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Dynamics of the dimer-oscillator model with Fano damping
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The dynamical properties of an excitonic dimer coupled to a harmonic oscillator are analyzed as a simple
model for the problem of self-localization of excitons in crystalline systems. If the oscillator is treated classi-
cally and a damping term is included in a phenomenological way, the system relaxes to its lowest-energy state,
which is either a symmetrical or a site-trapped, symmetry-broken state depending on the values of the system
parameters. When the system is treated quantum mechanically, and the accurate eigenstates of the system
obtained in previous work are used, it is possible to establish a semiquantitative argument suggesting that this
symmetry-breaking behavior is an artifact of the semiclassical approximg86d63-182@7)02138-3

I. INTRODUCTION pling is contrasted to the direct coupling of the exciton to the
bath as it is usually employed in the literatysee, e.g., Ref.
The present work is motivated by the background prob-5), and it is shown that our model corresponds to the situa-
lem of the spatial self-localization of an initially delocalized tion known as the super-Ohmic case. In Sec. IV the numeri-
electronic excitation in crystalline systems. From the obsercal results for the semiclassical evolution without and with
Vation Of retarded |uminescence in rare_gas Crygm in damplng are giVen. In Sec. V we contrast the SemiC|aSSica|
alkali halided we know that a free exciton generated by description with the quantum-mechanical counterpart, ex-
optical excitation can get self-trapped at two neighboringPloiting the symmetry of the model. In Sec. VI we present
sites(dimerization due to its interaction with the lattice vi- OUr conclusions.
brations. In this process energy is carried away from the
excitonic system. This counteracts the excitonic transfer be- Il. THE MODEL
tween lattice sites, which tends to delocalize the exciton.
The simplest archetypical model for studying this antago-
nism is a system with two exciton sites coupled to a har- We consider a symmetric dimer consisting of two exci-
monic oscillator. In addition to this, we will couple the os- tonic sites, coupled to a harmonic oscillator. The Hamil-
cillator to a Fano phonon bath representing the energyonian reads
transport in the lattice. The aim of the present paper is to o A A
investigate the time evolution after an exciton has been cre- H=H eyt Hosct Hint» (1)
ated at one of the two sites.
We first employ a semiclassical approximation by treatingwhere
the oscillator classically and simulating the Fano coupling .
with a classical damping term. The ground state of this sys- Hex= —QsT(|1)(2]+]2){1]) = — QTX, (2
tem shows a pronounced bifurcation from a symmetrical to a
pair of degenerate symmetry-broken states when the cou- - 1 . -
pling between the exciton and the oscillator exceeds a critical Hose=5 (P3+0Q2Q2), ()
value (Refs. 3 and % In the dynamical evolution there is a
parameter range where the exciton in the beginning oscillates
between the two sites, but after losing part of its energy due

to the damping it gets site trapped into one of the SymmE’tryfespectively, are the Hamiltonians of the excitonic system,

broken ground states. ; ; -
. the oscillator, and the interaction between théih.and |2
In the second part of our paper the system is treated quan- - [2)

tum mechanically. If the Fano coupling is absent, the occudr® the site states of the excitdh, and Q the oscillatory

pation probability difference between the two sites Showscoordmates, and, ¥, z are the pseudospin operators

sinusoidal oscillations. If the Fano coupling is included, a

A. The Hamiltonian of the system

Hi=QIDQu(|1)(1]|—[2)(2)) =02 DQz, (4

gualitative argument suggests that the amplitude of the occu- x=[1)(2]+2)(1], (5)
pational oscillations will decrease monotonously until the ex- .

citon has equal probabilities on both sites. So we can draw y=i(12)(1]=[1)(2]), (6)
the conclusion that the symmetry-breaking behavior is an

artifact of the semiclassical approximation. z=|1)(1|—1]2)(2|. (7

In Sec. Il we present our model and the basic analytical
description of semiclassical dynamics if damping is absent. Equation (1) is the two-site version of the Holstein
In Sec. Il we introduce the coupling of the “singular” os- Hamiltonian® The stationary states of this quantum-
cillator to a bath of other oscillators. This “indirect” cou- mechanical system were calculated by Shore and Sdrmer,

0163-1829/97/5@.4)/870212)/$10.00 56 8702 © 1997 The American Physical Society



56 DYNAMICS OF THE DIMER-OSCILLATOR MODEL WITH . .. 8703

where
fo fo fan_fav fo fo
. : | pexd))=01(D]1)+9x(1)[2),  [91]?+]g,|*=1.
(22)
9-2 -1 B % 9 @ 92 This simplifies the equations of motion to
Mg myg My Mg My my my : 3/2
x=—207"DQyy, (23
FIG. 1. A triatomic molecule embedded in a one-dimensional Vil 3/2
chain. y_Z(QSTZ_I—QS DQSX), (24)
Wagner and Kogeter® and by Sonnek and co-workets? 2==20Ty, (25)
We will later return to specific properties of these states, N —p 26
since they imply a restrictive frame for the time evolution. Qs=Ps, (26)
P,=—(Q2Q.+0¥D2), 27)

B. Time evolution (“semiclassical model”)

We consider the evolution in Heisenberg representation:2nd establishes a nonlinear system of five coupled differen-
tial equations of first order. For later reference purposes we
A(t):<\I/(O)|A(t)|\lf(o)>5<A(t)>:<A>t’ (8) als_,o note the stationary states of this system givexby
=z=Qs=P¢,=0, which have been obtained by Esser and
_d A . SchanZ For D?/T<1, there are only two solutions with
I g A =(W(0)[[A(t),H]|¥(0)). 9
xO=+1, 29=QP=0, (28

Introducing the real Bloch variables .
g which preserve the symmetry of the system. B/ T>1,

x(1):=(X);, (10)  two other solutions appear, with
“ (0)— 2 (0) = —(x(0)2
y(t):=(¥), (11) xW==xT/D*, ZW=={1-(x")*, 29
2(t):=(2),, (12 QU=—0 YDz,
the basic equations of motion read which break the symmetry of the system. These fixed points
R split off the lower of the two fixed points Eq28) at D%/T
x=—203D(QY), (13 =1.
A Equationg(13)—(17) can be further simplified if the oscil-
y=2(QsTz(t) +DOIAQX),), (14)  lator is “fast” compared to the excitonic systenT€1).
Then the oscillator coordinat®, is “slaved” by the exci-
z=-2Q0Ty(t), (15)  tonic system, i.e., the oscillator is always in its equilibrium
_ position Q.= — 0¥’Dz. This approximation leads to the so-
Q.=P4(1), (16)  called discrete self-trappin@ST) equation in the case of a
_ dimer, which was solved analytically by Kenkre and
P=—[Q2Q4(t)+Q¥Dz(t)], (17) Campbelf It should be noted, however, that the “slaving”
. ) assumptionQS=—Q§’2Dz imposes a severe restriction to
and the energy expectation value is the form of the initial conditions, i.e., Q40)=
A 1 . A A —93’202(0), which experimentally cannot be verified eas-
E()=(H)=|5 <P§+Q§Q§>t—an<t>+0§’2D<Q52>t}- ly.
o _ (18 I1l. FANO COUPLING TO A BATH
Normalization Oﬂ\I’(O» requires A. “Molecular” concept (“indirect” bath coupling )
X(1)?+y(t)2+z(t)?>=1 (19 So far, no mechanism for energy dissipation has been

for all timest. included. For atomistic definiteness we now introduce a cou-

The “semiclassical” approach of Holstéiand of Kenkre pling HamiltonianH ysc patn OF the singular oscillator to the
and Campbeflis found, if the following factorizations are bath,
made:

osopairg Qo3 Vi 30
~a S A Jbath™ &5 k™K
(QK)=Qs(DX(1), (QF=Qs(ty(t).  (20) e 2 TR
This assumption is tantamount to requiring a product form oftnd a phonon-bath Hamiltonian
the Schrdinger wave function at all times:

v Fore s S (P2+0202) (31)
(W (D)= MW (0))~|dexd 1)) osd 1)), (21) bath™ 2 4 kT Tk D
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which we add to our dimer-oscillator Hamiltoniéh), yield-
ing the total Hamiltonian

Htot H + H bath+ Hosc bath (32)

- ~ ~ 1
— ~n2 ~n2 ~2, n2
Hosc+ Hbath+Hosc—bath_2_mo ( ot p—2+p71+ p1+ p2+

+(Gp=G-1)*+ (81— Go) >+ -

and the exciton-oscillator interaction Hamiltonian by

Hint:Di[(aa_ab)_(ac_aa)]- (34)
If we introduce the normal coordinates in the triatomic mol-
ecule, neglecting the even vibrational mode

aa: E]O"'E]s: e]b qc QO Zﬁ?b 6]31 (35)
- My . . 2mp
Pa= Po Ps,
m,+2m m,+2m
a b a b (36)
AN my, A A
pb—pc—m(Po—ps),

and assumeny=m,+2m,, Hamiltonian(33) takes the form

E

=—®

H osc+ H bath+ H osc-bath™ 2m
14

+_ 2 (qV qV 1)

y=—00

1 a2
+ Ps
2my(1+my/2my)

2

] ot f Ma || o2
4mk2) 0 ab 2mb ds
ma ~ ~ ~ ~

- 2m, fo(200—0-1—01)0s,

(37
from which we can identify
Flpar= 5 E 62+— > @-6,-0% ©9
Hosc= 5, P+ MSQSES, (39
- ma ~ ~ ~ ~
Hosc-batf= — m fo(200—0-1—0d1)Qs, (40)

with
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As an example for a physical system described by Hamil-
tonian (32) we consider a linear triatomic molecule embed-
ded in a one-dimensional chain of atoms with nearest-
neighbor coupling(see Fig. 1 The Hamiltonian of the
oscillatory system is given by

=)+ pa (pb+pc)+_[ “+(0-1-0-2)?
fap o oo o o
7[(qb_qa) +(qc_qa) ] (33)
T
Ma 41
m ma 2mb ( )
2 2
m
msQ§:4_r:§ fO"’fab( Zﬁ?b) ) (42
and the interaction Hamiltonian reads
Hlnt Dzqs (43
with
D=2D| 1+ —a 44
N + Zmb ) ( )
If we introduce mass-reduced normal coordinates
P rQy (45
" JmgN K '
o= O (46)
qS \/ﬁs Sy
we obtainH bath IN the form (31) with
. fo
QKZQD|SIH(|(/2)|1 QDZZ m_: (47)
o

Hscassumes the forr8), and the coefficient¥, in Eq. (30)
are given by

am,f,
My memgy/NQ3

The last two parts of Hamiltoniai32), taken together
with Hyg, constitute an oscillatory Fano system, which both
classically and quantum mechanically can be handled in an
exact mannet!!* This modifies the oscillatory equation of
motion (17) to

Vi =V(Q,)= Q2. (48)

=

—0Q4(Qs+D2)— (49

N

Ek ViQx,

the other equationél3)—(16) remaining unaltered.
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B. General oscillatory system(“direct coupling” ) so we obtainD,=(D/\mg) n4(u) for the coefficientsD,

In this paper the dimer is coupled to a singular oscillator,2nd
which in turn is coupled to an oscillatory bath. This differs

from the spin-boson model, which has been discussed exten- S(Q)= 1 D
sively in the previous literatur¢e.g., Ref. 5. In the spin- \/—
boson model the exciton is coupled directly to the continuum
degrees of freedom of the bath, the interaction Hamiltonian « mV(Q)?
being [Q%=QZ—P(Q)]*+[(m/20)V(Q)?p(Q)]?
X p(Q) (57)
An=y 23 D (50 Pl
B for the strength function. Since
The exciton-bath interaction can be described by the strength
function oy p(Q)V(Q)2
P(Q,)+ f ———dQ
o Jay Q
1 2 1 2
S(Q)=g 2 [D,[280-0Q,)=¢ D, p(Q), L [ p( V()02
m Q=0 =) Pf W dQ—0 for QM—>0,
(52) M n
wherep(Q)) is the mode density of the bath. If we assume a (58)
power-law form forS(€)) P(2,) approaches the finite negative value

—fp(Q)V(Q)Z/QZ for O ,—0. Therefore the denominator
in Eqg. (57) remains f|n|te and strictly positive fai,— 0,
and for smallQ) we have

S(Q)=4aQ® for Q<Qpy (Qp: Debye frequency

(52

we can distinguish three main cases: super-Ohraie 1),
Ohmic (s=1), and sub-Ohmicg<1) dissipation.

The “indirect” bath coupling considered in this paper can
be mapped onto the spin-boson model with direct coupling to
the bath(see, e.g., Refs. 5, 1By diagonalizing the Hamil- SO our model corresponds to the super-Ohmic case3().
tonian (32) with respect to the oscillatory degrees of free-
dom. Then the singular oscillator together with the bath os+v. NUMERICAL SOLUTIONS OF THE SEMICLASSICAL
cillators forms a new bath. If this bath is diagonalized, the EQUATIONS OF MOTION
coupling to the dimer assumes again the fq69).

1
S5 p(V(Q)?= 03, (59

In the following we will discuss some numerical solutions

Th li h li f
is diagonalization has been carried out earlier by one o b the system of Eq¥23)—(27) with the initial condition that

* Since the eigenfrequencidd,, of the new bath are the exciton is on site 1 and the oscillator is resting in its
shifted from those of the original bath only by small amounts 9
unperturbed equilibrium position, i.e.,

(smaller than the difference between adjacent eigenvglues
the mode density of the new bath equals that of the original

bath. The original singular coordina€, may be expressed x=y=0, (60
in terms of the new bath coordmat@.i by 7=1, 61)
Q=2 n(m)Qy,, (53 Qs=0, (62)
M
where 74(u) is given (for N>1) by (see Ref. 14 Ps=0. (63)
2
7s(1) A. Behavior without damping
_ WV(QM)Z For comparison with the DST mod&ee Ref. 3 which
[Q2—Q2—P(Q) 1+ [(7/2Q,)V(Q,)%p(Q,)]*’ is valid for T<1, we first sety=0 andD?=0.045, and vary

T. The DST model predicts a transition from symmetry-

(54 broken to symmetric behavior a=0.0225. The numerical

Qy V(Q)2 calculations of the occupation differeng€igs. 2 and 3, solid

p(QM):pj p(Q) ——— dQ. (55) lines) show that the transition actually occurs betweEn
2 Q,-Q =0.022 63 andT=0.022 64, and that the curves strongly

The interaction Hamiltonian, expressed by the new coordi-

nates, reads

Q2= zE

(56)

Hin= \/— \/ﬁs WS(M)Q

resemble those obtained analytically for the DST model in
Ref. 3.(The dashed lines in Figs. 2 and 3 show the quantum-
mechanical behavior, which will be discussed be)oMote
that for T=0.022 64 the evolution of the excitonic occupa-
tion is symmetric although the ground state is symmetry bro-
ken. This is because the energy of the exciton is too high.
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FIG. 4. The difference of the occupation probabilities of the
) ) . two sites in a dimer as a function of tintein the semiclassical
FIG. 2. The difference of the occupation probabilities of the  approximation. Parameter valueQy=1, D2=0.045, T=0.02, y
two sites in a dimer as a function of timeSolid line: semiclassical —q 2.

approximation(compare Ref. B Dashed line: exact quantum-
mechanical result. Parameter value€,=1, D?=0.045, T

1
=0.02263,y=0. > > ViQe=yQPs, (64)
k

B. Behavior with damping where the magnitude of depends on the distribution of
Instead of handling the dynamics of the full system, Wecoupling_ constantS/!( and on the mode density in_the bath.
now assume that the bath degrees of free@@nearry away Hence, in the(classical part of thefurther calculations we
energy of the singular oscillator as if the exciton did not"ill replace Eqs(17) and(27) by
exist. This assumption certainly is not immediately evident
in the case of a strong coupling to the bath. In this case the
argument has to follow the lines descrlbe_zd in Seg.VBZ, In contrast to Kenkre and WAF, who also modeled the
which now, however, has to be understood in a classical WaYscillator-bath coupling by a damping term, we do not as-

(“coherent oscillatory stateZclassical excitation leading sume the damping to be so largest1) thatP can be ap-
to classical Fano decay. Then, applying Green'funCtiorbroximately set to zero in E65)
techniques! we may replace the last term on the right-hand ’
side of Eq.(49) by a damping term,

P.= —Q4(Qs+Dz+ yPy). (65)

1. Bifurcation for small coupling and small excitonic transfer

If damping is included, the system will lose energy and
eventually settle down in a stable fixed point. If the critical
parameterD?/T is between 1 and 2, the exciton will first

08 |
06|

h
04f i

}
o2 i
i

w0
—> 1

1
500

i
600

700

oscillate freely between the two sites; but after some time it
will get trapped by either of the two site@d=ig. 4). For
D2/T>2 the exciton is site trapped from the beginning, as it
is the case fory=0 (Fig. 5. For D¥/T<1 there is no site
trapping at all, and the exciton will end up in a state with
equal occupation probabilities for both sitgsg. 6).

2. Bifurcation for strong coupling

IncreasingD and T further gives the results shown in
Figs. 7 and 8, wher®? was chosen as 4.5 affdwas varied
from 4 to 4.5. Since the fast motion of the excit@mompared
to the oscillatoy will produce only small oscillations and
thus only a small energy loss of the oscillator, the damping
term had to be drastically increaséd y=1). In Fig. 7 we
have T=D?=4.5, so the final state of the exciton is not

FIG. 3. The difference of the occupation probabilities of the symzmetry broken. In Fig. 8T(=4), however, we havad
two sites in a dimer as a function of timeSolid line: semiclassical <D< and the final state is a site-trapped state with broken

approximation (compare Ref. B Dashed line: exact quantum- Symmetry. Contrary to the case of smaller valueDoénd
mechanical result. Parameter value€,=1, D?=0.045, T T, the exciton will first relax to the symmetric state, which
=0.02264y=0. for T=D? is the ground state, and only then to the final state.
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FIG. 5. The difference of the occupation probabilities of the
two sites in a dimer as a function of tintein the semiclassical
approximation. Parameter valueQy=1, D?=0.045,T=0.04, y
=0.02.

FIG. 7. The difference of the occupation probabilities of the
two sites in a dimer as a function of tintein the semiclassical
approximation. Parameter valud3y=1, D?=4.5,T=45, y=1.

V. QUANTUM-MECHANICAL FRAME CONDITIONS Ry =p|yP), (66)

AND REQUIREMENTS FROM SYMMETRY ~ ) ) A A A
whereR is the inversion operatoR=RqRosd

In the numerical calculations, as represented in the pre-

ceding figures, several pronounced phenomena have been fqem‘1>:|2>, (67)
found, and it is highly desirable either to support these by
rigorous quantum-mechanical requirements or to evince - o
them as artifacts resulting from the basic approximatR). Rosch(Qs) = ¢(~Qs), (68)
A. Stationary states of the dimer-oscillator subsystem RQs=—Q4R. (69)

and time evolution without damping The eigenfunctions therefore must be of the general Wigner

1. The Fulton-Gouterman Hamiltonian form
We first disregard the coupling to the bath and consider 1
the basic Hamiltoniar{1). Application of group theory re- (Py_ — n c (p)
quires the eigenfunctions to be irreducible representations of [¥n”) o) (I)+PI2)Rosd 41™ (70
the inversion group, whence they must display a definite par-
ity p (=g,u or :==*1), which for ¢{” yields the Fulton-GoutermafFG) equations

A L L 1 s s 1
] 10000 20000 30000 40000 50000 60000 70000 . 8 ! 2 1 \ 2 L

100 200 300 400 500 600 700

— t
— t

FIG. 6. The difference of the occupation probabilities of the
two sites in a dimer as a function of tintein the semiclassical FIG. 8. The difference of the occupation probabilities of the
approximation. Parameter valueQ,=1, D2=0.045, T=0.05, y two sites in a dimer as a function of tintein the semiclassical
=0.02. approximation. Parameter valugd,=1, D>=4.5,T=4.0, y=1.
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A 1 . A ~ ~
HE 4= 00| 5 (P3+Q2)+DQs= P T Rosel 1

=EX o (7D

For details we refer to earlier work, see Refs. 6, 8, 9, 10, and

16.

2. Hierarchy 1>D>T

For the parameter hierarchyID>T the exact eigenval-
ues and eigenvectors of E({.1) read(viz. Ref. 17

1
EE)p)ZE Qo(1-D?)— onTesz— 2Q0,T?D?[1+0(D?)]
+O(T3, (72)

P =Do(Qe+D)—pTDV2P,(Qe+D)

1
—pTD? v ®5(Qs+D)—pTO(D?)+0O(T?),

(73

Egm:% Q4(3-D?)+pQyTe P (1-2D2)+0(T?),
(74
¢ =d1(Qs+D)+0O(T), (75

U. HERFORT AND M. WAGNER
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W(0)=|1)Po(Qs), (76)
where
1 1/4 )
Dy(Qs)= ( ;) e 2 (77

is the ground state of the unperturbed oscillator. This initial
state(76) may be written as

W(0)=— [P )(0)+¥()(0)] (78)
v2 '

¥(0)=—[|1)£]2)] Po(Qs). (79
‘/, S

Employing Egs{(70) and(73) we observe that in the hierar-
chy 1>D>T we have

1 . .
V(0= [ys"+ ¢y )1+ 0(D) g™+ O(D?), (80)

where ¢{),y{*) are the exact eigenstatég0). We thus
have the time evolution

1 - (R
. . . = = e iEgtylt)y T g-iEqty (=) (*)
where® (Q,) is thenth eigenstate of the unperturbed oscil- q’(t)_‘/j e~y +‘/§ e oty '+ O(D) ¢y
lator.
We now apply these results to the problem of the time
evolution. The quantum-mechanical form of our initial state

reads

+0(D?). (81)

After some rearrangement this can be conveyed into the form

1 e g - - ~ -
W(t)=75 e 0 ~Fo M cod(ByT ~ By NUALILN(S6™ + 65 )+ [2)R(467 — 7))

i . .
+ 5 @B B 2 sing(EGY— G U |2)R(667+ ¢ )+ |1)(67) — ¢ )] +O(D) ™) +O(D?).

(82

(B _g() -
We note that \If(t)=e"<Eo+ B M |1ycost (EST —ES)t

B+ ¢l ) =2d(Q+ D) +0(T?)
=2d4(Qs) + O(D)P4(Qs) + O(D?)+O(T?),

(83
¢o"'— ¢ '=0(TD), (84)

and
¢{"=1(Qy)+0(D)+O(T). (85)

Thus we finally end up with the evolution

~i[2)sin 3(EG" —E§)t]@o(Qq) + O(D)P1(Qy)
+0(D?)+0(TD)+0(T?), (86)
which would yield[see definition(12)]
z(t)=cogE{" —E{ )t+0(D?)+0O(T?)
(for 1>D>T), (87)
where in dominating orddisee Eq(72)]

E()—EH=20,Te P% (89)
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FIG. 9. Dependence of the energy eigenvalues on the coupling UUU

D for Qy=1,p=1,T=4.

Since in both Figs. 2 and 3 the hierarchical supposition

1>D>T is satisfied, we must conclude that the semiclassi- /\ ~ n=2

cal time evolution in Fig. 2 contradicts quantal rigorosity.
Thus, the persistent symmetry breaking of the excitonic oc-
cupation forD=0.3, T<0.022 63 must be considered as an
artifact ensuing from the factorizatiaof20). This result has
also been obtained previously with different initial condi-
tions by Vitali et a
classical time evolutioFig. 3) cannot be correct, sindeiz.
Eq. (87)] z(t) should be dominantly a pure cosine function.
This is confirmed by accurate numerical

|l8 |19

and by Salkoleet al

Also the semi-

quantum-

\/\/
/‘ n=20

— @

mechanical calculations, the results of which are shown in
Figs. 2 and 3 with dashed lines.

If the hierarchical condition 2 D>T is not fulfilled, we

3. The general case: Numerical calculations

FIG. 11. Eigenfunctions of the FG Eq71) for Qy,=1, p=
+1,D=3N2, T=3.9.

excitonic transfer parametedr for Qy=1, D=4, andp=

have to resort to numerical calculations of the exact eigen=-1 or p= — 1, respectively. In these pictures we can distin-

states(70) of the dimer-oscillator subsystem. In Figs. 9 and guish two types of states: the so-called antisqueezed or con-
10 the eigenvalues dfi{?) are shown as functions of the ventional states, whose energy decreases with increasing

25

20

— F

couplingD, and the squeezed or exotic states, whose energy
increases with increasing (see Ref. 10 Wherever the en-
ergies of two states come close together, we observe an
avoided crossingmaking a clear distinction of the two types
of states impossible. For large valuedbthe noncrossing is
directly visible in Figs. 9 and 10. But even for lower values
of D, where the noncrossing of the lines is visually not dis-
cernible, a closer examination with higher resolution reveals
that the crossings are actually avoided.

In Figs. 11 and 12, which show the eigenfunctions of the
FG equation(71) for Qy=1, D=3#2, T=3.9, andp=+1
or p=—1, the different shapes of conventional and exotic
states are obvious. Note also that the FG wave functions of
both the even-parity ground stai¢$"’, see Fig. 11and the
lowest odd-parity exotic statépg , see Fig. 1P strongly
resemble the initial oscillatory wave functio®y(Qs).
Therefore, in our initial staté76) ®4(Q,) projects ontap ™
and ¢§ ), respectively, with approximate weight 1/2. From

FIG. 10. Dependence of the energy eigenvalues on the couplinflis We can conclude that the initial state is essentially a
D for Qg=1,p=—-1,T=4.

superposition ofs{") and ¢{ "), respectively, multiplied by
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1¢5(Q)

\/ — @

FIG. 12. Eigenfunctions of the FG Eq71) for Qy=1, p=
—-1,D=3N2, T=3.9.

the ground-state bath functish{®®™. This can also be seen
from Fig. 13, which shows the occupation probabilities
()| D)2 as a function oh.

A calculation ofz(t) similar to that given above for the
case BD>T yields

. s T A A
4 6 8 10 12 14
—n

FIG. 13. Occupation probabilitigé4’")|®,)|? as a function of
n for Qy=1,D=3V2, T=3.9.

0.8 |

[eX:3 3

04

I L 1 1 '3 L
) 5 10 15 20 25 30 35
—

FIG. 14. Occupation probability differenaét) as a function of
time for Qy=1,D=3W2, T=3.9.

z<t>=mE:O go el (ol Yeod (B —EGt,
(89)

where

i =(\ 7@y =(Do| b)) (90)

Since forD=3W2 and T=3.9 the dominant term in sum
(89) is given form=0 andn=6, we expeciz(t) to show
temporal oscillations with a frequency given by the energy
differenceE{ ) —E{") . This is confirmed in Fig. 14, which
showsz(t) calculated using Eq89). The amplitude fluctua-
tions that can be seen in Fig. 14 are due to beats caused by
the other terms in Eq.89).

B. Quantum-mechanical description of the decay process

If we now include the coupling30) to the bath, we have
to consider state vectors in the product space of the dimer-
oscillator subsystem and the bath. Consequently, we have to
modify our initial state(76) to

W(0)=]1)P(Qe) PF*™(Qy), (91)

where ®2"(Q,) is the ground state of the bath Hamil-
tonian(31). Since the total Hamiltoniaf82) commutes with

the inversion operator, the parity of the total state is a con-
served quantity. Our initial state is a superposition of an even
and an odd statel (")(0) and¥(7)(0), with equal weights

of both parities[see Eqs(78) and (79)]. Since in the time
evolution ¥()(0) and¥()(0) remain states of even and
odd parities, respectively, i.e., since the two parities remain
independent of each other, the equal weighting is conserved
at all times. This does not mean, however, that the parity of
the pure dimer-oscillator subsystem, respectively, is con-
served too. Rather, since the parity of the phonon bath
changes whenever a phonon is created, the parity of the
dimer-oscillator subsystem itself must also change to pre-
serve total parity. This has consequences for the decay pro-
cess within the dimer-oscillator subsystem.
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1. Weak oscillator-bath coupling: treated as a perturbation of the dimer-oscillator subsystem.
Fano (Fermi golden rule) decay a. Hierarchy 1>D>T: In the case D>T only the
lowest two states of the subsystem are populdsest Eq.
If the coupling between the singular oscillator and the(80)], so it may be treated as a two-level system with states
bath is sufficiently weak, the influence of the bath can bdy{™) and|y{ ). In this two-state approximation we have

és=p2 X TP PIQ P )| = )" Qel )|+ H.c.

=*lp—+1

=[5 WD o(Qs+ D)| Qe Po( Qs+ D)) 1| +H.ck O(T?)

= =Dy N I+l (w1 +0(T?) (92
|
and of the superposition of an even and an odd state, the decay of
. |y§7) to |44")) will lead to a decay of the oscillations.
Hiom 6716 ) w1+ EG | )| (93 b. Case D=3#2, T=3.9: In this case, our initial state is

essentially a superposition g and 4{ ). This superpo-
1 A A sition will lead to oscillations of(t) with a frequency given
_ = (+) (=) (=) (+) . - .
2 D(lvho Moo I+ 140 Nvo D; ViQi+ Hpath- by the energy difference{’—E{™) . In the weak-damping
limit we can again assume a golden-rule-type decay of the
i ; _initial state. Sincey{") is the lowest state, it cannot decay to
If we now introduce the new Bloch operators in the two 0 , y

state system other statesiy{ ), on the other side, will decay exponen-
tially by emitting phonons into the bath. With each emitted
X’ :(|¢g+>><¢g+>| _|¢§)—>><¢5—>|), (94) phonon the subsystem will change its parity; so it “cascades
down” between the two parities, until it finally reaches the
" _ _ (+)  gj i i -
% zl(wg )><%+)| _|%+)><% )|)7 (95) ground state), ' . Since for each step of this cascading pro

cess there are several target states into which the subsystem
S (N () (N (+) can decay by emitting a phonon, there are many possible
2'== (o Wabo ' +1wbo N 'D), (96) routes for this decaying process. Two possibilities are shown
in Fig. 15 with solid and dashed arrows.
Now it is important to note that after the first step of the

. _ 1 1 o cascading process the probability differermg) remains
Hio=Eo— > AEX' + > 2/2 D\Qu+Hpars  (97) zero. This can be seen by the foIIovying reasonir_ng:

k The state of the total system at tirh&€an be written as

Eqg. (93) can be written in the form

where  Eo=3(E(V+E(Y),  AEo=E§)-Ef" 1o L
—~ _ 0 — —
=20,Te 2’ D,=DV,. This is nothing than the spin- lﬂ(t)—‘EWo Y P")eFo T | Ce (t)
boson Hamiltonian with direct coupling to the bath.
Therefore the results obtained by Leggettal® for the

weak-damping limit are applicable. The occupation probabil- x| s )| DP) + Z c O]y ) B
ity difference shows damped oscillations with a damping
time T given by E p=+1 p=-1
4t n=6
1-1=7 p2y ViéAE Q "t < 5
=— — — B n=
4 T O, (AEo K 2+ n=>5 :::Z::::
L;;”’,’ n=4
m 2 2 p(A EO) n=4 \
=4 D*V(AE) , (99) U T s oy
4 AE, n=3 T
and the condition for the validity of the approximation is 2F n=2 <
The physical explanation of this damping is that the cou- AP ) e n=0
pling of the dimer-oscillator subsystem to the bath leads to
transitions from theodd) excited statdy§)) to the (even FIG. 15. Energy levels of the dimer-oscillator subsystem for the

ground statéy$™)) under emission of a phonon according to two parities, and two possible “cascading processes” =1,
Fermi’s golden rule. Since the oscillationszgt) are aresult D=3W2, T=3.9.
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+) (+)7! «(phon it. Then the intrinsic oscillator initially is in a coherent state,
+2 ¢ O] Py |, (99 which decays in a Fano manner.
' After relaxation of the oscillatory subsystem, the system
Where|q)gphon)> is the ground state of the badhz}-(ﬂh"”)> are has reacged a state corresponding to the initial state of Leg-
1 .
even bath states with at least two phonons, |aﬁahon)> are gett et al. at zero temperature. Accprdmgly, for the long-
. time evolution caused by the excitonic transfer the results of
odd bath states. If we now form the expectation vat(i

- - . Ref. 5 apply. Especially, in the super-Ohmic case the prob-
=(y(0)l2] f’b(t»’ _terms_ cqn_nectmg subsystem _states of theability differencez(t) shows damped oscillations. The fre-
same parity vanish, sinceis an odd operator in the sub-

quency of these oscillations is reduced in comparison to its
system space. Also, all terms of the form “bare” value 2Q,T by the Franck-Condon factor. For the
1 Ohmic case Leggett al. predict a transition to strict local-
Z ci(’)(t)*cff)(t)(wf’)|(¢§ﬁh°")|2| ¢i<f’h°”>>| wi(,*)> ization for sufficiently strong coupling. This is no contradic-
2 tion to the result of Wagner and "¥quez-MaqueZ*® that
(100 even in the Ohmic case the ground state is never strictly
and all terms of the form degenerate. Yet it turns out that the splitting is exceedingly
small, so that the transfer time becomes extremely long; and
e‘EBﬂtcf‘)(t)(¢5+)|<0<ph°r?|2| ¢i(g—h0m>|wi(_)>1 26 :[‘r;]%trfosglltsngf'”%eggetet al. are restricted to times that are

(101

. hon (phon .
vanish, because the bath statt¢$_'i )> and| ;- » (oppo In this paper we have studied the dynamics of a dimer-

; ; (phon (phon (phon ] ) .
site parity, or [0°"*") and |4{2"") (|#{2"") has at least ,ciliator model. We have contrasted a semiclassical and a
two phonong are orthogonal to each other. So the only re-g| qyantum-mechanical analysis. The term “semiclassical”
maining term is signifies a classical handling of the oscillatory system. For
1 the semiclassical initial condition we choose the state in
zZ(t)== eiE8+>tcg*>(t)<¢g+>|2| g5 Y+cc. (102  which the exciton is located completely at one site and the
2 oscillator is resting in its unperturbed equilibrium position.
The amplitude of the oscillations aft) is therefore deter- The corresponding quantum-mechanical initial condition is a

mined only by the absolute value of(t), which decreases Product of a one-site exciton state and the unperturbed
monotonously because of the decay of stae’ ground state of the oscillator. The semiclassical calculations

: . 1 : . without damping show a pronounced transition between a
The reciprocal time constaifit * of this decay is the sum : ; )
X . : symmetric and a symmetry-broken dynamics, depending on
of the reciprocal time constants for all possible decay chan; 5 : .
nels. i.e the vglue of the parametéd</T. If the exciton-oscillator
T couplingD (), and the transfel (), are small compared to
-8 the oscillator frequencyl,, the so-called DST approxima-
T 1=— 2 2 |<l/,i(+)q)|<(phon)| tion applies and three cases can be distinguished: For
2 =0 % D2/T<1 the ground state is a symmetric state with equally
occupied dimer sites, and for the given initial conditions the

excitonic occupation oscillates between the two sites. For 1

N[ =

VI. CONCLUSIONS

XViQsQul v PPN 2S(Ey —E{ - )

.0 <D?/T<2 the system would descend to a symmetry-broken
=—> (| Qql s ) PV(ES ) — E(T))? state (“left” or “right” ) if the kinetic energy were taken
4 =0 away. For the given initial state the excitonic occupation
(=) =(+) remains oscillating between the two sites. B/ T>2 the
P(Es —E ) exciton remains with a probability greater than 1/2 at the site
X T (103 . P 79
E¢ —E where it is created.

If a classical damping term is added to the oscillator in a
phenomenological way, the system will finally settle down in
a stable stationary state. FB?/T<1 we have symmetric
Behavior at all times; fob?/T>2 the exciton is site-trapped
from the beginning; and for £D?/T<2 the exciton shows
symmetric behavior in the beginning, but later gets trapped
at one of the two sites. ID and T are greater than 1, the

If the oscillator-bath coupling is strong compared to theDST approximation is no longer valid, but the system still
excitonic transfer, the temporal evolution of the system carshows a transition from a symmetric to a symmetry-broken
be separated into a short-time and a long-time regime. final state aD?/T=1.

For short times the excitonic transfer may be neglected so The quantum-mechanical calculations, on the other hand,
that the exciton is fixed in its initial site and therefore simply show a completely different picture. In the absence of damp-
leads to a shift of the equilibrium positions of all oscillators, ing the occupational probability differenaét) shows sinu-
i.e., both the singular one and those of the bath. But, in factsoidal oscillations. This can be derived analytically in the
the displacement of the bath oscillators is of the ord& 1/ caseD,T<1; for D,T>1 it is suggested by numerical cal-
(N=number of the bath oscillatgrsvhence we may neglect culation of the exact energy eigenstates of the system making

and the condition for the validity of the weak-damping ap-
proximation is herd ~1< (), since, is the order of mag-
nitude of the typical energy differences between the discret
states] ().

2. Strong oscillator-bath coupling



56 DYNAMICS OF THE DIMER-OSCILLATOR MODEL WITH . .. 8713

recourse to the Fulton-Gouterman transformation. If the oslibrium positionsQg of the oscillator{see Eq.(29)] is large
cillator is coupled to a Fano bath of other oscillators, thecompared to the quantum fluctuations@fii.e., D>1), the
transitions induced by the bath between the states of thpolaron tunneling time increases exponentiaflEspecially
dimer-oscillator subsystem lead to a decay of the oscillationén the validity range of the DST approximatidib,T<1),
of z(t) until the subsystem settles down in a state with equathe semiclassical approximation is unjustified; and from our
probabilities at both sites. numerical results we can conclude that this is the case even
The differences between semiclassical and quantunfor D=3#2, T=3.9.
mechanical behavior show that care must be taken when ap- Regarding our background problem of the spatial self-
plying the semiclassical approximation. As has already beefocalization of an initially delocalized electronic excitation in
pointed out by Vitaliet al’® and by Salkolaet al.'® the  crystalline systems, the findings presented in this paper show
qguantum-mechanical fluctuations of the oscillator, which arehat the semiclassical approximation can give misleading re-
neglected in the semiclassical approximation, lead to the posults when applied to this problem, and that the results
sibility of polaron tunneling, tending to destroy the symme-should be verified by means of a full quantum-mechanical
try breaking. Only if the separation of the semiclassical equicalculation.
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