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Vortex pinning and non-Hermitian quantum mechanics
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A delocalization phenomenon is studied in a class of non-Hermitian random quantum-mechanical problems.
Delocalization arises in response to a sufficiently large constant imaginary vector potential. The transition is
related to depinning of flux lines from extended defects in type-Il superconductors subject to a tilted external
magnetic field. The physical meaning of the complex eigenvalues and currents of the non-Hermitian system is
elucidated in terms of properties of tilted vortex lines. The singular behavior of the penetration length describ-
ing stretched exponential screening of a perpendicular magnetid(iieftsverse Meissner effecthe surface
transverse magnetization, and the trapping length is determined near the flux-line depinning point.
[S0163-18297)03438-3

I. INTRODUCTION particle Hamiltoniang(1.1) and (1.2, many of our results
will be relevant forinteracting many-body boson problems,
Although Hamiltonians must be Hermitian in conven- provided that we forbid double occupancy of eigenstates in
tional quantum mechanics, non-Hermitian operators do apthe localized regimé Interaction effects in both the localized
pear in other physical contexts: The time evolution of non-and delocalized phases will be discussed in Sec. VIII.
Hermitian Liouville operators can describe various We can regard the non-Hermitian field as an imaginary
nonequilibrium processés? the transfer matrix of two- vector potential. Models with a real gauge fiéddwould be
dimensional asymmetric vertex models leads to nonwritten in the Hermitian forms
Hermitian Hamiltonians for quantum spin chaths.
In the present paper we investigate localization phenom- (p—eA)?
ena in an especially simple class rahdomnon-Hermitian H'= T“LV(X) 13
Hamiltonians. Although non-Hermitian, our problem is suf-
ficiently close to conventional quantum mechanics that itand
will be convenient to use a quantum language to describe the

results. Specifically, we show that a delocalization transition t d _ ; _ ;
occurs(even in one and two dimensioni the following H =— 5 > Z (e'EA'ev’ﬁbHeuber e*'eA‘ev’ﬁbXbHey)
one-body Hamiltonians ird dimensions: first, the Hamil- x v=l
tonian in continuum space
+, Vblb,. (1.9
+ig)? X
p=PTI v, @ o |
2m In two dimensions with spatially varying=A(x), these

h —(h/iYalax s th ¢ " . Hamiltonians describe the quantum Hall system, where some
wherep=(h/i)a/ox is the momentum operator ab{x) is a of the localized states of the=0 case are delocalized in the

rand(_)m .potential; second, the ;(_econd-quantized IattiCSresence of the gauge fidldVe obtain the non-Hermitian
Hamiltonian, namely, the non-Hermitian Anderson model OMamiltonians(1.1) and (1.2) by replacing— eA(x) with a

a hypercubic lattice constantig. In this non-Hermitian case, we show thait

¢ d eigenstates can be delocalizeglen in one dimensigrfor
H=—— e¥ e /it b te-gelipty largeg.
2 ; ;1 ( xre,x Prre,) This problem has direct physical relevance when we map

the non-Hermitian quantum system @ dimensions to a
+> V,blb, (1.2  Problem of classical equilibrium statistical mechanics in
X X d+1 dimensions. Consider a matrix element of the

) ) imaginary-time-evolution operator
where the vectorge,} are the unit lattice vectors, the

{b},b,} are(boson creation and annihilation operators, and Z=(yl|e M|y, (1.5

V, is a random potential. In both of the Hamiltonianss a

non-Hermitian external field. Although the bulk of our dis- where the Hamiltoniari is given by Eq.(1.1). The bra and
cussion will concentrate on the properties of the singleket vectors are the initial and final states, respectively. Using
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FIG. 2. Flux-line depinning from a columnar defect in a super-
conductor:(a) the bulk part of the flux line is pinned by the defect

and the transverse magnetization has a contribution only from the

FIG. 1. Situation described by the classical Hamiltor(i&s) in surfacetransverse magnetizatiov | ; (b) the flux line is depinned .
1+1 dimensions. The wavy line indicates a tilted string with g and the “surface” transverse magnetization now has a macroscopic

single-valued trajectory(7) subject to thermal fluctuations. valueM =L, whereL . is the thickness of the sample.

[

the standard path-integral scheme, we can express the abdiges is not parallel to the extended defects; see Fig. 2. We

matrix element as the partition function may expect that the bulk part of the flux line remains pinned
by the extended defects when the transverse component of
_ —Eg[X(DiH the magnetic fieldH, is weak. This phenomenon is called
z J Dxe = ' (1.6 the transverse Meissner effettthe system exhibits perfect

bulk diamagnetism against, for a slightly tilted magnetic
field. When we increasH | , i.e., tilt the magnetic field fur-
ther relative to the extended defects, a depinning transition
takes place at a certain strength of the transverse field,
namely,H, .. We note that randomness in the potential is
. (L7 essential for the transverse Meissner effect to work at finite

temperatures. For a periodic potential, thermally activated
The energ)E,, is of course the imaginary-time action for the kinks always lead t@xtendeceigenfunctions in the equiva-
equivalent quantum problem. The Planck paramétirin-  lent quantum probleniBloch’s theoremand the effect van-
terpreted as the temperature of the classical system. ishes. See Ref. 11 for a discussion.

The above classical system expresses the following phys- Nelson and Vinokuf have described flux-line pinning by
ics; see Fig. 1. Consider a thermally fluctuating string put orimeans of the path-integral scheme. They mapped a phenom-
a random washboard potential. The first two terms of the enological Hamiltonian for flux lines with extended defects
Eq. (1.7 are optimized when the string is tilted from the onto interacting bosons in21 dimensions with point im-
 direction by the angl@=tan (g/m). On the other hand, purities. A low-temperature phase with flux lines localized
the potential tries to make the string parallel to thdirec-  on extended defects was related to the Bose-glass Brafse
tion to take advantage of particularly deep valleys in thedisordered boson systems. When the applied magnetic field
random potential. We might thus expect a depinning transiis tilted away from the extended defects, the corresponding
tion of the string from the random washboard potential withboson problem acquires the non-Hermitian figld®® The
increasingg. flux-line depinning transition due to the magnetic-field tilt

We suspect that there are many physical realizations oforresponds to a delocalization transition of the non-
the above statistical-mechanical problem. For an applicatiollermitian quantum problem. The expecféeH, phase dia-
to population biology see Ref. 7. The present study is motigram of the flux-line systenwith H,, the field component
vated particularly by a depinning transition of magnetic flux parallel to the columns, held fixgés shown in Fig. 3° The
lines in type-ll superconductors with quenched disorder. Itransition to a flux-liquid or “superfluid” phase with in-
has been recognized that impurities and defects play an esreasing temperature fdafl, =0 is of the usual Bose-glass
sential role in the mixed phase of type-II superconductorstype.12 In the present paper we shall focus on the transition
Flux lines, subject to electromagnetic forces due to applieg¢urves forH, #0. Hence we fix the temperature and follow
currents, can move and dissipate energy, thus destroying tlike trajectory of increasing, , indicated in Fig. 3 as a thick
superconductivity, unless they are pinned by impurities omlrrow. We first describe the delocalization transition of the
defects. In particular, extended defects such as columnar deen-Hermitian quantum problem and next translate the re-
fects and twin boundaries pin flux lines parallel to them ef-sults into the language of flux-line depinning. We mainly
ficiently and thereby expand the region of zero resistanceliscuss the one-bodipr one-flux-ling problem of the non-
dramatically; see Refs. 8—10. Hermitian quantum mechanics. Some of our results were

The situation described by the classical Hamiltor(iaff)  summarized in a previous publication.
emerges when the external magnetic field generating the flux One advantage of discussing the flux-line depinning in

where [ Dx denotes summation over all possible world-line
configurationsx(7) andE,, is the energy of a classical elastic
string ind+ 1 dimensions, given by

m[dx\?  dx
2 \dr) "9 a V™

LT
Ec|[X(T)]EJO dr
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T A preliminary account of this work appeared in Ref. 5.
* For a related problem that arises from the physics of charge-
o density waves, with some results applicable to vortex lines,
Ps#0: Flux Liquid see Ref. 14. See Ref. 15 for a related problem in fluid me-
(Boson Supertluid) chanics.
The plan of this paper is as follows. Section Il describes
Hic(T) basic relations between the flux-line system and non-

Hermitian quantum mechanics. In Sec. Il we explain how
the delocalization transition occurs in the non-Hermitian ran-
dom system. We present solutions of nhon-Hermitian systems

Vorte)f {  ps=0:Bose Glass Vorte)% in Secs. IV-VI. The predictions for the transverse Meissner
Smectic | *\ Smectic effect are derived in Sec. VII. Section VIII discusses the
> H. effect of interactions in the delocalized phase in both1l

and 2+ 1 dimensions.

FIG. 3. Schematic phase diagram of high-temperature supercon-

ductors with columnar defect®Ref. 10. The abscissa indicates [l. FLUX LINES AND NON-HERMITIAN QUANTUM
the transverse component of the external magnetic field. MECHANICS

terms of an equivalent “quantum” system comes from the In this sect.ion we review the basic correspondence.t.)e—
fact that many ideas are already available concerning locafween vortex lines in superconductqrs and the non-Hermitian
ization in Hermitian random systems, such as the Andersofuantum systertil.1). We then describe what the current and
transition and Mott’s variable-range hopping. Our problem isth® wave functions of the non-Hermitian system mean for
perhaps the simplest non-Hermitian generalization of thes¥OreX trajectories.
phenomena. The inverse localization length of a wave func-
tion, when it delocalizes, is proportional to the critical trans- A. Path-integral mapping
verse fieldH, .. AsH, increases, a precursor of the flux-line  \ve start with the energy of a flux line in a
depmnmg.appears first near.t_he surface of the SUPErcony 4+ 1)-dimensional type-Il superconductdr
ductor. Slightly below the critical point the ends of the
pinned flux line begin to tear free from the pinning center. L, (%, 2

Eflux: fo dT(? +V(X)_

doH
Thus the transverse Meissner effect first breaks down near oL 2.1

X
; ; : dr 47 dr
the surfaces and the typical depth of the region where this
bending takes place is a “penetration depifdifferentfrom  This is a phenomenological Hamiltonian for the flux-line
the penetration depth associated with the underlying supegystem where all columnar defects or twin boundaries are
conducting materialthat accompanies the transverse Meissparajlel. Herer denotes the coordinate parallel to the ex-
ner effect. A Mott variable-range-hopping description of thistended defects, while denotes thed-dimensional coordi-
depinning will lead us to the conclusion that the penetratiorhates perpendicular to the defects. We describe the flux line

depth7* diverges at the transition poiiit, . as as a single-valued functiox(7) by neglecting overhangs of
. s the flux line. The thickness of the superconductor in the
™ ~(H.c—H,) (1.9 direction is denoted by ..

The first kinetic-energy-like term of the integrand in Eq.
(2.1) comes from the harmonic approximation to the energy
P ~(H,—H,) ¢ (1.9 increase due to local tiE of the flux line. The “mass,” or tilt
modulus, is denoted by,. When using quantum language
for the random twin boundaries. The pinning becomes inefto describe this problem, we shall make the correspondence
fective above the critical field. The direction of the bulk -
transverse magnetization jumps at the critical point, while g1>M. 22
the surface transverse magnetization diverges in both cases
according to

for the random columnar defects and

The potentiaV is generated by columnar defects or twin
boundaries. Each columnar defect is specified by a péint
. _ -1 in the x plane. We assume that the columnar defects are
Mis~(H c=HL) ™ (110 distributed randomly:
We find stretched-exponentiaklaxation of the perpendicu- "
lar magnetization to zero as one goes deep into the bulk of
the sample from the surface. V(X>=k21 Va(x=Xy), 23
The penetration depth* may be observed experimen-
tally by measuring the response to an ac magnetic field suvhereM denotes the number of columnar defedats,is the
perimposed on the dc field, ; only the dangling ends of the potential of an individual defect, and, is the random posi-
flux lines will respond to the ac field and the length of thesetion of the kth columnar defect. In the case of twin bound-
line segments diverges at the transition. It would be interestaries, we consider only the situation where all twins are par-
ing to check our prediction of a diverging penetration depthallel to each other. By projecting out the degree of freedom
near the Bose-glass transition with such an experiment.  perpendicular ta-and parallel to the twin boundarié%®we
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where [Dx denotes integration over all possible configura-
tions x(7) of the flux line. Upon identifying Eq(2.4) with
\ Eq. (1.6), we are led to a correspondence between the flux-

line system(2.1) and the non-Hermitian quantum system
2// H” (1.2) summarized in Table I. In particular, the thermal fluc-
tuations of the flux-line system are equivalent to zero-point
motion of the quantum system and

The tilt term in Eq.(2.1) is related to the non-Hermitian field

>';~ in Eq. (1.1 by

T Ax

FIG. 4. One flux linewavy curve induced by the fieldH, and Boundary conditions at the bottom and top surfaces of the
interacting with columnar defects in a cylindrical superconductingSuperconductor are represented by the initial and final vec-
shell. The transverse componetit is generated by the curreht  tors of Eq.(1.9) in the forms
threading the ring.

Wi=[axd, =] ado. @2

can reduce the dimensionality of thxespace by one(We
neglect effects due to an enhanced concentration of pointhese boundary conditions in the imaginary-time direction
disorder that may occur in twinsThus each twin boundary mean that we integrate freely over the points where vortex
acts like a line defect in £ 1 dimensions. In short, we can lines enter and exit the Samp|e_
setd=2 for columnar defects andl=1 for twin boundaries. Although the derivation of the quantum problefh.1)

The third term of the integrand in E2.1) is due to the  from the classical elastic string described by E2.1) is
transverse component of the magnetic field. The flux  straightforward in the path-integral scheme, it is also useful
quantum 2rfic/2e is denoted byg,. In the absence of a to think in terms of Galilean boost&}” We can eliminate
pinning potential, this term is optimized energetically whenthe additional term in Eq(2.1) by the Galilean transforma-
the flux line tilts to follow the external field. tion

Figure 4 shows a flux-line system described by the above
phenomenology in +1 dimensions with columnar pinning. x'=x—vt, t'=t, (2.8
We assume periodic boundary conditions in thdirection, i i )
although these could be replaced by reservoirs of flux lines at/nere the velocity of the moving frame is
the edges of the sample. In this geometry, the transverse H
component, is generated by the current threading the cyl- V= ¢0_j = ﬂ (2.9
inder of a thin superconductor. As we shall see, the physics 4miey 1M
resembles the Aharonov-Bohm experiment carried out on
mesoscopic quantum ring with, however, a@maginary
“flux” through the ring.

The partition function of the flux-line syster2.l) is

fote that the velocity ismaginarybecause of the imaginary
time t=i7 in the equivalent quantum problem. The above
Galilean transformation changes the kinetic term of the Her-
mitian Hamiltonian to the form

given by
2 2
pe  (p—mv)
Efiux ﬁﬁ 2m (219
Z:f Px ex;{ B kBT)' (2.4 which results in the kinetic term in Eq1.1).

TABLE I. Correspondence between thd+1)-dimensional flux-line system and thiedimensional
quantum system.

partition function(2.4) partition function(1.5

thicknessL , imaginary timer

temperaturkgT Planck parametef

tilt moduluss, massm

tilting field ¢o H, /(4) Non-Hermitian fieldg

tilt slope dx/d+ (proportional to the transverse magnetization ImJ, whereJ is the current

probability distribution atr=0 (L ,— ) Left eigenvectony*(x)
atr=L, Right eigenvectoR(x)

atr=L,2 Yy
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We do not explicitly include interactions between flux When we sum Eq2.16 over all the eigenstates to calculate
lines in the Hamiltoniar(2.1) nor in the quantum Hamilto- the expectation value, the real part of the current of a state
nians(1.1) and (1.2). However, a strong short-range repul- cancels out in a pairwise fashion.
sive potential may be treated approximately by forbidding The transverse component of the magnetization per vortex
multiple occupancy of localized levels of the quantumline at depthr below the surface of the sample is propor-
Hamiltonian. Since the particle mapped from the flux linetional to the tilt slope:
follows the Bose statisticS, we may treat many-flux-line
problems as hard-core bosons in a random potential. For _d
d=1, hard-core bosons are equivalent to fermions and hence m, (1)= E—<X>T= Im(J).. (.17
we can use the Pauli principle directly to treat many-body o .
problems in this case. See Sec. VIII for a discussion of in-The total transverse magnetization is proportional to the net

teraction effects using a boson formalismdrdimensions.  displacement of the flux line per unit length between the
bottom surface £=0) and the top surfacerE&L,):

__$o [Lr $on, Lr
We show in the following that the imaginary part of the My=n,1— fo m, (r)d7= . Im fo dr(J),
current of the non-Hermitian system yields the average slope 7 7
of a vortex trajectory as it crosses the sample. Since the don,
non-Hermitian fieldy acts like an imaginary vector potential, = (¥, = (o), (2.18
we define the current operator as T

B. Imaginary current and the transverse magnetization

wheren, is the density of vortices. As we show below, the

JH _ptig last factor in the parentheses is given b
=i = = Jpat dua (2.13) P gien by
g m
J
where L —(X)o=1 &—gln Z. (2.19
_P _. 9 Equation(2.18 is an indicator of the delocalization transi-
‘]para ' ‘]dla I . (2-12) . . . . .. .
m m tion; the transverse magnetization must remain finite in the

] ) o limit L,—o in a depinned phase, while it must vanish mac-
No_te first that t_he expectation value of the position of theroscopically in a pinned glassy phase, which is the transverse
flux line at the distancer from the bottom surface of the \jeissner effect. In fact, we show later that the vortex tilt
superconductor is given by m, (7) appears only close to surfaces in the pinning regime
1 and thusM | vanishes a4 ,—. In the limit L,—~, Eq.
(x),= §<¢f|e—<LT— nHlhyope= I yily (213 (2.19 becomes

where the partition functio® is defined by Eq(1.5 andx®P lim ((x), —(xX)g)=— LT(?SQ-S-, (2.20
is the position operator acting on position eigenstdigs L,—o 7 99
such thatx°?|x)=x|x). Note also the useful commutation
relation where g4 denotes the ground-state energy7dfg). (The
ground state is defined by the lowestal part of the
[H,xP]=—i#hJ, (2.14 eigenenergy® Hence, in the pinning regime, the ground-
. ] . state energy must be independentgoin the depinning re-
which leads immediately to gime, — deq /g is nonzero and equals the mean tilt slope of
P 1 the corresponding flux line.
7 —_~ tafla-(L—nHIA op|a—THIA| 1 To prove Eq.(2.19, we proceed as follows. As stated
(0= =(u]e [H,xPle™ 7 ) prove Eq.(2.19, we p

above, the non-Hermitian fielg acts like an imaginary vec-

= —i(3),=Im(J) (2.19 tor potential. Because of this, we can gauge away the non-
T T ' Hermitian field by applying the imaginary gauge transforma-

In the last line of Eq(2.15, we used the fact that the expec- tion to the non-Hermitian Hamiltonial.1):

tation value of the current is pure imaginary in the present

problem. The current carried by an individual eigenstate is U H(QU="H(0), (2.21
not necessarily pure imaginary, where the current of a statg here
ep, is defined by
g xOP
J =
J=—i (9%‘. (2.16 u exr’( - ) (2.22

However, a purely imaginary expectation value of the Cur_[This is just another expression of the Galilean transforma-

rent arises owin o ) éion (2.10.] Therefore, we have
g to a pairing property of eigenvalues an
eigenfunctions: if there is a complex eigenvalgenith a e~ LM — o= L MOy~ 1 (2.23
right eigenvectos® for this non-Hermitian problem, there is
also the eigenvalue* with the right eigenvector %)*. and
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H . _ gL R
ie_LT’H(g)/h:XOpe_LrH(g)/h—e_LrH(g)/hXOp_ lim P(Xyl—rlz)_wg.s.(x)l/lg_s.(x)' (233)

g bree
(2.29 Si o . -
ince the ground-state wave function is positive definite, the
Upon taking thermodynamic averag@&xpectation values in distributions(2.31) and (2.32 are well defined.
guantum languagewe obtain Eq(2.19. We remark on the nature of the limit in E(R.29. For
A conductivitylike transport coefficient may be defined by one-impurity systemsésee Sec. 1Y, corrections to the right-
hand side of Eq(2.29 are of order expf{L,A¢), whereAe is

fi

I the energy gap above the ground state. For random systems,
Tur="1 EU#)' 229 the argument in Sec. VIl yields corrections that vanish as a
. ) ) stretched exponential function af..
The quantity defined for each eigenstate For a finite density of flux lines, we can treat a strong
e short-range repulsive potential approximately by forbidding
(M= _ 7N (2.26 ~ multiple occupancy of localized levels of the quantum
kY 09,09, Hamiltonian® We then fill up the localized levels in order of

increasing energy up to a certain levet u. The system is
now characterized by an average chemical potential
w=u(H;), whereH, is the external magnetic field along the
7 axis. This chemical potential controls the flux-line density
and separates occupied and unoccupied levels. Under this
assumption, we can estimate the probability distribution of
the most weakly bound flux line by using the state at the
We now outline the correspondence between the probabikhemical potentialy,, instead ofy, s in the above analysis.
ity distribution of a flux line and the eigenvectors of the
guantum system. The flux line fluctuates because of thermal
excitations. This thermal agitation is described by quantum
fluctuations of the corresponding fictitious non-Hermitian
guantum particle. The probability distribution of the flux line ~ We now sketch the mechanism of the delocalization in the
due to thermal fluctuation is thus related to wave functions ohon-Hermitian quantum system described above. Consider

is a measure of the stiffness of the eigenfunction. In many
body problemsg,, is related to the superfluid density of the
relevant boson systef.

C. Probability distribution of a flux line and eigenvectors
of the non-Hermitian Hamiltonian

Ill. DELOCALIZATION TRANSITION
IN NON-HERMITIAN QUANTUM MECHANICS

the quantum system. first localized states in a small transverse figldssume that
The probability distribution of the flux line at the distance we know the eigenvalues, and the eigenfunctiong,(x)
 from the bottom surface is given ¥y for g=0. We can use the imaginary gauge transformation

(2.22 to determine the eigenfunctions for smgliThe right

1 (L - _ ; eigenfunctions and the left eigenfunctions are given b
PO )= Z(wle” M (e gy, 229 9 J gen by

Riv:q) — CN—
so that we can rewrite Eq2.13 as U (X,9) =Un(x;,9=0), (3.1
L(x:9)= ¢hn(X;9=0) 2, 3.2
.= f N (228 UE(X9) = ¥n(x,9=0) (3.2
where
Let us calculatd’(x;7) in the limit L .—o0. In this limit the
exponential operator expl,/%) can be approximated by g- x°P . XOP
L{Eex;{ z ) ulzex% -~z ) (3.3
lim e~th=|yy e Fos Myl (2.29

L,—o . . .
_ _ The corresponding energy eigenvaltigis then unchanged
Note here that left and right eigenvectors may be expressggtovided that this imaginary gauge transformation is appli-

as cable. However, the above wave functiop and ¢, may
diverge asx|— and become unnormalizablélf we as-
R — L —
PrO= Xy, () =([x). 230 gyme an asymptotic form of the wave function fpr 0 of
Upon combining Egs(2.27) and(2.29, we find the form
L
X X;g=0) ~ exp —k,|X—X,|), 34
lim P(x;0)= L'()' (2.31) ¥n(X;9 )XHoc o Kn| n|) (3.4
L,—o f l,//g_s_(x)ddx

the condition for nondivergence aff and ) in |x| - is
R (x) |g|<#k,. Then the normalized wave functions are approxi-
lim P(x:L,)= Yys (2.3 mately given by(see Fig.

s(X
Lo fng_s(x)ddxy 2r)
U=\ T G (X=Xl h =k x—xy[], (39
and A
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FIG. 5. Wave functior(3.5) or (4.7), the ground state of a single —
impurity with 0<<g<g. in one dimension. e ‘—/ N
L[ (2kn) exd —g- (X—Xp)/h— kp|X—X4|] \_—/
= F(d)Qd g n Kn nlls X

(3.6 FIG. 6. Spiral trajectory of a flux line in the system of Fig. 4,
reflecting the imaginary eigenvalues, which appear in non-

wherex, is the localization center fag=0, {4 is the total  permitian systems when boundary conditions allow nonzero tilt of
solid angle of thed-dimensional space, and the normaliza-yortex lines across the system.

tion condition is

b (PFI9®

0= 39

f Ynipdix=1. (3.7

' _ (We argue later that the potential in fact has only perturba-
We naturally regard the poifg| =7 «,, as the delocaliza- tive effects for largey whend=1.) The periodic boundary

tion point of thenth state. Since the eigenfunctions are pro-conditions(3.8) are then satisfied only by the extended Bloch
portional to the probability distribution of a flux line at the wave

surfaces of the superconduc{see Eqs(2.31) and(2.32],
we interpret the divergence ix|—« as depinning of the
flux line. Because localized states with finite localization
length are stable against a smalfield, flux-line pinning is
robust against small transverse field: This is the transvers
Meissner effect?

The diverging tilt slope in Eqg(1.10 follows because the
localization length of the right eigenfunction is
(k,—]|gl/%) Y in the direction ofg and (x,+|g|/#) ! in the (hk+ig)?
opposite direction. The former diverges|gs—# ,, ; hence N '
H, .=4whk,/pg in Eg. (1.10. According to the relation

(2.18), the surface displacement or “localization length” of We can interpret the appearance of the imaginary part of
the flux line is proportional to the surface transverse magneg,q energy in the following way. A depinned flux line in a

tizationM | . s : . e
. . ) _ periodic system has a spiral trajectory and hence periodicity
We need to specify boundary conditions in order to obtaif, the imaginary time direction(See Fig. 6. Because the
a well-defined wave function in the thermodynamic limit. single-line partition function at “time”  may be written

Consider for simplicity the periodic boundary conditions Z(r)=3,c,yR(x)e >, where the constants, are coef-
n~¥n¥n ’

ficients depending on “initial conditions” at, say, the bottom
YR(LJ2Y,..) = YR(— L2y, ..., (3.8)  surface of the sample, the period of motion in the imaginary-
time direction associated with theth eigenstate is given by
where we put thex axis parallel tog. (The one-dimensional #/Im g, wheren denotes the wave function describing the
periodic system is realized in the setup shown in Fig.A. depinned flux line. Thus a complex energy, as well as an
wave function of the form{3.5) localized at the origin has a imaginary part of the curren2.19, is an indicator of the
mismatch of the factor eXp-(x,—|g|/%#)L,] at the bound- depinning transition in periodic systems.
ariesx=*L,/2. This mismatch is exponentially small in the ~ We use periodic boundary conditions in all directions per-
pinning regime|g|<#«,,. Hence the wave function&.5) pendicular to the imaginary-time axis throughout this paper.
and (3.6) are excellent approximations when we take theThe effect of “free” boundary conditions in the timelike
thermodynamic limit, imposing the periodic boundary condi-direction is discussed in Sec. VII. For superconducting flux
tions (3.8). lines, unusual geometries such as Fig. 4 would be required to
In the depinning regimég|=#«,, however, we need to exactly implement periodic boundary conditions in the direc-
change the wave functions drastically to meet the boundartion parallel to the tilt fieldg. For conventional slablike su-
conditions. To see what happens in this regime, consider theerconducting samples, tilt causes extra vortices to enter and
limit in which the random potentidV(x) may be neglected: exit the sample on the sides perpendiculag.tdhese bound-

YR(x)=expik-x), (3.10
gvith k,=2n,mw/L,, wheren, is an integer and_, is the

System size in the&, direction. The eigenvalue of this wave
function is complex:

(3.11
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ary conditions correspond to reservoirs and sinks of particles A 8.

at opposite ends of the sample in the quantum analogy. Be- 5 =< : >
cause periodic boundary conditions mimic the effects of such w .o i 8
sources and sinks, we expect that the basic results of this Z \\ :

paper apply to slablike geometries as well. Y] a,

V. ONE-DIMENSIONAL ONE-IMPURITY PROBLEM

In the present section we analyze the non-Hermitian
Hamiltonian(1.1) analytically in one dimension with a single
impurity. The calculation is instructive as well as of physical
relevance for vortex lines in the case of a twin boundary. FIG. 7.9 dependence of the ground-state endimfid line) and
Throughout this section we assume without loss of generalitjhe first-excited-state energgashed ling of the one-dimensional
that the non-Hermitian field is applied in the positivedi- ~ One-impurity problem.
rection, i.e.,g>0.

exd —(kgs—9g/h)x] for x=0

R
X) ot 4.
A. Exact solution: Point impurity l/fg_s.( ) eXF[_(Kg-S-+ g/h)|x|] for x<0 47
To determine the effect of an isolated impurity, we calcu-in the limit L,—o. This is depicted in Fig. 5.
late the right eigenvectors of the Schimger equation Next, the excited states fg<g. are given by
HyR(x) =& ¢R(x) with the Hamiltonian defined by (1K )2
_ €
(p+|g)2 (ﬁv_g)2 Eex— 2m ’ (48)
H= === Vod(X) = = ——5 === Vod(X),
m m where
(4.2
with V,>0 and the periodic boundary conditions Kex=Kext i #ex, (4.9
R R with
(L) =¢7(0). (4.2
+
The details of the solution are given in the Appendix. There EX:MJFO(L;Z), (4.10
is a unique localized ground state fp< g, where the criti- Lx
cal field is
9. 1 9 —2
mV, Kex—%'f' L—In 9—0 +0O(L, ), (4.11)
chth.s.:T (4.3 X ¢

where n is an integer. The ground and excited states for

(Recall that the ground state is the state with the lowest 9> 9c are given by

part of the eigenenergyThis solution is the only localized 2
(ﬁKg.s.,eQ

state in the entire spectrum. There are extended excited states Egs.er e (4.12
for g<g. as well as extended grourathd excited states for ' 2m
g>g.. For later use in Sec. IV B, we write down the solu- yhere
tions of the extended states including finite-size corrections.

First, the ground state fay<g. has the energy Kgs.e Kgs.ext i Kgs.ex (4.13

 (hkge)? MV3 i with
fesT " Tom T 2k% @4 LT
with g.s.,ex_L_X+O(Lx ): (4-14)
mVO g 1 g -2
Kgs= 7 (4.5 Kgls_'eng + L—Xln 9— 0. +O(Ly ). (4.15

Note that the ground-state energy is independeng aind ~ The casen=0 in Eq.(4.14 describes a delocalized ground
equal, in particular, to the ground-state energy in the Hermitstate wherg>g_.

ian casey=0. This observation is consistent with the pinning  The leading term in the energy eigenvalues for the ex-
criterion given below Eq(2.20. The current carried by the tended state$4.8) and(4.12) is

ground state therefore vanishes: 5

: g
e lim €gs.ex ﬁ (4.1
ImJgs=— ag' '=0. (4.6) by
9 The energies of the ground state and the first excited state
The corresponding eigenvector is a localized function writterdepend org in the limit L,— o0, as shown in Fig. 7. Accord-

in the form ing to the pinning criterion given below Eq.20), the ap-
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Re €—Re &g Re €—Re &g $09c
AM.=ZAm

(4.29

\ ' whereA is the cross-sectional area, because of the relations

\ ’ (2.18 and(2.20.

¥ Although the above jump appears to indicate a first-order

| transition'* we shall argue in Sec. VI that the bulk magne-

: tization in fact grows continuously at the transition when

! interactions are taken into account. There are, moreover, di-

| k . . .
verging precursors of the destruction of the transverse Meiss-

b ner effect ag—g, . As discussed in Sec. Il C, the normal-
L ized right eigenvector gives the probability distribution of
(a) (b) the corresponding flux line at the top surface. The wave
function (4.7) in the pinning regime g<g.) defines a sur-
FIG. 8. Dispersion relation Revs k (=Ime) in the one-  face localization length & of the flux line as
dimensional one-impurity case f¢a) g<g, and(b) g>g.. & =(kgs— g/#) ™1, which diverges ag—g, ,

pearance of theg dependence indicates that these are ex- h
tended states. The current carried by each state is thus purely &~ 90’ (4.22
imaginary, ¢
The transverse magnetization near the surface diverges like
. - g 1
im Jgs.er] %. @1p
Ly—o (Kgs— g/h)‘2+(Kg,S.+ glh) 2
_ , M (X)L = (X)L 2= —alh) It Ta/h) *
The eigenvectors corresponding to these extended states are (kgs—0/R) (Kkgst9 )(4 23
o e'keX for x>0 5
Yed )~ e'ke+ ce™ ke T20%% for x<Q (4.18 ~9—9 (4.24
C

in the limit L,— o, wherec is a constant. The term*ex is
a plane wave traveling in thedirection and the second term
of the second line is the reflection due to theotential at
the origin.
In Fig. 8 we plot the dispersion relation, that is, Re
againstk («cIme). Note the level repulsion between the im- (x).~e F{
X) .~ €ex

(in the limit L ,,L,— ) as the vortex line begins to tear free.
We show below that the displacement of the flux line
from the defect depends on the depth from the surface ac-

cording to

purity level and the extended states; as we incregsthe — (4.29
localized impurity level approaches the series of extended .
excited states and must squeeze itself into the sequence. &S 7— >, Where 7 denotes the distance below the surface.

nally, the solutions at the critical poigt= g, are again given (See Sec. VII for the many-defect cgs&he penetration

by the form(4.12), but with depth7* diverges at the depinning poigt=g, as
Kgs.e= O(Ly ' In Ly), 7= rgﬁ/%f as g—g; . (4.26
—

The exponent of the penetration-depth divergence is the

(4.19 Pt -
same as the one of the surface-localization-length divergence
(4.22: If we define the exponert by ™ ~(£,)% we have
z=1.(The exponent is different in the many-defect case; see
Sec. VIl)

We now apply the above solutions to flux-line physics in  The divergencé4.26) is derived as follows: Expand Eq.

a thin cylindrical superconducting shell with one defect in it. (2.13 with respect to eigenfunctions and take the limit

The flux line undergoes a depinning transition wlgeng, . L,— in Eq. (2.13 to obtain

Its tilt slope, given a4 ,— o by the imaginary current of the

ground state, vanishes fglg., but jumps to a finite value

for g>g.: <X>Tz; CnJ dX<¢g.sIX>X<X|¢n>e_TA8n/ﬁ’ (4.27

9 -
Kgs,ey +O(L 1IN Ly).

B. Flux-line depinning from a defect

0 for g<g. where

(4.20

IMJgs= g/m for g>g..

[ twbeyax

This directly shows that the flux line is depinned from the c.=
defect atg=g.. At this depinning point, the contribution of " X' ydx’
this flux line to the bulk transverse magnetization jumps by {#gslx’)

(4.28
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defect flux line V(x)
A

Ttrap
]C bo «

. S
—Uo
7’
FIG. 10. Square-well impurity potential treated in Sec. IV C.
X
FIG. 9. Definition of th ing length, mh(gc | g) Mi/9e (4.39
. 9. Definition of the trapping lengt . Tirap— 5 —Iin = y .
pping g rap trap g2 g_gc g_gc g_gc
and which has a simple pole as we approach the pinning point
=g, from the depinning regime.
Ae,=en—&ys. (4.29 9=5% P g re
The termy,= ¢ 5 in the summation oven gives the posi- C. Exact solution: Square-well potential

tion of the localization center of the ground state, namely, e can also solve the one-dimensional problem exactly
the origin. Hence the leading term is due to the first exciteqqr g single square-well impurity as shown in Fig. 10. We
state. Then the penetration depthin Eq.(4.29 is given by here restrict ourselves to localized states. The equékiag)

the inverse energy gap between the ground state and the firgl the s-potential case is now replaced by

excited state,

2kx{coshL,g/h)—cog2kbg)cosh «(L,—2bg) ]}

h 2m#
T*EE= Z—g%" (4.30 + (k?— k?)sin(2kbg)sint x(L,—2bo)]=0, (4.35
C
which leads to Eq(4.26). where
There are also diverging precursors on the other side of \/7_ T
the transition §—g_ ) in the form of a diverging finite-size k= 2m(l;io |8|), K= 221|8|_ (4.36

correction, namely, the trapping length. The trapping length

IS de_fmed as followssee F|g._9. The average slope of the g equation for thes potential is recovered in the limit
flux line for x# 0 should be given by the tilt slope of a flux ba—0 andU— o with 2baU .= V..

line in the absence of defects, gfm. Assume that the flux 0 0 o-8 0
line is trapped by the defect at=0 over the distancey,p,.
Then the total imaginary time necessary for a flux line to
circle the periodic system of circumferencé, is gc= lim #Ax(Ly), (4.37)
Lym/g+ 7yap. Thus the mean tilt slopgor the imaginary Ly—o

part of the current should be given by , . )

ImJy o= Lx(Lxm/g+Ttra;1)_l- This in turn gives the defini- where «(L,) is a solution of Eq.(4.35 with g=0. In the

The results are quite similar to th&potential case. The
critical field of the delocalization transition is again given by

tion of the trapping length as limit L,—cc with g=0, Eq.(4.39 is reduced to
1 m 2k cog2kbg) + (k?>—k?)sin(2kby)=0  (4.39
For this to be finite in the |irT.'Iifl_x—><.>0, the ima_ginary part of [« sin(kby)+k cogkbg) ][k cogkby)—k sin(kbg)]=0.
the current should have a finite-size correction of the form (4.39
Trard/ M Upon settingk=byx and n=bk, we are led to
|mJg,s_:% (1— ”a[’g ) (4.32 ° °
X Kt npi=a? (4.40
In fact, the correctior{4.15 has precisely this form: and
2 _ -
ImJ :iﬁ Lrgs() + OKgs(Ly)] k=mntann or k=— 7 cot 7, (4.41
g.s. 39 2m
s 5 where
_ g Kg.s. JdOKys,
—m(1+ g +7 a9 | (4.33 5

o

— (4.42
We thereby obtain bgvmUg,
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10 — The issues involved in determining the spectrum of Eq.
[ (1.2) are especially easy to illustrate in one dimension. In an
gL N-site basis with lattice spacirey H takes an approximately
r tridiagonal form
I~ 6 o o
I Or v, el e 9
e _ J—
|§ 4+ e 9 Uo e? 0
: 6797 US egi
2 F 1 )
: N 1 H=— Et e Vg s
O L 0 . e YO SRR K K - o
0 02 04 06 08 1 0 . un-p €9
o eg_ e_g_ UN
FIG. 11. Solutionk,(a) of Egs. (4.40 and (4.41), which is (5.3

proportional to the depinning field, . of a single square-well im-
purity. The ground-state functiory(«) and the first three excited
states are shown.

with v,=—2V,/t and g=gay/#. Delocalization of the
eigenfunctions is traditionally associated with an extreme
sensitivity to boundary conditiorf8;?! the periodic boundary
conditions used here are reflected in the nonzero matrix ele-
ments in the upper right and lower left corners. For the
present non-Hermitian problem, delocalization is reflected in
gn extreme sensitivity of theigenvaluesSuppose théreal)
eigenvalue spectrum is known exactly for the Hermitian site-
random problem witlg=0. One expects all states to be lo-

is the “reduced temperaturé® in the sense thak corre-
sponds to the temperature of the flux-line system. There i
always at least one solution of Eq4.40 and(4.41), includ-
ing the ground state. More localized excited states are avai
able for smalla, which corresponds to the low temperature

of the flux-line system. Each state is localized for lized for thi di ional probl If th tries in th
0<g.=%k(*), wherex is the inverse localization length of calized for this one-dimensional problem. [ the entries in the
upper right and lower left corners are arbitrarily set to zero, it

the state atg=0. Figure 11 shows ther dependence of . iiv sh thaall ei I f T . |
x() for the ground state and the first few excited states'> €aS!'y Shown eigenvaiues for genergiremain rea

The depinning transverse field for thath state is gnd ;trictly_equal to t.heir values fg=0. As will be shpwn
H, .= (4elchy) x(a) for the ground state as well as for the in this section, the eigenvalue spectrum for the original pe-

excited states. The divergences discussed in Sec. IV B for t pdic problem becomes complex in the midde of the band

S&function potential problem also apply to the present casel©’ 9 above a threshold_ value gf.>0. These complex ei-
genvalues are thus entirely due to the presence of nonzero

upper right and lower left matrix elements. For this non-
V. ONE-DIMENSIONAL RANDOM NON-HERMITIAN Hermitian random problem, complex eigenvalues therefore
TIGHT-BINDING MODEL indicate directly the extreme sensitivity to boundary condi-

In this section we present numerical results for a onelions associated with delocalized states.

dimensional random system. To make the numerical calcu- FOf columnar defects, an important component of the ran-
lation tractable, we use lattice non-Hermitian random tight-d0mness often comes from position of the extended defects
binding models(1.2), where the sites represent column rather than on-site disorder as assumed in this tight-binding

positions with random binding energies and/or hopping maMedel- However, if we coarse grain a system with the posi-
trix elements, as in Fig. 4. tional randomness, the resulting effective Hamiltonian will

contain on-site disordéf.By varying the energy and type of
heavy ions that produce columnar defects, one can also gen-
erate on-site disorder directly. We expect that similar energy
First we discuss the site-random model. The secondspectra and delocalization phenomena arise for both random-
guantized Hamiltonian id dimensions is given by Eq1.2). site and random-hopping models and will present results for
(Boson notation is used here because flux lines behave like random hopping model in Sec. V C.
bosons in the delocalized regime, although statistics are ir- Similar to the discussion below E@2.16 for the con-
relevant when the lines are strongly localizethe hopping tinuum model, the eigenvalues of the non-Hermitian lattice

A. Site-random model

element is approximatety model (1.2) also appear in complex conjugate pairs, thus

ensuring that the partition functiof is real. Another sym-
t~Vping €XP(— V2MVyind/ i), (5.1) metryis

whereVy,q is a typical binding energy of the defect aads H(Q)"=H(—0g). (5.4)

the lattice spacing. We again apply periodic boundary con-

ditions Because of this symmetry, the right eigenfunctiort{f)) is
equal to the left eigenfunction &f(—g) with the same ei-

bx+NVeV:bx for v=1,2,...d, (5.2 genvalue.

If V,=0, eigenstates are Bloch waves and the eigenvalues
whereN,=L,/a. for general dimensiod are
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d o —
e(k)=—t>, cod(k,+ig,/h)a] (5.5 i
v=1
or o 1f
d PO
Res(k)=—t>, cogk,a)coshg,alh), g |
v=1 p— F
O -
d I
Ime(k)=t>, sin(k,a)sinng,a/#), (5.6) I
v=1 L
_1 . 1 1 1 .
with k,=2n,#w/L,, wheren, is an integer. In one dimen- 2
sion, the eigenvalues lie on an ellipse, given by @
Res 2+ Ime 2—t2 5 ]
coshga/f) sinhga/h)| .7

Its low-energy structure is the same as the dispersion relation

(3.1 of the impurity-free continuum modé€B.9). The high Ragd
end of the ellipse5.7) is the dispersion relation for hole W
excitations. The eigenfunctions take the formR(x) é

+++

I " " "y
exp(k-x), with y*(x)=exp(-ik-x). 0.2 03t g e gy
. : . . B o+ ]

Numerical cglculatlons fovxfo were carried qut with a | Oldirt 44 4 ﬂ++t:r+i‘|#++ﬂ+ T
random potentiaV/, uncorrelated in space and uniformly dis- I ++++++++_
tributed in the rangé—A,A]. For such a symmetric distri- or T=OHhHH o+ + o
bution, the complex spectrum is statistically symmetric with —

. -1.7 -1.6 -1.5

respect to the axis Re=0.

Figure 12a) shows thed=1 spectrum witiN= 1000 sites () Re 8/t

for various values ofj. As discussed above, a complex ei- . _ .
genvalue indicates that a flux line occupying that state is FIG. 12. (@ Energy spectrum of the one-dimensional tight-
depinned. There is a region gfwhere all the eigenstates are Pinding model with randomness/t=1 andL,=100G. Plots for
localized. As we increasg further, the first delocalized state different values og=ga/# are offset for clarity. The same realiza-
appears in the band center and a pair of mobility edges movt on of the random potential was used for all plots 'here. Each eigen-
outward toward the band edges. As long as an eigenvalue ]ssate 'S marked by a cros) B_Iowup of apart of(@); note that the
real or the eigenstate is localized, the eigenvalue is indeperg_?eielgenvalues, corresponding to localized states, are independent
dent of g; see Fig. 1%) for an expanded version of the g-
bottom of the band: The localized eigenvalues are in perfect .
registry for different values off. The behavior of the delo- vyhere we took the fa”do”! average)ay over 100 reahza_—
calized states, on the other hand, is similar to the impurity:[!OnS O.f the random potentla_l. According to the Qelocallza-
free casg5.7) except near the mobility edges. Close to thellon criterion go=1ik, delq(_;allzed states appear f|rsf[ at the
mobility edge the imaginary part of the eigenvalue appears tgand cgnter and the _mob|I|ty edges move outward, in agree-
vanishlinearly with the real part of the eigenvalue. ment with our numerical results.

In Fig. 13 we show the imaginary part of the current
defined by Eq(2.16), another indicator of the delocalization
transition. Upon comparing Fig. 13 with Fig. (B2, we note 1 I
that, for each value df, the states with complex eigenvalues
coincide with those carrying a nonzero imaginary current.
This observation is consistent with the mechanism of the
delocalization transition presented in Sec. Ill. The negative
imaginary part of the current in the upper half of the band is
due to delocalization of hole excitations.

States near the band center get delocalized first because
the inverse localization lengths are smaller near the band -1
center than near the band edges. Figure 14 shows the result I |
of a numerical calculation of an approximate inverse local- _2' — '_1' — OI — 1 — )
ization length forg=0, defined by Re 8/t

N

ImJ/t
(]

| mor?

corresponding flux lineplotted against Refor the same sample as
(5.8 in Fig. 12.

2
> , FIG. 13. Imaginary part of the curreor the tilt slope of the
av
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FIG. 14. The solid curve shows an approximate inverse IocaI-T_O
ization lengthk’, as determined from E¢5.8), plotted against Re @)
for A/t=1, L,=500a, andg=0. The value was averaged over 100 .
samples binned with energy window 0t0& he dashed line shows T_°°
an estimation ok based on the delocalization criterigp=7# «. For
this purpose, we applied increasiggo a sample of size,=500a.
The states at the mobility edges for a valuegofe.g., the dotted
line) have the inverse localization lengi+g/#.

In practice, it is convenient tdefinethe inverse localiza-
tion length using the delocalization criteriap=7%« (Ref.
17) instead of using Eq5.8); if a state becomes delocalized
at a certain valug;, the inverse localization length of the
state is therk=g. /%, shown as a dashed line in Fig. 14. The
numerical estimation ok using Eq.(5.8) is difficult near the =0
band edges, where the number of data points is small, an ¥~
hence a large statistical error appears. In addition, the defib)

nition (5.8) is not tied directly to the asymptotic behavior L ) )
exp(— klX—X). FIG. 15. Probability distribution of a flux line as a function of

for the one-dimensional random tight-binding modgl2) with a
specific random potentiaV/(x) with A/t=1. The spatial size is
+=100a. The front end of the figures corresponds to the bottom

Diagonalization of the lattice Hamiltoniafl1.2) enables surface of the superconductor, while the bulk part50%i/t is omit-

us to calculate the imaginary-time evolution of the waveted.(a) Caseg=0.8<g. with free boundary conditions arn) case

function and more importantly the probability distribution of 9=2.0>d. with a &-function initial condition{The peak at=0 in

the flux line, Eq.(2.27). The expansion of Eq2.27 with (b) has been reduced in size for visualization purpgses.

respect to the energy eigenstates results in

B. Probability distribution of a flux line

surface under the influence of the transverse magnetic field.

1 Forg=g., the flux line is strictly localized for large at the
. _ f [oR]
Pxin)=3 % (D md (| X) (X[ ) strongest pinning center. As we increagekink configura-
_ tions arise that allow hopping from one pin to the next. Fig-
X{ | pye~ (b Demltmrenlh (5,90 yre 15a) showsP(x;7) for “free” boundary conditions at
with the bottom ¢=0) of the sample, corresponding to
2= et iyl lyn)(unly). (510 |¥)= f dxx). (5.12
In the limit L. —, in particular, we have Note that the probability distribution near the surface has
(e %0 been pulled in the negative direction by the transverse
P(x; 1)~ 95 X iyg~mhenlh field. Once the flux line is depinned, spiral trajectories arise.
(37) (PgsltV) ; X} (gl ) To see this more clearly, we show in Fig.(lhthe probabil-

(5.1) ity distribution for largeg with the initial vector

whereAe,=e,—egs. —

We used this formula to demonstrate numerically, for a [y =1xo), (5.13
particular realization of the random potential, that a flux line
in the one-dimensional random system tips over near theo that the end of the flux line is fixed #g for 7=0.
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FIG. 16. Energy spectrum of the random-hopping md8el4) FIG. 17. Energy spectrum of the two-dimensional non-
with the randomness defined by E¢5.19 and(5.16. The param-  Hermitian  tight-binding model without impurities, with
eter values aré =1000a andA/t;=0.5. gx=0y=1.0x#%/a andL,=L,=20a.
C. Random-hopping model A. Impurity-free case and one-impurity case

A one-dimensional Hamiltonian with off-diagonal ran-  First we describe the impurity-free case of the non-
domness may be more suitable for describing the experimerdermitian tight-binding mode(1.2):
tal situation in Ref. 16 than the present diagonal randomness.
Mutually parallel twin boundaries might represent the pin- V,=0. (6.1)
ning potential in this situation. As discussed above, w . . . _
project out the coordinate that is parallel to the twin boun %[I;]Zeczr;r%)éefenlalut\eiearrlgvgelven by E%6) with d=2. In
aries and perpendicular to the axis. Randomness arises x=9y=0

from the separation of the binding twin boundaries rather _
A a (kytky)a (ky—ky)a
than from the strength of the pinning. Thus we have Res=—2t cos 7 cos > cos > ,
1 +R1T -nhi
H==32 (bl b+tibfb.y), (514 _{ga)  (k+kpa  (ke—kya
] Ime =2t sin 7 sin > cos > ,
wheret;” =Vping exd(—\*0)a; /4], A= 2MVjng, anda; is 6.2
the separation between thth and ( + 1)th binding impuri- ith
ties. If the twin boundaries are located randomly, the randon'It
separation follows the Poisson distribution 2
_Aa-1l,-a,/a ~ . T Aqr
P(a;)=a "e”%'?, wherea is the average separation. kxzo,tL—,iL—,...,
The delocalization phenomenon discussed above arises in X X
this off-diagonal case as well; see Fig. 16. In this example
we neglect the randomness embodied in the factor ko=0 i2_7-r i4_77 6.3
exd+ga /4] and use a square distribution of the hopping L SV NV
elements
or
*_targalf
te=te9%", (5.19 Res |2 me 12 k—ky
wheret is a random variable with probability cosligalh)| || sinngalh) =4t? co¢ 2 2
(6.9

1/(2A) for to—A<t<ty+A(ty>A)
“10 otherwise. Thus the spectrum consists_ of c_ellipses with various r_adii asis
shown forN,=N,=N=20 in Fig. 17. Two levels withk,
(5.19 ) y .
) _ o ) _ andk, interchanged are degenerate at each cross of the figure
Figure 16 is remarkably similar to the one-dimensional specaycept for the point =0, whereN levels withk, —k,= 7/a
trum found earlier for site randomnessThe currents car-  (mod 2r/a) are degenerate. The eigenfunctioné have the

ried by the extended states resemble those shown in Fig. 13s,al Bloch form

VI. TWO-DIMENSIONAL NON-HERMITIAN : 1 E et
TIGHT-BINDING MODEL ky=b,|0)= e'“*b,|0). (6.5
| > k| > \/Tl-y = x| >

We now discuss numerical results for the tight-binding
model (1.2) in two dimensions for a square lattice with  The important phenomenon of level repulsion in the
Ly=L,. We assumeg,=g,, i.e., a tilt field along the diag- complex plane can be illustrated with one attractive point
onal, in order to reduce artifacts due to lattice periodicity. impurity
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6 L B e excited levels expand, following E6.4) of the impurity-
free case approximately. In Fig. @3 we observe level re-
4r . pulsion between the impurity level and the excited levels.

I 1 Note that the twofold degeneracy of the pure system is split
2 on the side of the spectrum, where the impurity state is about
to enter. For even largég|, the bound state enters the region
0 of delocalized levels and the spectrum is again elliptical with
an extra state near the origin.

Im e/t

B. Random case

-6 — 0t In the two-dimensional random tight-binding model, we
—4 0 4 again find energy bands of localized levels bounded by a
(a) Re €/t mobility edge. For certain values @, however, extended
and localized states arsixedin a complicated way near the
6 L band center. It appears that we have three regimes with re-
] spect to the fieldy. One is the pinning phase for smajl
4 I | Another is the Bloch-wave regime for large Finally, there
7L st is an exotic intermediate regime with chaotic eigenvalue
0

| :;{:;H;}}}g i spectra. We describe these regimes on the basis of our nu-
L. i merical data.
A SIEEELIt First, it is widely accepted fog= 0 that all eigenstates of
2 Y two-dimensional random systems are localized with finite
- localization lengthgexcept for a possible exception at the
-4 . band centéf). Hence there is again a region of smgll
I where all states remain localized. As discussed earlier, these
S D — localized states retain the real eigenvalues that they had for
g=0; see the energy spectrum in Fig.(@9for an example
with Ny=N,=40.
_ . _ As we increase, delocalized levels with complex eigen-
.t . LT | values appear as shown in the energy spectrum in Fig).19
L N A remarkable difference of the energy spectrum from the
T one-dimensional case is that localized levels and delocalized
R IR levels coexist in the same range of kén the two-
; dimensional case. This phenomenon can be understood in
S +{++ :1 + A terms ofanisotropiclocalization of the Hermitian systefin
++ R T the casag=0). To take advantage of anisotropic fluctuations
—2r N in the site potential, there can be states with different local-
I ization lengths in specific directions. As shown schemati-
—4r N cally in Fig. 20, in a large system there can be another state
o . o . e, with nearly the same energy, but whose contours are rotated
_§12 -8 —4 0 4 by 90° from the first one. According to the argument devel-
R / oped in Sec. lll, the delocalization point of each state is
© CEN d.=fk, wherex is now the inverse localization length of
the state in the direction of. The state with the largest
localization length in the direction @f gets delocalized first.
Up to the delocalization point, however, both states have
nearly identical real energies.
After passing through an intermediate region whose en-
ergy spectrum is exemplified in Fig. 9, we move onto the
V= ~Ugdx (6.6 region of largeg. The energy-spectrum structure shown in
Fig. 19d) is similar to the impurity-free case shown in Fig.
where X, denotes the position of the impurity. Figure 18 17.
shows the results for the 2@0 lattice with periodic bound- It is tempting to conclude from Fig. 18) that the largeg
ary conditions. Without the transverse field, we have ondimit is well described by the extended Bloch-wave func-
impurity level separated from a cluster @elocalizedl ex-  tions, just as in one dimension. However, unlite: 1, the
cited states, as seen in Fig.(@B As we introduceg diago-  Bloch approximation breaks down ith=2 for sufficiently
nally (gx=g,), most excited states acquire imaginary eigen-arge systems foany value ofg. To see this, recall that all
values [Fig. 18b)], showing a spectrum similar to the Bloch stategk, k) with k,#k, are twofold degenerate in
impurity-free case, Fig. 17. The localized impurity level doesthe impurity-free case: If points along the lattice diagonal
not change its energy as long [as<g., while the extended as in Eq.(6.2), then|k, Ky) and|ky,kx> have the same com-

Im e/t

T
=
@
™
~
N

Im &/t

FIG. 18. Energy spectra of the two-dimensional non-Hermitian
tight-binding model with one attractive impurity of well depth,.
We show here the cask,=L,=20a and Uy=10t with (a)
9x=0,=0, (b) g,=g,=1.0x%/a, and(c) gy=g,=2X"%/a.
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FIG. 19. Energy spectra of the two-dimensional non-Hermitian tight-binding model with site randomness. We show here the case
Ly=Ly=40a andA =10t with (a) g,=g,=0.7X%/a, (b) g,=g,=1.2¥X%/a, (¢) gy=g,=1.5X#A/a, and(d) g,=g,=4.0x7%/a.

plex energy. More generally, states related by a reflection oKy, ky) V(k —k, k,— k)

. X1y X y Ry X
across theg axis are degeneratéln d=3, the degenerate ~ , (6.7
states lie on a circle ink,k, ,k,) space centered on a line V(ky—ky, kx—ky) eo(ke,ky)
passing throughy.] This degeneracy is split by the random- where
ness. Degenerate perturbation theory requires diagonaliza-
tion of the set of X2 matrices _ 1 o

V(Ka kp)= —— 2 efariony, 6.9
LXLy X,y ’

is the Fourier-transformed disorder potential angk, ,ky)
A is given by Eq.(6.2). The eigenvalues of Eq6.7) are

gt(kXiky)ZSO(erky)iA, (6.9
%

where

g A=[V(k—ky Ky =k )]. (6.10

The real splitting of the degenerate doublets predicted by Eq.
(6.9 is clearly visible in Fig. 1€d).
» X The Bloch spectrum is only a good approximation pro-
vided these corrections are small compared to the spacing
FIG. 20. Schematic view of two localized wave functions of the between the doublets. However, a typical spacing between
Hermitian system in two dimensions. The solid curves indicate conthe real parts of the Bloch levels fog= Ly: L given by Eq.
tours on which the localized wave function takes the same valugg.?) is
The anisotropy arises because of anisotropic fluctuations in the im-
purity distribution. We show an impurity fluctuation that leads to d Res,

two nearly degenerate wave functions related by a 90° rotation. Aeg= e

Ak=2 9a) 2™ 61
—tacosWT. (6.1
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y 7=3.0

(c)

FIG. 21. Ground-state right eigenfunctions in two dimensions. We show thelgaske,=40a and A=10t with (a) g,=g,=0, (b)
gx=0y=1.7x%/a, (c) gy=g,=3.0x%/a, and (d) g,=g,=5.0X#%/a. The vertical scale was rescaled by 1/10 and 1@bnand (d),
respectively. The highest peak (b) was reduced in size for the visualization purposes.

The splittingA due to the randomness is thus only a smallceptionally deep minima in the disorder potential. This map-

correction to the Bloch levels whenever ping predicts a streaked-out but roughened ground-state
wave function with roughness exponent 2/8t present, our
4—Wta cos){g)> A (6.12 system sizes are too small to provide a good quantitative
L h ’ check of this hypothesis.

For system small enough so that Bloch states are a good
first approximation for largg, most states are approximately
)Ewofold degenerate as discussed above. However, for an
L XL square lattice, there is a very largefold degeneracy
for the state at the origin of the complex energy plane. Per-
turbation theory explains the removal of the degeneracy in
éhe following way. We show that the first-order perturbation
ntheory reduces to a diagonal one-dimensional random model,
which is readily solved. We take the hopping term of Eq.
(1.2) as the nonperturbative part and the random-potential
term as the perturbation so that the zeroth-order spectrum

ay be given by Eq(6.2) or Fig. 17. The zeroth-order wave
unctions|k, k) of the degenerate levels in question satisfy

e relationk,—k,=7/a (mod 27/a). The secular equation
or the first-order perturbation of the degenerate levels con-
sists of the matrix elements

a condition that isalwaysviolated in sufficiently large sys-
tems asL—«~. When the inequality6.12 is not satisfied,
level repulsion interacts with the randomness in a comple
way to produce chaotic spectra like that in Fig(d9The
Bloch states are nondegenerat@in 1, so this problem does
not arise.

Some insight into the meaning of the chaotic eigenvalu
spectra follows from tracking the ground-state wave functio
as a function ofy. As shown in Fig. 21, the ground state first
streaks out in the direction @f. (For very largeg, the wave
function eventually broadens to cover the entire lattice. How:
ever, as discussed above, we believe that this Bloch-wa
behavior is an artifact of the small system siz&guments
given in Ref. 5 show that the ground state can never b
simply delocalized in theg direction while remaining local-
ized in the perpendicular direction whén-~. In Ref. 7 it
is argued that the long-wavelength, low-frequency behavior
of the non-Hermitian Schobnger equation in 21 dimen- 1
sions for largeg is described by a (4 1)-dimensional Bur- t AN (K= Ky (X+Y)
gers equation. The tilted flux lines described in this way <kx’ky 2x: Vibxby kx’ky> L2 XS; © Vi
wander away from thg direction to take advantage of ex- (6.13
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where we usett, —ky,=k,—k; (mod 2r/a). The above ma- Y 7
trix elements are in fact equivalent to the momentum repre- H n
sentation of the one-dimensional Hamiltonian

=l

Heﬁ=2§ Ver(€)bb,, (6.14

where S

1
Verl €)= T 2 Vxy., (6.19

with &=x+y (modL) and s=x—y (modL). The effective Eu En
potential (6.19 is thus obtained by integrating the original
potentialV, , along a line parallel t@. The first-order per-

turbation spectrum is readily solved since the effectiv
Hamiltonian (6.14) is already diagonalized. Thus we arrive

FIG. 22. Kink in a vortex configuration near the top surface of a
esuperconducting sample.

at the first-perturbation energy <X>72;f Cnf ddX<¢M|X>X<X| goye et (7.2)
e =Ver(§) 616 .
for £=0,1,..,L—1, which accounts for the horizontal spread
of eigenvalues in Fig. 18). f (o] X yd9X’
ChL=—r— (7.3
VII. TRANSVERSE MEISSNER EFFECT f (¢ |x’>ddx’
AND ITS PENETRATION DEPTH #

In this section we discuss the penetration depth associatéd
with the transverse Meissner effect for superconductors with (7.4
columnar defects in the localized regime. The vortex density '
is assumed to be finite. The surface deflection that defines thie contrast to Eqs(4.27), (4.28, and(4.29 appropriate to a
penetration depth for aingle vortex line is shown in Fig. single line. Herey,, denotes an eigenstate at the chemical
15(a). We discuss only field penetration in directions parallelpotential and the summatiol;, is restricted to states with
to the columns. For a more general discussion of varioushe energies:=u. Note that the coefficient, for an ex-
penetration depths, frequency dependences, etc., see Ref. 28nded state will be quite small owing to oscillatory factors

As shown in Sec. IV B for the one-dimensional case, thén the integration over the space. Because of the exponential
displacement of the pinned flux line near the surface of theactor in Eq.(7.2), the main contributions come from local-
superconductor with one defect has, in general, an exponeired states near and above the chemical potential. We use the
tial 7 dependence. The penetration depthhas the singu- asymptotic form(3.5) for localized states to estimate Eq.
larity 7%~ ¢, ~(g—gc) *. We show below that the mean (7.2). The term withy,= ¢, gives(x)... The other leading
displacement at depthin the many-defectase ind dimen-  terms after the integration are approximately
sions is given by a stretched exponential form

<(<X> T <X>w)>av ~

—

Ae,=e,—g,,

exq_a(T/T*)ll(dJrl)], (7.2) |<X>T_<X>w|: n " -Eneffn(ﬂ'), (7.5

o ] where
where we now assume for simplicity that the figlds par-

allel to thex axis. The average displacement in directions fo(r)=[Ar(u)—g cosb,]r,+rAe,/h, (7.6
perpendicular tay vanishes because of statistical symmetry.
The quantity(x).. is the center of the localized state in the
bulk, which is identical to the average position of the corre-
sponding state fog=0. Moreover, we show that the pen-
etration depth has the singularityf ~ £ ~(g.—g) % with
the dynamical exponert=d, thus justifying Eqs(1.8) and
(1.9). Note thatd is the dimensionality of the quantum sys-
tem corr_esponding to fl_e)_<ible Iine_zs mk_l dime_nsions. _ g(,u,)rﬂAsn~1, 7.7
Consider a low but finite density of interacting flux lines.
As discussed in Sec. Il, we fill up the localized states in ordewhereg(u) is the density of states at the chemical potential.
of increasing energy up to the average chemical potential The quantityf,(7) gives the energy of a tilted flux-line
e=u. Consider the deflection of the most unstafgmmned  configuration; see Fig. 22. The first term is the energy due to
flux line near the surface. Since we forbid double occupancy kink joining columns ak, andx,. Hence the energy is
of localized states, we can approximate proportional to the widthr, of the kink. The second term is

rn=|[Xn—x,l|, cosb,=g- (x,—x,)/|glr,, andZ} is the sum-
mation over localized excited states with the energiesu.
The inverse localization lengthl, was approximated by
k(w). The new coefficient, is ¢,~c,r, cosé,. As in con-
ventional Mott variable-range hopping in semiconducffrs,
we estimate the energy differende, from*°
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10* —————— which yields
_3: ] 1(d+1)
all: : ot -
8 r ] nlln fn a o~ ) (79)
_8: :
/It‘ 10 B ] with
Z 100 ]
F ] ho(u)
C 3 = ———— 7.1
st " [hx(w)—g] (719
0 200 400 600 800 1000 anda=dY@* 11+ 1/d). This gives the stretched exponen-
TXt/ﬁ tial form (7.1). Since the displacement at the surface, or the

_ _ surface  transverse  magnetization, is given by
F_IG._ 23. 7 dependence of_ the dlsplacement <_)f a flu_x Ilne_for_ aﬁ’v MLS“’(ﬁK_g)71, we haver* ~§f _
:ﬁsgze?“gﬂcfofinﬁmrﬁess I?ﬁthe O%e_d'men;'onal tght-binding™" /e ohtain the stretched exponential form only in the limit
. - Since only two terms df, contribute to the summation, T—. Deep in the Bose-glass phase, it may be difficult to
in Eqg. (7.5) in this example, the whole curve consists approximately h . .
of two lines. The slope of each line isAe, /%, while itsy inter-  0PServe this form experimentally because the amplitude of
cept is— (fix,—g)r,. The parameters ale,=5008, A/t=1, and the surfaqe 'dlsplacemfnt'ls small in th.IS I|m|t. However, the
g/t=0.6. characteristic scale7™ in the 7 direction _ dlverges_,
™ ~[hk(uw)—g] 9, where stretched-exponential relaxation
should be relatively easy to observe.
the energy loss arising because the flux line stays, aver
the distancer rather than at the most stable positign. This
energy loss is proportional to Because of E(.7.7), the first VIIl. EEFECT OF INTERACTIONS
and the second terms compete: The further the flux line hops IN THE DELOCALIZED REGIME
from x,,, the more the kink energy costs, but the lower the
binding energy ak, . In variable-range hopping of electrons
in semiconductoré! Ae, is the energy difference between  We conclude with a discussion of interaction effects. The
localized electronic states and the kink energy is replaced bglelocalization transitions discussed above were treated using
a WKB tunneling matrix element. an independent-particl@r “independent-vortex-line) pic-
Figure 23 shows the relaxation functigw),—(x).. for ~ ture. As outlined above, interactions can be taken into ac-
the one-dimensional tight-binding model with a particularcount in the Bose-glass phase, provided that we forbid mul-
realization of randomness. In this example, only two statesiple occupancy of the localized states. The physics here is
contribute significantly to the summatidd; in Eqg. (7.5). similar to the bands of localized impurity states describing
Upon averaging over many realizations of randomn@ss electrons in disordered semiconductttén both Bose and
close to the depinning transitipnwe expect contributions Fermi glasses, localized states are filled in order of increas-
from many states as depicted schematically in Fig. 24. For ing energies up to a chemical potential. In the localized re-
fixed 7, the largest contribution to the summation in Eg5) gime, the differences between Bose statistics of repelling
comes from the state at flux lines interacting with columnar defects and Fermi statis-
tics of electrons in disordered semiconductors are not ex-
pected to be importarif.

A. 1+ 1 dimensions: Continuous phase transition

:( 7d Hern (7.9 Interactions must be handled differently in the delocalized
"\ Ag(w)[Ak(u)—g] ’ ' phase. Consider what happens to the states described by the
(1+1)-dimensional non-Hermitian spectra of Fig. (42
—f;i (’[) with increasing fieldH, along ther axis. We assume that the
A tilt field lies in a range such that there is a mobility edge

separating low-energy localized states from high-energy de-
localized ones. The fielth; controls the chemical potential

n=l1

n=2 of the equivalent disordered boson systdms H, in-

n=3 EIlVGlOpeI creases, we fill the unoccupied levels in order of increasing
. —min f ~ —Tl/(dH) energy to obtain the ground state. Eventually all states below
: A the mobility edge are filled and additional vortices must then

go into extended states above this boundary. These extended
states describe macroscopically tilted vortex lines and as we
can see from Fig. 13, the corresponding tilt slope is finite at
> T the mobility edge. Interactions have a weaker effect on de-
localized, tilted lines, so we expect thatanylines can be
FIG. 24. Schematic of the situation where many different expo-accommodated by only a few delocalized states with ener-
nential terms contribute to the summation in Ef.5). gies just above the mobility edge. In the presence of thermal
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fluctuations, there is not a sharp distinction between tiltectally spaced along the column direction to minimize the in-
and untilted lines; any individual line will be both tilted or teraction energie¥. Hwa et al?® have discussed a theory of
localized in different regions along theaxis. Alternatively, how a continuous transition directly from this vortex smectic
we can imagine that the delocalization transition happens anto the Bose glass might proceed. However, it is hard to rule
fixed H;, with increasing external tilt fieltH, , as in Fig. 3.  out the possibility of a melted silver of tilted flux liquid afi

A physical picture of the delocalized phase ir-1 di- nonzero temperatures when the density of tilted lines be-
mensions in the presence of interactions has been developedmes very small near the transition cutde.(T), similar
by Hwa et al?® Tilted lines are represented by chains of to what happens in vortices subjected to point disorder near
kinks and the density of these chains gaestinuouslyto H.(T). Itis not yet known if a point disorder is sufficient to
zero with decreasing tilt field. Thus we predict that a con-produce a distinct “vortex-glass” phase with a finite vortex
tinuous phase transition is possible, in contrast to argumentdensity interposed between the flux liquid and the Meissner
based on depinning of a single line, which suggest a firstphase™®> There are similar uncertainties about a distinct
order transitior* A phenomenon like Bose condensation de-glassy phase neat, ((T) in the present problem.
scribes the physics of the tilted fraction of the lines, consis- Although we will not resolve these uncertainties here, we
tent with many lines entering just a few extended statezan show that there must be at leaste phase transition
above the mobility edge. However, because phase fluctuaeparating a Bose glass at sntdll from a tilted superfluid
tions are so strong in+1 dimensions, correlations of the of entangled lines wheid, is large. In other words, the
boson parameter decaslgebraically to zero at large dis- transition suggested by the existence of a sharp mobility
tances instead of approaching a nonzero constant. There d@glge in the (2-1)-dimensional single-line spectra survives
also algebraic order in a translational order parameter ass¢he imposition of repulsive interline interactions. We proceed
ciated with the density of tilted lines; the tilted phase is inby first noting that the tilt modulus
fact a “supersolid.”®

B2 (&Bl)l
(8.1

Cas= 7\ 59~
B. 2+1 dimensions: Existence of a phase transition 4 \oH,
The physical picture of lines in the delocalized regime is
more complicated in 2 1 dimensions, as suggested by theis divergent in the Bose-glass phase that results for small
intricate spectra for finitey displayed in Fig. 19. However, H, 1% This infinity is a consequence of the transverse Meiss-
here again there is a range of intermediate tilt fields wheraer effect: Although the lines tilt near the sample surfaces in
only localized states exist at low energies. A “mobility response to a perpendicular external figdd in Fig. 22,
edge” now separates real eigenvalues in the localized regiméaere is no macroscopic response in an infinite sample, so
from a region along the real energy axis where extended anéB, /dH, =0. We will show that the tilt modulug,, re-
localized statescoexist Building up a ground state as in mainsfinite in a superfluid liquid of entangled, tilted lines
1+1 dimensions, we would expect some vortices to entethat results foH, >H ., so that theremustbe at least one
extended states describing tilted lines once the chemical psharp phase transition as one incredses The tilt modulus
tential (controlled by H,) crosses this mobility edge. A is proportional to the inverse superfluid density of the
bosonic superfluid fraction of tilted lines will coexist with a equivalent boson system and the corresponding results for
“normal fluid” fraction of lines localized on columns. As in the superfluid density are indicated in Fig. 3.
1+ 1 dimensions, however, any single line will participate in ~ We start with the generalization of EQ.1) for N lines
both “fractions” as it crosses a sufficiently thick sample. {x;(7)}, namely'°
Although a single tilted line probably goes into a glassy
ground state described by the Burgers equatimteractions
in a dense liquid of tilted lines can screen out random pin-
ning potentials in a weakly perturbed superfluid phase of e NoorL
entangled line$® The tilted liquid in this dense regime Eﬂux[{xj(r)}]E? > f dr
should be pinned only weakly and exhibit a linear resistivity. =170
If the tilted regime is entered by increasihty at fixed
H,, one is shifting the mobility edges in the
(2+1)-dimensional spectra at fixed chemical potential. The 1 L,
sequence of possible phases probably resembles vortex mat- + > ; JO dTVint[|Xi(T)_XJ(T)|]’ 8.2
ter subjected to point disorder nddg, .%° For smallH , , the .
Bose glass with its transverse Meissner effect resembles the
usual Meissner phase fét<H.,. Suppose now thatl, is
increased untiH, >H, . such that the lower mobility edge whereg= ¢oH, /47 and we have added a repulsive potential
drops below the chemical potential. As illustrated in Fig. 3,V between the lines. We neglect point disorder and assume
one probably encounters a flux-liquid phaseth a finite  for simplicity that the columnar pinning potential is weak or
fraction of tilted, entangled lingsf H, is increased ahigh  the temperature is fairly high, so that the transition out of the
temperatures. At low temperatures and large tilt fields, howBose glass occurs for relatively small valuesgefH, . The
ever, the stable phase is probably a crystalline vortex-smect@ssumptions of small line tilts and locéh 7) interactions
phase, where the tilted lines are arranged in sheets perioddetween flux lines that justify Eq8.2) (Ref. 10 are then

de 2 dXJ
) —g SLavx(n]

T
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satisfied even foH, >H .. The many-line partition func-
tion associated with Eq8.2) is

N

Z(g=]1

=1

f Dx;(7)e” Enux{Xj(D}1/kgT (8.3

Upon defining an operatc?t(opEE}\‘zlxj’p acting on position
eigenstate$xy, ..., Xy) such that

Z(g)=J d?

where the “Hamiltonian”H(0) is

(keT)? @y < 1
H(0)=——=— 2 V?+ > V[x]+5 > Viu(|[x—x]).
2¢ =1 = 27
(8.9
Upon noting that
e Xop/(kgT) g~ H(OL , /kgT o= 0 Xop/kgT
= 2 ieqxop/kBT _ HOL, ne—g‘XDp/kBT
n=0 nl kBT
= HOL /keT 8.7)
where
H(g) =¥ xop/kBTH( O)ef 9 Xop/kgT
N 2 N
1 kgT )
_Z_ajzl (I—VJ+Ig +J‘Z]_ V[XJ]
1
) IZ Vit [Xi = x40, (8.9

Z(g)=J dzri---dzr,’\lf dzrl---der<ri---r,Q

with

(ksT)? .
o= 2 Vit 2 V'[x,7]
1 j=1 ]=1

H(gm)=—

1
+5 2 Vin( =), (8.12
1#]

where the constant imaginary vector potential is missing, bu
V[x;] has been replaced byzadependent disorder potential

V'[x;,7]=V (8.13

g
XJ'+—~T’T .
€1

VORTEX PINNING AND NON-HERMITIAN QUANTUM.. ..

ri .. dzr"\‘f dzrl. . .d2rN<ri. .. r"\‘|eg'xop/(kBT)e_H(O)Lr/kBTe_g'Xop/(kBT)| [PRRE rN>v
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N

X°p|xl""’x’\'>:(j21 xj>|xl,...,x,\,>, (8.4)

standard manipulations allow us to write this multidimen-
sional path integral in terms of a quantum-mechanical matrix
element

(8.9

and referring to Table I, we see that this Hamiltonian is the

generalization of Eq(1.1) for many interacting vortex lines.
Note that if a many-body eigenfunctioh,(xy,... Xy ;0)

of H(g=0) for localized lines in the Bose glass phase is

known, a potentially exact right eigenfunction with the same

energy forg#0 is then

WR(Xq,... xn;9) =€9 X 6T (x;,... xy:0), (8.9

as follows immediately from the first line of E¢8.8). As in
the single-particle case, this gauge transformation connecting
the g=0 and g# 0 problems only works provided that the
new eigenfunction is normalizabté.

To treat the tilted phase of entangled lines, it is conve-
nient to modify the original path-integral partition function
via the change of variables

, g
Xj(T)ZX]-(T)-l-,E—lT.

(8.10

Upon transforming to a quantum-mechanical matrix element
as before, we arrive at
rl. .. rN> s

The symbolT in front of the exponential in Eq8.11) stands

for time ordering. The above new Hamiltonigrelated to

Eg. (8.8 via an imaginary Galilean transformatidh de-
scribes a set of vortex lines moving along thexis in the
presence of a set of parallel, tilted columnar defects. The
response functions for a liquid of interacting entangled lines
in the presence of tilted disorder have been discussed and
reviewed by Taber and Nelsof® The vortex tilt moduli
IPoth parallel and perpendicular to the plane of tilt in this case
are different. However, both are explicitly found to fisite,

in contrast to the infinite tilt moduli in the Bose glass. Thus
there must indeed be at least one genuine phase transition for
the (2+ 1)-dimensional system with increasiky c«g in the
presence of interactions and disorder.

1 L 1 (A~
T exp(—kB—T Jo H (g,r)dr) (8.11
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APPENDIX: EXACT SOLUTION
OF THE ONE-DIMENSIONAL SCHRO DINGER
EQUATION WITH A POINT IMPURITY FIG. 25. Integration contour used in the evaluation of &d.0).

. . . . . The crosses on the horizontal axis indicate the poles of the factor
In this appendix we describe the derivation of the smgle-(eiLz_l)ﬂ while the other two crosses indicate the poles of the
impurity results given in Sec. IV A. The derivation is subtle ¢, i R(é)_

even in the Hermitian case, since we are interested in finite-
size effects as well as the thermodynamic limit. Throughout

) : . X For |ImK|>g/#, the poles straddle the real axis and we
this appendix we assunge>0 without loss of generality.

- have
We have found it useful to solve the ScHioger equation

HyR(x)=e¢R(x) in a way different from that sketched in N
Ref. 5. Because of the periodic boundary conditi¢h<), K= mv. (A7)
we define the Fourier transformation in the form 0

om or

PRO0=— 2 PR(ke™, (A1)
Lx k i mVO i
K=i ?EIKQ.S.' (AB)

where the summation runs ovkr2mn/L for integern.

The inverse transformation is given by Thus we arrive at the unique localized ground-state solution

for [ImK|>g/% given as Eq(4.4). The boundary for the ex-

~ 1 Ly )
YR(k)= > f JR(x)e *dx. (A2) istence of this localized state is the critical field, which leads
™ Jo to Eq. (4.3).
The Schfdinger equation becomes For ImK=g/ﬁ, one of the pOleS of the integrand of Eq

(A6) approaches the rellaxis, which makes the evaluation
of the integral in the limit_,— oo difficult. Hence we return
to Eq. (A5) and explore the solutions including finite-size
corrections, using the formula

(ki) 777k~ 0 g0y =2me Tk, (A

Upon assuming thaE= ¢R(0) is finite, we have

~ mVoC g)|? - 2m G 2mi
PR=—0 | [k+iz]| —K2[ (A D2 RN =2 RegR@ gy,
(A9)
where K(e)=+v2me/#. The real-space wave function is . ) . ) N .
given by substituting'/;R(k) in Eq. (A1) with Eq. (A4). whereR(z) is a rational function with the conditions thaj
The conditionyR(0)=C results in the equation for the the order inz of the denominator is greater than the order of
energy spectruna, namely the numerator at least by 2 aril) the function does not
' ’ have any poles at integral points. The summation with re-
2 g\? ) -1 gn2 spect tof runs over the residues arising from all poles of
. EK kti] —K(e) v (A5)  R(2). The formula follows from evaluating
Let us first analyze this equation in the linhif— o: 27i
dz F{Z)m, (A10)
- g 2 -1 op2
-9 . 2 _
f_mdk k+i 3 K*(e) mVy’ (AB) with the integration contour as in Fig. 25. Thus Eé5)

becomes
The integrand has two poles bt =K —ig/% in the com-

plex plane ofk. For|Im K|<g/%, the integral(A6) vanishes ) ) i%2K
when we close the integration contour in the upper half  (eKbx"hxd/f—1)=1— (e Kx* bt _1)~1=
plane. Thus nonzero solutions arise only fonK|=g/#. In

the following, we derive solutions follmK|>g/% and for

|ImK|=g/% separately. or

mV,
(Al1)
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in the limit L,—, where

mV,
K +73|n(LXK)=O.

cosi‘( LX%) —cogL,K)
(A12) w=L,0k(L,)—iLk(Ly). (A18)

The wave function corresponding to each solution of EqWe notice thatx(L,) and k(L,) have the same order of
(A1) is magnitude with respect tb, .
Forg+#g., the second term on the right-hand side of Eq.

i A —i % . - o
g/l xd g Mg (A17) is negligible compared to its first term and hence

wR(X)MeIKLXJerg/ﬁ—l e KL Ll —q (A13)

for 0=<x<L,. In the case of Iirnx_m ImK(L,)>g/%, putting w=In _g ) (A19)
K to be pure imaginary results in the ground-state solution 978
(A8) and(4.7) for g<g. in the limit L,— . This gives a series of solutions in addition to the ground state
We are now in a position to discuss the case (A8). Forg<g,, we have
li ImK(L,)= 9 Al4
im ImK (L) =+, (A14) Ldk=In : (A20)
L,—o —
X 9c—9
whereK(L,) denotes a solution of EqA12). This case in- )
cludes all delocalized wave functions. By setting Lik=In(=1)=im(2n+1), (A21)
g with n an integer, i.e., the excited states given in E4s10
K(Ly) =k(Ly)+i g+i5K(LX), (A15) and(4.11). Forg>g., we have
with
L,6k=In _g , (A22)
lim Sk(Ly)=0, (A16) ¢
Ly—o° .
Lk=In1=2imn, (A23)

Eqg. (All) becomes
or the excited states given in Edqd.14) and(4.15. Finally,
for g=g., Eqg. (A17) yields a solutiorw=0O(In L,), or Eq.
(4.19.

. geszx(g_%

- oo | tw (A17)

*Present address: Theoretical Division, Los Alamos National®J. Miller and J. Wang, Phys. Rev. Left6, 1461(1996.

Laboratory, Los Alamos, NM 87545. 16\M. C. Marchetti and V. M. Vinokur, Phys. Rev. B1, 16 276
1L. P. Kadanoff and J. Swift, Phys. Re¥65 310 (1968. (1995.
2H. C. Fogedby, A. B. Eriksson, and L. V. Mikheev, Phys. Rev. ’P. Le Doussalunpublisheit see also Sec. IV D of Ref. 10.

Lett. 75, 1883(1995. 8The Frobenius-Perron theorem ensures that the ground state is
3D. Kim, Phys. Rev. B52, 3512(1995. nodeless and nondegenerate with a real eigenvalue even in this
4B. M. McCoy and T. T. Wu, Nuovo Cimento B6, 311(1968); non-Hermitian problem. See, e.g., F. R. Gantmaching

see also E. H. Lieb and F. Y. Wu, iBhase Transitions and Theory of Matrices, Vol. ZChelsea, New York, 1974
Critical Phenomena Vol.,ledited by C. Domb and M. S. Green °U. Tauber and D. R. Nelson, Phys. Refo be publishef

(Academic, London, 1932p. 331. 203, T. Edwards and D. J. Thouless, J. Phys, ®07 (1972.

5N. Hatano and D. R. Nelson, Phys. Rev. L&, 570(1996. 21D, C. Liccardello and D. J. Thouless, J. Phys8(4157(1975.

SFor a review se@he Quantum Hall Effec2nd ed., edited by R.  2?A study of Hermitian localization has suggested a diverging lo-
E. Prange and S. M. GirviBpringer-Verlag, New York, 1990 calization length« precisely at the band center for another type

’D. R. Nelson and N. Shnerb, cond-mat/9708Q@tpublishedl of the probability distribution. In this case, the state with 0

8L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. for g=0 is delocalized as soon gsbecomes nonzero. See M.
Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, and F. O. Robbins and B. Koiller, Phys. Rev. 8, 4576(1985.
Holtzberg, Phys. Rev. Let67, 648(199J). 23D, R. Nelson and L. Radzihovsky, Phys. Rev5& 6845(1996.

°R. C. Budhani, M. Suenaga, and S. H. Liou, Phys. Rev. [6&t. 24B.|. Shklovskii and A. L. EfrosElectronic Properties of Doped
3816(1992. Semiconductor§Springer-Verlag, New York, 1984

10D, R. Nelson and V. Vinokur, Phys. Rev. 48, 13 060(1993. 25T, Hwa, D. R. Nelson, and V. M. Vinokur, Phys. Rev4B, 1167

11| . Balents and D. R. Nelson, Phys. Rev5B, 12 951(1995. (1993. [See Fig. 5 of this reference for a schematic of

12M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, (1+1)-dimensional tilted vortex lines in the presence of colum-
Phys. Rev. B40, 546 (1989. nar pins]

13D, R. Nelson and P. Le Doussal, Phys. ReviB 10 113(1990. 2%65ee Sec. IV C of Ref. 13 for a discussion of vortex lines with
L-W. Chen, L. Balents, M. P. A. Fisher, and M. C. Marchetti,  disorder neaH,;.
Phys. Rev. B54, 12 798(1996. 27See Appendix A of Ref. 10.



