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Light amplification and absorption in a random medium
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Using an invariant imbedding approach, we derive exact expressions for the distributions of reflection and
transmission amplitude coefficients and phases of light backscattered coherently from an amplifying or ab-
sorbing random medium in one dimension. The lergthf the system is assumed to be small compared to the
wavelength, which is itself smaller than the localization lenigthof the light. These distributions and their
statistical moments are analyzed in various length ranges defined by the characteristic absorption and ampli-
fication lengths. The results for the statistics of the reflection and transmission coefficients are contrasted with
analogous results obtained previously for the strong localization dorhait,., by assuming the random
phases to be uniformly distributed. The case wheie larger than the wavelength but small compared {o
where the disorder is weak, is also briefly analy7&0163-18207)07738-2

I. INTRODUCTION reflection and transmission of optical waves by a medium
with a complex random dielectric constant have been devel-
Our understanding of the Anderson localization of elec-oped for both one-dimensional systértfsand for quasi-one-
trons in disordered systems has considerably broadened witlimensional systems with many transmission chantéfs.
the development of a scaling theory of localization and ofPradhan and Kumarhave used the invariant imbedding
electron transport. In the simple one-dimensional case thisquationd and Beenakker and collaborattrs?and others®
theory focuses on the scaling of the complex amplitudes ofised a Fokker-Planck equation for the many-channel case
reflection and transmission of an electrorlated to resis- analogous to the Dorokhov-Mello-Pereyra-Kumar equation.
tance and conductance by the Landauer forpnataa func- In the above treatments the emphasis is on the interplay of
tion of the lengthL of the scattering systefnHere the char- amplification (or absorptioh and disorder, that is, the local
acteristic scaling length is the localization lendth of the  enhancement of the amplification of reflection or transmis-
electronic states, which, in one dimension, is given by thesion by the disorder. This enhancement of amplification is
backscattering mean free path. A detailed description of scataused by confinement due to spatial localization of the light,
ing in regimes of strong localizatiorL&L.) and of weak as a result of multiple scattering by the disorder. In particu-
localization (also called the diffusive or quasimetallic re- lar, such an enhancement should be present in a random
gime) (L<L,) has been obtainédising the invariant imbed- laser, namely, when amplification is increased up to the las-
ding evolution equations for reflection and transmissioning threshold:* This leads to the interesting possibility of
amplitudes’* obtaining laser action without mirroPs;! that is, a laser
It was observed some time agé that, in analogy with where the feedback of radiation is provided by random scat-
the quantum Anderson localization of electrons, light wavedering by disorder rather than by mirrors, as in conventional
in a medium with a random dielectric constant may also bdasers.
localized, i.e., nonpropagating, if the disorder is sufficiently ~The previous studies of reflection and transmission prob-
strong(and for any disorder in one dimensjoiThe localiza- ~ abilities of light in amplifying or absorbing media? are
tion of a classical wave results from the interference ofrestricted to long systemsL&L.), i.e., to the so-called
phase-coherent multiple partial reflections and transmissiorgfrong localization regime, apart from a brief discussion of
experienced by the wave in a random medium. If, howevershort systems in Ref. 12. The object of this paper to present
the medium is also optically active, then, in addition to beingan extensive analytical treatment for short samggesh that
multiply scattered and, possibly, localized, the wave mayL<<L.), where the transport is diffusive. Our treatment is
also be partially attenuate@bsorbeti or amplified as a re- based on the method of invariant imbeddfgof which a
sult of the bosonic nature of photons. Here we only considesimple derivation is given in an appendix and, for most of it
coherentamplification and attenuation by coherent absorp{Secs. Il and II}, is restricted to sample lengths which are
tion, which may be modeled bigonstank positive and nega- short compared to the wavelengih=2m/k, (with ko the
tive imaginary parts in the dielectric constant, respectiffely. wave numbexr More precisely, we assume that the reduced
As is well known, laser action is based on phase-cohererdength XKy L<<1. Thus our analysis is valid for disorder
amplification by stimulated emission in an optically active strengths ranging from weak disordégl_.>1) up to strong
medium. It is also important to recall that absorptigrhich  disorders where&kyL.~1, which corresponds to the lower
corresponds to the removal of photproes not affect the limit of the localization length, usually referred to as the
interference of elastically scattered waves leading to the loloffe-Regel limit!® We obtain exact expressions not only for
calization, in contrast to inelastic scattering processes, whicthe probabilities of the reflection and transmission coeffi-
cause loss of phase memory. cients, but also for the probabilities of the phases of the
In parallel with the electronic case, scaling studies of thecomplex reflection and transmission amplitudes. We recall
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that, besides affecting the probabilities of the reflection andvave field®® We have definedy(x)=7'(x)+is"/e, and
transmission coefficients as a result of strong correlationsassumen’ (x) =&’ (x)/e, to be a Gaussian white noise with
these phases also directly relate to physical quantities afero mean:
interest!® In particular, the absolute phase of the transmis-
sion amplitude is related to the integrated density of states (7' ()7 (X"))=g8(x—x"), (7' (x))=0. 2
inside the scattering domain.

The detailed results of Secs. Il and Ill, as well as {less
extensive results of Sec. IV for the domaiRn<L<L_, in

On the right and on the left of the random medium, the wave
field has the form

addition to their intrinsic interest, are expected to be useful E(x)=e kox~L) 4 R(L)elkox"L) x> | 3)
for comparisons with the earlier results for the domain ’ ’
>L. (Refs. 9, 11, and J)2and for testing their validity. In- E(x)=T(L)e kX, x<0 ()

herent to the treatments foe>L . (Refs. 9, 11, and 13s the . ‘
so-called uniform random phase approximatiiRPA) for ~ whereR(L)= Jre'®r andT(L)= \te'®T are the complex re-
the scattering in the random amplifying or absorbing me-lection and transmission amplitudes, respectively, with
dium. The URPA assumes the reflection and transmissiorsr(L) and t=t(L) the reflection and transmission coeffi-
phases to be independent random variables which are uniients and®z=0g(L) and @=0(L) the phases of the
formly distributed in the interval 02 In the invariant im-  reflection and transmission amplitudes.
bedding treatment of Pradhan and Kuriigine URPA allows In the invariant imbedding approach, the wave equation
one to reduce the Fokker-Planck equation for the joint dis{1) with the proper boundary conditions is transformed so as
tribution of the reflection coefficient and phase to a simpleto yield evolution equations for the emergent quantities
diffusion equation for the distribution of the reflection coef- R(L)=R andT(L)=T as a function of_:3*
ficient itself. We recall that in the case of a passive random iR "
medium as for the electron transport problem, the URPA has : 1Ko
been shown to be valid for the marginal reflection phase gL ~ 2ikoR+ = 7(L)(1+R)?, ®)
distribution, for weak disorderkgL.>1) only, but for both
L>L, (Ref. 19 andL<L, (when, in addition, RoL>1).18 dT iko
The nonuniformity of the transmission phase distribution gL~ koT+ = #(L)(1+R)T, (6)
was recently studied by Freilikher and Pustifffikusing,
however, a URPA for the reflection phase distribution. with

Anderson localization may be more difficult to observe
for light than for electrons. This is due to the fact that the (n"(L)n"(L"))y=gs(L—-L"), (n'(L))=0. (7)
localization of light arises from a term in Maxwell's equation

. 2 2 -
given by the square of the wave numii§r- »?/c? times the 5 (6) which we believe to be more transparent than tradi-

random dielectric constant, which is very small for small  i5na| derivation$ This derivation also highlights the basic
and is responsible for the diverging localization length forassumption involved in the invariant imbedding method.

“)*9-7 This further emphasizes the importance of the weak  quations(5) and(6) are conveniently rewritten by sepa-
localization diffusive domaih. <L studied in the following rating out the phase factors &(L) and T(L) associated
sections. Our analysis ends with some final remarks in Segyitn the free propagation of a wave in a passive medium
V. (¢"=0), in the absence of randomness. Thus we define
R(L)=Q(L)exp(dkoL) and T(L)=S(L)explkoL) and ob-
tain, from Eqgs.(5) and(6),

In the Appendix we present a simple derivation of E@s.

Il. PROBABILITY DISTRIBUTIONS OF REFLECTION
AND TRANSMISSION COEFFICIENTS AND PHASES dQ ik ., s
AT SHORT LENGTH SCALES TR ok p(L)[ 1+ e?*etQ] (8)
Consider an optically active one-dimensional dis;orderedand
dielectric occupying the domain<Ox<L of the x axis,
which is surrounded by a passive background system of di- d
electric constantsy. The complex amplitude of a wave
which is incident from the right obeys the Maxwell equation

- "‘7" p(L)[1+e?Qls. ©)

As discussed in Sec. |, we are interested in the domain where
F%E(X)

2koL <1, (10
x>

+k1+ 7(x)]E(X)=0, O=x<L, (1)
that is, lengths scales small compared to the wavelergth
=2mw/k,. Since the elastic backscattering mean free path

whereE(X)=E(x,L), k§=w280/02 (with kg, w, andc, re-  (equal to the localization lengthas a minimum value of the

spectively, the wave number, the frequency, and the speed efder ofk, *,*® Eq. (10) corresponds to a short length range

light in vacuum, ande(x)=go+¢'(x) +ie" is the complex  within the weak localization domaih<L.. The domain of
dielectric constants ' (x) being the spatially random part and longer lengths,

¢" a constant nonrandom imaginary part describing absorp-
tion (if £”">0) or coherent amplificatiorfif ¢”<0) of the (2ko) “IsL<Lg, (11
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which also exists within the weak localization regime for u2+yp?
weak disorder(as compared to disorder whete~k, 1), =g (20)
will be briefly discussed in Sec. IV. For reduced lengths), (1-v)™+u
the exact solutions of Eq$8) and (9) satisfying the bound- 1
ary conditionsQ(0)=0 andS(0)=1 are t= (21)
(1-v)2+u?’
. —iz(L) 12
C1+iz(L)’ (12 ~ u
Og=Tan | ——]|, (22)
1 v(v—1)+u
ST Tz (13 u
O=Tan | —|, (23
where v-1
_ . where in Egs.(22) and (23) we choose the brancheg;
zZ(L)=u(L) +iv(L), 19 an Yu[o-1)+]} and 6y=tan [u(v—1)], with O
with <@r = as our principal branch when varies between

— and«. The phase® g r comprised between 0 andare
ko (L thus given by®r += 6 1t and those lying between and 27
ull)=-~= f dL'n' (L"), (15 by @gr=7+6g . Here and in the following sections, we
0 disregard the additional phasek,2 andkyL acquired, re-
" spectively, by the reflected and transmitted waves in propa-
v(L)=— £ koL=0. (16) gating across a passive’(=0) disorder-free system. The
2¢gg reflection and transmission coefficief®0) and (21) are re-
stricted to values less than 1 in the presence of absorption,

Note that the unitarity property+t=1 which is obeyed by while their values may exceed unity when amplification is

. . . _ 2 . .
the reflection coefficienty =|R(L)|“, and the transmlssmnd present £"<0).

goeff|C|ent,t—|T(L)|  In a passive system is now replace In obtaining the explicit probability distributiofil9) for
y the quantitieg20)—(23), we use the identity

g koL -1

r+t=|1+— . .
€p 1+[(8”/280)k0|_] +U(L)

, (17 Sw—f(u))=2> |f'(up)| " ts(u—uy), (24)

as shown by Egs.(12—(16). This expression defines where theu; are the real roots of algebraic equatidi{si)
wavelength-dependent absorption or amplification coeffi—w=0. From Eqgs(18), (20), and(21), we then obtain the
cients,c=1—r—t. Fore">0 we haver +t<<1 so that the following exact results for the probability distributions of the
total scattered intensity is attenuat@bsorptiof, while for  reflection and transmission coefficients. First, the normalized
e"<0, r+t>1, which shows that in this case the total scat-distribution of the reflection coefficient is given by

tered intensity is amplified.

The reflection and transmission amplitudes obtained from |1-2v|  elA-vir—vfia-r)
Egs.(12) and(13) depend on the random variatie= u(L) P.(r,L)= > (29
whose probability distributiof®,(u,L) is obtained from the Voml|1—r]32  [(1=v)*r—v?
characteristic function after evalugting the momefus)), in the restricted domains
m=1,2,.... The odd moments vanish and, from E@$.and
(15) one obtains 02 1

1<r<ﬁ for U(L)>—, (253)
(U=(2n-11I", n=123,..., (1-v) 2
where L=L/L. and the characteristic scaling length v? 1
=4/(gk3) is the localization length. We thus obtain the (1_v)2<r<1 for 0<U(L)<E or v(L)<0,
Gaussian distribution (25h)
1 U2 and
P,(ul)=—=ex ——). (18
! V27l 2l P.(r,L)=0, (26)

The probability distributiorP,,(w,L) of any of the variables outside the domaiti25g for v>32 and outside(25b) for 0
wW=r,t,05,01, depending oru,w=f(u), is then given by <v<3 or v<0. It follows, in particular, that the reflection
coefficient is larger than unity with probability 1 only for
o amplification parametens(L)> 3. Below this threshold is
Pw(W'L)zf_mdu Slw—f(u)]Py(u,h). (19 |ess than unity with probability 1, both for absorption
[v(L)<0] and for amplification. The paramete(L) is in-
From Egs.(12)—(14) we have, successively, terpreted in terms of absorption or amplification lengths in
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Sec. lll. On the other hand, the normalized probability dis-

tribution of the transmission coefficient reads

1 e(—l/Z)[l/t—(l—v)z]

P:(t,L)= 2
(L) \/2_7,.|t2[t_1—(1—v)2]1/2 (27)
for
0<t<(1l-v) 2 (279
P,(t,L)=0 for t>(1—v) 2, (28
The domain(273a includes values of>1 if
o<v<2, (27b

while lying entirely belowt=1 outside this range. The prob-
ability of transmission coefficients larger than unity for am-
plification parameters satisfying E@®7b) is less than 1. One
may also wish to know in what range of amplification pa-
rameters (L) >0 bothr andt are amplified to values larger
than unity with finite probability. For this purpose one has to

obtain the joint probability distributio®(r,t,L) of r andt.
From Eq.(18), (20), and(21) we find

1 e(fl/2|)[1/t7(lfv)2]

P(r,t,L)= \/ﬁ t2[t—1_(1_v)2]l/2

S(r+t—1-2tv)

(29

fort<(1—v) 2 andP(r,t,L)=0 otherwise. From théfac-
tor in Eqg.(29), it then follows thatr values larger than unity
exist only forv(L)>%, and hence both andt are larger

than 1 with finite probability for lying in the range; <v

< 2. On the other hand, the total scattered intensityt is

larger than 1 for any >0.

Turning now to the probability distributions of the reflec-

tion and transmission phases, we obtain, from H4s),

(19), (22), and(23), the following exact expressions for the

principal values distributions:

1 1 1 p( (1+q)?
P(’R(GR,L)_ 2‘/27T| Sir120R 1+a ex a 8 tanZHR
ol
+ 1—a ex St | (30
where

q=0d(6r,L)=[1+4v(L)(1—v(L))tarf c]**, (303

for the domains

O<bg=7 If O<v<l (30b)
and
o ! if v<0 1, (30
tanrog< m It v<0 or v>1, (300
PHR( HR,L):O, for taﬁ0R>— m, (31)

8677
v<0 orov>1,
and, finally,
|1-v| e~ (1-v)?2)tarP oy
P 0 ,L B ’ Oga < 1T.
S V! cos b+ T
(32

The expression&30) and(32) are normalized in the interval
(0,7) of the principal values, as required. The normalization
is a direct consequence of the definititk®) and of the the
normalization of P,(u,l). The distributions of the actual
phased® 1 in the interval(0,2m) are then given by

1
PR'T(®R,T L)= 2 [PHR'T(®R,T1L)h(7T_®R,T)

+Po (Or7— 7 (O r—7)],

(33

whereh(x)=1 for x>0 and zero otherwise. The probability
distributions(25), (27), (30), and (32), which are exact for
length scaleg10), are studied in detail in the following sec-
tion.

IIl. STATISTICAL PROPERTIES OF REFLECTION
AND TRANSMISSION PARAMETERS
AT SHORT LENGTH SCALES

A. Reflection and transmission coefficients

The characteristic length scales for the exponential evolu-
tion of the transmittance as a function of system lerigtre
defined naturally by studying the average over the disorder
of Int. Using Egq. (27), the nth-order moment is, after a
change of integration variable,

1 ) -y
(nony=-— | olyeTy (n[2ly +(1—)?])",
(34)

which may be readily evaluated in two important limits of
our treatment, namelyy (L)|<1 and|v(L)|>1.2° For these
cases we obtain, successively,

(nty=—| =+ 8"'(0) L, (39
L. &g
to lowest order fofv|<1, and
|
(Int)=—2In|l—v|—(1_v)2, (36)

to lowest order fofv|>1.

It follows from Eg. (35) that in the absence of disorder
(L.—0) the intensity of a wave which has propagated over
a distancel in the medium is amplifiedfor £”<0) or at-
tenuated(for ¢”>0) by a factor exp{e"kyL/eg). This leads
to defining the absorption length

€0
e"ky’

for ¢”>0 and the amplification length

Lab (37)
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&0 for both signs of”. It is noteworthy that the momengs"),
Lam=— S (38) (1", and((Int)") in Eq. (43), (44), and(34) are divergent for
0 v(L)=1, i.e., at a characteristic length
for £€”<<0. Note that in terms of these lengthqL)=
—L/(2L4) andv(L)=L/(2L,,) for €">0 ande"<0, re- La=2Lam, (45)
spectively. The limits|v(L)|<1 and [v(L)[>1 defined \yhich defines the lasing threshold lengthThe divergence
above and considered repeatedly in the following are thug¢ (r") and(t") is related to the presence of essential singu-

equivalent tol <2Lq, Or L<2L g, @aNdL> 2L apjam r€SPEC-  |5rities atr =1 and att=0 in the distributiong25) and (27)
tively. In the presence of disorder, E§5) (for [v|<1) leads ¢, v(L)=1

to exponential decay rates of the transmission coefficient de-

fined by an inverse length scale 1 e VACr-1)
P(r,l)=————=5, 1s<r<ox, 46
1 1 &"k (L) o (r=1)%2 48
= + (39)
LC LC €p
1 e*l/Z'[
for absorption and for amplification whény>L. Thus the P(tl)=——5, Ost=c, (47)
decay length_; in the absence of dissipation gets replaced V2l ot

by a shorter length in the case of absorption and by a longer

length in the case of amplification, as one might have exWhich implies that realizations with values obr of t much

pected intuitively. We note, however, that in the case of am!arger than one have relatively high probabilities.

plification the decay lengttB9) is distinct from the localiza- For [v(L)|<1 we obtain
ti9r11 Ien_g}hg. 1r1dl%ed,§, as defined for Iargda., _is given by (ry=1—312+2lv(L) +v(L), (48)
& =L, +Lgn,— which shows that localization is actually
enhanced by the coherent amplification. On the other hand, (r3y=312+2l(v?(L)—6l2+4lv(L)), (49
for Ly,n<L., EgQ. (35 defines an effective amplification
length and
1 1 1 (t"Y=1—nl+2nv(L)+2n(n+1)I12+v3(L)—lv(L))
e T (40)
Lam Lam Lc —nvZ(L), (50)

which implies that, in this case, the amplification of the waveup to terms of higher orders ih, v, and combinations

in the absence of disorder more than compensates for th@ereof. Similarly, forv(L)>1 we get, to lowest order,
decrease of the transmission coefficient due to the disorder in

the absence of amplification. . v\ 1 1
In the limiting casgv(L)|>1 the dominant decay in Eq. (rM= 1o 1+nl v (1-0)) |’ (51
(36) is given by the transmission coefficient in the absence of

disorder, namely, 1 ( nl )
t") = 1- . (52)
1 4%, e (1-v)®" (1-v)?
to:ﬁ: L2’ (41) Foruv(L)<1 it follows thus that absorption reduces the mo-

ments(r") and(t"), while amplification enhances them. Our
results for(v) agree with earlier findings for small (Refs.
9, 11, and 22 and, those foKt), with results briefly men-
tioned by Paasschees al?in their paper mainly concerned

which yields the meaning of the finite threshold value in Egs
(279 and (29). Finally, for |[v(L)|<1 the variance of In
obtained from Eq(34) is, to lowest order,

var Int=212+0(v3,13,02 v12), 42 with the largek limit. From Egs. (48 and (49) we have
(v velol) 42 Jvarr/{ry=v2+0(l) and, from Eg. (50), yvart/(t)
which indicates that Inis not self-averagingvar Int/{Int)? =v2l, to lowest order. While is thus(marginally) non-self-

=2%1—-2v)"?], in contrast to the case of long systenhs, averagingt is self-averaging fot..—. On the other hand,
>L., where It has an approximately Gaussian distribution Eq. (51) and (52) indicate that, fow (L)>1, (r) and(t) are

with var Int/(lnt)zzL’l.m'lz‘21 enhanced with respect to théexac}) zero-disorder values,
Next, we analyze the reflection and transmission coeffi- 5
cient moments themselves. From E(5) and(27), we ob- o v 53
tain, successively, 0 (1-p)2'
1 (= e VY[ 2ly+p2 " andtg in Eq. (41), when disorder of the dielectric constant is
(rM=— f dy — | -—7| . (43)  included. On the other hand, we note that from E48) and
Ja Jo 7y [2ly+(1-v) (50), as well as from Eqg51) and(52), one may verify that

(ry+{t)>1 for amplification[v(L)>0] and (r)+(i)<1
for absorptionv(L)<0] as shown in Sec. Il.
1 = Finally, it is interesting to observe that for special do-
n_ _—_ mains of v(L) considered above, nameljy(L)|<1 and
(") dy , (44
Ja Jo 7 W[2ly+(1-0v)3]" v(L)~1, the probability distribution of reduces to normal-

both forv<1/2(r<1) and forv>1/2(r>1), and

e Y
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ized forms similar to the stationary distributions foeL
derived by Pradhan and Kunigrom a Fokker-Planck equa-
tion, using the uniform random phase assumptioiRRPA)
for ®g. Thus, forv(L)<1, Eq.(25) becomes

e—r/2L(1—r)
P.(r,L)= (2 V21 —r1)¥2 12’ r<i, (54)
while for v(L)~1 we havd Eq. (46)]
e 12A(r-1)
P.(r,L)= r>1. (55)

Now the distribution of Pradhan and Kumar involves a pa-

rameter|D|, which may be written afD|=2L./L 4, for &”
>0 and|D|=2L./L,, for £”"<0. With the identification
(21)"1=|D|, Egs.(54) and(55) are very similar to the Egs.
(4b) and(4a) of Ref. 9, respectively. We note, however, that
the identification (2) “1=|D| corresponds to a valug(L)
=1<1, which is compatible with the range of the distribu-
tion (54) for r <1, but which departs strongly from the range
v(L)~1 where Eq(55) is valid. Thus Eq(55) is only quali-
tatively similar to Eq.(48 of Ref. 9 forr> 1. For the sake of
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in the case of amplification. In any case, neither the results
for short systems foe”=0 in Ref. 23 nor the above results
for €”+#0 allow one to justify the URPA, which is inherent
to the studies of reflection coefficients in one-dimensional
and quasi-one-dimensional systértsfor L>L ;.

Consider now the distribution of the phase of the complex
transmission amplitude. In contrast th>®R(®R,L),
Pe(O7,L) in Egs.(32) and (33) has peaks a®1=0,
and 2m, where it can be represented approximately by the

normalized sum of half Gaussians @;=0 and® =2
and a full Gaussian centered @t = r,

C1-u 2 p( (1-v)? 2)
P@)T(@T’L)_m Eex - 21 ®T
_.)\2
+exr{ 4 2Iv) (Or— w)z)
(1-v)?

T (T_ZW)ZH,

L
Eex —

0=<=0:=<27. (58

completeness we also call attention to the limiting form ofin order to analyze the effects of absorption and amplifica-

P.(r,L) for v(L)>1 given by

2

12 o—L/L!
€ ¢ am

2L,

7L

) -z L

which is valid only near the upper limit in E¢R59. On the
other hand, the limiting forms of the distribution of the trans-
mission coefficient fow (L)<1, v(L)~1, andv(L)>1 are
readily read off from Eq(27).

P.(r,L)= (56)

B. Reflection and transmission phases
For ¢”=0, the distribution of principal reflection phases,
Eq. (30), reduces to the expression

—1/2 tarfog

1 e

PHR( HRlL): o] Sin20R (57)

which has been discussed earlier for electronic motion in a

random potentiad® The latter has a sharp peak = /2,
corresponding to peaks &g= /2 and ®@g=37/2 of the
actual phase distributio(83). P@R(@)R,L) could in fact be

approximated asymptotically by the sum of two Gaussians of

half-width L,
respectively?
For ¢”<0 (amplificatior), the peaks a®r=#/2 and at

®r=3m/2 are attenuated by a factor exg(/4L,,) for
v(L)<1, while for ¢”>0 (absorption these peaks are re-
placed by dips where P@R(R,L)=0- Furthermore,
P@)R((BR,L):O for ®zx=0 and® = 7 for both signs ok".
Actually, the peaks atr/2 and 3r/2 for £”<<0 can no longer

centered at@®g=m/2 and Or=37/2,

tion on the fluctuations o, it is useful to obtain the mean
and the variance from Eq$32) and(33):

2
(O7)= fo dO01Pe (O1,L)

r T ’7T
=§+f0 dHTHTP(,T(HT,L)=§+<9T> (59)
and
2
Var®-|-=<-2|->—(®-|->2=7+val’0-|-. (60)
Using Eq.(32), we have, explicitly,
1 (=d V2ly "
<6?>=—f % e[ tant y)
2\/; 0 \/)—/ [1-v]
2 n
+| w—tan ! Ny , (61)
|1-v]
whose evaluation fox/2l/|1—v|<1 yields
T
(Op=m |(br)= > (62)
and
w2 2l ( 1 421 )
var® = —-— o] \/;_E—|l—v| +-- . (83

Thus we find that absorption acts to suppress fluctuations of
O+ in short samples, while amplification enhances them for

be approximated by Gaussians because the second derivs(L)<2. We note that Freilikher and Pustilitkfound that

tives of the exponents in the square brackets of E2f®.and
(33) are infinite atw/2 and 3r/2. Thus a nonzere”, while

absorption also suppresses fluctuationsgefin the strong
localization regimeL>L.. They also found that the trans-

smoothening the distribution of the reflection phase in shormission phase fot>L . is approximately Gaussian as in Eq.
samples in the case of absorption, renders it more structurg&8), which exhibits, however, three peaks at intervalsrof



8680 J. HEINRICHS 56

within the domain(0,277). However, we observe that their O:=Im InS(L)h(7—O1)+[7+Im InS(L)]h(O1— ).
results are obtained by using the URPA for the reflection
phasedg.

Finally, the result462) and (63) illustrate the deviations
of the transmission phase distributiéd2) and (33) from a
uniform distribution between 0 andr2 for which (@)=
and va® = m?/3.

Here the imaginary parts of logarithmic functions denote
principal values between 0 ang and we have omitted the
phasekoL acquired by the wave when propagating from one
end of the sample to the other, in the absence of disorder and
absorption or amplification. The mean valuesref[ Re(@;

IV. REFLECTION AND TRANSMISSION +Q)PHIM(Q,+O,) P, Int=2 Re Ir§, and®- are calculated
IN THE WEAK LOCALIZATION REGIME explicitly from Egs. (65—(67), using Eq.(7). Restricting
AT LONGER LENGTH SCALES ourselves to contributions of lowest order in the strength of

Here we briefly analyze effects of absorption or amplifi- the correlation7), we obtain, after some amount of algebra,

cation on simple statistical moments related to the reflection
or transmission of light for sample lengths larger than the

wavelength, but small compared to the localization length. 1/g"\2 e" 1/g"\2
More precisely, we consider the range (ry= 3 (8—0) 1- 8—0 koL + 1 8—0) (1—cosXkyl)
(2ko) “ts=L<L,, (64)

1 1(8!! 2
2K5L% 1 (s" I, 2
EENARArS AL

I 1 1
X(cosXogL—1)+ 5 coskol — = ( I )

e"\? kol
whose existence requires the disorder to be sufficiently weak, B ( 8_0) 2 (sinZkol — koL)} +
i.e.,koL:>1, as discussed above. Thus, in the raftg, the
disorder may be treated as a small perturbat@ssuming
also |8”L<80) as done earlier for electronic conduction
£"=0).18 In the electronic case it has been shdfmising

the invariant imbedding method, that the distribution of the

”

— KoL+
800

8//

€0

reflection amplitude phas®g tends towards a uniform dis- 2 4Kl .
tribution for large reduced lengthkgL, within the domain

(64). This provided a direct justification for the uniform ran- % sindkal — i (cos&oL + sinZkolL — 1)] (69)
dom phase assumptiofyRPA) in the scaling theories of 0" koL 0 0 '

resistance fluctuatiorls at least for the weak localization
regime. Since the URPA is also implicit in the recent studies
of reflection and transmission in absorbing or amplifying
random system%!112a reexamination of the reflection phase
distribution in the domain64), when &"”#0, would be of
interest. While this problem is left for the future, we confine
ourselves here to discussing analytical results for the mean
values(r), {Int), and(O+).

To second order im(L) the solutions of Eq98) and(9)

obeyingQ(0)=0 andS(0)=1 are Note that the disorder has no effect on the mean transmission
Q(L)=0Q4(L)+Qx(L) (65  Pphase at lowest order in the correlatpr
! 2 We first observe that for reduced lengthg,R larger than
and 1, Eqg. (69 no longer gives a characteristic exponentially
KL linear L dependencéwith effective absorption or amplifica-
|ns(|_):'_°f dL’ 5(L") tion length scalgsfor the typical transmission coefficient,
2 Jo exp(Int)); instead, it displays oscillations superimposed to a
L monotonic linear variation of the exponent. Similar oscilla-
+ik0J dL’p(L')e?ktQ (L"), (66)  tory behavior is also shown in Eq&69) and (70) for the
0 mean reflection and transmission coefficients, respectively.
The next step in the analysis of the domééd) would be to

”

€
(Int)=— — koL —21+
€0

n

2
2—80) (1—cosXkyL), (69

n

e Vo= L sinacL 70
2—80058“"0. (70

(Or)=75 +

where use the weak disorder solutio85), (653, (65b), and (66)
iko (L o for studying the probability distributions, of which the sim-
Qub)=~ f dL’e 2oL p(L"), (658  plest are the distribution of tr-2 Re Ir§(L) and of the trans-
0 mission phas® .
L
L)=ik dL’ »(L’ L"). 65h)
QAL)= OJo (L)LY (65 V. CONCLUDING REMARKS
The second-order terms in E(§5) and (66) are needed in We have presented an exact treatment of the effect of

order to capture the effect of the interplay of absorption orabsorption or amplification on the probability distributions of
amplification and disorder, as well as the effect of absorptiorthe reflection and transmission coefficients for reduced
or amplification on the transmission phase, sample widths RoL<1. These lengths correspond to the
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weak localization regime <L, for any strength of disorder 1 dE(x)

since in one dimensiok, * is the lower limit of the optical y(x)= E(x) dx =y(x,L). (A1)
localization lengtH® We have analyzed these results analyti-

cally for limiting values of the ratiow(L)=—L/2L,, (for ~ This yields

g">0)orv(L)=L/2L,, (for £”"<0) of lengthL and absorp- dy(x)
tion or amplification lengthd 5, and L4, In particular, we ax

found that the reflection coefficient gets amplified to values
larger than unity forw(L)>1/2 and thaw(L)=1 defines a By expressing the continuity of the wave field and its deriva-

lasing threshold length ,=2L ., where all reflection mo- tive at the boundaries of the disordered medium, we have,
ments diverge. Near(L)=1, where optical pumping above using Egs(3) and(4),

threshold leads to self-sustained laser oscillations, the linear

+y2(x)+kI 1+ 7(x)]=0, O=<x<L, (A2

treatment with a constamst’ breaks down and it would then E(L)=1+R(L),

be necessary to include the dependence”obn the wave

amplitude in Eq.(2). E'(L)=—ikg[1—R(L)],
On the other hand, within the domair{L)>3, wherer

>1, we have examined in detail the limifL) <1, where the E(0)=T(L),

linear treatment with a constaat <O is again valid. From Vi
the point of view of the feasability of so-called “random E(0)=~ikoT(L). (A3)
lasers,” one is interested in the change of coherent amplifiThe boundary conditions for(x) are thus

cation which is due specifically to the disorder. Fék )»1

this effect is precisely given by Eq51) for {r) where the y(L)=—ikg
first term is the exact zero-disorder reflection coefficient

>1. From this expression it follows that the disorder does )
further enhance [disorder also yields an enhancement of the y(0)=—iko. (AS)
transmission coefficient in Eq(52), but the support of The invariant imbedding equation f&(L) now follows by
Py(t,L) in Eq. (27) remains confined to the domaiirc1 for  identifying the partial derivative of(x) just inside the ran-
v(L) outside the rang€27b)]. Finally, we recall that the dom medium, namely,

disorder-specific coherent enhancement of the reflection co-
efficient in the casé>L . has been attributed to confinement

1-R(L)

= -

by Anderson localization of the lightather than just to in- dy(x) an(X'L) ie.

creased optical path lengths due to light diffusion in the ran- dx x=L—0+ IX | o+

dom amplifying system. Since in one dimension the back-

scattering mean free path is equal to the localization length, dy(x) = —y2(L)— K21+ 7(L)]
it does not seem possible to separate the respective effects of dx x=L_0+ 0 ’

Anderson localization and of diffusion in the disorder- (A6)
enhanced amplified reflection coefficient at the length scales
L<L, considered in this paper. with the total derivative of(L,L), namely, the derivative of
Our analysis of the reflection and transmission phase dighe right-hand side of EqA4),
tributions has revealed that these distributions are quite .
structured and rather sensitive to absorption or amplification. dy(L,L) . 2iko dR
It would be quite interesting in future work to study the dL  [1+R(L)]? dL’
marginal phase distributions in the strong localization regime_ =~ ) ) ] )
L>L, and, more generally, to analyze the effects of theT_h'S yields the evolution equatigi) in terms of the imbed-
strong correlations between the phases and the reflection afind parametet.. , o
transmission coefficients, starting from the stochastic differ- Thg ld?r}tlfycatlon of !Eq.(AG) with Eq. (A7), which is
ential equation$5) and(6). The limiting stationary reflection @S0 implicit in the derivations of, e.g., Ref. 4, may be
phase distribution fot.> L has been studied previously for Viewed as the basic assumption of the imbedding procedure.
£”"=0 and was shown to approach a uniform distribution for | & random system of length is assumed to be imbedded
weak disorder such thikt)Lc>1.l7 This suggests, in particu- invariantly in its extensmn, which implies, in pgrtlcular, that
lar, that the limiting stationary distribution of the reflection the assumed Gaussian randomnesg/'¢k) within the sys-

coefficient derived by Pradhan and Kurshamay be valid tem,i.e., for Gsx<L, is maintained invariantly in its exten-
only for weak disorder. sion to valued.’ slightly larger tharL. More precisely, the

values »'(L) and »'(L') at the end pointx=L and x’
=L'>L have the same Gaussian correlation as that assumed
APPENDIX: DERIVATION OF INVARIANT at pointsx andx’ within the_ dielectric system of I_engﬂh. _
IMBEDDING E Although we could not find a corresponding simple deri-
QUATIONS . ; o . -
vation of the invariant imbedding equation obeyedTqy.),
We first transform Eq(1) into a first-order differential the latter can actually be inferred from the differential equa-
equation for the logarithmic derivative of the wave ampli- tion for R(L). Indeed from Eq(5) we obtain, for arbitrary
tude, complexn(L),

(A7)
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dIRZ ik

40 = 3 LR (1+ R)?2-c.c], R=R(L),

(A8)

Now, for a passive mediume(=0), R and T obey the
unitarity property

IRI>+|T|*=1, &"=0.

For ¢”"=0, Eq.(A8) can thus be rewritten as

J. HEINRICHS

dT]?2 ik

dL

20 2(L[R*(1+R)2—c.c]

iko ,
== 7(LIA+RITP-ccl, &"=0. (A9)

From the generalization of EA9) to complex (L), by
analogy with Eq(A8), on the one hand, and the comparison
of Egs.(5) and (A8), on the other hand, it follows that the
natural form for the evolution equation far(L), leading to
the generalized form of EA9), is indeed Eq(6).
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