ing here that a true understanding of the experimentally
served duality near the quantum-critical point will emer
from a study of the crossover from the microscopic quantu
critical physics of the elementary excitations to the lo
frequency collision-dominated regime best described b
quantum Boltzmann equation.

We suggest that even the simple modelS is self-dual for
d52, n52 in its dc transport, i.e., 2pS(0)51 exactly for
the two-dimensional quantumXY rotor model. This model
has boson particle-hole excitations with short-range inter
tions, while the vortices in the dual representation have lo
range logarithmic~Coulomb ind52) interactions. However
at nonzeroT, this logarithmic interaction will be screened i
manner analogous to the classical Debye screening abov
Kosterlitz-Thouless temperatureTKT ; indeed the region
g5gc , T.0 of interest here is continuously connected
the g,gc , T.TKT region. So the effective interactions be
tween the bosons and vortices are both short range forT.0,
leaving open the possibility of self-dual behavior at low fr
quencies. There is now general agreement t
2pS(`)'0.3 for this model.19 This paper contains the firs
computation ofS(0), and as wenoted earlier near Eqs.~1.4!
and ~1.5!, it is quite remarkable, though possibly fortuitou
that our leading-order result forS(0) in the e expansion
differs from the self-dual value by less than 4%. Definitive
establishing this self-duality would, however, require tec
niques other than expansion ine532d, or 1/n, as it is only
possible precisely atd52, n52. It would be of great interes
to undertake higher-precision quantum Monte Carlo, ex
diagonalization, or high-temperature series studies w
carefully examining the reliability of the analytic continua
tion to real frequencies.@The reader may be interested in
recent article69 by one of us discussing this work in the co
text of recent results on nonzero-temperature dynam
properties ofS for other values ofd andn, including exact
solutions ind51.#
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our interest in this subject was stimulated by early disc
sions with N. Trivedi, S. L. Sondhi asked some probing a
invigorating questions, and E. Fradkin provided the stimu
for the discussion in Appendix A. This research was s
ported by the National Science Foundation Grant No. DM
96-23181.

APPENDIX A: TRANSPORT IN DISSIPATIVE
QUANTUM MECHANICS

We will consider the transport properties of a well-studi
and representative model from the subject of dissipa
quantum mechanics and related quantum-impu
problems.36 Our purpose here is to contrast thev and T
dependence of the transport coefficient in such a situa
with that of bulk critical points studied in the body of th
paper. We believe that such an exercise will help clarify
significance of our results for the reader. We thank E. Fr
kin for posing the questions which led to the analysis belo
We will use units with\5kB51 in this appendix.

Consider the motion of a quantum ‘‘particle’’ in a per
odic potential in the presence of a linear coupling to a Ohm
heat bath.36,70–77,38–40We represent the time-dependent co
dinate of the particle byX(t), and its analytic continuation to
imaginary-time byX(t), and the Fourier transform to imag
nary Matsubara frequencies byX(vn). The imaginary-time
effective action obtained after integrating out the degree
freedom of the heat bath is

S15
Ta

4p(
vn

uvnuuX~vn!u22yE dt cos@X~t!#. ~A1!

Here a is a dimensionless coupling constant characteriz
the strength of the Ohmic dissipation, andy measures the
strength of the periodic potential. Models like Eq.~A1! de-
scribe tunneling in a superconducting quantum interfere
device ~SQUID!, whereX is interpreted as the flux in th
SQUID, or tunneling between Luttinger liquids and quantu
Hall edge states,38,40,76,77whereX now becomes a bosoni
phase field.

The action~A1! can be written in a form local in time i
we extend the quantum degree of freedomX(t) to an infinite
number of degrees of freedomX(x,t) lying along the line
2`,x,`, with X(t)[X(x50,t); then S1 is equivalent
to71,73,74,76,38–40

S25
ac

8pE dxdtS @]xX~x,t!#21
1

c2
@]tX~x,t!#2D

2yE dt cos@X~t!#, ~A2!

wherec is an arbitrary velocity. Notice that the cosine inte
action acts only along the single linex50, identifying this as
a boundary critical phenomena problem.

We shall be interested here in the linear response of
system to a time-dependent force,F(t), acting on the par-
ticle. In imaginary time, in the presence of such a force

S1→S12E dtF~t!X~t!. ~A3!
-
d
s
-
-

e
y

n

e
-
.

c
-

of

g

e

e

In the presence of a time-independent force, we expect
particle to acquire a finite velocityV[dX/dt in steady state:
This allows us to define amobility G by V5GF. More gen-
erally, we expect a frequency-dependent responseG(v), de-
fined by

V~v!5G~v!F~v!. ~A4!

It is our purpose here to describe the behavior of the dyna
mobility G(v) at low v andT, and to compare it with the
results fors(v) obtained in the main part of the paper. W
also note thatG(v) is theconductanceassociated with tun-
neling between quantum Hall edge states40 at a valueg51/a
in the notation of Moonet al.77

Consider first the properties ofS1 under aT50 renormal-
ization group transformation under whicht→te2l . It is
found70–72 that a remains unrenormalized, while the pote
tial strengthy obeys the simple flow equation

dy

dl
52S 1

a
21D y. ~A5!

For aÞ1, this flow has fixed points only aty50 andy5`
~we will not consider the casea51 here!. For a,1, the
y50 fixed point is stable and they5` fixed point is un-
stable; for a.1 the stability of the fixed points is inter
changed. Notice thatbothfixed points are free-field theories
supplemented by free or fixed boundary conditions atx50.
This is a crucial difference from the bulk theoryS in which
the critical theory is interacting ford,3, and is primarily
responsible for the differences in the structure ofG(v) and
s(v) we shall find below.

Let us now write down the general scaling predictions
G(v) which follow from the renormalization group argu
ments. The system will be completely characterized by
single nonuniversal energy scaleTK , which measures its de
viation from theunstablefixed point. From the flow equa
tions ~A5! we can deduceTK;ya/(a21) for a.1; the per-
turbation theory to be discussed below showsTK;y2a/(12a)

also fora,1. The mobilityG has a zero scaling dimension
and therefore obeys the scaling form

G~v!5GaS v

T
,

T

TK
D , ~A6!

whereGa is a universal function. We now describe the low
T,v form of Ga for the casesa,1 anda.1 separately.

Consider firsta,1. In this casey flows to zero, and
therefore the periodic potential has vanishing strength at l
times and the particle is delocalized. Naive perturbat
theory iny is expected to be reliable. The mobility can com
puted in this perturbation theory using a Kubo formula: Su
a computation was carried out in Appendix A of Ref. 76, a
we find from their results

G~v!5
2p

a
2S T

TK
D 2~1/a21!

PaS v

T D1•••, ~A7!

where the ellipsis represents terms which are higher orde
T/TK—this result holds forv!TK , T!TK , but v/T can be
arbitrary. Notice that Eq.~A7! is consistent with Eq.~A6!.
The explicit form ofPa can be deduced after some analy
of Eq. ~A7! of Ref. 76:
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Pa~v̄ !5UGS 1

a
1

i v̄

2p
D U2

sinh~v̄/2!

v̄
2 i

tan~p/a!

v̄

3H UGS 1

a
1

i v̄

2p
D U2

cosh~v̄/2!2G2S 1

a D J ,

Pa~v̄→0!5
1

2
G2S 1

a D ,

Pa~v̄→`!5S v̄

p
D 2~1/a21!

2122/a@12 i tan~p/a!#,

P1/2~v̄ !5
1

2
1

v̄2

8p2
,

a simple special case~Refs. 78 and 76!. ~A8!

The overall normalization ofPa is arbitrary, as it can be
absorbed into a redefinition ofTK . The most important prop
erty of Eqs.~A7! and ~A8! is that the leading term in the
mobility, 2p/a, is independent ofv/T. Alternatively stated,
we have

G~v→0,T50!5G~v50,T→0!5
2p

a
. ~A9!

However, it is clear that this leading term is a property of t
y50 fixed point, and the independence onv/T is a conse-
quence of its free-field nature. The next, subdominant, te
arises from the leading irrelevant operator in the theory,
does indeed lead to a nontrivial dependence onv/T in the
universal functionPa . In contrast, the bulk modelS, not
being a free field at the critical point, had such av/T depen-
dence already in the leading term, without the inclusion
any irrelevant operators. This distinction is the central po
of this appendix.

Now turn toa.1. In this casey flows to`, implying that
the periodic potential localizes the particle atT50. The low-
T mobility clearly cannot be computed by a naive perturb
tion theory iny. Instead one can use a self-duality prope
of S1 ~Refs. 70, 72, and 76! under whicha↔1/a, and then
use perturbation theory. They5` fixed point now implies
that the leading scaling result for the mobility is simp
G50, and so thev→0 andT→0 limits commute again for
a trivial reason. The leadingv andT dependence is given b
an irrelevant operator, which now yields

G~v!5S T

TK
D 2~a21!

P1/aS v

T D1•••, ~A10!

where the scaling functionP1/a was defined in Eq.~A8!, the
corrections are higher order inT/TK , and the result holds fo
v!TK , T!TK , but v/T arbitrary. Notice also the result
e

m
d

f
t

-

G~v→0, T50!5G~v50, T→0!50, ~A11!

which arises from they5` free-field fixed point.
We also note for completeness the high-T behavior, with

T@TK , to allow contact with the quantum Hall edge sta
tunneling results of Ref. 77. The key is to note that t
a↔1/a duality interchanges small and largey. So the result
~A10! also describes theT@TK limit of the a,1 case, while
Eq. ~A7! describesT@TK for a.1. The main change is tha
the values ofTK ~denotedT̄K) inserted in these expression
will not be the same as those in the lowT limit. Perturbation
theory cannot determine the universal relationship betw
TK andT̄K : This requires use of the exact integrability ofS1,
as discussed in Refs. 38 and 73–75.

Finally, we suggest that the above commutativity of t
limits v→0 and T→0 ~and alsov→`, T→`, where `
refers to a scale much larger thanTK), and the free-field
nature of the fixed points may be the reason for the succ
of the imaginary-time Monte Carlo simulation of Moo
et al.77

APPENDIX B: GENERAL TRANSPORT EQUATION

Here, we will generalize the transport equation~3.25! of
the modelS to arbitraryn>2.

First considerO(n53). This case applies to quantum
antiferromagnets13 and the external ‘‘potentials’’ Ua

(a51,2,3) correspond to the three components of a m
netic field. Let us take the field pointing in the thre
direction: Ua5(0,0,H). For the antisymmetric matrices w
choose Lab

a 5eaab , the third-rank antisymmetric tenso
Note that such a field is the same as that in Eq.~2.1!. The
distribution functions become diagonal by changing ba
from a1,2,3 to

a6~k,t ![
a1~k,t !6 ia2~k,t !

A2
, a3~k,t !. ~B1!

The particle distribution function now has the three diago
componentsf 6 , f 3. The ‘‘magnetization’’ current is nonzero
only in thea53 direction and equals

J35QE ddk

~2p!d

k

«k
@ f 1~k,t !2 f 2~k,t !#. ~B2!

A key simplifying feature is that the distribution functionf 3
must be even in the external field, and will therefore only
modified at quadratic order inH. We will be satisfied by
working in linear response, in which casef 3(k,t)5n(«k).

Then.3 case is very similar: The only difference is th
there are nown22 values ofa for which f a(k,t)5n(«k) in
linear response.

The generalization of the transport equation~3.25! to
O(n) is now easily obtained by an application of Ferm
golden rule:
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S ]

]t
1lQ¹W H•

]

]kD f l~k,t !52
u0

2

9 E ddk1

~2p!d

ddk2

~2p!d

ddk3

~2p!d

1

16«k«k1
«k2

«k3

~2p!dd~k1k12k22k3!2pd~«k1«k1
2«k2

2«k3
!

3H 4 f l~k,t ! f 2l~k1 ,t !@11 f l~k2 ,t !#@11 f 2l~k3 ,t !#12 f l~k,t ! f l~k1 ,t !@11 f l~k2 ,t !#

3@11 f l~k3 ,t !#1~n22! f l~k,t !n~«k1
!@11 f l~k2 ,t !#@11n~«k3

!#

1
~n22!

2
f l~k,t ! f 2l~k1 ,t !@11n~«k2

!#@11n~«k3
!#24@11 f l~k,t !#@11 f 2l~k1 ,t !#

3 f l~k2 ,t ! f 2l~k3 ,t !22@11 f l~k,t !#@11 f l~k1 ,t !# f l~k2 ,t ! f l~k3 ,t !2~n22!@11 f l~k,t !#

3@11n~«k1
!# f l~k2 ,t !n~«k3

!2
~n22!

2
@11 f l~k,t !#@11 f 2l~k1 ,t !#n~«k2

!n~«k3
!J ~B3!

with l561. The analysis of the linearized form of this equations is similar to that for~3.25!, but will not be presented here
Such an analysis will lead to a determination of the spin conductivity,s, which is related to the spin diffusion constantDs by
the Einstein relation

s5Dsx, ~B4!

wherex is the uniform spin susceptibility. Results for thex at nonzeroT above the critical point have been given earlier
the 1/n ~Refs. 27 and 13! ande ~Ref. 29! expansions.

APPENDIX C: COMPUTATIONS WITH THE COLLISION TERM

We describe here some of the steps in between the original transport equation~3.25! and the linearized form~3.28!.
First we insert the parametrization~3.22! into Eq.~3.25!, and linearize in the the external electric field. Then, notice tha

the collision term the unknown functionc appears only in the integrals over the radial components of the momenta
angular integrals involve only known functions and can be performed analytically. As already noted in Sec. III B, the in
in the collision term can be done directly ind53 to obtain the leading result, and so all the computations here are ford53.
One needed angular integral is

E dk3g~k3!E dVk1
dVk2

dVk3
d3~k1k32k12k2!d~k1k32k12k2!5

8p2

kk1k2~k11k22k!
g~k11k22k!I 1~k,k1 ,k2!,

~C1!

whereg(k3) is some function ofk3. The result involves the functionI 1 which is given by

I 1~k,k1 ,k2!55
0 k11k2<k,

k11k22k k11k2>k andk1<k andk2<k,

k1 for k1<k andk2>k,

k k1>k andk2>k,

k2 k1>k andk2<k.

~C2!

A second angular integral has a single vector momentum in the integrand

E dk3g~k3!E dVk1
dVk2

dVk3
k1d3~k1k12k22k3!d~k1k12k22k3!52

8p2k

3k3k1k2~k1k12k2!
g~k1k12k2!I 2~k,k1 ,k2!,

~C3!

where now

I 2~k,k1 ,k2!55
0 k2>k1k1 ,

k31k1
312k2

323k2
2~k1k1!13kk1k2 k2<k1k1 andk2>k andk2>k1 ,

k3 for k2>k andk2<k1 ,

22k2
313k2

2~k1k1!23kk1k2 k2<k and k2<k1 ,

k1
3 k2>k1 andk2<k.

~C4!
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Finally, we also need a variation of Eq.~C3!:

E dk3g~k3!E dVk1
dVk2

dVk3
k1d3~k1k22k12k3!d~k1k22k12k3!5

8p2k

3k3k1k2~k1k22k1!
g~k1k22k1!I 3~k,k1 ,k2!,

~C5!

where

I 3~k,k1 ,k2!55
0 k1>k1k2 ,

k32k1
322k2

323k2
2~k2k1!13kk1k2 k1<k1k2 andk1>k andk2<k1 ,

k3 for k1>k andk2>k1 ,

22k2
323k2

2~k2k1!13kk1k2 k1<k and k2<k1 ,

k1
3 k2>k1 andk1<k.

~C6!

Using Eqs.~C1!–~C5! in the linearized form of Eq.~3.25!, the integral equation satisfied byc becomes

2 ivc~k,v!1
1

k

]n~k!

]k
52

pe2

75k4H 18c~k,v!k2

n~k!
E

0

`

dk1dk2I 1~k,k1 ,k2!n~k2!n~k1!@11n~k11k22k!#12@11n~k!#

3E
0

`

dk1dk2

c~k1 ,v!

n~k1!
I 2~k,k1 ,k2!n~k2!n~k1k12k2!

24n~k!E
0

`

dk1dk2

c~k1 ,v!

n~k1!
I 3~k,k1 ,k2!n~k2!@11n~k1k22k1!#J . ~C7!
o
o
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This can be turned into the form~3.28! by evaluating the
integrals overk2, which can also be done analytically. To d
this, it is first necessary to separate the products of two B
functions each withk2 in their arguments, into terms in
which only one Bose function involvesk2: This is done by
repeated use of the identity

n~k21a!n~k21b!5n~b2a!n~k21a!1n~a2b!n~k21b!,
~C8!

which is valid for anya, b. From the forms of the functions
I 1,2,3 above, it is now clear that we only need integrals ofk2
over Bose functions ofk2, times powers ofk2. The general
integral needed is of the form

E
a

b

dk2

k2
n

e~k21c!/T21
5E

a

`

dk2

k2
n

e~k21c!/T21

2E
b

`

dk2

k2
n

e~k21c!/T21
, ~C9!

where n is an integer, andc is a real number. Changin
variables on the right-hand side, we can rewrite the first te
on the right-hand side as

E
a

`

dk2

k2
n

e~k21c!/T21
5E

0

`

dk2

~k21a!n

e~k21c1a!/T21
, ~C10!

and similarly for the second term. Expanding the polynom
in the numerator, we finally conclude that all of the integr
over k2 can be reduced to the following basic integral:
se

m

l
s

E
0

`

dk2

k2
n

e~k21a!/T21
5Tn11G~n11!Lin11~e2a/T!.

~C11!

Here Lip(z) is the polylogarithm function of orderp, defined
by the series

Li p~z!5 (
n51

`
zn

np
. ~C12!

Notice Lip(1)5z(p).
After performing the integrals overk2 as described above

Eq. ~C7! takes the form~3.28!. We will not display explicit
expressions forF1,2(k,k1) here as they are quite lengthy an
not particularly informative. We used aCERNLIB routine for
numerical evaluation of Lip(z) for 0,z,1: This allowed
very rapid determination of the kernel of the integral equ
tion ~3.28!.

APPENDIX D: ORDER PARAMETER SUSCEPTIBILITY

This appendix will review the results of Ref. 29 on th
finite-temperature crossovers in the order parameter sus
tibility x5^fafa& ~no summation overa). Reference 29
was concerned with making statements correct to all ord
in e and to understanding the crossover to classical crit
fluctuations in the vicinity of the finite-temperature pha
transition line, and this required a rather involved analys
Here, we are mainly interested in low-order results at fin
temperatures above the quantum-critical point and the qu
tum disordered phase: In this case the necessary results
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be obtained directly in a self-consistent Hartree-Fock-l
analysis, as we now show.

The self-consistent Hartree-Fock susceptibility ofS is ob-
tained by summing all the one-loop tadpole diagrams;
leads to the expression

x~k,vn!5
1

vn
21k21m2~T!

, ~D1!

wherem2(T) is given by the solution of the equation

m2~T!5t01m0c
2

1u0S n12

6 DT(
en

E ddq

~2p!d

1

en
21q21m2~T!

5t01u0S n12

6 D FT(
en

E ddq

~2p!d

1

en
21q21m2~T!

2E dd11p

~2p!d11

1

p2G . ~D2!

In the second equation we have inserted the leading resu
the value ofm0c

2 . We are following the convention here o
denoting (d11)-dimensional spacetime momenta byp and
d-dimensional spatial momenta byk,q. In the critical region,
the couplingu0 is of ordere, and so one might think that i
is permissible to setm2(T)5t0 on the right-hand side of Eq
~D2! and obtain a result correct to ordere2. However, this is
not adequate for our purposes for two reasons.29

~i! The resulting expression form2(T) is not analytic as a
function of t0 at t050 for T.0. This analyticity is required
on the physical ground that there can be no thermodyna
singularity atT.0 at the quantum-critical couplingt050.

~ii ! At T.0 above the quantum-critical couplingt0 there
is a contribution tom2(T) of ordere3/2 which is missed.

To proceed, we can either use the analysis of Ref. 29
directly analyze the singularity structure of Eq.~D2! as
u0→0. By either method, it can be shown that it is perm
sible to setm2(T)5t0 in only theenÞ0 terms on the right-
hand side of Eq.~D2!. To describe this, we write

m2~T!5R~T!1dm2~T!, ~D3!

where

R~T!5t01u0S n12

6 D F E ddq

~2p!dS T (
enÞ0

1

en
21q21t0

1
T

q2D
2E dd11p

~2p!d11

1

p2G ~D4!

was a quantity introduced in Ref. 29, and

dm2~T!5u0S n12

6 DTE ddq

~2p!dS 1

q21m2~T!
2

1

q2D .

~D5!
e

is

or

ic

or

-

Finally, on the right hand side of Eq.~D5! we replacem2(T)
by R(T). The resulting expression fordm2(T) when inserted
along with Eq.~D4! into Eq.~D3! gives us our final result for
m2(T).

We will now manipulate the above result form2(T) into a
form which explicitly displays its universal scaling natur
First replace the bare couplings by renormalized couplin
to the order we are computing things, this is equivalent
performing the substitutions79,80 u05meg/Sd11 and
t05t@11(n12)g/(6e)# wherem is a renormalization mo-
mentum scale,g is a dimensionless coupling constant, andt
is a renormalized coupling measuring the deviation from
critical point. Expanding the result to orderg, we find that
the poles ine cancel. Finally, we setg at its fixed point
value79,80 g5g* 56e/(n18). Our final result form2(T)
then becomes

m2~T!5R~T!2eS n12

n18D2pTAR~T!, ~D6!

where the second term on the right-hand side is the con
bution of dm2(T). A somewhat subtle analysis, discussed
some length in Ref. 29, is required to obtain the followi
final form for R(T):

R~T!5tS 11e
n12

n18
ln

T

m D1eT2
n12

n18
GS t

T2D , ~D7!

with the crossover functionG(y) given by

G~y!522E
0

`

dqF lnS 2q2
cosh~Aq21y!21

q21y
D 2q

2
y

2Aq211/e
G . ~D8!

This form of G(y) is valid for both negative and positivey
~when the argument of the square root is negative we use
identity coshix5cosx) and is easily shown to be analytic a
y50 where

G~0!5
2p2

3
, dG/dy~0!52.453 808 582 . . . .

~D9!

The result~D7! can therefore be used on both sides of t
critical coupling t50, and the required analyticity ofT.0
properties at the critical coupling has been achieved. A
notice that att50, R(T) is of ordere, and so the result~D6!
contains a term of ordere3/2.

Finally, let us expressm2(T) in terms of experimentally
measurable energy scales. The energy scales have to b
fined differently fort.0 andt,0.

For t.0 we choose theT50 energy gap,D, to measure
the deviation from the critical point. Using the relation29

D25m2(t/m2)2n in Eq. ~D7! „n51/21e(n12)/@4(n18)#
is the correlation length exponent… we get our final universa
expression forR(T), valid everywhere above the quantum
disordered~insulating! phase (t.0):
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R~T!5D2S 11e
n12

n18
ln

T

D D1eT2
n12

n18
GS D2

T2 D .

~D10!

Notice that the arbitrary momentum scalem has disappeared
and combined with Eq.~D6! we now have a result form2(T)
expressed solely in terms of the measurable energy scalD
andT.

For t,0, our results are confined to the normal pha
T.Tc(t). We measure the deviation from the critical poi
by the value of the superfluid stiffness,rs at T50 ~for n53,
rs is the spin stiffness of the ordered antiferromagne
phase!. To obtain a quantity with the dimensions of ener
we define

r̃ s[@~32d!rs#
1/~d21!. ~D11!

The numerical factors are for future convenience; also no
that in d52, r s̃[rs . Then we use the expression forrs in
,
,

ev
s.

n

gs

od

a,
.

.
da

.

n

hy

.

e

c

e

terms oft andm in Ref. 29 to expresst in terms ofr̃ s andm
in Eq. ~D7!. Then all them dependences cancel as befo
and we get our final result

R~T!52
r̃ s

2

n18S 12
e

2~n18!
1

3e

n18
ln

2

n18

1e
n12

n18
ln

T

r̃ s
D 1eT2

n12

n18
GS 2

r̃ s
2

~n18!T2D .

~D12!

Again combined with Eq.~D6! we now have an expressio
for m2(T) in terms of the superfluid stiffness of the order
phase atT50 for t,0 andT.Tc(t).
y-

ic,

tt.

.

s.

v.

J.

s.

-
y

1A.F. Hebard, inStrongly Correlated Electronic Materials~The
Los Alamos Symposium 1993!, edited by K.S. Bedell, Z. Wang
D.E. Meltzer, and E. Abrahams~Addison-Wesley, Reading
MA, 1994!, p. 251, and references therein.

2Y. Liu and A. M. Goldman, Mod. Phys. Lett. B8, 277~1994! and
references therein.

3A. Yazdani and A. Kapitulnik, Phys. Rev. Lett.74, 3037~1995!.
4S. -Y. Hsu, J. A. Chervenak, and J. M. Valles, Jr., Phys. R

Lett. 75, 132~1995!; J. A. Chervenak and J. M. Valles, Jr., Phy
Rev. B54, R15 649~1996!.

5A. J. Rimberg, T. R. Ho, C. Kurdak, J. Clarke, K. L. Campma
and A. C. Gossard, Phys. Rev. Lett.78, 2632~1997!.

6H. S. J. van der Zant, F. C. Fritschy, W. J. Elion, L. J. Geerli
and J. E. Mooij, Phys. Rev. Lett.69, 2971~1992!.

7S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. M
Phys.69, 315 ~1997! and references therein.

8S. Das Sarma, inPerspectives in Quantum Hall Effects, edited by
S. Das Sarma and A. Pinczuk~Wiley, New York, 1997!, p. 1,
and references therein.

9C. Castellani, C. DiCastro, and M. Grilli, Phys. Rev. Lett.75,
4650~1995!; G. S. Boebinger, Y. Ando, A. Passner, T. Kimur
M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N
Ichikawa, and S. Uchida,ibid. 77, 5417 ~1996!; C. M. Varma,
Phys. Rev. B55, 14 554~1997!; J. M. Tranquada, J. D. Axe, N
Ichikawa, A. R. Moodenbaugh, Y. Nakamura, and S. Uchi
Phys. Rev. Lett.78, 338 ~1997!; G. Aeppli, T.E. Mason, S.M.
Hayden, and H.A. Mook~unpublished!.

10S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M
Pudalov, and M. D’Iorio, Phys. Rev. B50, 8039 ~1994!; S. V.
Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, a
V. M. Pudalov, ibid. 51, 7038 ~1995!; S. V. Kravchenko, D.
Simonian, M. P. Sarachik, W. Mason, and J. E. Furneaux, P
Rev. Lett.77, 4938~1996!.

11A. M. Finkelstein, Sov. Phys. JETP57, 97 ~1983!; Z. Phys. B56,
189 ~1984!; C. Castellani and C. DiCastro, inLocalization and
the Metal-Insulator Transition, edited by H. Fritzsche and D
Adler ~Plenum Press, New York, 1985!; D. Belitz and T. R.
.

,

,

.

,

d

s.

Kirkpatrick, Rev. Mod. Phys.66, 261 ~1994! and references
therein.

12H. Stupp, M. Hornung, M. Lakner, O. Madel, and H. v. Lohne
sen, Phys. Rev. Lett.71, 2634 ~1993!; 72, 2122 ~1994!; S.
Bogdanovich, P. Dai, M. P. Sarachik, and V. Dobrosavljev
ibid. 74, 2543~1995!.

13A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B49, 11 919
~1994!.

14M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Le
64, 587 ~1990!.

15M.-C. Cha, M. P. A. Fisher, S. M. Girvin, Mats Wallin, and A. P
Young, Phys. Rev. B44, 6883~1991!.

16M. P. A. Fisher, Phys. Rev. Lett.65, 923 ~1990!.
17X. G. Wen and A. Zee, Int. J. Mod. Phys. B4, 437 ~1990!.
18A. P. Kampf and G. T. Zimanyi, Phys. Rev. B47, 279 ~1993!.
19R. Fazio and D. Zappala, Phys. Rev. B53, R8883~1996!.
20I.F. Herbut, cond-mat/9704134~unpublished!.
21K. Runge, Phys. Rev. B45, 13 136~1992!.
22E. S. Sorensen, M. Wallin, S. M. Girvin, and A. P. Young, Phy

Rev. Lett.69, 828 ~1992!.
23M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Lett.71, 2307

~1993!; N. Trivedi, R. T. Scalettar, and M. Randeria, Phys. Re
B 54, R3756~1996!.

24G. G. Batrouni, B. Larson, R. T. Scalettar, J. Tobochnik, and
Wang, Phys. Rev. B48, 9628~1993!.

25M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P. Young, Phy
Rev. B49, 12 115~1994!.

26S. Sachdev and J. Ye, Phys. Rev. Lett.69, 2411~1992!.
27A. V. Chubukov and S. Sachdev, Phys. Rev. Lett.71, 169~1993!;

71, 2680~E! ~1993!.
28S. Sachdev, inProceedings of the 19th IUPAP International Con

ference on Statistical Physics, Xiamen, China, 1995, edited b
Hao Bailin ~World Scientific, Singapore, 1996!, p. 289.

29S. Sachdev, Phys. Rev. B55, 142 ~1997!.
30B.L. Altshuler and A.G. Aoronov, inElectron-Electron Interac-

tions in Disordered Systems, edited by A.L. Efros and M. Pollak
~North-Holland, Amsterdam, 1985!.



ui
. B
n-

s

ev

ll

e

f

io
en
en
r a
in

e

th
ca
nt-
in

e

,

on-
.

ten-
lli-

-

,

.

a

56 8733NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM . . .
31P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435
~1977!.

32Similar T-dependent rates appear in the marginal Fermi-liq
scenario for doped cuprate compounds of C. M. Varma, P
Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Rucke
stein, Phys. Rev. Lett.63, 1996~1989!, which does not rely on a
quantum phase transition.

33L. P. Kadanoff and G. Baym,Quantum Statistical Mechanic
~Benjamin, New York, 1962!.

34L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. R
Lett. 71, 2638~1993!.

35Mesoscopic Phenomena in Solids, edited by B.L. Altshuler, P.A.
Lee, and R.A. Webb~North-Holland, Amsterdam, 1991! and
references therein.

36U. Weiss,Quantum Dissipative Systems, ~World Scientific, Sin-
gapore, 1993! and references therein.

37B. L. Altshuler, Pis’ma Zh. E´ ksp. Fiz.51, 530~1985! @JETP Lett.
41, 648~1985!#; P. A. Lee and A. D. Stone, Phys. Rev. Lett.55,
1622 ~1985!.

38P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev. B52,
8934 ~1995!.

39F. Lesage, H. Saleur, and S. Skorik, Phys. Rev. Lett.76, 3388
~1996!; Nucl. Phys. B474, 602 ~1996!.

40C. L. Kane and M. P. A. Fisher, inPerspectives in Quantum Ha
Effects, edited by S. Das Sarma and A. Pinczuk~Wiley, New
York, 1997!, p. 109, and references therein.

41See, e.g., V.N. Popov,Functional Integrals in Quantum Field
Theory and Statistical Physics~Reidel, Boston, 1983!, Sec. 6.

42M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fish
Phys. Rev. B40, 546 ~1989!.

43S. Sachdev and K. Damle, Phys. Rev. Lett.78, 943 ~1997!.
44It is worth noting here a key difference between our analysis oS

in d52, and the nonzero-temperature transport ofd51 Lut-
tinger liquids as discussed in Ref. 45. The bosonic formulat
of the latter model has a boson with a single flavor; the mom
tum and group velocity are not equal, and so the total mom
tum and charge current are not proportional to each other fo
arbitrary distribution function of the particles. Nevertheless,
this Luttinger model, there is zero resistance in the absenc
umklapp scattering~Ref. 45!. The crucial distinction is thatS
hasn.1 flavors of bosons~see Sec. III! while the model of Ref.
45 has only one. As a result, any current-carrying state of
latter model has a nonzero momentum which cannot de
while it is possible for the former model to have a curre
carrying state with vanishing momentum. So the important po
is not just that the total momentum and charge current ofS are
not the same, but that this difference arises from the presenc
n.1 flavors of bosons.

45T. Giamarchi and A. J. Millis, Phys. Rev. B46, 9325~1992!.
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