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We describe the nature of charge transport at nonzero temperairexb¢ve the two-dimensional}
superfluid-insulator quantum-critical point. We argue that the transport is characterized by inelastic collisions
among thermally excited carriers at a rate of orligl/#. This implies that the transport at frequencies
w<<kgT/# is in the hydrodynamic, collision-dominatédr incoherentregime, whilew>kgT/# is the colli-
sionless(or phase-coherentegime. The conductivity is argued to b&h times a nontrivial universal scaling
function of 2 w/kgT, and not independent dfw/kgT, as has been previously claimed or implicitly assumed.

The experimentally measured dc conductivity is the hydrodyndmitkg T— 0 limit of this function, and is a
universal number timeg?/h, even though the transport is incoherent. Previous work determined the conduc-
tivity by incorrectly assuming it was also equal to the collisionleagkgT— oo limit of the scaling function,

which actually describes phase-coherent transport with a conductivity givendifeeent universal number
timese?/h. We provide a computation of the universal dc conductivity in a disorder-free boson model, along
with explicit crossover functions, using a quantum Boltzmann equation and an expansief8 ind. The case

of spin transport near quantum-critical points in antiferromagnets is also discussed. Similar ideas should apply
to the transitions in quantum Hall systems and to metal-insulator transitions. We suggest experimental tests of
our picture and speculate on a route to self-duality at two-dimensional quantum-critical points.
[S0163-18207)07438-9

[. INTRODUCTION isfy fhw<kgT. In contrast, all of the theoretical
analytical*=?° and exact diagonalizatiéh work has com-
The charge transport properties of systems near a zerguted the universal conductivity &t=0, which is equivalent
temperature quantum phase transition have been the subjdotthe regimef w>kgT. Numerical Monte Carlo work has
of a large number of experimental studies in the last fewalso measured the universal conductivity>~>*but it in-
years. Systems in two spatial dimensions have been of sp&olves an analytical continuation from imaginary Matsubara
cial interest, and important examples are the superfluidfrequencies2mpkgT/% (p=1, integey to real frequencies:
insulator transition in disordered thin fills and Josephson Such a procedure is insensitive to any structure in the con-
junction array$, the transitions from quantized Hall ductivity atZiw<kgT, and so these measurements are effec-
plateaus;® a quantum-critical point in the doped cuprate tively also in the regimeiw>kgT. This discrepancy, be-
compounds, and a recent quantum transition in Si metal- tween theory and experiment, in the orders of limitwof>0
oxide-semiconductor field-effect transistafdOSFET'S.1®  andT—0 was noted by Chat al*® and Wallinet al.?® but
In three dimensions, the metal-insulator transition in dopedhey asserted that the conductivity approaches a universal
semiconductors has seen many years of stidynd evi- value, at low temperatures and frequencies, whichite-
dence for scaling collapse of data near the quantum-criticgdendentof the value of the ratidi w/kgT.
point has finally begun to emerd@We shall present the In this paper, we shall argue that the critical conductivity
results of this paper using the language of the superfluidis in factnotindependent of w/kgT, and is instead a highly
insulator transition in thin films in zero external magnetic nontrivial, but universal, function of w/kgT; this shall be
field, but we believe our ideas are much more general andxplicity demonstrated in a computation of the crossover
also have significant implications for the other systems notefunction in a model of disorder-free bosons. We shall show
above. We shall also discuss the extension of our results tihat the physics of thé o>kgT andz w<<kgT regimes are
the case ofspin transport near quantum-critical points in quite distinct, and shall provide a model computation of the
two-dimensional antiferromagnets. universal properties in the limit w<<kgT relevant to dc
A particular focus of the experiments on the superfluid-transport measurements. We hope that our results will stimu-
insulator transition has been the theoretical prediction, madkte experimental measurements of the ac conductivity at fre-
in the seminal work of Fisheet al'* and Chaet al,'® that  quencies which can explore the crossovet at~kgT.
the conductivity at the critical point in two dimensions is  Our arguments rely on the physical picture of the-0
nonzero and equals the quantum unit of conductaréhj dynamics at quantume-critical points developed in the context
times a universal number. However, there remains an imporef quantum antiferromagnet®!32829t was argued in these
tant dichotomy between experimental and theoretical studieworks that the order parameter dynamicsrétaxational
of the superfluid-insulator transition in disordered thin films,with a relaxation rate~-kgT/#. Using the orientation of the
which is crucial to our discussion. All experiments are per-order parameter to define a phase, we then obtain a phase
formed at a low, but nonzero temperatureand have mea- relaxation rate X,~kgT/7%, and this rate is analogous to the

. .y . . . . ‘P . .
sured(dc) conductivities at frequencies, which easily sat- phase relaxation rate of disordered mefhlthe latter rate is
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much smaller thakgT/# in the disordered metdf, but be- N
comes of ordekgT/% at the metal insulator transition—see

Sec. IV D). At time scales of order,, the relaxational dy-

namics cannot be described by effective classical models of z!
the types discussed in Ref. 31, as a necessary condition for
classical behavior is that the relaxation rate be much smaller
thankgT/%: The dynamics was therefore dubbed “quantum
relaxational.” Related ideas were applied to charge transport
in the insightful article by Sondteét al.” Dynamic order pa-
rameter fluctuations also carry charge, and therefore inelastic
collisions between thermally excited charge-carrying excita-
tions will lead to a transport relaxation timg. As the typi-

cal energy exchanged in a collisionkigT, 7, is also of order

7,, and therefor&

\4

)

FIG. 1. A sketch of the expected form of the real gaftof the

1 kgT universal scaling functiol appeaﬂng in the scaling forii.2) for
T (1.)  the conductivity, as a function ab=7%w/kgT. There is a Drude-

tr like peak from the inelastic scatterings between thermally excited
The missing coefficient in Eq(1.1) is a universal number carriers atw of order unity. At largefw, there is a crossover to the
whose value will depend upon the precise definition 6,1/  collisionless regime whers’ ~ w@~2/Z as .
It is perhaps worth noting explicitly here that E4.1) holds
for all values of the dynamic exponent[A scenario under
which Eq.(1.2) could be violated is discussed in Sec. I{.B

The collisions leading to Eq1.1) conserve total energy and, : = .
in the case of translationally invariant systems, total momenth"’lnh to define the scale of the conductivityVe note again

tum. Note that conservation of total momentum should notthat th? dependence on a universal functiof @fksT, with
be confused with conservation of the totlarge current— no arbitrary frequency scale factors, holds for all values of

the latter is not conserved in any of the systems of interestthe dylnam|c egponeml icalslng;?j al f;;rg)ctlorr]] diw/k%T.
here, even in the continuum scaling linfthe totalcharge was aiso notg recently by Sondet al,” but they used it .
densityis, of course, always conserved only to establish the frequency dependence of the conductiv-

Now general consideratiofissuggest that there are two ity away from the Critic_:al coupling,_ \.Nith an eye to un(_jer-
qualitatively different regimes of charge transport at nonzer<§t"’mdmg recent dynamical c_onductlwty measurements in the
frequencies: (i) w7,<1: the hydrodynamic, incoherent, quantum Hall systedf (we will comment on these measure-
collision-dominated regime, where charge transport is confleNts in Sec. IV D Indeed, their scaling forms are consis-
trolled by repeated, inelastic scatterings between preexistin nt with a conductivity which is independent &iv/kaT

thermally, excited carriers; the conductivity should exhibit a ght at the cr|.t|cal pqmt, and hgnce with |_m5pI|C|t or explicit
“Drude” peak as a function of frequencyil) wr,>1: the 2ssumptions in earlier theoretical resdfts® One of our
u oints here is that there is a nontrivial dependence on

high-frequency, phase-coherent, collisionless regime, whe T alreadvat the critical i d that this d
the excitations created by the external perturbation are solefy®’"8 aireadyat the critical coupling, and that this depen-
ence means that previous analyses of the universal conduc-

responsible for transport, and collisions with thermally ex- . he critical i hor did o
cited carriers can be neglected. Essentially all previous thelV'y at the C”.t'c? (I:oup Ing eit %r_zé hnot c?mp s 0(;
oretical analyses have been restricted to the collisionless rd/€'€ not particularly sensitive t6,*" the value of the dc
gime. conductivity.

We can sharpen our description of the crossovers in the -6t US now tum to the expected dependence of the con-

e ; ;
vicinity of w~1/7, by expressing them in universal scaling ductivity on theZ w/kgT as expressed in the universal func-

forms. We will consider systems where the order parametefion %(w). The discussion here will apply to realistic sys-
quanta carry “charge’Q. For the superfluid-insulator tran- tems at their critical point fofiw andkgT much less than a
sition of bosons, we hav®=2e and we measure charge noncritical microscopic energy scale, e.g., the repulsion en-
transport by the dynamic conductivity(w). For the Nel-  €rgy U between two bosons on the same site of a lattice
paramagnet transition in antiferromagnets, we h@vegug ~ Model. The physical arguments below Hg.1) have been
(g is the Bohr magneton angl is the gyromagnetic ratjo  'ecast in a qualitative sketch of the real part of the function
we and measure spin transport by the “spin conductivity” 2 (w) in Fig. 1. The dc conductivity is determined by the
[also denoted by(w)] which determines the spin currentin yalue of the real universal numb2x0). At small w there is
response to a uniform gradient in an external magnetic fielda Drude-like peak coming from the energy-exchanging col-
In d spatial dimensions the dynamic conductivityobeys at  |isions among thermally excited carriers. At larger frequen-

(length¥( time)~* (for z=1, ¢ is a velocity, andS (w) is a
universal scaling functiorinote that we are using rather

the quantum-critical coupling cies there is crossover to transport by particle-hole pairs cre-
Qu[kaT\ @22 [ fo ated by the external source. Ae—> we expect that
o(0)=27 2 2<ﬁ) (1.2 3(w)~(—iw)@ 22 o thato becomes independent Bfin
B

the collisionless regime. Id=2, 3() is a real, finite, uni-
wherez is the dynamic critical exponent,is a nonuniversal versal number determining the high-frequency conductivity;
microscopically determined quantity with the dimensions ofS (=) was the number computed in earlier analy¥eéand
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a universal number, and remarkably, the dc conductance re-
mains universally related te?/h.

z(0) (i) The community has gained much intuition on the
X nonzero-temperature transport properties of interacting quan-
tum systems from recent studies of dissipative quantum me-
o 3 (09) chanics and a number of related quantunpurity

/ problems®®*8-40The scaling properties of such models are

given by the theory oboundarycritical phenomema, in con-

trast to thebulk critical phenomena of interest in this paper.
We discuss the transport properties of a class of boundary
problems in Appendix A: The leading term in the transport
coefficient is found to be independent &f T, and depen-
dence onw/T arises only upon consideration of subleading
terms at lowT. However, as we argue in Appendix A, this
behavior is understood by the fact that the fixed point con-
value is given by the universal numb&(0). For all ©>0, trolling the low-T behavior is simply dree-fieldtheory, and

(11Q?) =3 (). Q is the “charge” of the order parameter: For _w/T dependence arises only upon considering the_leading
the superfluid-insulator transitio@ = 2e, while for quantum anti- i'relevant operator. In contrast, the bulk theories of interest

ferromagnet€ = gug . here differ in a crucial respect: They hawteractingcritical
theories and therefore, we argue, contaifilr dependence

not the dc conductivity which is given by (0). This is  already in the leading term, before the inclusion of any irrel-
illustrated in Fig. 2 which plots the form of evantoperators.
(#/1Q?) o (w, T—0) in d=2: Its value atw=0 is given by (iii) Scaling as a function of/T does not hold for the
3.(0), while for all >0 it equals3(x). It is likely, al-  Anderson localization transition of noninteracting electrons.
though not established, th&t(0)>3 (). Note the differ- The frequency obeys conventional scaling with dimengion
ence from Fermi liquid theory, where the Drude peak be-but the behavior of temperature is rather different and non-
comes aé function with nonzero weight a¥—0. In the  universal. Analytic theories for such transition are available
present situation, the weight in the Drude-like peak vanishegnly for d>2, and in these the primary effect of temperature
like ~T(*2=2)2 35 T0, and ind=2 and the Drude-like is in the nonuniversal, superlinear h dependence of the
peak reduces to tl’ﬁjng|ep0intw: 0 where the Conductivity phase-breaking rate which acts like a finite-size-like infrared
is given by3(0). Thescaling properties of thd=1, z=1 cutoff to the critical properties. See also Sec. IV B. In con-
case are similar to those of a Fermi liquid. trast, the models of interest here have interactions, and in-

There is a certain critical phenomena and Sca"ng perspe@JaStiC Scattering is central to Understanding their universal
tive in which the resul{1.2), and its implications discussed cfitical properties; in some respects scaling with respect to
above, may seem quite natural, and even somewhat “trivial"temperature is simpler, as its naive scaling dimensionisf
as they follow directly from the fact thab and T have the ~Nnow valid.
same scaling dimension. Nevertheless, its importance has [N this paper we will provide explicit results for the cross-
been overlooked in essentially all previous work. This isover functionX (w) in a simple, disorder-free field-theoretic
probably because there are complementary perspectivesiodel for the superfluid insulator transition that was intro-
more common among investigators in this field, from whichduced by Chaet al!® Near the quantum-critical point, this
Eq. (1.2 implies physics that is surprising and even some-model becomes equivalent to the familiar particle-hole-
what radical. In particular, current ideas in quantum transporsymmetric¢* field theory with the effective imaginary time
theory”® and dissipative quantum mechariftsan lead one (7) action
to rather different picture, as we now itemize explicitly.

(i) There have been a number of previous situations in hikgT
which charge transport properties have been found to be uni- S= f dff d¥x
versally related to the quantum unit of conductane#h; 0
these include the quantized Landauer conductance of ballis- u
tic transport in one-dimensional wires, and the universal con- + (mgc+t0)¢i]+ _°(¢i)2] ) (1.3
ductance fluctuations of mesoscopic metafs.However, in 4!
all previous cases, these universal properties have arisen in a
“phase-coherent” regime, i.e., they are associated withHere ¢, is a n-component field and the action h&(n)
physics at scales shorter than the mean distance between gymmetry[the O(n) index « is implicitly summer ove}.
elastic scattering events between the carriers. For the case bhe spatial and temporal gradient terms are both second or-
ad=2 quantum-critical point discussed above, the universafler, and so the action has a “Lorentz” invariance watthe
numbers, (=) is associated with quantum coherent transportyvelocity of light, and as a result the dynamic critical expo-
and is therefore the analog of these earlier results. In comment z=1. The bare “mass” term has been written as
trast, the value of(0) is controlled by repeated inelastic m3,+t, so that theT=0 quantum-critical point is ay=0,
scattering events, and therefore the dc transport is clearly ianduy measures the strength of the quartic nonlinearity. The
what would traditionally be identified as the “incoherent” superfluid-insulator transition is described by the case?
regime. Nevertheless, we have argued above3l{@l) isa where V'=¢;+ig¢, is the usual complex superfluid order

\4

®

FIG. 2. Universal form of the conductivity(w,T—0) ind=2;
the vertical scale is measured in units 7fQ2. Only the w=0

SL(5,80%+ (T
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parameter. We shall also be interested in the aases
which applies to quantum-critical points in quantum
antiferromagneté’

It should be noted that the continuum modefor n=2,
with its double time derivative term, differs from the usual
continuum action for nonrelativistic bosdhsvhich has only U
a single time derivative of a complex scalar field. The total “€
momentum and charge current of the latter model are pro- T
portional to each other. When these nonrelativistic bosons ®
are placed under the influence of an effective lattice poten- l
tial, with an average of an integer number of bosons per . el . g
lattice site, then after integrating out certain local high-
energy modes, one obtains the continuum mdtlas a low-
energy effective theorﬁlz. The charge current and momentum function s, in Eq. (1.2 for the conductivity at the quantum-critical
operators ofS are now no longer simply related to each otherCOUIDIing of the modelS defined in Eq.(1.3. The spatial dimen-
asS has excitations with both positive and negative charge%ionamy d=3—¢, and € is assumed to be small. As before

?S Wlet thg see mf tSheC. i, th[e t?ttil mom?ntum (;S prOpt.Or' w=hawlkgT. The Drude peak at sma# has a width of ordee?
lonal 1o thesumaor tn€ currents ot the posilive and negative ;.4 5 height of order &#: This feature of the conductivity is de-

charges, while the total charge current is proportional to thei, ; - -
) ! : ; . X oted later in the paper . The collisionless contributiofde-
difference This lack of a direct relationship between the paper by, 2. "

_notedor, laten begins akw of ordere'/% asw— o, this contribution
charge current and the momentum should not seem surpris- Lo —
ing as lattice effects were required to obt&inand are there- IS & number of order unity times™*.

fore implicitly accounted for in the continuum theory.

It was asserted by Chat al!® that the T>0 transport carriers. In general, solution of such a QBE is a dauntingly
properties ofS were “pathological” in that there was zero difficult task, but we shall find that it is possible to reduce the
resistance to charge transport in the continuum field theory igolution to a simple linear integral equation in an
Eq. (1.3); they suggested that a nonzero resistance appearepansiot’? in e=3—d (very similar results can be ob-
only upon considering additional lattice correctidbgyond tained in a related analysis &fin an expansion in 12013
those required to derive the continuum thedly in which  this will be described elsewhere, and we will only discuss the
momentum could jump in units of reciprocal lattice vectorsn=c results here For smalle, the nonlinearities are weak,
at scattering eventgthe so-called “umklapp” scattering and it becomes possible to give a quasiparticlelike interpre-
event$. We shall show here that this is incorrect. The modeltation to the excitations of at the quantum-critical point.

S has a finite, and universal, dc resistance at &ny0 al-  Such an interpretation will be useful in our intuitive under-
ready in the scaling, continuum limit. Indeed, this is alreadystanding, and will help us use standard methods to simplify
clear from a recent study of S for the cased=1 n=3, the QBE in thehw<KkgT limit. Although the quasiparticle
where a simple and physically transparent argument obtaineidterpretation fails for the physical case=1, we do not
the exact(and finite low-temperature value of the spin dif- expect any qualitative change in the structure of our results
fusivity. Rather than being pathological, we claim that thefor largere. The QBE formulation is quite general, and the
transport properties of the disorder-free boson mdtlare  quasiparticle representation is mainly a useful technical tool
generic, and essentially identical in their scaling structure tdowards obtaining its numerical solution. In a more general
those of disordered boson systems. The error in @rall®  context, our approach may considered as an expansion in
appears to be due to their ignoring the presence of indepepowers of the anomalous dimensign which is responsible
dent positive and negative charge excitations, and the resulter replacing the quasiparticle pole by a continuum at the
ing difference between the total momentum and the totall =0 critical point. The continuum associated with a nonzero
charge current 08.* 7 is important only forh w>kgT, while for Aw~kgT very

As T appears irS only in the upper limit of the imaginary different thermal damping processes quench the critical
time integral, it is clear that the scaling forfh.2) is nothing fluctuations’® and are best treated by the QBE. This thermal
but a standard finite-size scaling result for observables as d@amping also acts as an effective infrared cutoff which en-
function of “wave vector” w and “inverse size'T. It might  sures that no qualitatively new physics emerges at higher
then seen that our job is relatively straightforward, and weorders in the expansion in powers gf
merely have to obtain standard finite-size scaling results on The basic structure of the dynamical conductivity at the
the familiar modelS. This is far from being the case. The critical point of S for small € is illustrated in Fig. 3. Notice
point is that these standard results exist only at imaginaryhe presence of “boundary layers” which make the analysis
frequenciesi2pwkgT/A (p=1, intege}, and we are espe- of the e—0 limit quite subtle, and is responsible for the
cially interested in real frequencieskgT/A. More impor-  noncommutativity of analytic continuation and the naiwe
tantly, it has been showh'®?°that the operations of analytic expansion noted earlier. The hydrodynamic regime of the
continuation and expansion inlér e=3—d (which are the  conductivity(denoted later in the paper lay) is represented
only non-numeric tools for analyzing the critical point§f by a Drude peak of width in frequeney~ e’kgT/% and has
do not commute a height of order 7. In particular, the dc conductivity is

The proper tool for analyzing transport at the critical pointdetermined by the universal numb&¢0), for which we find
of S is a quantum Boltzmann equati¢®BE) for the charge for n=2

FIG. 3. Structure of the real paB’ of the universal scaling
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0.1650 . ) ) )
3(0)=——, (1.4 2 (Vebo)®= (Ve QAd)*+ (Vubot QAdy)

€

to leading order ine; the structure of the higher-order cor- . i v 2 57
rections to Eq.(1.4) is quite complex, and was generally a:3( xba)”. 23
discussed in Ref. 29. Determination of the coefficient in Eq.

(1.4) required the numerical solution of a QBE, and the un- . . .
certainty in the numerics is believed to be restricted to the! e associate@(n) current is therss/ 6A. We evaluate its

fourth decimal place. Inl=2, Eqg.(1.4) implies a universal two-point correllator using standard dlagrar_nma}tlc perturba-
dc conductivity tion theory to first order irugy in the expansion ire, or to

leading order in the larga expansion(in which ug~1/n).
4e2 o2 The first-order vertex correction vanishes because the inter-
(0)=273(0) —~1.037— (1.5 action is momentum independent and the result in both cases
h h is given simply by>*® (recall we are using units here in

at the superfluid-insulator transition. This result is remark-WhICh h=kg=c=1)

ably close to the self-dual value#h,'®1" and to the results

of many experiment$;we will comment further on this in 2Q2 d%
Sec. IVE. o(ioy)=— Tz y
There is a clean separation between the hydrodynamic @n e ) (2m)
and collisionless regimes af: the latter does not begin until 212
X

w~ eY%gT/% (Fig. 3. The T=0 collisionless transport is
characterized by, (w— ) for which'® we have an=2,3

X
(2+ K2+ m?)[(en+ wp) 2+ k2+m?]

1-2d,1-d/2 1

“1-¢ . 2.2
I [1+O0(e)]wl s (1.6 2.2

3 (0—)= T akEme
As noted earlier, foe=1 (d=2) 3() is a pure number,
but notice that it bears no relationshipXq0); indeedZ. ()

is of order unity ass—0, and so these two quantities are of
distinct orders ine. For the superfluid-insulator transition in
d=2, Eq. (1.6) gives a high-frequency conductivity of
0.3927x (4€?/h), which is in rough agreement with other
analyses in the collisionless regirte.

The body of the remainder of the paper is devoted t
obtaining the above properties of the modelReaders not
interested in calculations specific to the mo8ethould now
go directly to the concluding Sec. IV where we discuss im-
plications of our results for a number of experimental sys-
tems. In Sec. Il we will obtain one loop results for the trans- )
port properties o using the familiar Kubo formalism. Then m-=e
Sec. Il will include two-loop effects using a quantum trans-

vsi . he h . .
g?‘g gg&?ﬁls'éq?ii?_ed to describe the hydrodynamic reglmq,he result(2.2) holds for alln, and there is n@m dependence

at this order in thee expansion, other than that through

The largen expansion has an identical structureatw, the
only difference being in the value of. Detailed universal
expressions fom were given in Ref. 13 ind=2; at the
critical coupling, the analog of Eq2.3) atn= is

The first term is the “paramagnetic” contribution, while the
second is the “diamagnetic” term proportional to the
density*® Heree,,,w, are Matsubara frequencids, is thex
component of thal dimensional momenturk, andk=k]|.
The “mass” m in the propagators is computed in Appendix
D [where it is referred to am(T)] using thee=3—d ex-
ansion developed in Ref. 29, and depends universally upon
and an energy scale measuring the deviation of the ground
state from the critical ground state. At the critical coupling,
to leading order ire,

n+2
n+8

27%T2
3

In all of Secs. Il and 11l and the appendixes we will work
in units in whichz =kg=c=1; we will reinstate these con-
stants in Sec. IV.

II. ONE-LOOP RESULTS FROM THE KUBO FORMULA

We will begin our analysis of the transport propertiesSof
by examining the results of a direct evaluation from the m=2|n(
Kubo formula®!® but now working atT>0. The physical
interpretation of the results will motivate an analysis using a
quantum Boltzmann equatidit*®*’which will be carried out  The remaining analysis of this section will apply both to the

J5+1

2

)T att,=0, d=2. (2.4

in subsequent sections. € and 1h expansions, the only difference being in the values
The standard Kubo formula relates the conductivity to aof m given above.
two-point correlator of the conserved(n) current. We in- Now insert 1= 9k, /K in front of the diamagnetic term

troduce an external vector potentidl associated with the in Eqg.(2.2) and integrate by parts. The surface terms vanish
O(n) generator which rotateg,, in the 1,2 plane; the spatial in dimensional or lattice regularization, and the expression
gradient term inS then undergoes the mapping for the conductivity becomes
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2Q? ddk 2k? 0.1
o(ion)=- (STE i T 1
n € (2m)% e +ke+m >
o 1 1 ) A
(ent wn)?+K2+m?  e2+k2+m?] @9
We now evaluate the summation over Matsubara frequen- 0.05
cies, analytically continue to real frequencies. The resulting
o(w) is complex, and we decompose it into its real and
imaginary parts o(w)=o0'(w)+ic"(w). We will only
present results for the real past (w), and the imaginary
parto”(w) can be obtained via the standard dispersion rela- 0 .
tion. 0 10
We find that the result for’ (w) has two distinct contri- /T
butions of very different physical origin. We separate these ) ) )
by writing FIG. 4. The real parE"o'f the universal scahng functloﬁ [_see
Eq. (1.2)] for the conductivity at the quantum-critical coupling of
o' (w)=0](0)+ o) (). (2.6)  the models, correct to first order ie=3—d. The numerical values
are obtained from Eq2.3) and(2.10 with d=2 (e=1). There is
The first part,o| (w), is a § function at zero frequency: a ¢ function precisely atw/T=0 represented by the heavy arrow:

The weight of thiss function is given in Eq(2.7) and(2.11). The
& function contributes tar,, and the higher-frequency continuum

) , (2. to oy, .

undamped patrticles and holes with an infinite lifetime and
energy momentum relatios, . It is necessary to go to sec-

d9k ki( an(ey)

(2m) &f

U{(w)=27TQ25(w)f

078k

wheren(e) is the Bose function,

1 ond order ine, or to first order in 14, to include collisions
n(e)= ——, (2.8  Wwhich will give the quasiparticles a finite lifetime. We will
e?’T—1 show in Sec. Il that these collisions also broadendtenc-

tion in ;. The magnitude of the broadening is expected to
be determined by the inverse lifetime of the qu?siparticles; at
= K2+ m2 the critical point, this inverse lifetime is of ordefT Ref. 29
&= ko 29 in the e expansion, or of ordef/n Ref. 13 in the larga:
We will discuss the physical meaning of tléefunction in  theory. The typical energy of a quasiparticle at the critical
Eqg. (2.7) below, and obtain a separate and more physicapoint is of ordefT, and so the quasiparticles are well defined,
derivation of its weight in Sec. lllA. The second part, at least within thee or 1/n expansion. Notice, however, that
o, (w) is a continuum above a threshold frequency of:2  the quasiparticle interpretation breaks down at the physically
important value ofe=1, n=2. The discussion in Sec. Il

and the excitations have the energy-momentum relation

) ) d ki will take place within the context of the expansion, and
oy(0)=mQ f 2 ;[1+ 2n(gy)]18(| 0| —2¢) will use the quasiparticle interpretation and the arsenal of
(2m)" 2e, powerful techniques availabife***"to describe their quan-
2 2_am2\ 9?2 tum transport. . . ' .
= Q™S 0(|w|—2m)(u The expression(2.7) is valid everywhere in the normal
d 40? phase, but here we evaluate it explicitly onlytgt 0. Con-
X[1+2n(w/2)] 0" 2, (2.10 sider first thee expansion. The coefficient of th&function

is a function of the ration/T, but notice from Eq(2.3) that
whereSy=2/[T'(d/2)(47)%?] is a standard phase space fac-m<T at for smalle. Evaluating Eq.(2.7) in this limit we

tor. find for e small

At the critical point,t,=0, it can be verified that the
above results fofo(w) obey the scalin_g form(1.2) with U{(w)ZZWQsz—lg(w) i_ m +}
z=1; explicit results for the functio (w) will appear be- 18 8T
low and are sketched in Fig. 4. 112

; : . , +

We now discuss the physical and scaling properties of the :277Q2Td‘15(w)[i — \/_E M) .. }

two components of the conductivity in turn. 18 813(n+8)

(2.1

Actually the expressiof2.7) is good to ordek but we have
This is a zero-frequency function, and is present only refrained from displaying the next term as it is rather
for T>0. Clearly, it must be interpreted as the contributionlengthy. The first term in E2.11) is obtained by evaluating
of thermal excitations which propagate ballistically. Indeed,Eqg. (2.7) atm=0, d=3; the second term is from an integral
to first order ine,?® or atn= 13 the excitations are simply dominated by smalk~m<T and hence the Bose function

A. g
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can be replaced by its classical limit. An important point tobe discussed elsewhere. In principle, the answer can be ob-
note is that the current carried by the thermally excited cartained by including the?(e?) correction to the self-energy
riers is dominated in the leading term of E&.11) by mo- and accounting for the associated infinite-ladder vertex
mentak~ T>m. This will be useful to us in the analysis of corrections'® However, this method is quite inconvenient as
collisions in Sec. Ill where we will simply be able to set it does not allow for easy separation of the distinct phenom-
m=0 to obtain the leading term. ena in different frequency regimes. Instead, we shall use the
Turning to the largen theory, we evaluate Eq2.7) in (in principle) equivalent® quantum transport formalism of
d=2 using the value ofm in Eq. (2.4), and obtain after an Kadanoff and Bayni>*®4’The physical content of this for-
integration by parts and rescaling of variables malism is transparent at all stages, and the approximations
necessary to focus on the low-frequency conductivity are

QT % 2 readily apparent. In particular, we can drop the terms leading
o (w)= — (o) f de| 1+—|— to o (w) at an early stage.
© e”/e -1 The transport equation is best studied in the Hamiltonian
QT formalism by casting it in terms of the weakly interacting
= T&(m)x0.689 402548116 63. . ., “normal modes.” So we begin by writing down the Hamil-

tonian associated witls (remember that we are using units
(212  in whichi=kg=c=1):

where® =2In[(y5+ 1)/2] is a number which plays a central H="Ho+ Hipg+ Hext. (3.2
role in the largen theory!®4° Notice that asn~T, we have
now been unable to approximatg~k to get the leading
result, as was done in theexpansion. 1

An interesting numerical property of the above results in Ho:—f [72+ (V)2 +mPg2], (3.2
d=2 is worth noting explicitly. The spectral weight of tiée 2

function to leading order in the expansion is, from Eq. \here r (x,t) (t is real timé is the canonically conjugate

2 H _ H . _
(2.1D, Q°T times 7/9=0.349L . .. (recall that this number yomentum to the quantum field,(x,t) and satisfies the
was obtained by evaluating a momentum space integral IBqual-time commutation relations

d=3). The same quantity at=c, from Eq.(2.12), is Q>T
times 0.34% ... (obtained now by evaluating a different [¢>a(x,t),wﬁ(x’,t)]=i5aﬂad(x—x’). (3.3
momentum space integral id=2), which is remarkably
close. Later in Sec. lll, we will consider broadening of the
function in thee expansion, and we will work in the approxi-
mation in which the spectral weight T times /9 [see
Eq. (3.39 later]; the present numerical “coincidence” sug-
gests that the numerical values of the leading odessult
are quite accurate.

The first term,H,, is the free-particle part of,

For future convenience, we have already included the
Hartree-Fock correction from the interactions into the
“mass” m? (these correspond to self-consistently summing
all the one-loop tadpole diagrams, as discussed in Appendix
D). The second ternt;,, is the quartic interaction

Uo
Hin=7; f dx($2)%, (34
B. oy '
and it is understood that the Hartree-Fock term arising from
Hine Will be omitted. Finally,H,,; contains the coupling to
the external space and time-dependent potentidléx,t)
[a=1---n(n—1)/2]

This is the continuum contribution to- which vanishes
for w<2m. At this order ine (1/n) there is a sharp threshold
at w=2m but we expect that this singularity will be rounded
out when collisions are included at order (1/n): We will
not describe this rounding out it in this paper, however. Al-
though they have a strong effect at the threshold, collisions Hext=Qf ddea(x,t)Liﬁwa(x,t)%(x,t). (3.5
are not expected to significantly modify the form @f(w)
at higher frequencies where the transport is predominantlylere theL? arenXxn real, antisymmetric matrices that are
collisionless. In particular, the— limit is precisely the times the generators of the Lie algebra@{n). TheU? are
T=0 result obtained earliér coupled to the conserve@(n) charge densiti€8 of H +

Hint- We shall be interested only in the linear response of the

42 current to the “electric field"E2= —V, U3(x,t), and it will
o] T2 (2.13 be assumed below th&? is independent ok. Notice that
we are making a gauge choice different from that in Eq.
(2.1, and coupling now to the scalar and not the vector po-
. QUANTUM TRANSPORT EQUATIONS tential; this is for convenience, and should not change the

The general analysis of higher-order correctionsrtis f!nal gauge-invariant results. The “charge” currefttis de-
fined by the expectation valthe

quite complex, and so we will confine ourselves in this sec-
tion to the answer to a single question: How does dfe) a a v
) J2=QL v , 3.6
term in o| (») broaden? Qlap(baVxbp) (3.6
We will address this question exclusively in the context ofand it will also be independent of. Making the Fourier
the e expansion, and generalization to tha gkpansion will  expansion

WQZSd
24d

op(w—0)=
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® , frequency components af(w) can be separated out is an
E&(t)= f EEa(w)e_""t, (3.7 important advantage of the present formulation of the quan-
tum transport equations.
and similarly forJ?, we can define the dynamical conductiv- A central object in transport theory is the Green's

ity o(w) by the expected linear response relation functior?>4’
()= o0(0)E¥ (o). (3.9 gjﬁ(k,Q,R,t)
For completeness, let us also note here the expression for _f f dt ek RHi0
the total momentur P: (2m)d
P=(m,Vybo). (3.9 X (aj(k—K/2,t—ty/2)a,(k+K/2t+11/2)).
Notice that it is quite distinct frond. In particular, in the (3.149

absence of an external potentifllis conservedi.e., it obeys  For the case of a system carrying a spatially independent
an equation of the form,P+ V- T=0 for someT), while J  current,g~ will be independent oR and this will implicitly

is not. be assumed below by dropping tie argument. We also
We now make the mode expansion define the particle distribution function
dk 1 fakon= [ o< k0.t 3.1
ax,t):f ws(kD)= | 5—gaa(kQ.0), (3.19
Pl (2m)9 28, T

. ) in terms of which the current is
X[aq(k,ne**+al(k,tye k¥,

&k K
ddk er Ja(t):iQLiﬁf — S_faﬁ(k't)' (3.1
Wa(x,t)=—if V7 (2m)° &k
(2m) The corresponding expression for the momentum density is
X[a,(k,ne**—al(k,ne ™**], (3.10 .
where thea(k,t) operators satisfy the equal-time commuta- P(t)= f kaaa(k!t)' (3.17

tion relations
Notice the difference in the structure of ti@&(n) indices

[a,(k,t),ah(k’,t)]=8,5(2m) % k—K'), between Eqs(3.16) and(3.17).
We note here that our formulation of the transport theory
[a.(k,t),as(k’,t)]=0. (3.1 interms of Green’s functions of the, , a rather than those

of the ¢, , 7, was motivated in part by recent exact results
in d=1 for time-dependent correlations of models equivalent
to S for n=1,331*3In the latter cases it was evident that the
d% physics is most simply described by following the propaga-
Ho= J o) sk[a (k,t)a,(k,t)+1/2]. (3.12 tors of particles created or annihilated ah)&/aa through their
collisions.

It can now be verified that Eq3.3) is satisfied, and, is
given by

We will also need the expression for the currétin terms
of thea anda'. We will only be interested in the case where
the system carries a position-independent current: For this In this section we will examine the transport equations for

A. Collisionless transport

case, inserting Eq3.10 into Eq. (3.6), we find the collisionless case whefé;,=0; we remind the reader
that interactions have already been included at the Hartree-
J3(1)=JR(t) + Jj(D), Fock level inH, (see Appendix I Strictly speaking, we
also have to remember that the massan in general depend
A A dd uponE?; however, for the case of a momentum-independent
J) (t)ZIQLaﬂf >md s —(a (k,Hag(k,t)), local interactionug, such a “vertex” correction vanishes to
(2m) lowest order inE?, and will therefore be omitted from our
g ‘ discussion.
s g a While it is possible to discuss the gene€{n) case, in
”(t)__'QL“Bf (219 2€ FPRCHED aﬁ(k D)+H.c. the interest o? simplicity and to keepgthe fé:‘$1y)sical content

(3.13  transparent, we will restrict our attention here to the special
casen=2. The generalization to>2 is discussed in Ap-
It should be evident that processes contributingteequire pendix B.
a minimum frequency of &, and soJ{| only contributes to Forn=2 (a=1,2), there is only one real antisymmetric
o (w). We will therefore drop thé} contribution below and  matrix, and therefore the indexcan be dropped. We choose
approximate J2~J?. The ease with which the high- L;,=—L,;=1 andL;;=L,,=0. This matrix is off diago-
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nal and it is helpful to transform to a basis where the externalibrium value given by Bose functiof, (k,t)=n(s,). We
field is diagonal. We therefore define Fourier transform from time to frequencyw, and param-
etrize to linear order irke:

a,(kt)xia,(k,t)

a.(k,t)= (3.18 fo(k,w)=278(w)n(e,) +\QK-E(w)(k,w),
V2 (3.22
The current now becomes where we have used the fact that oflybreaks spatial rota-
tion invariance andD(2) symmetry to conclude that is
4 " independent ok/k andA. Now inserting in Eq(3.21), and
_ oAt using de/dk =kl g it is simple to solve fory to leading
) Qf (277)"; )\8k<a”(k’t)ak(k't)> order inE:
Qf ddkEAkf(kt) (3.19 1 1/ an(ep
= - ’ ’ . €
(2m)9% ek . l!f(k,w)ZT—(— X ) (3.23
o gy dey

where the index is assumed here and below to extend overgj 1y e insert in Eq(3.19 and deduce the conductivity

the valuest 1, andf, are the particle distribution functions

which are now diagonal ik space. Notice that there are two

species of charged particles with charge®: These are the 202  d% K2/ an(ey)

particlelike and holelike excitations of the bosonic insulator. o(w)= f (2m)¢ ;( - )
k

Let us also note the expression for the momentum density:
The real part of this agrees with E€R.7). Notice that the

leading factor of 2 comes from the sum owerThe current

—iw (98k (324)

_ d¥ E is therefore carried equally by the thermally excited particles
P_j (2m)9% kfx(k.t). (3.20 and holes: They move in opposite directions to create a state
with vanishing momentum but non-zero charge current.
An important difference between Eg&.19 and (3.20 is We will see in the next section that this charge current can

the \ inside the summation in Eq3.19 which is absent pe relaxed by collisions among the particles and holes. There
from Eq. (3.20. Thus the “charge” current is proportional s no need to invoke umklapp scattering as a momentum sink
to the difference of the particle and hole number currentsand source(as was done by Chat all®) as the current-

while the momentum density is proportional to their sum. carrying state does not have a net momentum to begin with.
It is now easy to use standard methtid< to derive the

following transport equation in the collisionless limit de- B. Collision-dominated transport

i lier: .
scribed earlier We have seen in Sec. lll A that to ordeg(e) the trans-

port is described by the ballistic motion of undamped par-
ticles of two charges. We now consider the collisions of
f\(k,t)=0. (3.2) these particles which appear at or@ér As we noted in the
discussion below Eq2.11) the typical energy of a particle
In deriving this equation we have made approximations tacontributing to the transport was of ord€r Their collisions
the charge density appearing H.,; similar to those made will lead to a broadening of the single-quasiparticle pole of
for J: Upon expressingey in terms of thea,a” we have order €?T; for e small, this broadening is weak, and it is
dropped all terms involving the product of tvads ora’s as  then permissible to argue in terms of a quasiparticle interpre-
these will only contribute to the high-frequeney, . Equa-  tation.
tions (3.19 and(3.21) are therefore accurate to first order in ~ Applying the standard methods of transport theory dis-
Uy provided we are limiting ourselves to frequencies2m. cussed in Refs. 33 and 47, we generalize B8R to in-
Let us now solve Eq43.19 and(3.2]) in linear response. clude the collision term which appears at ordér and ob-
In the absence OE, the distribution function has the equi- tain to linear order irE:

(9+ e J
g AQ (t)-w

d Eafk_Zug di%; d%, d%; 1 oS K ke ko k)25
i PAQE (ki) =——5= (2m0 (2m) (2m) 168k8k18k28k3( ™) 8(K+ Ky —ko—k3)2m (8t £, — £k, &k,)

X{2f\ (k) F_\(k, H[1+ (ko )1+ (k3,0 ]+ F(k ) (ke H[1+Fi (ko]
X[+ fa(ks, D] =2[ 1+ (D [+ (ke ) T (Ko, ) f (K3, ) —[1+f(k,D)]
X[1+f(kq, 1)1\ (k2 ) Fr (ks 1)} (3.29
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The collision term on the right-hand side of E§.29 can 1 an(k) @

also be obtained by a simple argument based on Fermi's —iw¢(k,w)+ET=—52f dky[Fa(K,ky) ¢p(K, o)
golden rule of the type described in Ref. 33. A number of 0

simplifications have been made in deriving £§.25, and +F,(k k) ks, @)].  (3.29

we now describe and justify them. ) ) _

(i) The collision term is initially expressed in terms of full The expressions for the functiois , are quite lengthy and
two-point Green's functions likeg;,. However, as is @€ discussed in Appendix C.
conventionaP®*” we assume we can neglect damping in | It is now useful to scale put t.he dependenf:e Qf aII'func—
these Green’s functions and express them in terms of th#oNS one andT so that the final integral equation is written
particle distribution functiong ;. This is permissible fora " dimensionless form, and has all couplings of order unity.
system with well-defined quasiparticles, as is the case hefe®m the expressions in Appendix C we know that, are
for small e. This approximation will not affect the conduc- homogeneous functions of momenta anavhich satisfy
tivity at order e”. _

(ii) In addition to the collision terms, there are also self- Filkky) =@i(K/T. ko /T) (3.29
energy terms affecting the quasiparticle energies at m§er for some ®;, with i=1,2. (Here, and everywhere in this
These include terms that couple the usual Green'’s functionsection, the dimensional analysis is performed fataB: It
to the anomalous onémvolving expectation values of pairs is not difficult to extend it to general, but we will not in the
of creation or annihilation operatgrsSuch terms will, in interests of simplicity, and because it is unnecessary to ob-
general, modify the conductivity at ordef. However, they tain results to leading order ia.) Now by examining Eq.
do not affect the nature of broadening of thdunction in  (3.28 we see that it is useful to introduce the functigh
o (w). The total spectral weight in{ (w) will change from  defined by
that in Eq.(2.11) at ordere? due to these terms, but the
functional form of ofa| () at frequencies of ordes*T will (ko) = iw(Ei) (330
not be affected. T3 |\ T'eT

(iii) We have neglected collisions which involve creation
or annihilation of particle-hole pairs as they have negligibleln terms of ®;, ¥ the integral equatior{3.28 takes the
phase space. Thus a collision in which, e.g., a positivelyimensionless form
charged particle of momentutk turns into two positively
charged particles and a negatively charged hole with mo-
mentak,, k,, andks, respectively, is permitted by the sym-
metries of the problem. However, it remains to evaluate the
phase space over which such collisions conserve total energy
and momentum. Notice that the “masst of the particles
and holes is of ordet/eT [Eq. (2.3] while their momentum

_qu’(k,w)—m

=— f:d?l[qn(mnlf(k_,a)

is of orderT. So to leading order i we may just replace +d,(k, kl)\P(k_l,w)], (3.3)
the energy-momentum relatid8.9) by [see also the discus- — - —
sion below Eq(2.11)] wherek =k/T andw = w/€?= w/€*T. Now, from Eq.(3.19
we see that the conductivity,(w) obeys
Sk:k. (326) QZTd*Z ©
We will use this simplified energy-momentum relation o(w)= 2 E|(62—T> : (3.32

throughout this subsection. The particle-hole pair-creation
collision now requires that k=k;+k,+k; and where the scaling functioB, is given by
k=k;,+k,+ks. This is only possible if all three momenta
are collinear, and this process therefore has vanishing phase - 1 (o —
space. More generally, for a nonzeno, the phase space E'(w):FJo k3d k¥ (k,w). (3.33
vanishes ag—0. m

We now insert the parametrizatigB.22 in Eq. (3.25,  We can now already see from the structure of B2 that
linearize the resulting equation in the external electric fields| (w=0) has a value of ordeF?~2/¢?, and that the width
E, and obtain a linear integral equation for the unknownof the “Drude” peak will be of orderw~ €2T. Further, the
function ¥(k, ). Further, to leading order is, we may set collision term will not modify the total spectral weight iry
d=3 in the collision term in Eq(3.29, and replace the which will therefore be identical to that in E¢2.11); this
couplingug by its fixed point value fon=2 (see Appendix implies that the functior®,,, as defined by Eqg3.31) and
D): (3.33 should satisfy

247%¢
-

* o ~ v
Ug= (3.27 f dos|(w)=75. (3.39
0 18
Further details of this linearization procedure are given inlt should be noted that this sum rule is special to the leading
Appendix C. The final integral equation fat(k,w) can be order ine being considered here. Ferof order unity, there
written as is no sharp distinction betweem, and o), and there is no



8724

0.84
Ky
0.6

®=0.35

&
1]

0.4+

0.2

FIG. 5. Real part of the universal functiok®¥(k,») as a
function of k for a few values ofw. The function¥ is defined in
Egs.(3.30 and(3.22, and was obtained by numerical solution of
the linearized quantum Boltzmann equati@31). At =0, ¥ is
real, but is complex for generalc~u. Here k= k/T, and
= wl €= wl €T (in physical unitsk =Ack/kgT, ®=7fw/ekgT).

sum rule: Indeed the integral in E(B.34 when carried out
over the totalo will be divergent. For any realistic lattice
model there is a large microscopic energy scaleJ( the
repulsion between bosons on the same) dieyond which
the universal scaling results do not apply,
spectral weightincluding frequencies beyond) is not di-

vergent; this latter spectral weight satisfies a sum rule relate
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FIG. 6. The real part of the universal functi&n(};), which is
related to the low-frequency part of the conductiyity;(w)] by Eqg.
(3.32. The results are obtained by the numerical solution of Eq.
(3.3)), followed by the integration in Eq3.33. This function de-
scribes the inelastic collision-induced broadening of #we0 &
function in Fig. 4 at a frequency scale of ord€iT. The conduc-
tivity has an additional continuum contributigmr, ()] at frequen-
cies larger thanw~ €T which is not shown abovésee Fig. 3.

models>* but they presumably hold for all values of the ratio
hwlkgT. There are also special self-dual modef§ in
which the conductivity is claiméd to be independent of

and the entirg, /i T but this is not expected to be the generic physical

situation. The computation of the finile conductivity at the
Quperfluid—insulator transition in one dimension by Giamar-

to nonuniversal microscopic quantities, and is unrelated tQni and Schul®® (and close to one dimension by Her¥it

the universal resul3.34).

It now remains to numerically solve E¢3.31) to deter-
mine ¥ (k,®), and then to obtait¥, from Eq. (3.33. The
integral equationt3.31) was solved by a straightforward nu-

seems closer in spirit to our approach, but it would be useful
to have an explicit computation as a functionfab/kgT to
verify this.

Many experiments on two-dimensional films appear not

merical iteration, and we found very rapid convergence 1o ito observe a universal conductivity at the superfluid-insulator
unique solution. We show a plot of its solution at a few transition. Our results imply that this is very likely due to

values ofw in Fig. 5. The final result for the universal func-
tion 3} (w) is shown in Fig. 6.

IV. CONCLUSIONS

crossovers caused higelastic scattering mechanisms other
than those contained in the critical theory. Measurements of
the conductivity as a function of frequendgec. IV D
should help disentangle these effects.

In the remainder of this section we comment on some

The central message of this paper is simply stated: Undegeneral experimental and theoretical issues related to the re-
standing the universal dc conductivity of a two-dimensionaisults of the paper.
system at its quantum-critical point requires a nonzero tem-
perature analysis of the hydrodynamic, collision-dominated
regime wheréi w<<kgT. The transport in this low-frequency
regime is incoherent, but nevertheless the remarkable fact is Most existing numerical studi&&*?~?°of ¢ at a two-
that the conductivity is still a universal number timégte  dimensional quantum-critical point used a Monte Carlo
Computations carried out exactly @t=0, with —0, do  Simulation in imaginary time. The simulation measures the
not yield the dc conductivity, and are controlled by veryvalues ofo at the nonzero Matsubara frequencies, i.e., at
different physical processes involving phase-coherent, collie(27nTi) wheren is a nonzero, positive integer. The limit
sionless transport. A related comment is that a theoretical (z,|z| — =) is expected to be the same numbére) for all
analysis for the dc conductivity must necessarily be formuvalues of the phase &, and therefore its value can be de-
lated in real time, as the imaginary-time Matsubara frequenduced from a relatively straightforward analysis of the nu-
cies are of order 2kgT/# or larger, and cannot easily cap- merical data. The value di(0) is more problematical. All
ture the singular structure in Fig. 2. These criticisms applyof the interesting structure i&(z) discussed in this paper
not only to computations of the universal conductivity at theoccurs forz of order, or less than unity, and it is difficult to
superfluid-insulator transitidfi-2° but also to the transitions extract this information from its values at the nonzero quan-
between the Hall platea$® all of whom computed the tized Matsubara frequencies. Cagal!® numerically exam-
analog ofX (). There are also mappings between thesdned the model and found little dependence @#,/T. Note

A. Imaginary time Monte Carlo simulation
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that this is the model for which we have computed the C. Luttinger liquids
stror!glyw/T—dependent cpnductivity hgre, byt, as expected, A \ell-studied critical system ind=1 is the gapless
this is apparently not evident at the imaginary Matsubarg yiinger-liquid ground state of interacting fermions or

frequencies. Similarly, Walliret al*® also found little evi- pogong away from commensurate filling fractions. Here we
dence for a significant dependence of the critical conductivyiscuss how this familiar system fits into the general frame-

ity of disordered models om,/T. . _ work of this paper. The nonzefb-conductivity of the criti-
We are of the opinion that it will be difficult to determine theory of the Luttinger liquid is given by

3(0) from this method, unless highly accurate numerical
results are obtained at the imaginary frequencies. The diffi- o (0)=Ké(fho), (4.2)

culty is also apparent by a glance at Fig. 2: A+0, the . . . .
value of S (0) apbears onlv at a sinale pboint which CarrieswhereK is s.omeT—mdepend'ent constant. Nouge that there is
>(0) app y gep no broadening of thé function, even fofT >0, in the scal-

zero weight under any integral over frequencies. The accu

rate numerical data should then be analyzed in the followind"9 Iimitéélé%elated considerations also apply to Fermi liquids
manner. First, from observations at a number of differenfll =1, but for many purposes these are better thought

values ofw, and T, the universal scaling part af, depen- of as the analog of Goldstone phases rather than critical
n 1 )

dent only on the ratiav,/T, should be obtained. Note that phases.Let us now rewrite Eq(4.2) as
this universal scaling part reaches a constant value P
[(4€%/h)3 ()] asw,— o, while the full o vanishes as 12 o' (w)=K(kgT) 16 ﬁ) . 4.3
for frequencies larger than a microscopic lattice scale. Then a B
Padeanalysis, general enough to allow the structure in FigNow notice that Eq(4.3) is consistent with the general scal-
1, should be used to analytically continaely the universal ing form (1.2) for d=1, and the known dynamic exponent
scaling part to real frequencies. z=1. The scaling functior® takes the simple and singular

It would also be interesting to explore newer methodsi,, E,(w—): 5((0—)‘ For this special form of, the limits
perhaps examining an open system in which it is possible t9, 5 andT—0 do happen to commute. '
have a net current in thermodynamic equilibrium, or doing a - 156 singular properties of the critical theory of the Lut-
computanlon in real time. The exact dlagona!lzatlon approactﬁnger liquid are clearly a consequence of the absence of
of Rungé"” can perhaps be extendedTic-0 without a great scattering between carriers in the critical theory: Like many

deal of difficulty. other critical theories ird=1, it is conformally invariant,
_ ) _ and correlation functiongincluding those forT>0) factor-
B. Dangerously irrelevant interactions ize into independent components given by the left and right
It is possible to violate the basic scaling res(itl) if movers. In contrast, for critical theoriesd» 1, like the one
quantum-mechanical interactions between the elementastudied in this paper, no such analogous factorization exists.
critical excitations happen to be dangerously irreleV4mn, ~ Further, ford>1 models below their upper critical dimen-
that case we expect sion, there is scattering between the carriers already in the
scaling limit. To introduce scattering in the Luttinger liquid,
iquHﬁu,z @.1) it is necessary to go beyond the scaling limit, and consider
Te ' ' corrections to scalind® There corrections are therefore dan-

) ] ) _gerously irrelevant, and will destroy simp#&function form
whereu is proportional to some power of the irrelevant in- o the conductivity in Eq.(4.2, and the limitsw—0 and
teraction,6,>0 is the associated crossover exponent, and T_,0 will no longer commuté®
is the dynamic critical exponent. Anderson localization tran-
sitions, with interactions leading only to a infrared cutoff as
a phase-breaking rate, are a realization of such a scenario.
(Quantum-impurity critical poinf@e’s“mhave some similari- A finite-o measurement of the conductivity in a situation
ties to bulk systems with dangerously irrelevant interactionstelated to that discussed in this paper has been carried out by
and are discussed in more detail in Appendiy Mowever, Engelet al3 They examined the transition between integer
this scenario is much less likely to be realizedbatk two- ~ quantum Hall plateaus by studying the dependence of the
dimensional quantum-critical points, and we consider it unconductivity onw, and the deviation of the field from its
likely that interactions can be neglected for the superfluid-critical values=(B—B,)/B,. This should obeythe scaling
insulator transition. The quantum Hall transition hasform
primarily been studied using noninteracting electrdnsut
there is evidence that Coulomb interactions are relevant at e
quantum Hall transition® %3 Experimental measurements of =
z in the quantum Hall systetfiindicate the valug=1 for
the dynamic critical exponent, and this is incompatible withwhich generalizes Eq1.2) to 6+ 0. In their analysis, Engel
free-electron models. The ac conductivity measurements aft al3* focused mainly on thes dependence at w>kgT:
Engelet al3*in a quantum Hall systertdiscussed further in  They measured the width of the transition regionsin AB,
Sec. IVD below show a characteristic frequency scaleand foundAB~ »*"?, in agreement with Eqi4.4). Further,
w~kgT/h which is inconsistent with the resul#.1) for the  the w dependence oAB saturated fow<<kgT/#, in agree-
case of irrelevant interactions, but is consistent with the inment with the ideas we have discussed HéreHowever,
teracting theory resulfl.1). Engelet al3* did not analyze they and T dependence of

D. Measurements of the ac conductivity

hw O

pRaR=T L (4.9
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precisely at the critical field#=0. It appears to us that it work.42>52-%|n contrast, the dc conductivity, given by
should be relatively straightforward to extend their measure2.(0), is controlled by the crossover to the hydrodynamic,
ments até=0 to test the validity of the scaling forrfl.2). collision-dominated regime, and we propose that this could
Further, it should also be possible to theoretically determinde less sensitive to the details of the boson-vortex Hamil-
the expected form of the scaling functi@nin the models for  tonian. This proposal is easily subject to experimental tests:
the quantum Hall transitions considered in Refs. 52 and 53Measures () by determining the conductivity in the regime
A limited test of Eq.(1.2) should also be possible in mea- #w>kgT, and see if the self-duality predictions continue to
surements of the ac conductivity at relatively low frequen-hold—we predict they wilinot
cies at whichh w<kgT. At such frequencies, we can expand  Our suggestion thak (0) could be insensitive to differ-
the scaling functior (w) aboutw=0, and analyticity of €nces in the interaction Hamiltonian of bosons and vortices
T>0 properties then implies the form is motivated by the expectation that an important role of
interactions is in the collisions that establish local thermody-
namic equilibriun?3%8 As a result, the equations governing
the net hydrodynamic flow of bosons and vortices in the
collision-dominated regime could be more symmetrical than
4.9 the underlying Hamiltonian. In other words, we are propos-

where,(0) and3.(?)(0) are expected to be positive univer- ing here that a true understanding of the experimentally ob-

sal numbers of order unity. Experimentally, one can test iS€ved duality near the quantum-critical point will emerge
the frequency-dependent correctionstdhas the Ir? depen- frc_)r_n a study_of the crossover from the microscopic quantum-
dence predicted by Ed4.5 critical physics of the elementary excitations to the low-

There do not appear to be any existing measurements 6|’fequency collision-dominated regime best described by a

the ac conductivity near quantum-critical points in other sys d4antum Boltzmann equation.. .
y q b Y We suggest that even the simple modek self-dual for

tems. The result$1.2) and (4.5 should apply also to the d= 5 i its d . _ |
superfluid-insulator transition in thin films’ to the quantum =2, n—? in 'ttc' ¢ transport, i.e., %(0)=1 exz?lcty for
transition in the doped cuprafesand two-dimensional e two-dimensional quantuY rotor model. This model
MOSEET’s!? and to the metal-insulator transition in three- N@s boson particle-hole excitations with short-range interac-
dimensionail Si:BL12we hope that experiments will be un- tions, while the vortices in the dual representation have long-
dertaken, as the results will be central to our theoretical un/@ng€ logarithmi¢Coulomb ind=2) interactions. However,
derstanding of these systems. In particular, if scaling as gt nonzerdT, this logarithmic interaction will be screened in
function of #w/kgT is observed, it would establish quite Manner analogous to the classical Del_)ye screening ab_ove the
conclusively that interactions are an essential ingredient ifc0Sterlitz-Thouless temperaturyy; indeed the region
the critical theory. g=d., T>0 of interest here is continuously connected to
Also, we note that our picture suggests a rather interestin'® 9<9c. T>Tkr region. So the effective interactions be-
nonmonotonice dependence of in at the metal-insulator tWeen the bosons and vortices are both short rang&-$cd,
transition ind=3: For smallzw/ksT o should decrease leaving open the possibility of self-dual behavior at low fre-
with increasingw as predicted by Eq4.5), but for larger ~duéncies. There is now general  agreement that
fwlkgT it should increase as » 2. It would be worthwhile 2w2(w)§0.3 for this model® This paper contains the first
to undertake analytic calculations for disordered, interactingt@mMputation o (0), and as weioted earlier near Eqél.4)
electronic systems to search for this nonmonotenidepen- and(1.5), it |s.qU|te remarkable, though possibly fortu!tous,
dence: There are cases where the critical theory is accessifg@t our leading-order result fa€(0) in the e expansion
at low orders in the 2 e expansiort! There are existing differs from the self-dual value by less than 4%. Definitively
calculations for thas and T dependence of the conductivity €Stablishing this self-duality would, however, require tech-
in the weakly disordered me®lin which 1/r,<kgT/#;  niques other than expansionés=3—d, or 1h, as it is only

these need to be extended to the critical point where w@0SSible precisely at=2,n=2. Itwould be of great interest
expect that 1, ~kgT/# to undertake higher-precision quantum Monte Carlo, exact
o .

diagonalization, or high-temperature series studies while
) carefully examining the reliability of the analytic continua-
E. Self-duality tion to real frequencie§The reader may be interested in a
Of great current interest is the issue of “boson-vortexrecent articlé® by one of us discussing this work in the con-
duality” at two-dimensional quantum-critical points. At the text of recent results on nonzero-temperature dynamical
superfluid-insulator transition, many of the experimentallyproperties ofS for other values ofl andn, including exact
measured values &(0) appear to be tantalizingly cldseo  solutions ind=1.]
a value predicted by self-duality argumetts/ For the
guantum Hall transitions, experimental evidence for self-
duality has been presented recefiflyThis self-duality ap-
pears rather surprising as there is no fundamental reason for We thank R. N. Bhatt, S. Chakravarty, M. Chertkov, S.
an equivalence between the underlying boson and vorte®as Sarma, D. Shahar, T. Giamarchi, A. F. Hebard, G. Kot-
Hamiltonianst® We suggest here that these inequivalentliar, D. H. Lee, F. Lesage, A. MacDonald, A. Millis, H.
Hamiltonians will be apparent in the value of the=0 con-  Saleur, R. Shankar, T. Senthil, D. Tsui, S. Zhang, G. Zima-
ductivity, given by, (), which, incidentally, is the quantity nyi, and especially E. Fradkin, M. P. A. Fisher, S. M. Girvin,
that has been explicitly or implicitly studied in earlier S. Kivelson, and N. Read for helpful discussions. In addition,

2
4.

Q?[kgT
"’“”):7(%

(d—2)/z 1 " ho
| ool

ACKNOWLEDGMENTS



56 NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM . .. 8727

our interest in this subject was stimulated by early discusin the presence of a time-independent force, we expect the
sions with N. Trivedi, S. L. Sondhi asked some probing andparticle to acquire a finite velocity=dX/dt in steady state:
invigorating questions, and E. Fradkin provided the stimulusThis allows us to define eobility G by V=GF. More gen-

for the discussion in Appendix A. This research was sup-erally, we expect a frequency-dependent resp@se), de-
ported by the National Science Foundation Grant No. DMR4ined by

96-23181.
V(w)=G(w)F(w). (A4)
APPENDIX A: TRANSPORT IN DISSIPATIVE Itis our purpose here to describe the behavior of the dynamic
QUANTUM MECHANICS mobility G(w) at low w andT, and to compare it with the

We will consider the transport properties of awell—studiedreSUItS fore(w) obtained in the main part of the paper. We
; . ..~ ““also note thaG(w) is the conductanceassociated with tun-
and representative model from the subject of dissipative . =
. . . heling between quantum Hall edge stAfex a valueg=1/a
qgquantum mechanics and related quantum—lmpurltyin the notation of Mooret al’?
problems®® Our purpose here is to contrast the and T SO : _
dependence of the transport coefficient in such a situation Qon5|derf|rst the prope'rtles 84 under.aT—O r_ehormgl—

. - : S ization group transformation under which—7e ", It is
with that of bulk critical points studied in the body of the found®-"2that « remains unrenormalized. while the poten-
paper. We believe that such an exercise will help clarify thet. | st thy ob the simple fl t P
significance of our results for the reader. We thank E. Frad-2 STENginy obeys the simple flow equation
kin for posing the questions which led to the analysis below. dy
We will use units withh =kg=1 in this appendix. a7

Consider the motion of a quantum “particle” in a peri- :
odic potential in the presence of a linear coupling to a Ohmidcor a# 1, this flow has fixed points only 3t=0 andy=o°
heat bat¥>"0~""38-*4ye represent the time-dependent coor-(we will not consider the case=1 herd. For a<1, the
dinate of the particle b¥(t), and its analytic continuationto y=0 fixed point is stable and thg=c fixed point is un-
imaginary-time byX(7), and the Fourier transform to imagi- stable; fora>1 the stability of the fixed points is inter-
nary Matsubara frequencies §(w,). The imaginary-time changed. Notice thaiothfixed points are free-field theories,
effective action obtained after integrating out the degrees ofupplemented by free or fixed boundary conditiong=a0.
freedom of the heat bath is This is a crucial difference from the bulk theayin which

T the critical theory is interacting fod<<3, and is primarily
o
Sl:EwEn |wn||X(wn)|2—YJ' dr cogX(n)]. (AL) :f(sa;)))or\;vsgb;i;ﬂrﬁtr?g géflfs\:fnces in the structureGgiw) and
Let us now write down the general scaling predictions for
Here « is a dimensionless coupling constant characterizings(w) which follow from the renormalization group argu-
the strength of the Ohmic dissipation, apdmeasures the ments. The system will be completely characterized by a
strength of the periodic potential. Models like E41) de-  single nonuniversal energy scdlg , which measures its de-
scribe tunneling in a superconducting quantum interferencegiation from theunstablefixed point. From the flow equa-
device (SQUID), whereX is interpreted as the flux in the tions (A5) we can deduc&~y® (=1 for a>1; the per-
SQUID, or tunneling between Luttinger liquids and quantumturbation theory to be discussed below shdys-y ™~ /(2=
Hall edge state¥}**’®""where X now becomes a bosonic also fora<1. The mobilityG has a zero scaling dimension,

phase field. and therefore obeys the scaling form
The action(Al) can be written in a form local in time if

(44

1
——l)y. (Ab)

we extend the quantum degree of freeddfh) to an infinite Glw)= 0] AG
number of degrees of freedoX(x,t) lying along the line (0)=G, T'T)’ (AB)
—oo<x<o, with X(t)=X(x=0}); then S; is equivalent . _ . _
to71:73.74,76,38-40 whereg, is a universal function. We now describe the low-

T,0 form of G, for the casesxr<<1 anda>1 separately.
1 Consider firsta<<1. In this casey flows to zero, and
[9X(X,7)]2+ _2[(97)(()(,7)]2 therefore the periodic potential has vanishing strength at long
c times and the particle is delocalized. Naive perturbation
theory iny is expected to be reliable. The mobility can com-
_yf dr cog X(7)], (A2)  buted in this perturbation theory using a Kubo formula: Such
a computation was carried out in Appendix A of Ref. 76, and
we find from their results

_aCfd q
SZ_E Xdar

wherec is an arbitrary velocity. Notice that the cosine inter-

action acts only along the single lie= 0, identifying this as o T\ 2(la—1)
a boundary critical phenomena problem. Glw)=—-— (T—) P, T +.-, (A7)
We shall be interested here in the linear response of the @ K

system to a time-dependent forde(t), acting on the par- where the ellipsis represents terms which are higher order in
ticle. In imaginary time, in the presence of such a force  T/Tc—this result holds fow<Ty, T<Tk, butw/T can be
arbitrary. Notice that Eq(A7) is consistent with Eq(A6).

The explicit form ofP, can be deduced after some analysis

S —S;— f drF(7)X(7). (A3 of Eq. (A7) of Ref. 76:
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P (a=|T 1 N o)
@) =T =+ 5—
1 N iwl|?
a 2T
(A10) also describes thE> Ty limit of the <1 case, while
1 1 Eq. (A7) describes> Ty for a>1. The main change is that
Pa(w_—>0)=§1“2<—), the values ofT¢ (denotedT) inserted in these expressions
@ will not be the same as those in the I@wimit. Perturbation
theory cannot determine the universal relationship between
2(a—1) Tk and Ty : This requires use of the exact integrabilitySf,
P (0—x)= (5) 212 1 —jtan( 7/ )] as discussed in Refs. 38 and 73-75.

“ T ’ Finally, we suggest that the above commutativity of the
limits w—0 andT—0 (and alsow— o, T—o, whereow
refers to a scale much larger thdiy), and the free-field
— nature of the fixed points may be the reason for the success
7)1/2(“’):§+§’ of th% imaginary-time Monte Carlo simulation of Moon

et al.

®sinh(w/2) tan(wla) G(w—0, T=0)=G(w=0, T-0)=0, (All)
_fan

w w which arises from the/=o free-field fixed point.
We also note for completeness the higtbehavior, with
o 1 T>Tg, to allow contact with the quantum Hall edge state
cosr(wIZ)—Fz(—)], tunneling results of Ref. 77. The key is to note that the
@ a+ 1la duality interchanges small and largeSo the result

w2

a simple special cag®efs. 78 and 76 (A8)

The overall normalization ofP, is arbitrary, as it can be APPENDIX B: GENERAL TRANSPORT EQUATION

absorbed into a redefinition @% . The most important prop- Here, we will generalize the transport equati@®5 of
erty of Egs.(A7) and (A8) is that the leading term in the the modelS to arbitraryn=2.

mobility, 27/ @, is independent of/T. Alternatively stated, First considerO(n=3). This case applies to quantum
we have antiferromagnefs and the external “potentials” U2

(a=1,2,3) correspond to the three components of a mag-
5 netic field. Let us take the field pointing in the three-
- T . 4 .
G(w—0T=0)=G(w=0T—0)= —. (A9) d|rect|on.aU _—(0,0,H). For 'the antisymmetric matrices we
a choose L, ;= €a.p, the third-rank antisymmetric tensor.
Note that such a field is the same as that in &g1). The

However, it is clear that this leading term is a property of '[hed'smbl"tIon functions become diagonal by changing basis

y=0 fixed point, and the independence @/T is a conse- from a; 530

guence of its free-field nature. The next, subdominant, term

arises from the leading irrelevant operator in the theory, and _

does indeed lead to a nontrivial dependencewst in the a. (k)= ay(k,t) xiay(k,t)

universal functionP,. In contrast, the bulk mode$, not AR V2 '

being a free field at the critical point, had suclhar depen-

dence already in the leading term, without the inclusion of

any irrelevant operators. This distinction is the central pointThe particle distribution function now has the three diagonal

of this appendix. components$ . , f5. The “magnetization” current is nonzero

Now turn toa>1. In this case flows toe, implying that  only in thea=3 direction and equals

the periodic potential localizes the particleTat 0. The low-

T mobility clearly cannot be computed by a naive perturba-

tion theory iny. Instead one can use a self-duality property 4

of S, (Refs. 70, 72, and Jeunder whicha— 1/a, and then ngQJ' d°k h[f (k)= (kD] 82

use perturbation theory. The=<« fixed point nhow implies (2a)9 ek AR B

that the leading scaling result for the mobility is simply

G=0, and so thev—0 andT—0 limits commute again for

a trivial reason. The leading andT dependence is given by A key simplifying feature is that the distribution functidg

an irrelevant operator, which now yields must be even in the external field, and will therefore only be
modified at quadratic order ikl. We will be satisfied by
working in linear response, in which casg(k,t)=n(gy).

as(k,t).  (BY)

T\ 2(e"1) Then>3 case is very similar: The only difference is that
G(w)= (T—) Pua| 7|+ (A10)  there are nowm—2 values ofa for which f ,(k,t)=n(g,) in
K linear response.
where the scaling functio®,,, was defined in Eq(A8), the The generalization of the transport equatih25 to

corrections are higher order i T, and the result holds for O(n) is now easily obtained by an application of Fermi's
w<Tg, T<Ty, butw/T arbitrary. Notice also the result  golden rule:
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ud ( d,; dd, d%s
(2m)9 (2m)9 (2m)9 16ekek &k, B,

J - J
E‘F)\QVH &k) (k t)__ (27T)d5(k+kl_kz_k3)2W5(8k+8kl_8k2_8k3)

X AR DT\ (ke [+ (ko O IT1+ f (kg ) ]+ 26,5 (kD) f (ke , [T+ (ka2 1)]

X[1+fa(ks, )]+ (n=2)f(k,)n(ey [ 1+ fr(ko, D[ 1+ N(e,) ]

-2
+ (n2 )fx(k,t)f—x(klyt)[l‘Fn(8k2)][1+n(Sks)]_4[1+fx(k,t)][l"'f—)\(kl,t)]
fa(ko, )F (K3, t) =2[ 1+ (K, 1) J[1+f\(kq,0) Jfa (Ko, 1) Fr(Ks, 1) —(Nn=2)[1+f)(K,1)]
-2
X[1+n(ek )i (K2, t)N(ey,) — (n2 )[1+f)\(kat)][1+f—x(klrt)]n(skz)n(sks) (B3)

with A= 1. The analysis of the linearized form of this equations is similar to tha{3@5), but will not be presented here.
Such an analysis will lead to a determination of the spin conductiwityyhich is related to the spin diffusion constdy by
the Einstein relation

o=Dygy, (B4)

wherey is the uniform spin susceptibility. Results for tlyeat nonzerol above the critical point have been given earlier in
the 1h (Refs. 27 and 18and e (Ref. 29 expansions.

APPENDIX C: COMPUTATIONS WITH THE COLLISION TERM

We describe here some of the steps in between the original transport eqda2drand the linearized forni3.28).

First we insert the parametrizati@®.22 into Eq.(3.25, and linearize in the the external electric field. Then, notice that in
the collision term the unknown functio#r appears only in the integrals over the radial components of the momenta. The
angular integrals involve only known functions and can be performed analytically. As already noted in Sec. Il B, the integrals
in the collision term can be done directly @+ 3 to obtain the leading result, and so all the computations here ack=f8r.

One needed angular integral is

2

KkyKo(Ki+ Kp—K) @

| dicatko) [ d0,,00,,00, Pk alkc o~ k=Ko = (ks ko= k) 13k Ky ko),

(Cy
whereg(ks) is some function oks. The result involves the functioh, which is given by
0 k,+ko=<k,
ki+k,—k k; +ko,=k andk; <k andk,=<k,
I1(k,Kq,kp) =14 Ki for ky<kandk,=k, (C2)
k ki=k andk,=
k, ki=k andkzs K.

A second angular integral has a single vector momentum in the integrand

8k
dk kfdQ dQy dQy k8% (k+ky—ky,—kz) 8(k+ky—ky,—kg)=— k+kqy—ko)1o(k,kq k),
J' 39(Ks) k, A, Ay K1 67( 1~ ka—k3) &( 1~ ka—ks3) 3k3k1k2(k+k1—k2)g( 1~ ka)la(k,Kq ,kp)
(C3
where now
(0 Ko=k+k,,
K3+ K3+ 2k3— 3ka(k+ kyq) + 3kkq ks, k,<k+k; andk,=k andk,=k,
Io(k Ky ko) =14 K® for k,=k andk,<kj, (C4)
— 2k3+ 3k3(k+ kyq) — 3kkik, ko<k and ko=<k;,
LK k,=k,; andk,=<k.
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Finally, we also need a variation of EGC3):

8k
dk deQ dQy dQy k;83(k+ky—ky—kg) S(k+ky—k;—kg)= k+ky,—kq)15(k,kq,ks),
f 39(Ks) k, Qi Ay K1 6°(K+Ka— kg —k3) 6(k+ka—ky—k3) 3k3k1k2(k+k2—k1)g( 2~ kp)la(k,ky,kp)
(CH
where
(0 ki =k+ks,
k3 —k3—2k3— 3k3(k— k) + 3kk; K, k;<k+k, andk;=k andk,=<k; ,
la(k Ky ko) =4 K® for k;=kandk,=k,, (C6)
— 2k3—3k3(k—ky) + 3kkqk, ki<k and kp,<kq,
LK k,=k,; andk;<k.
Using Eqs.(C1)—(C5) in the linearized form of Eq(3.29, the integral equation satisfied kyybecomes
(ko) =) Wez[lgw(k’w)szwdkdm K, ks . ko)N(Ko)N(Kp)[ 1+ N(Ky + ko— k) ]+ 2[ 1+ n(K
—loyk o)+ —¢ __75k41 n(k) , dradke 1(k,kg ka)n(ka)n(ky)[1+n(ky +ky—k) ]+ 2[1+n(k)]
e w(kl!w)
X | dkydky ———=—15(k,kq,ko)n(ky)n(k+k; —ky)
0 n(ki)
* l/l(klaw)
—4n(k) dkldkzml3(k,k1,k2)n(k2)[1+n(k+k2_k1)]- (C7)
0 1
|
This can be turned into the for(3.28 by evaluating the " KD
integrals ovek,, which can also be done analytically. To do f dkzﬁ=T”+1F(n+1)Lin+1(e‘a/T)_
0 ez -1

this, it is first necessary to separate the products of two Bose
functions each withk, in their arguments, into terms in (C1)
which only one Bose function involvas,: This is done by

repeated use of the identity Here Li(2) is the polylogarithm function of ordey, defined

by the series
n(k,+a)n(k,+b)=n(b—a)n(k,+a)+n(a—b)n(k,+b),

e Zn
(C8) L=, =. (C12
which is valid for anya, b. From the forms of the functions nmin
I1,3above, it is now clear that we only need integralkef Notice Li (1)=¢(p)
. . p .
over B(l)se fgngt'anfOEZ’ ;umes powers ok,. The general After performing the integrals ovés, as described above,
integral needed lIs of the form Eq. (C7) takes the forn(3.28. We will not display explicit
. . expressions foF ; (k,k;) here as they are quite lengthy and
bdk k2 _ °°dk k3 not particularly informative. We used GERNLIB routine for
a ZelktolT_q17 Ju PalketolT_q numerical evaluation of L{(z) for 0<z<1: This allowed
very rapid determination of the kernel of the integral equa-
w k) tion (3.28).
_ fb dlo oy (€9

APPENDIX D: ORDER PARAMETER SUSCEPTIBILITY
wheren is an integer, and is a real number. Changing
variables on the right-hand side, we can rewrite the first tem%in
on the right-hand side as

This appendix will review the results of Ref. 29 on the
ite-temperature crossovers in the order parameter suscep-
tibility x=(¢,¢,) (N0 summation over). Reference 29
) g B N was concerned with making statements correct to all orders
f dk, 2 :f (kata) (c1g i € and to understanding the crossover to classical critical
a et T_1  Jo = ZalkgtetalT_q’ fluctuations in the vicinity of the finite-temperature phase
transition line, and this required a rather involved analysis.
and similarly for the second term. Expanding the polynomialHere, we are mainly interested in low-order results at finite
in the numerator, we finally conclude that all of the integralstemperatures above the quantum-critical point and the quan-
overk, can be reduced to the following basic integral: tum disordered phase: In this case the necessary results can
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be obtained directly in a self-consistent Hartree-Fock-likeFinally, on the right hand side of E¢D5) we replacem?(T)
analysis, as we now show. by R(T). The resulting expression f@dm?(T) when inserted
The self-consistent Hartree-Fock susceptibilitySak ob-  along with Eq.(D4) into Eq.(D3) gives us our final result for
tained by summing all the one-loop tadpole diagrams; thisn?(T).
leads to the expression We will now manipulate the above result fio(T) into a
form which explicitly displays its universal scaling nature.
First replace the bare couplings by renormalized couplings;

x(K,wp)= — (D1)  to the order we are computing things, this is equivalent to
wp+k+m(T) performing the substitutioh3®® uy=pug/Sy.,; and
) o ) _ to=t[1+(n+2)g/(6€)] wherew is a renormalization mo-
wherem“(T) is given by the solution of the equation mentum scaleg is a dimensionless coupling constant, and
is a renormalized coupling measuring the deviation from the
m*(T)=to+ méc critical point. Expanding the result to ordgr we find that
d the poles ine cancel. Finally, we sey at its fixed point
g n+2 s d’q 1 valug®8 g=g*=6¢/(n+8). Our final result form?(T)
6 @ J (2m9 E+g2+m(T) then becomes
n+2 d9q 1 ) n+2
to+Uo| —5 ) TEZn f P Rm— MA(T)=R(T)—¢| g |2aTVR(T), (D6)

where the second term on the right-hand side is the contri-
: (D2)  bution of Sm?(T). A somewhat subtle analysis, discussed at
some length in Ref. 29, is required to obtain the following

final form for R(T):
In the second equation we have inserted the leading result for (M

the value ofm3.. We are following the convention here of

Jr dd+1p 1
(27T)d+1 p2

denoting ¢+ 1)-dimensional spacetime momenta jpyand R(T)=t( 1+en+2InI +eTZEG t , (D7)
d-dimensional spatial momenta Byg. In the critical region, nt8 u n+8 | 12
the couplinguy is of ordere, and so one might think that it
is permissible to san?(T) =t, on the right-hand side of Eq. With the crossover functio®(y) given by
(D2) and obtain a result correct to ordet. However, this is
not adequate for our purposes for two reasons. w cosh\g?+y)—1
(i) The resulting expression fon?(T) is not analytic as a G(y)= —ZJ dg| In| 2¢° 5 —q
function ofty atty=0 for T>0. This analyticity is required 0 Q°+y
on the physical ground that there can be no thermodynamic
singularity atT>0 at the quantum-critical coupling=0. Yy . (D8)
(ii) At T>0 above the quantum-critical couplirig there 2Vg*+1/e

is a contribution tam?(T) of order €2 which is missed.

To proceed, we can either use the analysis of Ref. 29, ofhis form of G(y) is valid for both negative and positive
directly analyze the singularity structure of E(D2) as (when the argument of the square root is negative we use the
uo— 0. By either method, it can be shown that it is permis-identity coslix=cos) and is easily shown to be analytic at
sible to setm?(T)=t, in only the e,#0 terms on the right- Y=0 where
hand side of Eq(D2). To describe this, we write

2
G(0)=——, dG/dy(0)=2.45380852....

m?(T)=R(T)+ m?(T), (D3) 3
(D9)
where
The result(D7) can therefore be used on both sides of the
N4 2 d9q 1 T critical couplingt=0, and the required analyticity af>0
R(T)=t0+u0(—) f T - - 4 properties at the critical coupling has been achieved. Also
6 (2m)9\ @70 E+q°+ty o> notice that at=0, R(T) is of ordere, and so the resu(D6)
contains a term of ordes™?.
f d*p 1 D4 Finally, let us expressn?(T) in terms of experimentally
N (27)9+1 E (D4) measurable energy scales. The energy scales have to be de-
fined differently fort>0 andt<O0.
was a quantity introduced in Ref. 29, and Fort>0 we choose thd =0 energy gapA, to measure
the deviation from the critical point. Using the relatfon
4 / 1 1 A%=p?(t/n?)?” in Eq. (D7) (v=212+€(n+2)/[4(n+8)]
5m2(T):u0( )Tf q . is the correlation length exponente get our final universal
6 (277)"\ g+ mi(T) ¢? expression foR(T), valid everywhere above the quantum-

(D5) disorderedinsulating phase {>0):
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) n+2 T 5 n+2 [A? terms oft andw in Ref. 29 to expressin terms ost andu
RM =A% 1+e —glng|+eT"—2 = in Eq. (D7). Then all thex dependences cancel as before,
(D10) and we get our final result
Notice that the arbitrary momentum scalehas disappeared,
and combined with EqD6) we now have a result fan?(T) P2 { € 3¢ 2
i = — - + |

Z);gr?ssed solely in terms of the measurable energy séales  R(T) e 8\ 1 2(n+8) n+s Ir‘n+8

For t<0, our results are confined to the normal phase
T>T(t). We measure the deviation from the critical point n+2 T ,N+2 p2
by the value of the superfluid stiffnegs, at T=0 (for n=3, + emln: +eT 7a8Cl 5|
ps is the spin stiffness of the ordered antiferromagnetic Ps (n+8)T
phase. To obtain a quantity with the dimensions of energy
we define (D12

ps=[(3=d)pg]"*"P. (D11) . o .
Again combined with Eq(D6) we now have an expression
The numerical factors are for future convenience; also noticgor m?(T) in terms of the superfluid stiffness of the ordered

that ind=2, p.=ps. Then we use the expression fafin  phase af=0 for t<0 andT>T(t).

1A.F. Hebard, inStrongly Correlated Electronic MaterialéThe Kirkpatrick, Rev. Mod. Phys66, 261 (1994 and references
Los Alamos Symposium 1993edited by K.S. Bedell, Z. Wang, therein.
D.E. Meltzer, and E. AbrahaméAddison-Wesley, Reading, ?H. Stupp, M. Hornung, M. Lakner, O. Madel, and H. v. Lohney-

MA, 1994), p. 251, and references therein. sen, Phys. Rev. Lett71, 2634 (1993; 72, 2122 (19949; S.
2Y. Liu and A. M. Goldman, Mod. Phys. Lett. B, 277(1994 and Bogdanovich, P. Dai, M. P. Sarachik, and V. Dobrosavljevic,
references therein. ibid. 74, 2543(1995.

3A. Yazdani and A. Kapitulnik, Phys. Rev. Left4, 3037(1995.  ®A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Revi9B11 919
43S, -Y. Hsu, J. A. Chervenak, and J. M. Valles, Jr., Phys. Rev. (1994.
Lett. 75, 132(1995; J. A. Chervenak and J. M. Valles, Jr., Phys. 14M. P. A. Fisher, G. Grinstein, and S. M. Girvin, Phys. Rev. Lett.

Rev. B54, R15 649(1996. 64, 587(1990.

5A. J. Rimberg, T. R. Ho, C. Kurdak, J. Clarke, K. L. Campman, ®M.-C. Cha, M. P. A. Fisher, S. M. Girvin, Mats Wallin, and A. P.
and A. C. Gossard, Phys. Rev. LetB, 2632(1997. Young, Phys. Rev. B4, 6883(199)).

H. S. J. van der Zant, F. C. Fritschy, W. J. Elion, L. J. Geerligs,'®M. P. A. Fisher, Phys. Rev. Let5, 923(1990.
and J. E. Mooij, Phys. Rev. Let69, 2971(1992. 17X. G. Wen and A. Zee, Int. J. Mod. Phys. 8 437 (1990.

S, L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod.'8A. P. Kampf and G. T. Zimanyi, Phys. Rev. &, 279 (1993.
Phys.69, 315(1997 and references therein. 19R. Fazio and D. Zappala, Phys. Rev5B, R8883(1996.

8S. Das Sarma, iRPerspectives in Quantum Hall Effecedlited by 20 F. Herbut, cond-mat/9704134inpublished
S. Das Sarma and A. PinczuWiley, New York, 1997, p. 1, 21K, Runge, Phys. Rev. B5, 13 136(1992.
and references therein. 22F 3. Sorensen, M. Wallin, S. M. Girvin, and A. P. Young, Phys.
9C. Castellani, C. DiCastro, and M. Grilli, Phys. Rev. Lét6, Rev. Lett.69, 828(1992.
4650(1995; G. S. Boebinger, Y. Ando, A. Passner, T. Kimura, 23M. Makivic, N. Trivedi, and S. Ullah, Phys. Rev. Leftl, 2307
M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. (1993; N. Trivedi, R. T. Scalettar, and M. Randeria, Phys. Rev.
Ichikawa, and S. Uchidabid. 77, 5417(1996; C. M. Varma, B 54, R3756(1996.
Phys. Rev. B55, 14 554(1997); J. M. Tranquada, J. D. Axe, N. 2*G. G. Batrouni, B. Larson, R. T. Scalettar, J. Tobochnik, and J.
Ichikawa, A. R. Moodenbaugh, Y. Nakamura, and S. Uchida, Wang, Phys. Rev. B8, 9628(1993.
Phys. Rev. Lett78, 338 (1997; G. Aeppli, T.E. Mason, S.M. 25\M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P. Young, Phys.
Hayden, and H.A. MooKunpublishegl Rev. B49, 12 115(1994.
105, v. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. ?°S. Sachdev and J. Ye, Phys. Rev. Lé8, 2411(1992.
Pudalov, and M. D’lorio, Phys. Rev. B0, 8039(1994; S. V.  ?’A.V. Chubukov and S. Sachdev, Phys. Rev. L&tt.169(1993;
Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, and 71, 268QE) (1993.
V. M. Pudalov, ibid. 51, 7038 (1995; S. V. Kravchenko, D.  28S. Sachdev, ifProceedings of the 19th IUPAP International Con-
Simonian, M. P. Sarachik, W. Mason, and J. E. Furneaux, Phys. ference on Statistical PhysicXiamen, China, 1995, edited by
Rev. Lett.77, 4938(1996. Hao Bailin (World Scientific, Singapore, 1996p. 289.
1A, M. Finkelstein, Sov. Phys. JET®7, 97 (1983; Z. Phys. B56, 293, sachdev, Phys. Rev. 55, 142 (1997).
189 (1984); C. Castellani and C. DiCastro, imcalization and  %°B.L. Altshuler and A.G. Aoronov, irElectron-Electron Interac-
the Metal-Insulator Transitionedited by H. Fritzsche and D. tions in Disordered Systemedited by A.L. Efros and M. Pollak
Adler (Plenum Press, New York, 1985D. Belitz and T. R. (North-Holland, Amsterdam, 1985



56

NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM ... 8733

3p, C. Hohenberg and B. I. Halperin, Rev. Mod. Ph¥8, 435  5°C. Itzykson and J.B. ZubeQuantum Field TheoryMcGraw-
(1977. Hill, New York, 1980.

32gimilar T-dependent rates appear in the marginal Fermi-liquid>-S. Sachdev and A. P. Young, Phys. Rev. L&8,. 2220(1997.

scenario for doped cuprate compounds of C. M. Varma, P. B>2X. G. Wen and Y. S. Wu, Phys. Rev. Lett0, 1501(1993.

Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Rucken- >W. Chen, M. P. A. Fisher, and Y. S. Wu, Phys. Revi# 13 749

stein, Phys. Rev. Let63, 1996(1989, which does not rely on a
quantum phase transition.

33L. P. Kadanoff and G. BaymQuantum Statistical Mechanics
(Benjamin, New York, 196R

34L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. Rev.
Lett. 71, 2638(1993.

35Mesoscopic Phenomena in Soligslited by B.L. Altshuler, P.A.
Lee, and R.A. WebkNorth-Holland, Amsterdam, 1991and
references therein.

36U. Weiss,Quantum Dissipative SystenrVorld Scientific, Sin-
gapore, 199Band references therein.

37B. L. Altshuler, Pis'ma Zh. Esp. Fiz.51, 530(1985 [JETP Lett.
41, 648(1985]; P. A. Lee and A. D. Stone, Phys. Rev. L5,
1622(1985.

38p. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Rev5B®
8934(1995.

39k, Lesage, H. Saleur, and S. Skorik, Phys. Rev. [28f.3388
(1996; Nucl. Phys. B474, 602(1996.

40C. L. Kane and M. P. A. Fisher, iRerspectives in Quantum Hall
Effects edited by S. Das Sarma and A. Pincz(Wiley, New
York, 1997, p. 109, and references therein.

“gee, e.g., V.N. Popovirunctional Integrals in Quantum Field
Theory and Statistical Physid¢Reidel, Boston, 1983 Sec. 6.

42M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Phys. Rev. B40, 546 (1989.

433, sachdev and K. Damle, Phys. Rev. L&8, 943 (1997).

441t is worth noting here a key difference between our analysi$ of
in d=2, and the nonzero-temperature transportdefl Lut-

(1993.

543, Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev@2223
(1992.

S5E. Fradkin and S. Kivelson, Nucl. Phys.4¥4, 543 (1996.

56L.P. Pryadko, cond-mat/970221anpublishedl

57s. Kivelson(private communication

58T, Giamarchi and H. J. Schulz, Phys. Rev3RB 325(1988.

59|, F. Herbut, cond-mat/970211@npublishesl

05, Sachdev, N. Read, and R. Oppermann, Phys. Re&2 B0
286 (1995.

613.T. Chalker and P.D. Coddington, J. Phy21;2665(1988; Y.
Huo, R.E. Hetzel, and R.N. Bhatt, Phys. Rev. Latf, 481
(1993; B. Huckenstein, Rev. Mod. Phy&7, 357 (1995.

62D.G. Polyakov and B.l. Shklovskii, Phys. Rev. 48, 11 167
(1993.

53D.-H. Lee and Z. Wang, Phys. Rev. Lef, 4014(1996.

54H.P. Wei, L.W. Engel, and D.C. Tsui, Phys. Rev.5B, 14 609
(1994.

5R. Shankar, Rev. Mod. Phy&6, 129 (1994).

6C. Nayak and F. Wilczek, Int. J. Mod. Phys.18®, 847 (1996.

57D. Shahar, D.C. Tsui, M. Shayegan, E. Shimshoni, and S.L. Son-
dhi, Science274, 589(1996; E. Shimshoni, S.L. Sondhi, and D.
Shahar, Phys. Rev. B5, 13 730(1997).

88A.M. Dykhne and .M. Ruzin, Phys. Rev. BO, 2369 (1994);
S.H. Simon and B.l. Halperin, Phys. Rev. L&tg 3278(1994),
and .M. Ruzin and S. Fengbid. 74, 154 (1995 described
transport in terms of a local, space-dependent, conductivity ten-
sor, which can perhaps be justified in terms of inelastic colli-
sions establishing local equilibrium.

tinger liquids as discussed in Ref. 45. The bosonic formulatiorf®S. Sachdev, irDynamical Properties of Unconventional Mag-
of the latter model has a boson with a single flavor; the momen- netic SystemdNATO Advanced Study Institut8eries B: Phys-
tum and group velocity are not equal, and so the total momen- ics, edited by A. Skjeltorp and D. Sherringtailuwer Aca-
tum and charge current are not proportional to each other for an demic, Norwell, MA, in press

arbitrary distribution function of the particles. Nevertheless, in"%A. Schmid, Phys. Rev. Letb1, 1506(1983.

this Luttinger model, there is zero resistance in the absence of'F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. Lbt,
umklapp scatteringRef. 45. The crucial distinction is thaf 263 (1985.

hasn>1 flavors of bosonésee Sec. Illwhile the model of Ref.  >M.P.A. Fisher and W. Zwerger, Phys. Rev.38, 6190(1985.
45 has only one. As a result, any current-carrying state of th€®P. Fendley, H. Saleur, and N.P. Warner, Nucl. Phy€:3B, 577
latter model has a nonzero momentum which cannot decay, (1994.

while it is possible for the former model to have a current- "“P. Fendley, F. Lesage, and H. Saleur, J. Stat. PB§s.211
carrying state with vanishing momentum. So the important point  (1996.

is not just that the total momentum and charge currerff afe  "°F. Lesage and H. Saleur, Nucl. Phys4B0, 543 (1997).

not the same, but that this difference arises from the presence éfC.L. Kane and M.P.A. Fisher, Phys. Rev.4B, 15 233(1992.

n>1 flavors of bosons.

“5T. Giamarchi and A. J. Millis, Phys. Rev. 86, 9325(1992.

46, B. Keldysh, zh. ksp. Teor. Fiz47, 1515(1964) [Sov. Phys.
JETP20, 235(1965)].

47p. Danielewicz, Ann. PhygN.Y.) 152, 239(1984.

48G.D. Mahan, Many Particle Physi¢®lenum Press, New York,
1990.

493, Sachdev, Phys. Lett. B09, 285(1993.

7K. Moon, H. Yi, C.L. Kane, S.M. Girvin, and M.P.A. Fisher,
Phys. Rev. Lett71, 4381(1993.

8. Guinea, Phys. Rev. B2, 7518(1985.

7SE. Brezin, J.C. Le Guillou, and J. Zinn-Justin, Rhase Transi-
tions and Critical Phenomenaedited by C. Domb and M.S.
Green(Academic Press, London, 1976/0l. 6.

805, Zinn-Justin,Quantum Field Theory and Critical Phenomena

(Oxford University Press, Oxford, 1983



