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Light amplification and absorption in a random medium

J. Heinrichs
Institut de Physique B5, Universite´ de Liège, Sart Tilman, B-4000 Lie`ge, Belgium

~Received 3 April 1997!

Using an invariant imbedding approach, we derive exact expressions for the distributions of reflection and
transmission amplitude coefficients and phases of light backscattered coherently from an amplifying or ab-
sorbing random medium in one dimension. The lengthL of the system is assumed to be small compared to the
wavelength, which is itself smaller than the localization lengthLc of the light. These distributions and their
statistical moments are analyzed in various length ranges defined by the characteristic absorption and ampli-
fication lengths. The results for the statistics of the reflection and transmission coefficients are contrasted with
analogous results obtained previously for the strong localization domain,L@Lc , by assuming the random
phases to be uniformly distributed. The case whereL is larger than the wavelength but small compared toLc ,
where the disorder is weak, is also briefly analyzed.@S0163-1829~97!07738-2#
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I. INTRODUCTION

Our understanding of the Anderson localization of ele
trons in disordered systems has considerably broadened
the development of a scaling theory of localization and
electron transport. In the simple one-dimensional case
theory focuses on the scaling of the complex amplitudes
reflection and transmission of an electron~related to resis-
tance and conductance by the Landauer formula! as a func-
tion of the lengthL of the scattering system.1 Here the char-
acteristic scaling length is the localization lengthLc of the
electronic states, which, in one dimension, is given by
backscattering mean free path. A detailed description of s
ing in regimes of strong localization (L@Lc) and of weak
localization ~also called the diffusive or quasimetallic re
gime! (L!Lc) has been obtained2 using the invariant imbed
ding evolution equations for reflection and transmiss
amplitudes.3,4

It was observed some time ago5–7 that, in analogy with
the quantum Anderson localization of electrons, light wav
in a medium with a random dielectric constant may also
localized, i.e., nonpropagating, if the disorder is sufficien
strong~and for any disorder in one dimension!. The localiza-
tion of a classical wave results from the interference
phase-coherent multiple partial reflections and transmiss
experienced by the wave in a random medium. If, howev
the medium is also optically active, then, in addition to be
multiply scattered and, possibly, localized, the wave m
also be partially attenuated~absorbed! or amplified as a re-
sult of the bosonic nature of photons. Here we only consi
coherentamplification and attenuation by coherent abso
tion, which may be modeled by~constant! positive and nega-
tive imaginary parts in the dielectric constant, respective8

As is well known, laser action is based on phase-cohe
amplification by stimulated emission in an optically acti
medium. It is also important to recall that absorption~which
corresponds to the removal of photons! does not affect the
interference of elastically scattered waves leading to the
calization, in contrast to inelastic scattering processes, w
cause loss of phase memory.

In parallel with the electronic case, scaling studies of
560163-1829/97/56~14!/8674~9!/$10.00
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reflection and transmission of optical waves by a medi
with a complex random dielectric constant have been de
oped for both one-dimensional systems9,10 and for quasi-one-
dimensional systems with many transmission channels.11,12

Pradhan and Kumar9 have used the invariant imbeddin
equations3 and Beenakker and collaborators11,12 and others13

used a Fokker-Planck equation for the many-channel c
analogous to the Dorokhov-Mello-Pereyra-Kumar equati
In the above treatments the emphasis is on the interpla
amplification ~or absorption! and disorder, that is, the loca
enhancement of the amplification of reflection or transm
sion by the disorder. This enhancement of amplification
caused by confinement due to spatial localization of the lig
as a result of multiple scattering by the disorder. In partic
lar, such an enhancement should be present in a ran
laser, namely, when amplification is increased up to the
ing threshold.14 This leads to the interesting possibility o
obtaining laser action without mirrors,9,11 that is, a laser
where the feedback of radiation is provided by random sc
tering by disorder rather than by mirrors, as in conventio
lasers.

The previous studies of reflection and transmission pr
abilities of light in amplifying or absorbing media9–12 are
restricted to long systems (L@Lc), i.e., to the so-called
strong localization regime, apart from a brief discussion
short systems in Ref. 12. The object of this paper to pres
an extensive analytical treatment for short samples~such that
L!Lc!, where the transport is diffusive. Our treatment
based on the method of invariant imbedding,3,4 of which a
simple derivation is given in an appendix and, for most o
~Secs. II and III!, is restricted to sample lengths which a
short compared to the wavelengthl52p/k0 ~with k0 the
wave number!. More precisely, we assume that the reduc
length 2k0L!1. Thus our analysis is valid for disorde
strengths ranging from weak disorder (k0Lc@1) up to strong
disorders wherek0Lc;1, which corresponds to the lowe
limit of the localization length, usually referred to as th
Ioffe-Regel limit.15 We obtain exact expressions not only f
the probabilities of the reflection and transmission coe
cients, but also for the probabilities of the phases of
complex reflection and transmission amplitudes. We re
8674 © 1997 The American Physical Society
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56 8675LIGHT AMPLIFICATION AND ABSORPTION IN A . . .
that, besides affecting the probabilities of the reflection a
transmission coefficients as a result of strong correlatio
these phases also directly relate to physical quantities
interest.16 In particular, the absolute phase of the transm
sion amplitude is related to the integrated density of sta
inside the scattering domain.

The detailed results of Secs. II and III, as well as the~less
extensive! results of Sec. IV for the domainl&L!Lc , in
addition to their intrinsic interest, are expected to be use
for comparisons with the earlier results for the domainL
@Lc ~Refs. 9, 11, and 12! and for testing their validity. In-
herent to the treatments forL@Lc ~Refs. 9, 11, and 12! is the
so-called uniform random phase approximation~URPA! for
the scattering in the random amplifying or absorbing m
dium. The URPA assumes the reflection and transmiss
phases to be independent random variables which are
formly distributed in the interval 0,2p. In the invariant im-
bedding treatment of Pradhan and Kumar,9 the URPA allows
one to reduce the Fokker-Planck equation for the joint d
tribution of the reflection coefficient and phase to a sim
diffusion equation for the distribution of the reflection coe
ficient itself. We recall that in the case of a passive rand
medium as for the electron transport problem, the URPA
been shown to be valid for the marginal reflection pha
distribution, for weak disorder (k0Lc@1) only, but for both
L@Lc ~Ref. 17! andL!Lc ~when, in addition, 2k0L@1!.18

The nonuniformity of the transmission phase distributi
was recently studied by Freilikher and Pustilnik19 using,
however, a URPA for the reflection phase distribution.

Anderson localization may be more difficult to obser
for light than for electrons. This is due to the fact that t
localization of light arises from a term in Maxwell’s equatio
given by the square of the wave numberk0

25v2/c2 times the
random dielectric constant, which is very small for smallv
and is responsible for the diverging localization length
v→0.7 This further emphasizes the importance of the we
localization diffusive domainL!Lc studied in the following
sections. Our analysis ends with some final remarks in S
V.

II. PROBABILITY DISTRIBUTIONS OF REFLECTION
AND TRANSMISSION COEFFICIENTS AND PHASES

AT SHORT LENGTH SCALES

Consider an optically active one-dimensional disorde
dielectric occupying the domain 0<x<L of the x axis,
which is surrounded by a passive background system of
electric constant«0 . The complex amplitude of a wav
which is incident from the right obeys the Maxwell equati

]2E~x!

]x2 1k0
2@11h~x!#E~x!50, 0<x<L, ~1!

whereE(x)[E(x,L), k0
25v2«0 /c2 ~with k0 , v, andc, re-

spectively, the wave number, the frequency, and the spee
light in vacuum!, and«(x)5«01«8(x)1 i«9 is the complex
dielectric constant,«8(x) being the spatially random part an
«9 a constant nonrandom imaginary part describing abs
tion ~if «9.0! or coherent amplification~if «9,0! of the
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wave field.8,9 We have definedh(x)5h8(x)1 i«9/«0 and
assumeh8(x)5«8(x)/«0 to be a Gaussian white noise wit
zero mean:

^h8~x!h8~x8!&5gd~x2x8!, ^h8~x!&50. ~2!

On the right and on the left of the random medium, the wa
field has the form

E~x!5e2 ik0~x2L !1R~L !eik0~x2L !, x.L, ~3!

E~x!5T~L !e2 ik0x, x,0, ~4!

whereR(L)5AreiQR andT(L)5AteiQT are the complex re-
flection and transmission amplitudes, respectively, withr
[r (L) and t[t(L) the reflection and transmission coeffi
cients andQR[QR(L) and QT[QT(L) the phases of the
reflection and transmission amplitudes.

In the invariant imbedding approach, the wave equat
~1! with the proper boundary conditions is transformed so
to yield evolution equations for the emergent quantit
R(L)[R andT(L)[T as a function ofL:3,4

dR

dL
52ik0R1

ik0

2
h~L !~11R!2, ~5!

dT

dL
5 ik0T1

ik0

2
h~L !~11R!T, ~6!

with

^h8~L !h8~L8!&5gd~L2L8!, ^h8~L !&50. ~7!

In the Appendix we present a simple derivation of Eqs.~5!
and ~6! which we believe to be more transparent than tra
tional derivations.3,4 This derivation also highlights the bas
assumption involved in the invariant imbedding method.

Equations~5! and~6! are conveniently rewritten by sepa
rating out the phase factors ofR(L) and T(L) associated
with the free propagation of a wave in a passive medi
(«950), in the absence of randomness. Thus we de
R(L)5Q(L)exp(2ik0L) and T(L)5S(L)exp(ik0L) and ob-
tain, from Eqs.~5! and ~6!,

dQ

dL
5

ik0

2
e22ik0Lh~L !@11e2ik0LQ#2 ~8!

and

dS

dL
5

ik0

2
h~L !@11e2ik0LQ#S. ~9!

As discussed in Sec. I, we are interested in the domain wh

2k0L!1, ~10!

that is, lengths scales small compared to the wavelengtl
52p/k0 . Since the elastic backscattering mean free p
~equal to the localization length! has a minimum value of the
order ofk0

21,15 Eq. ~10! corresponds to a short length rang
within the weak localization domainL!Lc . The domain of
longer lengths,

~2k0!21&L!Lc , ~11!
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8676 56J. HEINRICHS
which also exists within the weak localization regime f
weak disorder~as compared to disorder whereLc;k0

21!,
will be briefly discussed in Sec. IV. For reduced lengths~10!,
the exact solutions of Eqs.~8! and ~9! satisfying the bound-
ary conditionsQ(0)50 andS(0)51 are

Q5
2 iz~L !

11 iz~L !
, ~12!

S5
1

11 iz~L !
, ~13!

where

z~L !5u~L !1 iv~L !, ~14!

with

u~L !52
k0

2 E
0

L

dL8h8~L8!, ~15!

v~L !52
«9

2«0
k0L[v. ~16!

Note that the unitarity propertyr 1t51 which is obeyed by
the reflection coefficient,r 5uR(L)u2, and the transmission
coefficient,t5uT(L)u2, in a passive system is now replace
by

r 1t5F11
«9

«0

k0L

11@~«9/2«0!k0L#21u~L !2G21

, ~17!

as shown by Eqs.~12!–~16!. This expression define
wavelength-dependent absorption or amplification coe
cients,s512r 2t. For «9.0 we haver 1t,1 so that the
total scattered intensity is attenuated~absorption!, while for
«9,0, r 1t.1, which shows that in this case the total sc
tered intensity is amplified.

The reflection and transmission amplitudes obtained fr
Eqs.~12! and ~13! depend on the random variableu[u(L)
whose probability distributionPu(u,L) is obtained from the
characteristic function after evaluating the moments^um&,
m51,2,... . The odd moments vanish and, from Eqs.~7! and
~15! one obtains

^u2n&5~2n21!!! l n, n51,2,3,... ,

where L5L/Lc and the characteristic scaling lengthLc

54/(gk0
2) is the localization length. We thus obtain th

Gaussian distribution

Pu~u,l !5
1

A2p l
expS 2

u2

2l D . ~18!

The probability distributionPw(w,L) of any of the variables
w[r ,t,QR ,QT , depending onu,w5 f (u), is then given by

Pw~w,L !5E
2`

`

du d@w2 f ~u!#Pu~u,l !. ~19!

From Eqs.~12!–~14! we have, successively,
-

-

r 5
u21v2

~12v !21u2 , ~20!

t5
1

~12v !21u2 , ~21!

QR5Tan21S u

v~v21!1u2D , ~22!

QT5Tan21S u

v21D , ~23!

where in Eqs.~22! and ~23! we choose the branchesuR
5tan21$u/@v(v21)1u2#% and uT5tan21@u/(v21)#, with 0
<uR,T<p as our principal branch whenu varies between
2` and`. The phasesQR,T comprised between 0 andp are
thus given byQR,T5uR,T and those lying betweenp and 2p
by QR,T5p1uR,T . Here and in the following sections, w
disregard the additional phases 2k0L and k0L acquired, re-
spectively, by the reflected and transmitted waves in pro
gating across a passive («950) disorder-free system. Th
reflection and transmission coefficients~20! and ~21! are re-
stricted to values less than 1 in the presence of absorp
while their values may exceed unity when amplification
present («9,0).

In obtaining the explicit probability distribution~19! for
the quantities~20!–~23!, we use the identity

d„w2 f ~u!…5(
i

u f 8~ui !u21d~u2ui !, ~24!

where theui are the real roots of algebraic equationsf (u)
2w50. From Eqs.~18!, ~20!, and ~21!, we then obtain the
following exact results for the probability distributions of th
reflection and transmission coefficients. First, the normali
distribution of the reflection coefficient is given by

Pr~r ,L !5
u122vu

A2p l u12r u3/2

e~2u~12v !2r 2v2u/2l u12r u!

u~12v !2r 2v2u1/2 , ~25!

in the restricted domains

1,r ,
v2

~12v !2 for v~L !.
1

2
, ~25a!

v2

~12v !2,r ,1 for 0,v~L !,
1

2
or v~L !,0,

~25b!

and

Pr~r ,L !50, ~26!

outside the domain~25a! for v. 1
2 and outside~25b! for 0

,v, 1
2 or v,0. It follows, in particular, that the reflection

coefficient is larger than unity with probability 1 only fo
amplification parametersv(L). 1

2 . Below this thresholdr is
less than unity with probability 1, both for absorptio
@v(L),0# and for amplification. The parameterv(L) is in-
terpreted in terms of absorption or amplification lengths
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56 8677LIGHT AMPLIFICATION AND ABSORPTION IN A . . .
Sec. III. On the other hand, the normalized probability d
tribution of the transmission coefficient reads

Pt~ t,L !5
1

A2p l

e~21/2l !@1/t2~12v !2#

t2@ t212~12v !2#1/2 ~27!

for

0,t,~12v !22, ~27a!

Pt~ t,L !50 for t.~12v !22, ~28!

The domain~27a! includes values oft.1 if

0,v,2, ~27b!

while lying entirely belowt51 outside this range. The prob
ability of transmission coefficients larger than unity for am
plification parameters satisfying Eq.~27b! is less than 1. One
may also wish to know in what range of amplification p
rametersv(L).0 bothr andt are amplified to values large
than unity with finite probability. For this purpose one has
obtain the joint probability distributionP(r ,t,L) of r and t.
From Eq.~18!, ~20!, and~21! we find

P~r ,t,L !5
1

A2p l

e~21/2l !@1/t2~12v !2#

t2@ t212~12v !2#1/2 d~r 1t2122tv !

~29!

for t,(12v)22 andP(r ,t,L)50 otherwise. From thed fac-
tor in Eq.~29!, it then follows thatr values larger than unity
exist only for v(L). 1

2 , and hence bothr and t are larger
than 1 with finite probability forv lying in the range1

2 ,v
,2. On the other hand, the total scattered intensity,r 1t is
larger than 1 for anyv.0.

Turning now to the probability distributions of the refle
tion and transmission phases, we obtain, from Eqs.~18!,
~19!, ~22!, and~23!, the following exact expressions for th
principal values distributions:

PuR
~uR ,L !5

1

2A2p l

1

sin2uR
F S 11

1

q
D expS 2

~11q!2

8 tan2uR
D

1S 12
1

q
D expS 2

~12q!2

8 tan2uR
D G , ~30!

where

q[q~uR ,L !5@114v~L !„12v~L !…tan2uR#1/2, ~30a!

for the domains

0<uR<p if 0 ,v,1 ~30b!

and

tan2uR,2
1

4v~12v !
if v,0 or v.1, ~30c!

PuR
~uR ,L !50, for tan2uR.2

1

4v~12v !
, ~31!

if
- v,0 or v.1,

and, finally,

PuT
~uT ,L !5

u12vu

A2p l

e~2~12v !2/2l !tan2uT

cos2uT

, 0<uT<p.

~32!

The expressions~30! and~32! are normalized in the interva
~0,p! of the principal values, as required. The normalizati
is a direct consequence of the definition~19! and of the the
normalization of Pu(u,l ). The distributions of the actua
phasesQR,T in the interval~0,2p! are then given by

PQR,T
~QR,T ,L !5

1

2
@PuR,T

~QR,T ,L !h~p2QR,T!

1PuR,T
~QR,T2p,l !h~QR,T2p!#,

~33!

whereh(x)51 for x.0 and zero otherwise. The probabilit
distributions~25!, ~27!, ~30!, and ~32!, which are exact for
length scales~10!, are studied in detail in the following sec
tion.

III. STATISTICAL PROPERTIES OF REFLECTION
AND TRANSMISSION PARAMETERS

AT SHORT LENGTH SCALES

A. Reflection and transmission coefficients

The characteristic length scales for the exponential evo
tion of the transmittance as a function of system lengthL are
defined naturally by studying the average over the disor
of lnt. Using Eq. ~27!, the nth-order moment is, after a
change of integration variable,

^~ lnt !n&52
1

Ap
E

0

`

dy
e2y

Ay
~ ln@2ly1~12v !2# !n,

~34!

which may be readily evaluated in two important limits
our treatment, namely,uv(L)u!1 anduv(L)u@1.20 For these
cases we obtain, successively,

^ lnt&52S 1

Lc
1

«9k0

«0
DL, ~35!

to lowest order foruvu!1, and

^ lnt&522 lnu12vu2
l

~12v !2 , ~36!

to lowest order foruvu@1.
It follows from Eq. ~35! that in the absence of disorde

(Lc→`) the intensity of a wave which has propagated ov
a distanceL in the medium is amplified~for «9,0! or at-
tenuated~for «9.0! by a factor exp(2«9k0L/«0). This leads
to defining the absorption length

Lab5
«0

«9k0
, ~37!

for «9.0 and the amplification length
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Lam52
«0

«9k0
, ~38!

for «9,0. Note that in terms of these lengthsv(L)5
2L/(2Lab) and v(L)5L/(2Lam) for «9.0 and«9,0, re-
spectively. The limits uv(L)u!1 and uv(L)u@1 defined
above and considered repeatedly in the following are t
equivalent toL!2Lab or L!2Lam, andL@2Lab/am, respec-
tively. In the presence of disorder, Eq.~35! ~for uvu!1! leads
to exponential decay rates of the transmission coefficient
fined by an inverse length scale

1

Lc8
5

1

Lc
1

«9k0

«0
~39!

for absorption and for amplification whenLam.Lc . Thus the
decay lengthLc in the absence of dissipation gets replac
by a shorter length in the case of absorption and by a lon
length in the case of amplification, as one might have
pected intuitively. We note, however, that in the case of a
plification the decay length~39! is distinct from the localiza-
tion lengthj. Indeed,j, as defined for largeL, is given by
j215Lc

211Lam
21,10 which shows that localization is actuall

enhanced by the coherent amplification. On the other ha
for Lam,Lc , Eq. ~35! defines an effective amplificatio
length

1

Lam8
5

1

Lam
2

1

Lc
, ~40!

which implies that, in this case, the amplification of the wa
in the absence of disorder more than compensates for
decrease of the transmission coefficient due to the disord
the absence of amplification.

In the limiting caseuv(L)u@1 the dominant decay in Eq
~36! is given by the transmission coefficient in the absence
disorder, namely,

t0.
1

v2 5
4Lam

2

L2 , ~41!

which yields the meaning of the finite threshold value in E
~27a! and ~28!. Finally, for uv(L)u!1 the variance of lnt
obtained from Eq.~34! is, to lowest order,

var lnt52l 21O~v3,l 3,v2l ,v l 2!, ~42!

which indicates that lnt is not self-averaging@var lnt/^lnt&2

52l2(l22v)22#, in contrast to the case of long systems,L
@Lc , where lnt has an approximately Gaussian distributi
with var lnt/^lnt&25L21.10,12,21

Next, we analyze the reflection and transmission coe
cient moments themselves. From Eqs.~25! and~27!, we ob-
tain, successively,

^r n&5
1

Ap
E

0

`

dy
e2y

Ay
F 2ly1v2

2ly1~12v !2Gn

, ~43!

both for v,1/2(r ,1) and forv.1/2(r .1), and

^tn&5
1

Ap
E

0

`

dy
e2y

Ay@2ly1~12v !2#n
, ~44!
s
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for both signs of«9. It is noteworthy that the moments^r n&,
^tn&, and^(lnt)n& in Eq. ~43!, ~44!, and~34! are divergent for
v(L)51, i.e., at a characteristic length

La52Lam, ~45!

which defines the lasing threshold length.11 The divergence
of ^r n& and^tn& is related to the presence of essential sing
larities atr 51 and att50 in the distributions~25! and~27!
for v(L)51,

Pr~r ,L !5
1

A2p l

e21/2l ~r 21!

~r 21!3/2 , 1<r<`, ~46!

Pt~ t,L !5
1

A2p l

e21/2l t

t3/2 , 0<t<`, ~47!

which implies that realizations with values ofr or of t much
larger than one have relatively high probabilities.

For uv(L)u!1 we obtain

^r &5 l 23l 212lv~L !1v2~L !, ~48!

^r 2&53l 212l „v2~L !26l 214lv~L !…, ~49!

and

^tn&512nl12nv~L !12n~n11!„3
4 l 21v2~L !2 lv~L !…

2nv2~L !, ~50!

up to terms of higher orders inL, v, and combinations
thereof. Similarly, forv(L)@1 we get, to lowest order,

^r n&5S v

12v
D 2nF11nlS 1

v22
1

~12v !2D G , ~51!

^tn&5
1

~12v !2n S 12
nl

~12v !2D . ~52!

For v(L)!1 it follows thus that absorption reduces the m
ments^r n& and^tn&, while amplification enhances them. Ou
results for^v& agree with earlier findings for smallL ~Refs.
9, 11, and 22! and, those for̂ t&, with results briefly men-
tioned by Paasschenset al.12 in their paper mainly concerne
with the large-L limit. From Eqs. ~48! and ~49! we have
Avar r /^r &5&1O( l ) and, from Eq. ~50!, Avar t/^t&
5& l , to lowest order. Whiler is thus~marginally! non-self-
averaging,t is self-averaging forLc→`. On the other hand
Eq. ~51! and~52! indicate that, forv(L)@1, ^r & and^t& are
enhanced with respect to their~exact! zero-disorder values,

r 05
v2

~12v !2 , ~53!

andt0 in Eq. ~41!, when disorder of the dielectric constant
included. On the other hand, we note that from Eqs.~48! and
~50!, as well as from Eqs.~51! and~52!, one may verify that
^r &1^t&.1 for amplification @v(L).0# and ^r &1^ i &,1
for absorption@v(L),0# as shown in Sec. II.

Finally, it is interesting to observe that for special d
mains of v(L) considered above, namely,uv(L)u!1 and
v(L);1, the probability distribution ofr reduces to normal-
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ized forms similar to the stationary distributions forL@Lc
derived by Pradhan and Kumar9 from a Fokker-Planck equa
tion, using the uniform random phase assumption~URPA!
for QR . Thus, forv(L)!1, Eq. ~25! becomes

Pr~r ,L !5
e2r /2L~12r !

~2p l !1/2~12r !3/2r 1/2, r ,1, ~54!

while for v(L);1 we have@Eq. ~46!#

Pr~r ,L !5
e21/2l ~r 21!

~2p l !1/2~r 21!3/2, r .1. ~55!

Now the distribution of Pradhan and Kumar involves a p
rameteruDu, which may be written asuDu52Lc /Lab for «9
.0 and uDu52Lc /Lam for «9,0. With the identification
(2l )215uDu, Eqs.~54! and~55! are very similar to the Eqs
~4b! and~4a! of Ref. 9, respectively. We note, however, th
the identification (2l )215uDu corresponds to a valuev(L)
5 1

8 !1, which is compatible with the range of the distrib
tion ~54! for r ,1, but which departs strongly from the rang
v(L);1 where Eq.~55! is valid. Thus Eq.~55! is only quali-
tatively similar to Eq.~4a! of Ref. 9 forr .1. For the sake of
completeness we also call attention to the limiting form
Pr(r ,L) for v(L)@1 given by

Pr~r ,L !5S 2Lc

pL
D 1/2 e2L/Lc8

~12r !2 , Lc85
8Lam

2

Lc

, ~56!

which is valid only near the upper limit in Eq.~25a!. On the
other hand, the limiting forms of the distribution of the tran
mission coefficient forv(L)!1, v(L);1, andv(L)@1 are
readily read off from Eq.~27!.

B. Reflection and transmission phases

For «950, the distribution of principal reflection phase
Eq. ~30!, reduces to the expression

PuR
~uR ,L !5

1

A2p l

e21/2l tan2uR

sin2uR

. ~57!

which has been discussed earlier for electronic motion i
random potential.23 The latter has a sharp peak atuR5p/2,
corresponding to peaks atQR5p/2 and QR53p/2 of the
actual phase distribution~33!. PQR

(QR ,L) could in fact be
approximated asymptotically by the sum of two Gaussian
half-width L, centered at QR5p/2 and QR53p/2,
respectively.23

For «9,0 ~amplification!, the peaks atQR5p/2 and at
QR53p/2 are attenuated by a factor exp(2Lc/4Lam) for
v(L)!1, while for «9.0 ~absorption! these peaks are re
placed by dips where PQR

(QR ,L)50. Furthermore,

PQR
(QR ,L)50 for QR50 andQR5p for both signs of«9.

Actually, the peaks atp/2 and 3p/2 for «9,0 can no longer
be approximated by Gaussians because the second de
tives of the exponents in the square brackets of Eqs.~30! and
~33! are infinite atp/2 and 3p/2. Thus a nonzero«9, while
smoothening the distribution of the reflection phase in sh
samples in the case of absorption, renders it more struct
-

t

f

-

a

f

va-

rt
ed

in the case of amplification. In any case, neither the res
for short systems for«950 in Ref. 23 nor the above result
for «9Þ0 allow one to justify the URPA, which is inheren
to the studies of reflection coefficients in one-dimensio
and quasi-one-dimensional systems9,11 for L@Lc .

Consider now the distribution of the phase of the comp
transmission amplitude. In contrast toPQR

(QR ,L),

PQT
(QT ,L) in Eqs. ~32! and ~33! has peaks atQT50, p,

and 2p, where it can be represented approximately by
normalized sum of half Gaussians atQT50 and QT52p
and a full Gaussian centered atQT5p,

PQT
~QT ,L !5

u12vu

2A2p l
F1

2
expS 2

~12v !2

2l
QT

2D
1expS 2

~12v !2

2l
~QT2p!2D

1
1

2
expS 2

~12v !2

2l
~QT22p!2D G ,
0<QT<2p. ~58!

In order to analyze the effects of absorption and amplifi
tion on the fluctuations ofQT , it is useful to obtain the mean
and the variance from Eqs.~32! and ~33!:

^QT&5E
0

2p

dQTQTPQT
~QT ,L !

5
p

2
1E

0

p

duTuTPuT
~uT ,L !5

p

2
1^uT&. ~59!

and

varQT5^QT
2&2^QT&25

p2

4
1varuT . ~60!

Using Eq.~32!, we have, explicitly,

^uT
n&5

1

2Ap
E

0

` dy

Ay
e2yF S tan21

A2ly

u12vu D
n

1S p2tan21
A2ly

u12vu D
nG , ~61!

whose evaluation forA2l /u12vu!1 yields

^QT&5p S ^uT&5
p

2 D ~62!

and

varQT5
p2

2
2

A2l

u12vu SAp2
1

2

A2l

u12vu
1••• D . ~63!

Thus we find that absorption acts to suppress fluctuation
QT in short samples, while amplification enhances them
v(L),2. We note that Freilikher and Pustilnik19 found that
absorption also suppresses fluctuations ofuT in the strong
localization regimeL@Lc . They also found that the trans
mission phase forL@Lc is approximately Gaussian as in E
~58!, which exhibits, however, three peaks at intervals ofp
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within the domain~0,2p!. However, we observe that the
results are obtained by using the URPA for the reflect
phaseuR .

Finally, the results~62! and ~63! illustrate the deviations
of the transmission phase distribution~32! and ~33! from a
uniform distribution between 0 and 2p, for which ^QT&5p
and varQT5p2/3.

IV. REFLECTION AND TRANSMISSION
IN THE WEAK LOCALIZATION REGIME

AT LONGER LENGTH SCALES

Here we briefly analyze effects of absorption or ampl
cation on simple statistical moments related to the reflec
or transmission of light for sample lengths larger than
wavelength, but small compared to the localization leng
More precisely, we consider the range

~2k0!21&L!Lc , ~64!

whose existence requires the disorder to be sufficiently we
i.e.,k0Lc@1, as discussed above. Thus, in the range~64!, the
disorder may be treated as a small perturbation~assuming
also u«9u!«0! as done earlier for electronic conductio
~«950!.18 In the electronic case it has been shown,18 using
the invariant imbedding method, that the distribution of t
reflection amplitude phaseQR tends towards a uniform dis
tribution for large reduced length 2k0L, within the domain
~64!. This provided a direct justification for the uniform ran
dom phase assumption~URPA! in the scaling theories o
resistance fluctuations,1,2 at least for the weak localizatio
regime. Since the URPA is also implicit in the recent stud
of reflection and transmission in absorbing or amplifyi
random systems,9,11,12a reexamination of the reflection pha
distribution in the domain~64!, when «9Þ0, would be of
interest. While this problem is left for the future, we confi
ourselves here to discussing analytical results for the m
values^r &, ^ lnt&, and^QT&.

To second order inh(L) the solutions of Eqs.~8! and~9!
obeyingQ(0)50 andS(0)51 are

Q~L !5Q1~L !1Q2~L ! ~65!

and

lnS~L !5
ik0

2 E
0

L

dL8h~L8!

1 ik0E
0

L

dL8h~L8!e2ik0LQ1~L8!, ~66!

where

Q1~L !5
ik0

2 E
0

L

dL8e22ik0L8h~L8!, ~65a!

Q2~L !5 ik0E
0

L

dL8h~L8!Q1~L8!. ~65b!

The second-order terms in Eqs.~65! and ~66! are needed in
order to capture the effect of the interplay of absorption
amplification and disorder, as well as the effect of absorpt
or amplification on the transmission phase,
n

n
e
.

k,

s

an

r
n

QT5Im lnS~L !h~p2QT!1@p1Im lnS~L !#h~QT2p!.
~67!

Here the imaginary parts of logarithmic functions deno
principal values between 0 andp, and we have omitted the
phasek0L acquired by the wave when propagating from o
end of the sample to the other, in the absence of disorder
absorption or amplification. The mean values ofr 5@Re(Q1
1Q2)#

21@Im(Q11Q2)#
2, lnt52 Re lnS, andQT are calculated

explicitly from Eqs. ~65!–~67!, using Eq. ~7!. Restricting
ourselves to contributions of lowest order in the strength
the correlation~7!, we obtain, after some amount of algebr

^r &5
1

8 S «9

«0
D 2H F12

«9

«0
k0L1

1

4 S «9

«0
D 2G~12cos2k0L !

2S «9

«0
D 2 k0L

2
~sin2k0L2k0L !J 1 l F11

1

8 S «9

«0
D 2

2
«9

«0
k0L1S «9

«0
D 2 k0

2L2

3 G1
1

4 S «9

«0
D 2H S l 2

1

k0Lc
D

3~cos2k0L21!1
l

2
cos4k0L2

1

2 S l 2
1

4k0Lc
D

3sin4k0L2
1

k0Lc
~cos2k0L1sin2k0L21!J , ~68!

^ lnt&52
«9

«0
k0L22l 1S «9

2«0
D 2

~12cos2k0L !, ~69!

^QT&5
p

2
1S «9

2«0
D 2S k0L2

1

2
sin2k0L D , ~70!

Note that the disorder has no effect on the mean transmis
phase at lowest order in the correlatorg.

We first observe that for reduced lengths 2k0L larger than
1, Eq. ~69! no longer gives a characteristic exponentia
linear L dependence~with effective absorption or amplifica
tion length scales! for the typical transmission coefficien
exp(̂ lnt&); instead, it displays oscillations superimposed to
monotonic linear variation of the exponent. Similar oscill
tory behavior is also shown in Eqs.~69! and ~70! for the
mean reflection and transmission coefficients, respectiv
The next step in the analysis of the domain~64! would be to
use the weak disorder solutions~65!, ~65a!, ~65b!, and ~66!
for studying the probability distributions, of which the sim
plest are the distribution of lnt52 Re lnS(L) and of the trans-
mission phaseQT .

V. CONCLUDING REMARKS

We have presented an exact treatment of the effec
absorption or amplification on the probability distributions
the reflection and transmission coefficients for reduc
sample widths 2k0L!1. These lengths correspond to th
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weak localization regimeL!Lc , for any strength of disorde
since in one dimensionk0

21 is the lower limit of the optical
localization length.15 We have analyzed these results analy
cally for limiting values of the ratiov(L)52L/2Lab ~for
«9.0! or v(L)5L/2Lam ~for «9,0! of lengthL and absorp-
tion or amplification lengthsLab andLam. In particular, we
found that the reflection coefficient gets amplified to valu
larger than unity forv(L).1/2 and thatv(L)51 defines a
lasing threshold lengthLa52Lam, where all reflection mo-
ments diverge. Nearv(L)51, where optical pumping abov
threshold leads to self-sustained laser oscillations, the lin
treatment with a constant«9 breaks down and it would the
be necessary to include the dependence of«9 on the wave
amplitude in Eq.~1!.

On the other hand, within the domainv(L). 1
2 , wherer

.1, we have examined in detail the limitv(L)!1, where the
linear treatment with a constant«9,0 is again valid. From
the point of view of the feasability of so-called ‘‘random
lasers,’’ one is interested in the change of coherent amp
cation which is due specifically to the disorder. For v~L!@1
this effect is precisely given by Eq.~51! for ^r & where the
first term is the exact zero-disorder reflection coefficientr 0

.1. From this expression it follows that the disorder do
further enhancer @disorder also yields an enhancement of t
transmission coefficient in Eq.~52!, but the support of
Pt(t,L) in Eq. ~27! remains confined to the domaint,1 for
v(L) outside the range~27b!#. Finally, we recall that the
disorder-specific coherent enhancement of the reflection
efficient in the caseL@Lc has been attributed to confineme
by Anderson localization of the light9 rather than just to in-
creased optical path lengths due to light diffusion in the r
dom amplifying system. Since in one dimension the ba
scattering mean free path is equal to the localization len
it does not seem possible to separate the respective effec
Anderson localization and of diffusion in the disorde
enhanced amplified reflection coefficient at the length sc
L!Lc considered in this paper.

Our analysis of the reflection and transmission phase
tributions has revealed that these distributions are q
structured and rather sensitive to absorption or amplificat
It would be quite interesting in future work to study th
marginal phase distributions in the strong localization regi
L@Lc and, more generally, to analyze the effects of
strong correlations between the phases and the reflection
transmission coefficients, starting from the stochastic diff
ential equations~5! and~6!. The limiting stationary reflection
phase distribution forL@Lc has been studied previously fo
«950 and was shown to approach a uniform distribution
weak disorder such thatk0Lc@1.17 This suggests, in particu
lar, that the limiting stationary distribution of the reflectio
coefficient derived by Pradhan and Kumar9 may be valid
only for weak disorder.

APPENDIX: DERIVATION OF INVARIANT
IMBEDDING EQUATIONS

We first transform Eq.~1! into a first-order differential
equation for the logarithmic derivative of the wave amp
tude,
-
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ar
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h,
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y~x!5
1

E~x!

dE~x!

dx
[y~x,L !. ~A1!

This yields

dy~x!

dx
1y2~x!1k0

2@11h~x!#50, 0<x<L, ~A2!

By expressing the continuity of the wave field and its deriv
tive at the boundaries of the disordered medium, we ha
using Eqs.~3! and ~4!,

E~L !511R~L !,

E8~L !52 ik0@12R~L !#,

E~0!5T~L !,

E8~0!52 ik0T~L !. ~A3!

The boundary conditions fory(x) are thus

y~L !52 ik0S 12R~L !

11R~L ! D , ~A4!

y~0!52 ik0 . ~A5!

The invariant imbedding equation forR(L) now follows by
identifying the partial derivative ofy(x) just inside the ran-
dom medium, namely,

dy~x!

dx U
x5L201

[
]y~x,L !

]x U
x5L201

i.e.

dy~x!

dx U
x5L201

52y2~L !2k0
2@11h~L !#,

~A6!

with the total derivative ofy(L,L), namely, the derivative of
the right-hand side of Eq.~A4!,

dy~L,L !

dL
5

2ik0

@11R~L !#2

dR

dL
. ~A7!

This yields the evolution equation~5! in terms of the imbed-
ding parameterL.

The identification of Eq.~A6! with Eq. ~A7!, which is
also implicit in the derivations of, e.g., Ref. 4, may b
viewed as the basic assumption of the imbedding proced
The random system of lengthL is assumed to be imbedde
invariantly in its extension, which implies, in particular, th
the assumed Gaussian randomness ofh8(x) within the sys-
tem, i.e., for 0<x<L, is maintained invariantly in its exten
sion to valuesL8 slightly larger thanL. More precisely, the
values h8(L) and h8(L8) at the end pointsx5L and x8
5L8.L have the same Gaussian correlation as that assu
at pointsx andx8 within the dielectric system of lengthL.

Although we could not find a corresponding simple de
vation of the invariant imbedding equation obeyed byT(L),
the latter can actually be inferred from the differential equ
tion for R(L). Indeed from Eq.~5! we obtain, for arbitrary
complexh(L),
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duRu2

dL
5

ik0

2
@h~L !R* ~11R!22c.c.#, R[R~L !, ~A8!

Now, for a passive medium («950), R and T obey the
unitarity property

uRu21uTu251, «950.

For «950, Eq. ~A8! can thus be rewritten as
he

R

l

h

r,
duTu2

dL
52

ik0

2
h~L !@R* ~11R!22c.c.#

5
ik0

2
h~L !@~11R!uTu22c.c.#, «950. ~A9!

From the generalization of Eq.~A9! to complexh(L), by
analogy with Eq.~A8!, on the one hand, and the comparis
of Eqs. ~5! and ~A8!, on the other hand, it follows that th
natural form for the evolution equation forT(L), leading to
the generalized form of Eq.~A9!, is indeed Eq.~6!.
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