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Dynamics of the dimer-oscillator model with Fano damping

U. Herfort and M. Wagner
Institut für Theoretische Physik, Universita¨t Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

~Received 25 October 1996; revised manuscript received 28 April 1997!

The dynamical properties of an excitonic dimer coupled to a harmonic oscillator are analyzed as a simple
model for the problem of self-localization of excitons in crystalline systems. If the oscillator is treated classi-
cally and a damping term is included in a phenomenological way, the system relaxes to its lowest-energy state,
which is either a symmetrical or a site-trapped, symmetry-broken state depending on the values of the system
parameters. When the system is treated quantum mechanically, and the accurate eigenstates of the system
obtained in previous work are used, it is possible to establish a semiquantitative argument suggesting that this
symmetry-breaking behavior is an artifact of the semiclassical approximation.@S0163-1829~97!02138-3#
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I. INTRODUCTION

The present work is motivated by the background pr
lem of the spatial self-localization of an initially delocalize
electronic excitation in crystalline systems. From the obs
vation of retarded luminescence in rare-gas crystals1 and in
alkali halides2 we know that a free exciton generated
optical excitation can get self-trapped at two neighbor
sites~dimerization! due to its interaction with the lattice vi
brations. In this process energy is carried away from
excitonic system. This counteracts the excitonic transfer
tween lattice sites, which tends to delocalize the exciton

The simplest archetypical model for studying this anta
nism is a system with two exciton sites coupled to a h
monic oscillator. In addition to this, we will couple the o
cillator to a Fano phonon bath representing the ene
transport in the lattice. The aim of the present paper is
investigate the time evolution after an exciton has been
ated at one of the two sites.

We first employ a semiclassical approximation by treat
the oscillator classically and simulating the Fano coupl
with a classical damping term. The ground state of this s
tem shows a pronounced bifurcation from a symmetrical t
pair of degenerate symmetry-broken states when the
pling between the exciton and the oscillator exceeds a crit
value ~Refs. 3 and 4!. In the dynamical evolution there is
parameter range where the exciton in the beginning oscill
between the two sites, but after losing part of its energy
to the damping it gets site trapped into one of the symme
broken ground states.

In the second part of our paper the system is treated q
tum mechanically. If the Fano coupling is absent, the oc
pation probability difference between the two sites sho
sinusoidal oscillations. If the Fano coupling is included
qualitative argument suggests that the amplitude of the o
pational oscillations will decrease monotonously until the
citon has equal probabilities on both sites. So we can d
the conclusion that the symmetry-breaking behavior is
artifact of the semiclassical approximation.

In Sec. II we present our model and the basic analyt
description of semiclassical dynamics if damping is abse
In Sec. III we introduce the coupling of the ‘‘singular’’ os
cillator to a bath of other oscillators. This ‘‘indirect’’ cou
560163-1829/97/56~14!/8702~12!/$10.00
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pling is contrasted to the direct coupling of the exciton to t
bath as it is usually employed in the literature~see, e.g., Ref.
5!, and it is shown that our model corresponds to the sit
tion known as the super-Ohmic case. In Sec. IV the num
cal results for the semiclassical evolution without and w
damping are given. In Sec. V we contrast the semiclass
description with the quantum-mechanical counterpart,
ploiting the symmetry of the model. In Sec. VI we prese
our conclusions.

II. THE MODEL

A. The Hamiltonian of the system

We consider a symmetric dimer consisting of two ex
tonic sites, coupled to a harmonic oscillator. The Ham
tonian reads

Ĥ5Ĥexc1Ĥosc1Ĥ int , ~1!

where

Ĥexc52VsT~ u1&^2u1u2&^1u!52VsTx̂, ~2!

Ĥosc5
1

2
~ P̂s

21Vs
2Q̂s

2!, ~3!

Ĥ int5Vs
3/2DQ̂s~ u1&^1u2u2&^2u!5Vs

3/2DQ̂sẑ, ~4!

respectively, are the Hamiltonians of the excitonic syste
the oscillator, and the interaction between them.u1& and u2&
are the site states of the exciton,P̂s and Q̂s the oscillatory
coordinates, andx̂, ŷ, ẑ are the pseudospin operators

x̂5u1&^2u1u2&^1u, ~5!

ŷ5 i ~ u2&^1u2u1&^2u!, ~6!

ẑ5u1&^1u2u2&^2u. ~7!

Equation ~1! is the two-site version of the Holstei
Hamiltonian.6 The stationary states of this quantum
mechanical system were calculated by Shore and Sander7 by
8702 © 1997 The American Physical Society
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56 8703DYNAMICS OF THE DIMER-OSCILLATOR MODEL WITH . . .
Wagner and Ko¨ngeter,8 and by Sonnek and co-workers.9,10

We will later return to specific properties of these state
since they imply a restrictive frame for the time evolution.

B. Time evolution „‘‘semiclassical model’’…

We consider the evolution in Heisenberg representatio

A~ t !5^C~0!uÂ~ t !uC~0!&[^Â~ t !&5^Â& t , ~8!

i
d

dt
A~ t !5^C~0!u@Â~ t !,Ĥ#uC~0!&. ~9!

Introducing the real Bloch variables

x~ t !:5^x̂& t , ~10!

y~ t !:5^ ŷ& t , ~11!

z~ t !:5^ẑ& t , ~12!

the basic equations of motion read

ẋ522Vs
3/2D^Q̂sŷ& t , ~13!

ẏ52~VsTz~ t !1DVs
3/2^Q̂sx̂& t!, ~14!

ż522VsTy~ t !, ~15!

Q̇s5Ps~ t !, ~16!

Ṗs52@Vs
2Qs~ t !1Vs

3/2Dz~ t !#, ~17!

and the energy expectation value is

E~ t !5^Ĥ& t5F1

2
^P̂s

21Vs
2Q̂s

2& t2VsTx~ t !1Vs
3/2D^Q̂sẑ& tG .

~18!

Normalization ofuC~0!& requires

x~ t !21y~ t !21z~ t !251 ~19!

for all times t.
The ‘‘semiclassical’’ approach of Holstein6 and of Kenkre

and Campbell3 is found, if the following factorizations are
made:

^Q̂sx̂& t5Qs~ t !x~ t !, ^Q̂sŷ& t5Qs~ t !y~ t !. ~20!

This assumption is tantamount to requiring a product form
the Schro¨dinger wave function at all times:

uC~ t !&[e2 iĤ tuC~0!&'ufexc~ t !&ufosc~ t !&, ~21!

FIG. 1. A triatomic molecule embedded in a one-dimension
chain.
,

:

f

where

ufexc~ t !&5g1~ t !u1&1g2~ t !u2&, ug1u21ug2u251.
~22!

This simplifies the equations of motion to

ẋ522Vs
3/2DQsy, ~23!

ẏ52~VsTz1Vs
3/2DQsx!, ~24!

ż522VsTy, ~25!

Q̇s5Ps , ~26!

Ṗs52~Vs
2Qs1Vs

3/2Dz!, ~27!

and establishes a nonlinear system of five coupled differ
tial equations of first order. For later reference purposes
also note the stationary states of this system given byẋ5 ẏ
5 ż5Q̇s5 Ṗs50, which have been obtained by Esser a
Schanz.4 For D2/T,1, there are only two solutions with

x~0!561, z~0!5Qs
~0!50, ~28!

which preserve the symmetry of the system. ForD2/T.1,
two other solutions appear, with

x~0!56T/D2, z~0!56A12~x~0!!2,
~29!

Qs
~0!52Vs

21/2Dz~0!,

which break the symmetry of the system. These fixed po
split off the lower of the two fixed points Eq.~28! at D2/T
51.

Equations~13!–~17! can be further simplified if the oscil
lator is ‘‘fast’’ compared to the excitonic system (T!1).
Then the oscillator coordinateQs is ‘‘slaved’’ by the exci-
tonic system, i.e., the oscillator is always in its equilibriu
positionQs52Vs

3/2Dz. This approximation leads to the so
called discrete self-trapping~DST! equation in the case of a
dimer, which was solved analytically by Kenkre an
Campbell.3 It should be noted, however, that the ‘‘slaving
assumptionQs52Vs

3/2Dz imposes a severe restriction t
the form of the initial conditions, i.e., Qs(0)5
2Vs

3/2Dz(0), which experimentally cannot be verified ea
ily.

III. FANO COUPLING TO A BATH

A. ‘‘Molecular’’ concept „‘‘indirect’’ bath coupling …

So far, no mechanism for energy dissipation has b
included. For atomistic definiteness we now introduce a c
pling HamiltonianĤosc,bathof the singular oscillator to the
bath,

Ĥosc,bath5
1

2
Q̂s(

k
VkQ̂k , ~30!

and a phonon-bath Hamiltonian

Ĥbath5
1

2 (
k

~ P̂k
21Vk

2Q̂k
2!, ~31!

l
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which we add to our dimer-oscillator Hamiltonian~1!, yield-
ing the total Hamiltonian

Ĥ tot5Ĥ1Ĥbath1Ĥosc,bath. ~32!
ol
As an example for a physical system described by Ham
tonian ~32! we consider a linear triatomic molecule embe
ded in a one-dimensional chain of atoms with neare
neighbor coupling~see Fig. 1!. The Hamiltonian of the
oscillatory system is given by
Ĥosc1Ĥbath1Ĥosc-bath5
1

2m0
~•••1 p̂22

2 1 p̂21
2 1 p̂1

21 p̂2
21••• !1

1

2ma
p̂a

21
1

2mb
~ p̂b

21 p̂c
2!1

f 0

2
@•••1~ q̂212q̂22!2

1~ q̂b2q̂21!21~ q̂12q̂c!
21•••#1

f ab

2
@~ q̂b2q̂a!21~ q̂c2q̂a!2# ~33!
th
an

f

and the exciton-oscillator interaction Hamiltonian by

Ĥ int5D̃ẑ@~ q̂a2q̂b!2~ q̂c2q̂a!#. ~34!

If we introduce the normal coordinates in the triatomic m
ecule, neglecting the even vibrational mode

q̂a5q̂01q̂s , q̂b5q̂c5q̂02
ma

2mb
q̂s , ~35!

p̂a5
ma

ma12mb
p̂01

2mb

ma12mb
p̂s ,

~36!

p̂b5 p̂c5
mb

ma12mb
~ p̂02 p̂s!,

and assumem05ma12mb , Hamiltonian~33! takes the form

Ĥosc1Ĥbath1Ĥosc-bath5
1

2m0
(

n52`

`

p̂n
2

1
f 0

2 (
n52`

`

~ q̂n2q̂n21!2

1
1

2ma~11ma/2mb!
p̂s

2

1F ma
2

4mb
2 f 01 f abS 11

ma

2mb
D 2G q̂s

2

2
ma

2mb
f 0~2q̂02q̂212q̂1!q̂s ,

~37!

from which we can identify

Ĥbath5
1

2m0
(

n52`

`

p̂n
21

f 0

2 (
n52`

`

~ q̂n2q̂n21!2, ~38!

Ĥosc5
1

2ms
p̂s

21msVs
2q̂s

2, ~39!

Ĥosc-bath52
ma

2mb
f 0~2q̂02q̂212q̂1!q̂s , ~40!

with
-

ms5maS 11
ma

2mb
D , ~41!

msVs
25

ma
2

4mb
2 f 01 f abS 11

ma

2mb
D 2

, ~42!

and the interaction Hamiltonian reads

Ĥ int5Dẑq̂s ~43!

with

D52D̃S 11
ma

2mb
D . ~44!

If we introduce mass-reduced normal coordinates

q̂n5
1

Am0N
(

k
eiknQ̂k , ~45!

q̂s5
1

Ams

Q̂s , ~46!

we obtainĤbath in the form ~31! with

Vk5VDusin~k/2!u, VD52A f 0

m0
, ~47!

Ĥoscassumes the form~3!, and the coefficientsVk in Eq. ~30!
are given by

Vk5V~Vk!5
4maf 0

mbAm0msANVD
2

Vk
2. ~48!

The last two parts of Hamiltonian~32!, taken together
with Ĥosc, constitute an oscillatory Fano system, which bo
classically and quantum mechanically can be handled in
exact manner.11,12 This modifies the oscillatory equation o
motion ~17! to

Ṗs52Vs~Qs1Dz!2
1

2 (
k

VkQk , ~49!

the other equations~13!–~16! remaining unaltered.
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B. General oscillatory system„‘‘direct coupling’’ …

In this paper the dimer is coupled to a singular oscillat
which in turn is coupled to an oscillatory bath. This diffe
from the spin-boson model, which has been discussed ex
sively in the previous literature~e.g., Ref. 5!. In the spin-
boson model the exciton is coupled directly to the continu
degrees of freedom of the bath, the interaction Hamilton
being

Ĥ int5
1

2
ẑ(

m
DmQ̂m8 . ~50!

The exciton-bath interaction can be described by the stre
function

S~V!5
1

V (
m

uDmu2d~V2Vm!5
1

V
uDmu2U

Vm5V

r~V!,

~51!

wherer~V! is the mode density of the bath. If we assume
power-law form forS(V)

S~V!54aVs for V!VD ~VD : Debye frequency!,
~52!

we can distinguish three main cases: super-Ohmic (s.1),
Ohmic (s51), and sub-Ohmic (s,1) dissipation.

The ‘‘indirect’’ bath coupling considered in this paper ca
be mapped onto the spin-boson model with direct coupling
the bath~see, e.g., Refs. 5, 13! by diagonalizing the Hamil-
tonian ~32! with respect to the oscillatory degrees of fre
dom. Then the singular oscillator together with the bath
cillators forms a new bath. If this bath is diagonalized, t
coupling to the dimer assumes again the form~50!.

This diagonalization has been carried out earlier by one
us.14 Since the eigenfrequenciesVm8 of the new bath are
shifted from those of the original bath only by small amou
~smaller than the difference between adjacent eigenvalu!,
the mode density of the new bath equals that of the orig
bath. The original singular coordinateQs may be expressed
in terms of the new bath coordinatesQm8 by

Qs5(
m

hs~m!Qm8 , ~53!

wherehs(m) is given ~for N@1! by ~see Ref. 14!

hs~m!2

5
pV~Vm!2

@Vm
2 2Vs

22P~Vm!#21@~p/2Vm!V~Vm!2r~Vm!#2 ,

~54!

P~Vm!5PE
V1

VN
r~V!

V~V!2

Vm
2 2V2 dV. ~55!

The interaction Hamiltonian, expressed by the new coo
nates, reads

Ĥ int5
D

Ams

Q̂sẑ5 ẑ(
m

D

Ams

hs~m!Q̂m8 ~56!
,

n-

n

th
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-
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so we obtainDk5(D/Ams)hs(m) for the coefficientsDk
and

S~V!5
1

V

D

Ams

3
pV~V!2

@V22Vs
22P~V!#21@~p/2V!V~V!2r~Q!#2

3r~V! ~57!

for the strength function. Since

P~Vm!1E
V1

VN r~V!V~V!2

V2 dV

5Vm
2 PE

V1

VN r~V!V~V!2/V2

Vm
2 2V2 dV→0 for Vm→0,

~58!

P(Vm) approaches the finite negative valu
2*r(V)V(V)2/V2 for Vm→0. Therefore the denominato
in Eq. ~57! remains finite and strictly positive forVm→0,
and for smallV we have

S~V!}
1

V
r~V!V~V!2}V3, ~59!

so our model corresponds to the super-Ohmic case (s53).

IV. NUMERICAL SOLUTIONS OF THE SEMICLASSICAL
EQUATIONS OF MOTION

In the following we will discuss some numerical solution
of the system of Eqs.~23!–~27! with the initial condition that
the exciton is on site 1 and the oscillator is resting in
unperturbed equilibrium position, i.e.,

x5y50, ~60!

z51, ~61!

Qs50, ~62!

Ps50. ~63!

A. Behavior without damping

For comparison with the DST model~see Ref. 3!, which
is valid for T!1, we first setg50 andD250.045, and vary
T. The DST model predicts a transition from symmetr
broken to symmetric behavior atT50.0225. The numerica
calculations of the occupation difference~Figs. 2 and 3, solid
lines! show that the transition actually occurs betweenT
50.022 63 andT50.022 64, and that the curves strong
resemble those obtained analytically for the DST mode
Ref. 3.~The dashed lines in Figs. 2 and 3 show the quantu
mechanical behavior, which will be discussed below.! Note
that for T50.022 64 the evolution of the excitonic occup
tion is symmetric although the ground state is symmetry b
ken. This is because the energy of the exciton is too hig
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8706 56U. HERFORT AND M. WAGNER
B. Behavior with damping

Instead of handling the dynamics of the full system, we
now assume that the bath degrees of freedomQk carry away
energy of the singular oscillator as if the exciton did no
exist. This assumption certainly is not immediately eviden
in the case of a strong coupling to the bath. In this case th
argument has to follow the lines described in Sec.V B 2
which now, however, has to be understood in a classical wa
~‘‘coherent oscillatory state’’�classical excitation!, leading
to classical Fano decay. Then, applying Green-functio
techniques,11 we may replace the last term on the right-hand
side of Eq.~49! by a damping term,

FIG. 2. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet. Solid line: semiclassical
approximation~compare Ref. 3!. Dashed line: exact quantum-
mechanical result. Parameter values:V051, D250.045, T
50.02263,g50.

FIG. 3. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet. Solid line: semiclassical
approximation ~compare Ref. 3!. Dashed line: exact quantum-
mechanical result. Parameter values:V051, D250.045, T
50.02264,g50.
t
t
e
,
y

n

1

2 (
k

VkQk'gV0Ps , ~64!

where the magnitude ofg depends on the distribution o
coupling constantsVk and on the mode density in the bat
Hence, in the~classical part of the! further calculations we
will replace Eqs.~17! and ~27! by

Ṗs52V0~Qs1Dz1gPs!. ~65!

In contrast to Kenkre and Wu,15 who also modeled the
oscillator-bath coupling by a damping term, we do not a
sume the damping to be so large (g@1) that Ṗ can be ap-
proximately set to zero in Eq.~65!.

1. Bifurcation for small coupling and small excitonic transfer

If damping is included, the system will lose energy a
eventually settle down in a stable fixed point. If the critic
parameterD2/T is between 1 and 2, the exciton will firs
oscillate freely between the two sites; but after some tim
will get trapped by either of the two sites~Fig. 4!. For
D2/T.2 the exciton is site trapped from the beginning, as
is the case forg50 ~Fig. 5!. For D2/T,1 there is no site
trapping at all, and the exciton will end up in a state w
equal occupation probabilities for both sites~Fig. 6!.

2. Bifurcation for strong coupling

IncreasingD and T further gives the results shown i
Figs. 7 and 8, whereD2 was chosen as 4.5 andT was varied
from 4 to 4.5. Since the fast motion of the exciton~compared
to the oscillator! will produce only small oscillations and
thus only a small energy loss of the oscillator, the damp
term had to be drastically increased~to g51!. In Fig. 7 we
have T5D254.5, so the final state of the exciton is n
symmetry broken. In Fig. 8 (T54), however, we haveT
,D2 and the final state is a site-trapped state with brok
symmetry. Contrary to the case of smaller values ofD and
T, the exciton will first relax to the symmetric state, whic
for T>D2 is the ground state, and only then to the final sta

FIG. 4. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet in the semiclassical
approximation. Parameter values:V051, D250.045, T50.02, g
50.02.
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V. QUANTUM-MECHANICAL FRAME CONDITIONS
AND REQUIREMENTS FROM SYMMETRY

In the numerical calculations, as represented in the pr
ceding figures, several pronounced phenomena have be
found, and it is highly desirable either to support these b
rigorous quantum-mechanical requirements or to evinc
them as artifacts resulting from the basic approximation~20!.

A. Stationary states of the dimer-oscillator subsystem
and time evolution without damping

1. The Fulton-Gouterman Hamiltonian

We first disregard the coupling to the bath and conside
the basic Hamiltonian~1!. Application of group theory re-
quires the eigenfunctions to be irreducible representations
the inversion group, whence they must display a definite pa
ity p ~:5g,u or :561!,

FIG. 5. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet in the semiclassical
approximation. Parameter values:V051, D250.045, T50.04, g
50.02.

FIG. 6. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet in the semiclassical
approximation. Parameter values:V051, D250.045, T50.05, g
50.02.
e-
en
y
e

r

of
r-

R̂uc~p!&5puc~p!&, ~66!

whereR̂ is the inversion operator (R̂5R̂excR̂osc),

R̂excu1&5u2&, ~67!

R̂oscf~Qs!5f~2Qs!, ~68!

R̂Q̂s52Q̂sR̂. ~69!

The eigenfunctions therefore must be of the general Wigne
form

ucn
~p!&5

1

&
~ u1&1pu2&R̂osc)fn

~p! , ~70!

which for fn
(p) yields the Fulton-Gouterman~FG! equations

FIG. 7. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet in the semiclassical
approximation. Parameter values:V051, D254.5, T54.5, g51.

FIG. 8. The differencez of the occupation probabilities of the
two sites in a dimer as a function of timet in the semiclassical
approximation. Parameter values:V051, D254.5, T54.0, g51.
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8708 56U. HERFORT AND M. WAGNER
ĤFG
~p!fn

~p![V0F1

2
~ P̂s

21Q̂s
2!1DQ̂s2pTR̂oscGfn

~p!

5En
~p!fn

~p! . ~71!

For details we refer to earlier work, see Refs. 6, 8, 9, 10,
16.

2. Hierarchy 1@D@T

For the parameter hierarchy 1@D@T the exact eigenval-
ues and eigenvectors of Eq.~71! read~viz. Ref. 17!

E0
~p!5

1

2
V0~12D2!2pV0Te2D2

22V0T2D2@11O~D2!#

1O~T3!, ~72!

f0
~p!5F0~Qs1D !2pTD&F1~Qs1D !

2pTD2
1

&
F2~Qs1D !2pTO~D3!1O~T2!,

~73!

E1
~p!5

1

2
V0~32D2!1pV0Te2D2

~122D2!1O~T2!,

~74!

f1
~p!5F1~Qs1D !1O~T!, ~75!

whereFn(Qs) is thenth eigenstate of the unperturbed osc
lator.

We now apply these results to the problem of the ti
evolution. The quantum-mechanical form of our initial sta
reads
d

e

C~0!5u1&F0~Qs!, ~76!

where

F0~Qs!5S 1

p D 1/4

e2Qs
2/2 ~77!

is the ground state of the unperturbed oscillator. This ini
state~76! may be written as

C~0!5
1

&
@C~1 !~0!1C~2 !~0!#, ~78!

C~6 !~0!5
1

&
@ u1&6u2&]F0~Qs!. ~79!

Employing Eqs.~70! and~73! we observe that in the hierar
chy 1@D@T we have

C~0!5
1

&
@c0

~1 !1c0
~2 !#1O~D !c1

~6 !1O~D2!, ~80!

where c0
(6) ,c1

(6) are the exact eigenstates~70!. We thus
have the time evolution

C~ t !5
1

&
e2 iE0

1tc0
~1 !1

1

&
e2 iE0

2tc0
~2 !1O~D !c1

~6 !

1O~D2!. ~81!

After some rearrangement this can be conveyed into the f
C~ t !5
1

2
e2 i ~E0

~1 !
2E0

~2 !
!t/2 cos„~E0

~1 !2E0
~2 !!t/2…@ u1&~f0

~1 !1f0
~2 !!1u2&R̂~f0

~1 !2f0
~2 !!]

1
i

2
e2 i ~E0

~1 !
2E0

~2 !
!t/2 sin„~E0

~1 !2E0
~2 !!t/2…@ u2&R̂~f0

~1 !1f0
~2 !!1u1&~f0

~1 !2f0
~2 !!] 1O~D !c1

~6 !1O~D2!.

~82!
We note that

f0
~1 !1f0

~2 !52F0~Qs1D !1O~T2!

52F0~Qs!1O~D !F1~Qs!1O~D2!1O~T2!,

~83!

f0
~1 !2f0

~2 !5O~TD!, ~84!

and

f1
~6 !5F1~Qs!1O~D !1O~T!. ~85!

Thus we finally end up with the evolution
C~ t !5e2 i ~E0
~1 !

2E0
~2 !

!t/2@ u1&cos 1
2 ~E0

~1 !2E0
~2 !!t

2 i u2&sin 1
2 ~E0

~1 !2E0
~2 !!t#F0~Qs!1O~D !F1~Qs!

1O~D2!1O~TD!1O~T2!, ~86!

which would yield@see definition~12!#

z~ t !5cos~E0
~1 !2E0

~2 !!t1O~D2!1O~T2!

~ for 1@D@T!, ~87!

where in dominating order@see Eq.~72!#

E0
~2 !2E0

~1 !52V0Te2D2
. ~88!
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Since in both Figs. 2 and 3 the hierarchical suppositio
1@D@T is satisfied, we must conclude that the semiclas
cal time evolution in Fig. 2 contradicts quantal rigorosity
Thus, the persistent symmetry breaking of the excitonic o
cupation forD50.3, T<0.022 63 must be considered as a
artifact ensuing from the factorization~20!. This result has
also been obtained previously with different initial cond
tions by Vitali et al.18 and by Salkolaet al.19 Also the semi-
classical time evolution~Fig. 3! cannot be correct, since@viz.
Eq. ~87!# z(t) should be dominantly a pure cosine function
This is confirmed by accurate numerical quantum
mechanical calculations, the results of which are shown
Figs. 2 and 3 with dashed lines.

3. The general case: Numerical calculations

If the hierarchical condition 1@D@T is not fulfilled, we
have to resort to numerical calculations of the exact eige
states~70! of the dimer-oscillator subsystem. In Figs. 9 an
10 the eigenvalues ofĤFG

(p) are shown as functions of the

FIG. 9. Dependence of the energy eigenvalues on the coupl
D for V051, p51, T54.

FIG. 10. Dependence of the energy eigenvalues on the coup
D for V051, p521, T54.
n
i-

-

.
-
in

-
excitonic transfer parameterT for V051, D54, and p5
11 or p521, respectively. In these pictures we can dist
guish two types of states: the so-called antisqueezed or
ventional states, whose energy decreases with increa
couplingD, and the squeezed or exotic states, whose ene
increases with increasingD ~see Ref. 10!. Wherever the en-
ergies of two states come close together, we observe
avoided crossing, making a clear distinction of the two type
of states impossible. For large values ofD the noncrossing is
directly visible in Figs. 9 and 10. But even for lower valu
of D, where the noncrossing of the lines is visually not d
cernible, a closer examination with higher resolution reve
that the crossings are actually avoided.

In Figs. 11 and 12, which show the eigenfunctions of t
FG equation~71! for V051, D53/&, T53.9, andp511
or p521, the different shapes of conventional and exo
states are obvious. Note also that the FG wave function
both the even-parity ground state~f0

(1) , see Fig. 11! and the
lowest odd-parity exotic state~f6

2 , see Fig. 12! strongly
resemble the initial oscillatory wave functionF0(Qs).
Therefore, in our initial state~76! F0(Qs) projects ontof0

(1)

andf6
(2) , respectively, with approximate weight 1/2. Fro

this we can conclude that the initial state is essentially
superposition ofc0

(1) andc6
(2) , respectively, multiplied by

g

ng

FIG. 11. Eigenfunctions of the FG Eq.~71! for V051, p5
11, D53/&, T53.9.
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the ground-state bath functionF0
(bath). This can also be seen

from Fig. 13, which shows the occupation probabilitie
u^fn

(6)uF0&u2 as a function ofn.
A calculation ofz(t) similar to that given above for the

case 1@D@T yields

FIG. 12. Eigenfunctions of the FG Eq.~71! for V051, p5
21, D53/&, T53.9.

FIG. 13. Occupation probabilitiesu^fn
(6)uF0&u2 as a function of

n for V051, D53/&, T53.9.
z~ t !5 (
m50

`

(
n50

`

cm
~1 !cn

~2 !^fn
~2 !ufm

~1 !&cos@~En
~2 !2Em

~1 !!t#,

~89!

where

cn
~6 !5^fn

~6 !uF0&5^F0ufn
~6 !&. ~90!

Since for D53/& and T53.9 the dominant term in sum
~89! is given for m50 andn56, we expectz(t) to show
temporal oscillations with a frequency given by the energ
differenceE6

(2)2E0
(1) . This is confirmed in Fig. 14, which

showsz(t) calculated using Eq.~89!. The amplitude fluctua-
tions that can be seen in Fig. 14 are due to beats caused
the other terms in Eq.~89!.

B. Quantum-mechanical description of the decay process

If we now include the coupling~30! to the bath, we have
to consider state vectors in the product space of the dime
oscillator subsystem and the bath. Consequently, we have
modify our initial state~76! to

C~0!5u1&F0~Qs!F0
~bath!~Qk!, ~91!

where F0
(bath)(Qk) is the ground state of the bath Hamil-

tonian~31!. Since the total Hamiltonian~32! commutes with
the inversion operator, the parity of the total state is a con
served quantity. Our initial state is a superposition of an eve
and an odd state,C (1)(0) andC (2)(0), with equal weights
of both parities@see Eqs.~78! and ~79!#. Since in the time
evolution C (1)(0) andC (2)(0) remain states of even and
odd parities, respectively, i.e., since the two parities rema
independent of each other, the equal weighting is conserv
at all times. This does not mean, however, that the parity
the pure dimer-oscillator subsystem, respectively, is con
served too. Rather, since the parity of the phonon ba
changes whenever a phonon is created, the parity of t
dimer-oscillator subsystem itself must also change to pr
serve total parity. This has consequences for the decay p
cess within the dimer-oscillator subsystem.

FIG. 14. Occupation probability differencez(t) as a function of
time for V051, D53/&, T53.9.
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1. Weak oscillator-bath coupling:
Fano (Fermi golden rule) decay

If the coupling between the singular oscillator and t
bath is sufficiently weak, the influence of the bath can
o-

-

bi
ing

is

u
t

to
e

treated as a perturbation of the dimer-oscillator subsyste
a. Hierarchy 1@D@T: In the case 1@D@T only the

lowest two states of the subsystem are populated@see Eq.
~80!#, so it may be treated as a two-level system with sta
uc0

(1)& and uc0
(2)&. In this two-state approximation we hav
Q̂s5 (
p561

(
p8561

uc0
~p!&^c0

~p!uQ̂suc0
~p8!&^c0

~p8!u5uc0
~1 !&^c0

~1 !uQ̂suc0
~2 !&^c0

~2 !u1H.c.

5uc0
~1 !&^F0~Qs1D !uQ̂suF0~Qs1D !&^c0

~2 !u1H.c.1O~T2!

52D~ uc0
~1 !&^c0

~2 !u1uc0
~2 !&^c0

~1 !u!1O~T2! ~92!
y of

s

the
to
-

ed
des
e
o-
stem
ible
wn

e

the
and

Ĥ tot5E0
~1 !uc0

~1 !&^c0
~1 !u1E0

~2 !uc0
~2 !&^c0

~2 !u ~93!

2
1

2
D~ uc0

~1 !&^c0
~2 !u1uc0

~2 !&^c0
~1 !u!(

k
VkQ̂k1Ĥbath.

If we now introduce the new Bloch operators in the tw
state system

x̂85~ uc0
~1 !&^c0

~1 !u2uc0
~2 !&^c0

~2 !u!, ~94!

ŷ85 i ~ uc0
~2 !&^c0

~1 !u2uc0
~1 !&^c0

~2 !u!, ~95!

ẑ852~ uc0
~1 !&^c0

~2 !u1uc0
~2 !&^c0

~1 !u!, ~96!

Eq. ~93! can be written in the form

Ĥ tot5Ē02
1

2
DE0x̂81

1

2
ẑ8(

k
D̃kQ̂k1Ĥbath, ~97!

where Ē05 1
2 (E0

(1)1E0
(2)), DE05E0

(2)2E0
(1)

52V0Te2D2
, D̃k5DVk . This is nothing than the spin

boson Hamiltonian with direct coupling to the bath.
Therefore the results obtained by Leggettet al.5 for the

weak-damping limit are applicable. The occupation proba
ity difference shows damped oscillations with a damp
time T given by

T215
p

4
D2(

k

Vk
2

Vk
d~DE02Vk!

5
p

4
D2V~DE0!2

r~DE0!

DE0
, ~98!

and the condition for the validity of the approximation
T21!DE0 .

The physical explanation of this damping is that the co
pling of the dimer-oscillator subsystem to the bath leads
transitions from the~odd! excited stateuc0

(2)& to the ~even!
ground stateuc0

(1)& under emission of a phonon according
Fermi’s golden rule. Since the oscillations ofz(t) are a result
l-

-
o

of the superposition of an even and an odd state, the deca
uc0

(2)& to uc0
(1)& will lead to a decay of the oscillations.

b. Case D53/&, T53.9: In this case, our initial state i
essentially a superposition ofc0

(2) andc6
(2) . This superpo-

sition will lead to oscillations ofz(t) with a frequency given
by the energy differenceE6

(2)2E0
(1) . In the weak-damping

limit we can again assume a golden-rule-type decay of
initial state. Sincec0

(1) is the lowest state, it cannot decay
other states.c6

(2) , on the other side, will decay exponen
tially by emitting phonons into the bath. With each emitt
phonon the subsystem will change its parity; so it ‘‘casca
down’’ between the two parities, until it finally reaches th
ground statec0

(1) . Since for each step of this cascading pr
cess there are several target states into which the subsy
can decay by emitting a phonon, there are many poss
routes for this decaying process. Two possibilities are sho
in Fig. 15 with solid and dashed arrows.

Now it is important to note that after the first step of th
cascading process the probability differencez(t) remains
zero. This can be seen by the following reasoning:

The state of the total system at timet can be written as

c~ t !5
1

&
uc0

~1 !&uF0
~phon!&e2 iE0

~1 !t1
1

&
Fc6

~2 !(t)

3uc6
~2 !&uF0

~phon!&1(
i

ci
~2 !~ t !uc i

~2 !&uf i 1
~phon!&

FIG. 15. Energy levels of the dimer-oscillator subsystem for
two parities, and two possible ‘‘cascading processes’’ forV051,
D53/&, T53.9.
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8712 56U. HERFORT AND M. WAGNER
1(
i

ci
~1 !~ t !uc i

~1 !&uf i 2
~phon!&G , ~99!

whereuF0
(phon)& is the ground state of the bath,uf i 1

(phon)& are
even bath states with at least two phonons, anduf i 2

(phon)& are
odd bath states. If we now form the expectation valuez(t)
5^c(t)uẑuc(t)&, terms connecting subsystem states of
same parity vanish, sinceẑ is an odd operator in the sub
system space. Also, all terms of the form

1

2
ci

~2 !~ t !* ci 8
~1 !

~ t !^c i
~2 !u^f i 1

~phon!uẑuf i 82
~phon!&uc i 8

~1 !&

~100!

and all terms of the form

1

2
eiE0

~1 !tci
~2 !~ t !^c0

~1 !u^0~phon!uẑuf i 1
~phon!&uc i

~2 !&, iÞ6

~101!

vanish, because the bath statesuf i 1
(phon)& anduf i 82

(phon)& ~oppo-
site parity!, or u0(phon)& and uf i 1

(phon)& ~uf i 1
(phon)& has at least

two phonons!, are orthogonal to each other. So the only
maining term is

z~ t !5
1

2
eiE0

~1 !tc6
~2 !~ t !^c0

~1 !uẑuc6
~2 !&1c.c. ~102!

The amplitude of the oscillations ofz(t) is therefore deter-
mined only by the absolute value ofc6(t), which decreases
monotonously because of the decay of statec6

(2) .
The reciprocal time constantT21 of this decay is the sum

of the reciprocal time constants for all possible decay ch
nels, i.e.,

T215
p

2 (
i 50

6

(
k

u^c i
~1 !Fk

~phon!u

3VkQsQkuc6
~2 !F0

~phon!&u2d~E6
~2 !2Ei

~1 !2Vk!

5
p

4 (
i 50

6

u^c i
~1 !uQsuc6

~2 !&u2V~E6
~2 !2Ei

~1 !!2

3
r~E6

~2 !2Ei
~1 !!

E6
~2 !2Ei

~1 ! , ~103!

and the condition for the validity of the weak-damping a
proximation is hereT21!V0 , sinceV0 is the order of mag-
nitude of the typical energy differences between the disc
statesuc i

(6)&.

2. Strong oscillator-bath coupling

If the oscillator-bath coupling is strong compared to t
excitonic transfer, the temporal evolution of the system c
be separated into a short-time and a long-time regime.

For short times the excitonic transfer may be neglected
that the exciton is fixed in its initial site and therefore simp
leads to a shift of the equilibrium positions of all oscillator
i.e., both the singular one and those of the bath. But, in f
the displacement of the bath oscillators is of the order 1N
~N5number of the bath oscillators!, whence we may neglec
e

-

-

-

te

n

o

,
t,

it. Then the intrinsic oscillator initially is in a coherent stat
which decays in a Fano manner.

After relaxation of the oscillatory subsystem, the syste
has reached a state corresponding to the initial state of L
gett et al.5 at zero temperature. Accordingly, for the lon
time evolution caused by the excitonic transfer the results
Ref. 5 apply. Especially, in the super-Ohmic case the pr
ability differencez(t) shows damped oscillations. The fre
quency of these oscillations is reduced in comparison to
‘‘bare’’ value 2V0T by the Franck-Condon factor. For th
Ohmic case Leggettet al. predict a transition to strict local
ization for sufficiently strong coupling. This is no contradi
tion to the result of Wagner and Va´squez-Ma´rquez13 that
even in the Ohmic case the ground state is never stri
degenerate. Yet it turns out that the splitting is exceedin
small, so that the transfer time becomes extremely long;
the results of Leggettet al. are restricted to times that ar
‘‘not too long.’’5

VI. CONCLUSIONS

In this paper we have studied the dynamics of a dim
oscillator model. We have contrasted a semiclassical an
full quantum-mechanical analysis. The term ‘‘semiclassica
signifies a classical handling of the oscillatory system. F
the semiclassical initial condition we choose the state
which the exciton is located completely at one site and
oscillator is resting in its unperturbed equilibrium positio
The corresponding quantum-mechanical initial condition i
product of a one-site exciton state and the unpertur
ground state of the oscillator. The semiclassical calculati
without damping show a pronounced transition betwee
symmetric and a symmetry-broken dynamics, depending
the value of the parameterD2/T. If the exciton-oscillator
coupling DV0 and the transferTV0 are small compared to
the oscillator frequencyV0 , the so-called DST approxima
tion applies3 and three cases can be distinguished: F
D2/T,1 the ground state is a symmetric state with equa
occupied dimer sites, and for the given initial conditions t
excitonic occupation oscillates between the two sites. Fo
,D2/T,2 the system would descend to a symmetry-brok
state ~‘‘left’’ or ‘‘right’’ ! if the kinetic energy were taken
away. For the given initial state the excitonic occupati
remains oscillating between the two sites. ForD2/T.2 the
exciton remains with a probability greater than 1/2 at the s
where it is created.

If a classical damping term is added to the oscillator in
phenomenological way, the system will finally settle down
a stable stationary state. ForD2/T,1 we have symmetric
behavior at all times; forD2/T.2 the exciton is site-trapped
from the beginning; and for 1,D2/T,2 the exciton shows
symmetric behavior in the beginning, but later gets trapp
at one of the two sites. IfD and T are greater than 1, the
DST approximation is no longer valid, but the system s
shows a transition from a symmetric to a symmetry-brok
final state atD2/T51.

The quantum-mechanical calculations, on the other ha
show a completely different picture. In the absence of dam
ing the occupational probability differencez(t) shows sinu-
soidal oscillations. This can be derived analytically in t
caseD,T!1; for D,T.1 it is suggested by numerical ca
culation of the exact energy eigenstates of the system ma
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56 8713DYNAMICS OF THE DIMER-OSCILLATOR MODEL WITH . . .
recourse to the Fulton-Gouterman transformation. If the
cillator is coupled to a Fano bath of other oscillators, t
transitions induced by the bath between the states of
dimer-oscillator subsystem lead to a decay of the oscillati
of z(t) until the subsystem settles down in a state with eq
probabilities at both sites.

The differences between semiclassical and quant
mechanical behavior show that care must be taken when
plying the semiclassical approximation. As has already b
pointed out by Vitali et al.18 and by Salkolaet al.,19 the
quantum-mechanical fluctuations of the oscillator, which
neglected in the semiclassical approximation, lead to the p
sibility of polaron tunneling, tending to destroy the symm
try breaking. Only if the separation of the semiclassical eq
.

s-
e
e
s
l

-
p-
n

e
s-
-
i-

librium positionsQs of the oscillator@see Eq.~29!# is large
compared to the quantum fluctuations ofQ ~i.e., D@1!, the
polaron tunneling time increases exponentially.19 Especially
in the validity range of the DST approximation~D,T!1!,
the semiclassical approximation is unjustified; and from o
numerical results we can conclude that this is the case e
for D53/&, T53.9.

Regarding our background problem of the spatial se
localization of an initially delocalized electronic excitation
crystalline systems, the findings presented in this paper s
that the semiclassical approximation can give misleading
sults when applied to this problem, and that the resu
should be verified by means of a full quantum-mechani
calculation.
r
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