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Vortex pinning and non-Hermitian quantum mechanics
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A delocalization phenomenon is studied in a class of non-Hermitian random quantum-mechanical problems.
Delocalization arises in response to a sufficiently large constant imaginary vector potential. The transition is
related to depinning of flux lines from extended defects in type-II superconductors subject to a tilted external
magnetic field. The physical meaning of the complex eigenvalues and currents of the non-Hermitian system is
elucidated in terms of properties of tilted vortex lines. The singular behavior of the penetration length describ-
ing stretched exponential screening of a perpendicular magnetic field~transverse Meissner effect!, the surface
transverse magnetization, and the trapping length is determined near the flux-line depinning point.
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I. INTRODUCTION

Although Hamiltonians must be Hermitian in conve
tional quantum mechanics, non-Hermitian operators do
pear in other physical contexts: The time evolution of no
Hermitian Liouville operators can describe vario
nonequilibrium processes;1–3 the transfer matrix of two-
dimensional asymmetric vertex models leads to n
Hermitian Hamiltonians for quantum spin chains.4

In the present paper we investigate localization pheno
ena in an especially simple class ofrandomnon-Hermitian
Hamiltonians. Although non-Hermitian, our problem is su
ficiently close to conventional quantum mechanics tha
will be convenient to use a quantum language to describe
results. Specifically, we show that a delocalization transit
occurs~even in one and two dimensions! in the following
one-body Hamiltonians ind dimensions: first, the Hamil-
tonian in continuum space

H[
~p1 ig!2

2m
1V~x!, ~1.1!

wherep5(h/ i )]/]x is the momentum operator andV(x) is a
random potential; second, the second-quantized lat
Hamiltonian, namely, the non-Hermitian Anderson model
a hypercubic lattice

H[2
t

2 (
x

(
n51

d

~eg•en /\bx1en

† bx1e2g•en /\bx
†bx1en

!

1(
x

Vxbx
†bx , ~1.2!

where the vectors$en% are the unit lattice vectors, th
$bx

† ,bx% are~boson! creation and annihilation operators, an
Vx is a random potential. In both of the Hamiltonians,g is a
non-Hermitian external field. Although the bulk of our di
cussion will concentrate on the properties of the sing
560163-1829/97/56~14!/8651~23!/$10.00
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particle Hamiltonians~1.1! and ~1.2!, many of our results
will be relevant forinteractingmany-body boson problems
provided that we forbid double occupancy of eigenstates
the localized regime.5 Interaction effects in both the localize
and delocalized phases will be discussed in Sec. VIII.

We can regard the non-Hermitian field as an imagin
vector potential. Models with a real gauge fieldA would be
written in the Hermitian forms

H85
~p2eA!2

2m
1V~x! ~1.3!

and

H852
t

2 (
x

(
n51

d

~eieA•en /\bx1en

† bx1e2 ieA•en /\bx
†bx1en

!

1(
x

Vxbx
†bx . ~1.4!

In two dimensions with spatially varyingA5A(x), these
Hamiltonians describe the quantum Hall system, where so
of the localized states of theA50 case are delocalized in th
presence of the gauge field.6 We obtain the non-Hermitian
Hamiltonians~1.1! and ~1.2! by replacing2eA(x) with a
constantig. In this non-Hermitian case, we show thatall
eigenstates can be delocalized~even in one dimension! for
largeg.

This problem has direct physical relevance when we m
the non-Hermitian quantum system ind dimensions to a
problem of classical equilibrium statistical mechanics
d11 dimensions. Consider a matrix element of t
imaginary-time-evolution operator

Z5^c f ue2LtH/\uc i&, ~1.5!

where the HamiltonianH is given by Eq.~1.1!. The bra and
ket vectors are the initial and final states, respectively. Us
8651 © 1997 The American Physical Society
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8652 56NAOMICHI HATANO AND DAVID R. NELSON
the standard path-integral scheme, we can express the a
matrix element as the partition function

Z5E Dx e2Ecl@x~t!#/\, ~1.6!

where*Dx denotes summation over all possible world-li
configurationsx~t! andEcl is the energy of a classical elast
string in d11 dimensions, given by

Ecl@x~t!#[E
0

Lt
dtFm

2 S dx

dt D 2

2g•

dx

dt
1V~x!G . ~1.7!

The energyEcl is of course the imaginary-time action for th
equivalent quantum problem. The Planck parameter\ is in-
terpreted as the temperature of the classical system.

The above classical system expresses the following p
ics; see Fig. 1. Consider a thermally fluctuating string put
a random washboard potential. The first two terms of th
Eq. ~1.7! are optimized when the string is tilted from th
t direction by the angleu[tan21(g/m). On the other hand
the potential tries to make the string parallel to thet direc-
tion to take advantage of particularly deep valleys in
random potential. We might thus expect a depinning tran
tion of the string from the random washboard potential w
increasingg.

We suspect that there are many physical realizations
the above statistical-mechanical problem. For an applica
to population biology see Ref. 7. The present study is m
vated particularly by a depinning transition of magnetic fl
lines in type-II superconductors with quenched disorder
has been recognized that impurities and defects play an
sential role in the mixed phase of type-II superconducto
Flux lines, subject to electromagnetic forces due to app
currents, can move and dissipate energy, thus destroying
superconductivity, unless they are pinned by impurities
defects. In particular, extended defects such as columna
fects and twin boundaries pin flux lines parallel to them
ficiently and thereby expand the region of zero resista
dramatically; see Refs. 8–10.

The situation described by the classical Hamiltonian~1.7!
emerges when the external magnetic field generating the

FIG. 1. Situation described by the classical Hamiltonian~1.7! in
111 dimensions. The wavy line indicates a tilted string with
single-valued trajectoryx(t) subject to thermal fluctuations.
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lines is not parallel to the extended defects; see Fig. 2.
may expect that the bulk part of the flux line remains pinn
by the extended defects when the transverse compone
the magnetic fieldH' is weak. This phenomenon is calle
the transverse Meissner effect;10 the system exhibits perfec
bulk diamagnetism againstH' for a slightly tilted magnetic
field. When we increaseH' , i.e., tilt the magnetic field fur-
ther relative to the extended defects, a depinning transi
takes place at a certain strength of the transverse fi
namely,H'c . We note that randomness in the potential
essential for the transverse Meissner effect to work at fin
temperatures. For a periodic potential, thermally activa
kinks always lead toextendedeigenfunctions in the equiva
lent quantum problem~Bloch’s theorem! and the effect van-
ishes. See Ref. 11 for a discussion.

Nelson and Vinokur10 have described flux-line pinning b
means of the path-integral scheme. They mapped a phen
enological Hamiltonian for flux lines with extended defec
onto interacting bosons in 211 dimensions with point im-
purities. A low-temperature phase with flux lines localiz
on extended defects was related to the Bose-glass phase12 of
disordered boson systems. When the applied magnetic
is tilted away from the extended defects, the correspond
boson problem acquires the non-Hermitian fieldg.13,5 The
flux-line depinning transition due to the magnetic-field t
corresponds to a delocalization transition of the no
Hermitian quantum problem. The expectedT-H' phase dia-
gram of the flux-line system~with Hi , the field component
parallel to the columns, held fixed! is shown in Fig. 3.10 The
transition to a flux-liquid or ‘‘superfluid’’ phase with in-
creasing temperature forH'50 is of the usual Bose-glas
type.12 In the present paper we shall focus on the transit
curves forH'Þ0. Hence we fix the temperature and follo
the trajectory of increasingH' , indicated in Fig. 3 as a thick
arrow. We first describe the delocalization transition of t
non-Hermitian quantum problem and next translate the
sults into the language of flux-line depinning. We main
discuss the one-body~or one-flux-line! problem of the non-
Hermitian quantum mechanics. Some of our results w
summarized in a previous publication.5

One advantage of discussing the flux-line depinning

FIG. 2. Flux-line depinning from a columnar defect in a sup
conductor:~a! the bulk part of the flux line is pinned by the defe
and the transverse magnetization has a contribution only from
surfacetransverse magnetizationM's ; ~b! the flux line is depinned
and the ‘‘surface’’ transverse magnetization now has a macrosc
valueM's}Lt , whereLt is the thickness of the sample.
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56 8653VORTEX PINNING AND NON-HERMITIAN QUANTUM . . .
terms of an equivalent ‘‘quantum’’ system comes from t
fact that many ideas are already available concerning lo
ization in Hermitian random systems, such as the Ander
transition and Mott’s variable-range hopping. Our problem
perhaps the simplest non-Hermitian generalization of th
phenomena. The inverse localization length of a wave fu
tion, when it delocalizes, is proportional to the critical tran
verse fieldH'c . As H' increases, a precursor of the flux-lin
depinning appears first near the surface of the super
ductor. Slightly below the critical point the ends of th
pinned flux line begin to tear free from the pinning cent
Thus the transverse Meissner effect first breaks down n
the surfaces and the typical depth of the region where
bending takes place is a ‘‘penetration depth’’~differentfrom
the penetration depth associated with the underlying su
conducting material! that accompanies the transverse Mei
ner effect. A Mott variable-range-hopping description of th
depinning will lead us to the conclusion that the penetrat
deptht* diverges at the transition pointH'c as

t* ;~H'c2H'!22 ~1.8!

for the random columnar defects and

t* ;~H'c2H'!21 ~1.9!

for the random twin boundaries. The pinning becomes in
fective above the critical field. The direction of the bu
transverse magnetization jumps at the critical point, wh
the surface transverse magnetization diverges in both c
according to

M's;~H'c2H'!21. ~1.10!

We find stretched-exponentialrelaxation of the perpendicu
lar magnetization to zero as one goes deep into the bul
the sample from the surface.

The penetration deptht* may be observed experimen
tally by measuring the response to an ac magnetic field
perimposed on the dc fieldH' ; only the dangling ends of the
flux lines will respond to the ac field and the length of the
line segments diverges at the transition. It would be inter
ing to check our prediction of a diverging penetration de
near the Bose-glass transition with such an experiment.

FIG. 3. Schematic phase diagram of high-temperature super
ductors with columnar defects~Ref. 10!. The abscissa indicate
the transverse component of the external magnetic field.
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A preliminary account of this work appeared in Ref.
For a related problem that arises from the physics of cha
density waves, with some results applicable to vortex lin
see Ref. 14. See Ref. 15 for a related problem in fluid m
chanics.

The plan of this paper is as follows. Section II describ
basic relations between the flux-line system and n
Hermitian quantum mechanics. In Sec. III we explain ho
the delocalization transition occurs in the non-Hermitian ra
dom system. We present solutions of non-Hermitian syste
in Secs. IV–VI. The predictions for the transverse Meiss
effect are derived in Sec. VII. Section VIII discusses t
effect of interactions in the delocalized phase in both 111
and 211 dimensions.

II. FLUX LINES AND NON-HERMITIAN QUANTUM
MECHANICS

In this section we review the basic correspondence
tween vortex lines in superconductors and the non-Hermi
quantum system~1.1!. We then describe what the current an
the wave functions of the non-Hermitian system mean
vortex trajectories.

A. Path-integral mapping

We start with the energy of a flux line in
(d11)-dimensional type-II superconductor10

Eflux5E
0

Lt
dtS «̃1

2 Udx

dtU
2

1V~x!2
f0H'

4p
•

dx

dt D . ~2.1!

This is a phenomenological Hamiltonian for the flux-lin
system where all columnar defects or twin boundaries
parallel. Heret denotes the coordinate parallel to the e
tended defects, whilex denotes thed-dimensional coordi-
nates perpendicular to the defects. We describe the flux
as a single-valued functionx~t! by neglecting overhangs o
the flux line. The thickness of the superconductor in thet
direction is denoted byLt .

The first kinetic-energy-like term of the integrand in E
~2.1! comes from the harmonic approximation to the ene
increase due to local tilt of the flux line. The ‘‘mass,’’ or ti
modulus, is denoted by«̃1 . When using quantum languag
to describe this problem, we shall make the corresponde

«̃1↔m. ~2.2!

The potentialV is generated by columnar defects or tw
boundaries. Each columnar defect is specified by a pointXk
in the x plane. We assume that the columnar defects
distributed randomly:

V~x!5 (
k51

M

V1~x2Xk!, ~2.3!

whereM denotes the number of columnar defects,V1 is the
potential of an individual defect, andXk is the random posi-
tion of thekth columnar defect. In the case of twin boun
aries, we consider only the situation where all twins are p
allel to each other. By projecting out the degree of freed
perpendicular tot and parallel to the twin boundaries,10,16we

n-
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8654 56NAOMICHI HATANO AND DAVID R. NELSON
can reduce the dimensionality of thex space by one.~We
neglect effects due to an enhanced concentration of p
disorder that may occur in twins.! Thus each twin boundary
acts like a line defect in 111 dimensions. In short, we ca
setd52 for columnar defects andd51 for twin boundaries.

The third term of the integrand in Eq.~2.1! is due to the
transverse component of the magnetic fieldH' . The flux
quantum 2p\c/2e is denoted byf0 . In the absence of a
pinning potential, this term is optimized energetically wh
the flux line tilts to follow the external field.

Figure 4 shows a flux-line system described by the ab
phenomenology in 111 dimensions with columnar pinning
We assume periodic boundary conditions in thex direction,
although these could be replaced by reservoirs of flux line
the edges of the sample. In this geometry, the transv
componentH' is generated by the current threading the c
inder of a thin superconductor. As we shall see, the phy
resembles the Aharonov-Bohm experiment carried out o
mesoscopic quantum ring with, however, animaginary
‘‘flux’’ through the ring.

The partition function of the flux-line system~2.1! is
given by

Z5E Dx expS 2
Eflux

kBT D , ~2.4!

FIG. 4. One flux line~wavy curve! induced by the fieldHi and
interacting with columnar defects in a cylindrical superconduct
shell. The transverse componentH' is generated by the currentI
threading the ring.
int

e

at
se
-
s
a

where*Dx denotes integration over all possible configur
tions x~t! of the flux line. Upon identifying Eq.~2.4! with
Eq. ~1.6!, we are led to a correspondence between the fl
line system~2.1! and the non-Hermitian quantum syste
~1.1! summarized in Table I. In particular, the thermal flu
tuations of the flux-line system are equivalent to zero-po
motion of the quantum system and

kBT↔\. ~2.5!

The tilt term in Eq.~2.1! is related to the non-Hermitian field
in Eq. ~1.1! by

g[
f0H'

4p
. ~2.6!

Boundary conditions at the bottom and top surfaces of
superconductor are represented by the initial and final v
tors of Eq.~1.5! in the forms

^c f u[E dx^xu, uc i&[E dxux&. ~2.7!

These boundary conditions in the imaginary-time direct
mean that we integrate freely over the points where vor
lines enter and exit the sample.

Although the derivation of the quantum problem~1.1!
from the classical elastic string described by Eq.~2.1! is
straightforward in the path-integral scheme, it is also use
to think in terms of Galilean boosts.13,17 We can eliminate
the additional term in Eq.~2.1! by the Galilean transforma
tion

x85x2vt, t85t, ~2.8!

where the velocity of the moving frame is

v5
f0H'

4p i «̃1
[

g

im
. ~2.9!

Note that the velocity isimaginarybecause of the imaginar
time t5 i t in the equivalent quantum problem. The abo
Galilean transformation changes the kinetic term of the H
mitian Hamiltonian to the form

p2

2m
→

~p2mv!2

2m
, ~2.10!

which results in the kinetic term in Eq.~1.1!.

g

TABLE I. Correspondence between the (d11)-dimensional flux-line system and thed-dimensional
quantum system.

partition function~2.4! partition function~1.5!
thicknessLt imaginary timet
temperaturekBT Planck parameter\
tilt modulus «̃1 massm
tilting field f0 H' /(4p) Non-Hermitian fieldg
tilt slope dx/dt ~proportional to the transverse magnetization! ImJ, whereJ is the current
probability distribution att50 (Lt→`) Left eigenvectorcL(x)

at t5Lt Right eigenvectorcR(x)
at t5Lt/2 cLcR
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We do not explicitly include interactions between flu
lines in the Hamiltonian~2.1! nor in the quantum Hamilto-
nians ~1.1! and ~1.2!. However, a strong short-range repu
sive potential may be treated approximately by forbidd
multiple occupancy of localized levels of the quantu
Hamiltonian. Since the particle mapped from the flux li
follows the Bose statistics,10 we may treat many-flux-line
problems as hard-core bosons in a random potential.
d51, hard-core bosons are equivalent to fermions and he
we can use the Pauli principle directly to treat many-bo
problems in this case. See Sec. VIII for a discussion of
teraction effects using a boson formalism ind dimensions.

B. Imaginary current and the transverse magnetization

We show in the following that the imaginary part of th
current of the non-Hermitian system yields the average sl
of a vortex trajectory as it crosses the sample. Since
non-Hermitian fieldg acts like an imaginary vector potentia
we define the current operator as

J[2 i
]H
]g

5
p1 ig

m
5Jpara1Jdia, ~2.11!

where

Jpara[
p

m
, Jdia[ i

g

m
. ~2.12!

Note first that the expectation value of the position of t
flux line at the distancet from the bottom surface of the
superconductor is given by

^x&t[
1

Z ^c f ue2~Lt2t!H/\xope2tH/\uc i&, ~2.13!

where the partition functionZ is defined by Eq.~1.5! andxop

is the position operator acting on position eigenstatesux&
such thatxopux&5xux&. Note also the useful commutatio
relation

@H,xop#52 i\J, ~2.14!

which leads immediately to

]

]t
^x&t5

1

\Z ^c f ue2~Lt2t!H/\@H,xop#e2tH/\uc i&

52 i ^J&t5Im^J&t . ~2.15!

In the last line of Eq.~2.15!, we used the fact that the expe
tation value of the current is pure imaginary in the pres
problem. The current carried by an individual eigenstate
not necessarily pure imaginary, where the current of a s
«n is defined by

Jn[2 i
]«n

]g
. ~2.16!

However, a purely imaginary expectation value of the c
rent arises owing to a pairing property of eigenvalues a
eigenfunctions: if there is a complex eigenvalue« with a
right eigenvectorcR for this non-Hermitian problem, there i
also the eigenvalue«* with the right eigenvector (cR)* .
or
ce
y
-

e
e

t
is
te

-
d

When we sum Eq.~2.16! over all the eigenstates to calcula
the expectation value, the real part of the current of a s
cancels out in a pairwise fashion.

The transverse component of the magnetization per vo
line at deptht below the surface of the sample is propo
tional to the tilt slope:

m'~t![
]

]t
^x&t5Im^J&t . ~2.17!

The total transverse magnetization is proportional to the
displacement of the flux line per unit length between t
bottom surface (t50) and the top surface (t5Lt):

M'[nv

f0

Lt
E

0

Lt
m'~t!dt5

f0nv

Lt
Im E

0

Lt
dt^J&t

5
f0nv

Lt
~^x&Lt

2^x&0!, ~2.18!

wherenv is the density of vortices. As we show below, th
last factor in the parentheses is given by

^x&Lt
2^x&05\

]

]g
ln Z. ~2.19!

Equation~2.18! is an indicator of the delocalization trans
tion; the transverse magnetization must remain finite in
limit Lt→` in a depinned phase, while it must vanish ma
roscopically in a pinned glassy phase, which is the transve
Meissner effect. In fact, we show later that the vortex
m'(t) appears only close to surfaces in the pinning regi
and thusM' vanishes asLt→`. In the limit Lt→`, Eq.
~2.19! becomes

lim
Lt→`

~^x&Lt
2^x&0!52Lt

]«g.s.

]g
, ~2.20!

where «g.s. denotes the ground-state energy ofH~g!. ~The
ground state is defined by the lowestreal part of the
eigenenergy.18! Hence, in the pinning regime, the groun
state energy must be independent ofg. In the depinning re-
gime,2]«g.s./]g is nonzero and equals the mean tilt slope
the corresponding flux line.

To prove Eq.~2.19!, we proceed as follows. As state
above, the non-Hermitian fieldg acts like an imaginary vec
tor potential. Because of this, we can gauge away the n
Hermitian field by applying the imaginary gauge transform
tion to the non-Hermitian Hamiltonian~1.1!:

U21H~g!U5H~0!, ~2.21!

where

U[expS g•xop

\ D . ~2.22!

@This is just another expression of the Galilean transform
tion ~2.10!.# Therefore, we have

e2LtH~g!/\5Ue2LtH~0!/\U21 ~2.23!

and
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\
]

]g
e2LtH~g!/\5xope2LtH~g!/\2e2LtH~g!/\xop.

~2.24!

Upon taking thermodynamic averages~expectation values in
quantum language!, we obtain Eq.~2.19!.

A conductivitylike transport coefficient may be defined

smn[2 i
]

]gn
^Jm&. ~2.25!

The quantity defined for each eigenstate

smn
~n![2

]2«n

]gm]gn
~2.26!

is a measure of the stiffness of the eigenfunction. In ma
body problems,smn is related to the superfluid density of th
relevant boson system.19

C. Probability distribution of a flux line and eigenvectors
of the non-Hermitian Hamiltonian

We now outline the correspondence between the proba
ity distribution of a flux line and the eigenvectors of th
quantum system. The flux line fluctuates because of ther
excitations. This thermal agitation is described by quant
fluctuations of the corresponding fictitious non-Hermiti
quantum particle. The probability distribution of the flux lin
due to thermal fluctuation is thus related to wave functions
the quantum system.

The probability distribution of the flux line at the distanc
t from the bottom surface is given by10

P~x;t![
1

Z ^c f ue2~Lt2t!H/\ux&^xue2tH/\uc i&, ~2.27!

so that we can rewrite Eq.~2.13! as

^x&t5E x P~x;t!ddx. ~2.28!

Let us calculateP(x;t) in the limit Lt→`. In this limit the
exponential operator exp(2LtH/\) can be approximated by

lim
Lt→`

e2LtH/\.ucg.s.&e
2Lt«g.s./\^cg.s.u. ~2.29!

Note here that left and right eigenvectors may be expres
as

cR~x!5^xuc&, cL~x!5^cux&. ~2.30!

Upon combining Eqs.~2.27! and ~2.29!, we find

lim
Lt→`

P~x;0!5
cg.s.

L ~x!

E cg.s.
L ~x!ddx

, ~2.31!

lim
Lt→`

P~x;Lt!5
cg.s.

R ~x!

E cg.s.
R ~x!ddx

, ~2.32!

and
-

il-

al

f

ed

lim
Lt→`

P~x;Lt/2!5cg.s.
L ~x!cg.s.

R ~x!. ~2.33!

Since the ground-state wave function is positive definite,
distributions~2.31! and ~2.32! are well defined.

We remark on the nature of the limit in Eq.~2.29!. For
one-impurity systems~see Sec. IV!, corrections to the right-
hand side of Eq.~2.29! are of order exp(2LtD«), whereD« is
the energy gap above the ground state. For random syst
the argument in Sec. VII yields corrections that vanish a
stretched exponential function ofLt .

For a finite density of flux lines, we can treat a stro
short-range repulsive potential approximately by forbiddi
multiple occupancy of localized levels of the quantu
Hamiltonian.10 We then fill up the localized levels in order o
increasing energy up to a certain level«5m. The system is
now characterized by an average chemical poten
m5m(H i), whereH i is the external magnetic field along th
t axis. This chemical potential controls the flux-line dens
and separates occupied and unoccupied levels. Under
assumption, we can estimate the probability distribution
the most weakly bound flux line by using the state at
chemical potentialcm instead ofcg.s. in the above analysis

III. DELOCALIZATION TRANSITION
IN NON-HERMITIAN QUANTUM MECHANICS

We now sketch the mechanism of the delocalization in
non-Hermitian quantum system described above. Cons
first localized states in a small transverse fieldg. Assume that
we know the eigenvalues«n and the eigenfunctionscn(x)
for g50. We can use the imaginary gauge transformat
~2.22! to determine the eigenfunctions for smallg. The right
eigenfunctions and the left eigenfunctions are given by

cn
R~x;g!5Ucn~x;g50!, ~3.1!

cn
L~x;g!5cn~x;g50!U21, ~3.2!

where

U[expS g•xop

\ D , U21[expS 2
g•xop

\ D . ~3.3!

The corresponding energy eigenvalue«n is then unchanged
provided that this imaginary gauge transformation is ap
cable. However, the above wave functionscn

R and cn
L may

diverge asuxu→` and become unnormalizable.17 If we as-
sume an asymptotic form of the wave function forg50 of
the form

cn~x;g50! ;
x→`

exp~2knux2xnu!, ~3.4!

the condition for nondivergence ofcn
R andcn

L in uxu→` is
ugu,\kn . Then the normalized wave functions are appro
mately given by~see Fig. 5!

cn
R.A ~2kn!d

G~d!Vd
exp@g•~x2xn!/\2knux2xnu#, ~3.5!
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cn
L.A ~2kn!d

G~d!Vd
exp@2g•~x2xn!/\2knux2xnu#,

~3.6!

wherexn is the localization center forg50, Vd is the total
solid angle of thed-dimensional space, and the normaliz
tion condition is

E cn
Lcn

Rddx51. ~3.7!

We naturally regard the pointugu5\kn as the delocaliza-
tion point of thenth state. Since the eigenfunctions are p
portional to the probability distribution of a flux line at th
surfaces of the superconductor@see Eqs.~2.31! and ~2.32!#,
we interpret the divergence inuxu→` as depinning of the
flux line. Because localized states with finite localizati
length are stable against a smallg field, flux-line pinning is
robust against small transverse field: This is the transve
Meissner effect.10

The diverging tilt slope in Eq.~1.10! follows because the
localization length of the right eigenfunction
(kn2ugu/\)21 in the direction ofg and (kn1ugu/\)21 in the
opposite direction. The former diverges asugu→\kn

2 ; hence
H'c54p\kn /f0 in Eq. ~1.10!. According to the relation
~2.18!, the surface displacement or ‘‘localization length’’ o
the flux line is proportional to the surface transverse mag
tization M's .

We need to specify boundary conditions in order to obt
a well-defined wave function in the thermodynamic lim
Consider for simplicity the periodic boundary conditions

cn
R~Lx/2,y,...!5cn

R~2Lx/2,y,...!, ~3.8!

where we put thex axis parallel tog. ~The one-dimensiona
periodic system is realized in the setup shown in Fig. 4.! A
wave function of the form~3.5! localized at the origin has a
mismatch of the factor exp@2(kn2ugu/\)Lx# at the bound-
ariesx56Lx/2. This mismatch is exponentially small in th
pinning regimeugu,\kn . Hence the wave functions~3.5!
and ~3.6! are excellent approximations when we take t
thermodynamic limit, imposing the periodic boundary con
tions ~3.8!.

In the depinning regimeugu>\kn , however, we need to
change the wave functions drastically to meet the bound
conditions. To see what happens in this regime, consider
limit in which the random potentialV(x) may be neglected

FIG. 5. Wave function~3.5! or ~4.7!, the ground state of a singl
impurity with 0,g,gc in one dimension.
-

-

e

e-

n

-

ry
he

H05
~p1 ig!2

2m
. ~3.9!

~We argue later that the potential in fact has only pertur
tive effects for largeg when d51.! The periodic boundary
conditions~3.8! are then satisfied only by the extended Blo
wave

cR~x!5exp~ ik•x!, ~3.10!

with kn52nnp/Ln , where nn is an integer andLn is the
system size in thexn direction. The eigenvalue of this wav
function is complex:

«~k!5
~\k1 ig!2

2m
. ~3.11!

We can interpret the appearance of the imaginary par
the energy in the following way. A depinned flux line in
periodic system has a spiral trajectory and hence periodi
in the imaginary time direction.~See Fig. 6.! Because the
single-line partition function at ‘‘time’’t may be written
Z(t)5(ncncn

R(x)e2«nt/\, where the constantscn are coef-
ficients depending on ‘‘initial conditions’’ at, say, the botto
surface of the sample, the period of motion in the imagina
time direction associated with thenth eigenstate is given by
\/Im «n , wheren denotes the wave function describing th
depinned flux line. Thus a complex energy, as well as
imaginary part of the current~2.19!, is an indicator of the
depinning transition in periodic systems.

We use periodic boundary conditions in all directions p
pendicular to the imaginary-time axis throughout this pap
The effect of ‘‘free’’ boundary conditions in the timelike
direction is discussed in Sec. VII. For superconducting fl
lines, unusual geometries such as Fig. 4 would be require
exactly implement periodic boundary conditions in the dire
tion parallel to the tilt fieldg. For conventional slablike su
perconducting samples, tilt causes extra vortices to enter
exit the sample on the sides perpendicular tog. These bound-

FIG. 6. Spiral trajectory of a flux line in the system of Fig.
reflecting the imaginary eigenvalues, which appear in n
Hermitian systems when boundary conditions allow nonzero tilt
vortex lines across the system.
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8658 56NAOMICHI HATANO AND DAVID R. NELSON
ary conditions correspond to reservoirs and sinks of parti
at opposite ends of the sample in the quantum analogy.
cause periodic boundary conditions mimic the effects of s
sources and sinks, we expect that the basic results of
paper apply to slablike geometries as well.

IV. ONE-DIMENSIONAL ONE-IMPURITY PROBLEM

In the present section we analyze the non-Hermit
Hamiltonian~1.1! analytically in one dimension with a singl
impurity. The calculation is instructive as well as of physic
relevance for vortex lines in the case of a twin bounda
Throughout this section we assume without loss of genera
that the non-Hermitian field is applied in the positivex di-
rection, i.e.,g.0.

A. Exact solution: Point impurity

To determine the effect of an isolated impurity, we calc
late the right eigenvectors of the Schro¨dinger equation
HcR(x)5«cR(x) with the Hamiltonian defined by

H[
~p1 ig !2

2m
2V0d~x!52

~\¹2g!2

2m
2V0d~x!,

~4.1!

with V0.0 and the periodic boundary conditions

cR~Lx!5cR~0!. ~4.2!

The details of the solution are given in the Appendix. The
is a unique localized ground state forg,gc , where the criti-
cal field is

gc[\kg.s.5
mV0

\
. ~4.3!

~Recall that the ground state is the state with the lowestreal
part of the eigenenergy.! This solution is the only localized
state in the entire spectrum. There are extended excited s
for g,gc as well as extended groundand excited states for
g.gc . For later use in Sec. IV B, we write down the sol
tions of the extended states including finite-size correctio

First, the ground state forg,gc has the energy

«g.s.52
~\kg.s.!

2

2m
52

mV0
2

2\2 , ~4.4!

with

kg.s.[
mV0

\2 . ~4.5!

Note that the ground-state energy is independent ofg and
equal, in particular, to the ground-state energy in the Herm
ian caseg50. This observation is consistent with the pinnin
criterion given below Eq.~2.20!. The current carried by the
ground state therefore vanishes:

ImJg.s.[2
]«g.s.

]g
50. ~4.6!

The corresponding eigenvector is a localized function writ
in the form
s
e-
h
is

n

l
.
ty

-

e

tes

s.

t-

n

cg.s.
R ~x!} Hexp@2~kg.s.2g/\!x# for x>0

exp@2~kg.s.1g/\!uxu# for x,0 ~4.7!

in the limit Lx→`. This is depicted in Fig. 5.
Next, the excited states forg,gc are given by

«ex5
~\Kex!

2

2m
, ~4.8!

where

Kex5kex1 ikex, ~4.9!

with

kex5
~2n11!p

Lx
1O~Lx

22!, ~4.10!

kex5
g

\
1

1

Lx
ln

g

gc2g
1O~Lx

22!, ~4.11!

where n is an integer. The ground and excited states
g.gc are given by

«g.s.,ex5
~\Kg.s.,ex!

2

2m
, ~4.12!

where

Kg.s.,ex5kg.s.,ex1 ikg.s.,ex, ~4.13!

with

kg.s.,ex5
2np

Lx
1O~Lx

22!, ~4.14!

kg.s.,ex5
g

\
1

1

Lx
ln

g

g2gc
1O~Lx

22!. ~4.15!

The casen50 in Eq. ~4.14! describes a delocalized groun
state wheng.gc .

The leading term in the energy eigenvalues for the
tended states~4.8! and ~4.12! is

lim
Lx→`

«g.s.,ex52
g2

2m
. ~4.16!

The energies of the ground state and the first excited s
depend ong in the limit Lx→`, as shown in Fig. 7. Accord-
ing to the pinning criterion given below Eq.~2.20!, the ap-

FIG. 7. g dependence of the ground-state energy~solid line! and
the first-excited-state energy~dashed line! of the one-dimensiona
one-impurity problem.
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pearance of theg dependence indicates that these are
tended states. The current carried by each state is thus p
imaginary,

lim
Lx→`

Jg.s.,ex5 i
g

m
. ~4.17!

The eigenvectors corresponding to these extended state

cex
R ~x!;H eikexx for x.0

eikexx1ce2 ikexx12gx/\ for x,0
~4.18!

in the limit Lx→`, wherec is a constant. The termeikexx is
a plane wave traveling in thex direction and the second term
of the second line is the reflection due to thed potential at
the origin.

In Fig. 8 we plot the dispersion relation, that is, R«
againstk (}Im«). Note the level repulsion between the im
purity level and the extended states; as we increaseg, the
localized impurity level approaches the series of exten
excited states and must squeeze itself into the sequence
nally, the solutions at the critical pointg5gc are again given
by the form~4.12!, but with

kg.s.,ex5O~Lx
21 ln Lx!,

kg.s.,ex5
g

\
1O~Lx

21 ln Lx!. ~4.19!

B. Flux-line depinning from a defect

We now apply the above solutions to flux-line physics
a thin cylindrical superconducting shell with one defect in
The flux line undergoes a depinning transition wheng5gc .
Its tilt slope, given asLt→` by the imaginary current of the
ground state, vanishes forg,gc , but jumps to a finite value
for g.gc :

ImJg.s.5H 0 for g,gc

g/m for g.gc .
~4.20!

This directly shows that the flux line is depinned from t
defect atg5gc . At this depinning point, the contribution o
this flux line to the bulk transverse magnetization jumps

FIG. 8. Dispersion relation Re« vs k (}Im«) in the one-
dimensional one-impurity case for~a! g,gc and ~b! g.gc .
-
ely

are

d
Fi-

.

DM'5
f0gc

Am
, ~4.21!

whereA is the cross-sectional area, because of the relat
~2.18! and ~2.20!.

Although the above jump appears to indicate a first-or
transition,14 we shall argue in Sec. VIII that the bulk magn
tization in fact grows continuously at the transition wh
interactions are taken into account. There are, moreover
verging precursors of the destruction of the transverse Me
ner effect asg→gc

2 . As discussed in Sec. II C, the norma
ized right eigenvector gives the probability distribution
the corresponding flux line at the top surface. The wa
function ~4.7! in the pinning regime (g,gc) defines a sur-
face localization length j' of the flux line as
j'[(kg.s.2g/\)21, which diverges asg→gc

2 ,

j';
\

gc2g
. ~4.22!

The transverse magnetization near the surface diverges
j' ,

M's}^x&Lt
2^x&Lt/25

~kg.s.2g/\!221~kg.s.1g/\!22

~kg.s.2g/\!211~kg.s.1g/\!21

~4.23!

.
\

gc2g
~4.24!

~in the limit Lt ,Lx→`! as the vortex line begins to tear fre
We show below that the displacement of the flux li

from the defect depends on the depth from the surface
cording to

^x&t;expS 2
t

t* D ~4.25!

as t→`, wheret denotes the distance below the surfac
~See Sec. VII for the many-defect case.! The penetration
deptht* diverges at the depinning pointg5gc as

t* .
m\/gc

gc2g
as g→gc

2 . ~4.26!

The exponent of the penetration-depth divergence is
same as the one of the surface-localization-length diverge
~4.22!: If we define the exponentz by t* ;(j')z, we have
z51. ~The exponent is different in the many-defect case;
Sec. VII.!

The divergence~4.26! is derived as follows: Expand Eq
~2.13! with respect to eigenfunctions and take the lim
Lt→` in Eq. ~2.13! to obtain

^x&t.(
n

cnE dx^cg.s.ux&x^xucn&e
2tD«n /\, ~4.27!

where

cn[
E ^cnux8&dx8

E ^cg.s.ux8&dx8

~4.28!
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and

D«n[«n2«g.s.. ~4.29!

The termcn5cg.s. in the summation overn gives the posi-
tion of the localization center of the ground state, name
the origin. Hence the leading term is due to the first exci
state. Then the penetration deptht* in Eq. ~4.25! is given by
the inverse energy gap between the ground state and the
excited state,

t* [
\

D«
5

2m\

gc
22g2 , ~4.30!

which leads to Eq.~4.26!.
There are also diverging precursors on the other side

the transition (g→gc
1) in the form of a diverging finite-size

correction, namely, the trapping length. The trapping len
is defined as follows~see Fig. 9!. The average slope of th
flux line for xÞ0 should be given by the tilt slope of a flu
line in the absence of defects, org/m. Assume that the flux
line is trapped by the defect atx50 over the distancet trap.
Then the total imaginary time necessary for a flux line
circle the periodic system of circumferenceLx is
Lxm/g1t trap. Thus the mean tilt slope~or the imaginary
part of the current! should be given by
ImJg.s.5Lx(Lxm/g1t trap)

21. This in turn gives the defini-
tion of the trapping length as

t trap[LxS 1

ImJg.s.
2

m

g D . ~4.31!

For this to be finite in the limitLx→`, the imaginary part of
the current should have a finite-size correction of the for

ImJg.s..
g

m S 12
t trapg/m

Lx
D . ~4.32!

In fact, the correction~4.15! has precisely this form:

ImJg.s.5
]

]g

\2@kg.s.~`!1dkg.s.~Lx!#

2m

.
g

m S 11
\dkg.s.

g
1\

]dkg.s.

]g D . ~4.33!

We thereby obtain

FIG. 9. Definition of the trapping lengtht trap.
,
d

rst

of

h

t trap5
m\

g2 S gc

g2gc
2 ln

g

g2gc
D.

m\/gc

g2gc
, ~4.34!

which has a simple pole as we approach the pinning p
g5gc from the depinning regime.

C. Exact solution: Square-well potential

We can also solve the one-dimensional problem exa
for a single square-well impurity as shown in Fig. 10. W
here restrict ourselves to localized states. The equation~A12!
for the d-potential case is now replaced by

2kk$cosh~Lxg/\!2cos~2kb0!cosh@k~Lx22b0!#%

1~k22k2!sin~2kb0!sinh@k~Lx22b0!#50, ~4.35!

where

k[
A2m~U02u«u!

\
, k[

A2mu«u
\

. ~4.36!

The equation for thed potential is recovered in the limi
b0→0 andU0→` with 2b0U05V0 .

The results are quite similar to thed-potential case. The
critical field of the delocalization transition is again given b

gc5 lim
Lx→`

\k~Lx!, ~4.37!

where k(Lx) is a solution of Eq.~4.35! with g50. In the
limit Lx→` with g50, Eq. ~4.35! is reduced to

2kk cos~2kb0!1~k22k2!sin~2kb0!50 ~4.38!

or

@k sin~kb0!1k cos~kb0!#@k cos~kb0!2k sin~kb0!#50.
~4.39!

Upon settingk̄[b0k andh[b0k, we are led to

k̄21h25a22 ~4.40!

and

k̄5h tan h or k̄52h cot h, ~4.41!

where

a[
\

b0AmU0

~4.42!

FIG. 10. Square-well impurity potential treated in Sec. IV C
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is the ‘‘reduced temperature’’10 in the sense that\ corre-
sponds to the temperature of the flux-line system. Ther
always at least one solution of Eqs.~4.40! and~4.41!, includ-
ing the ground state. More localized excited states are av
able for smalla, which corresponds to the low temperatu
of the flux-line system. Each state is localized f
g,gc5\k(`), wherek is the inverse localization length o
the state atg50. Figure 11 shows thea dependence o
k̄n(a) for the ground state and the first few excited stat
The depinning transverse field for thenth state is
H'c5(4e/cb0)k̄n(a) for the ground state as well as for th
excited states. The divergences discussed in Sec. IV B fo
d-function potential problem also apply to the present ca

V. ONE-DIMENSIONAL RANDOM NON-HERMITIAN
TIGHT-BINDING MODEL

In this section we present numerical results for a o
dimensional random system. To make the numerical ca
lation tractable, we use lattice non-Hermitian random tig
binding models ~1.2!, where the sites represent colum
positions with random binding energies and/or hopping m
trix elements, as in Fig. 4.

A. Site-random model

First we discuss the site-random model. The seco
quantized Hamiltonian ind dimensions is given by Eq.~1.2!.
~Boson notation is used here because flux lines behave
bosons in the delocalized regime, although statistics are
relevant when the lines are strongly localized.! The hopping
element is approximately10

t;Vbind exp~2A2mVbinda/\!, ~5.1!

whereVbind is a typical binding energy of the defect anda is
the lattice spacing. We again apply periodic boundary c
ditions

bx1Nnen
5bx for n51,2, . . . ,d, ~5.2!

whereNn[Ln /a.

FIG. 11. Solutionk̄n(a) of Eqs. ~4.40! and ~4.41!, which is
proportional to the depinning fieldH'c of a single square-well im-
purity. The ground-state functionk̄0(a) and the first three excited
states are shown.
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The issues involved in determining the spectrum of E
~1.2! are especially easy to illustrate in one dimension. In
N-site basis with lattice spacinga, H takes an approximately
tridiagonal form

H52
1

2
tS v1 eḡ e2 ḡ

e2 ḡ v2 eḡ 0

e2 ḡ v3 eḡ

e2 ḡ v4 �

� � �

0 � vN21 eḡ

eḡ e2 ḡ vN

D ,

~5.3!

with vn[22Vn /t and ḡ[ga0 /\. Delocalization of the
eigenfunctions is traditionally associated with an extre
sensitivity to boundary conditions;20,21 the periodic boundary
conditions used here are reflected in the nonzero matrix
ments in the upper right and lower left corners. For t
present non-Hermitian problem, delocalization is reflected
an extreme sensitivity of theeigenvalues. Suppose the~real!
eigenvalue spectrum is known exactly for the Hermitian s
random problem withḡ50. One expects all states to be lo
calized for this one-dimensional problem. If the entries in t
upper right and lower left corners are arbitrarily set to zero
is easily shown thatall eigenvalues for generalḡ remain real
and strictly equal to their values forḡ50. As will be shown
in this section, the eigenvalue spectrum for the original
riodic problem becomes complex in the middle of the ba
for ḡ above a threshold value ofḡc.0. These complex ei-
genvalues are thus entirely due to the presence of non
upper right and lower left matrix elements. For this no
Hermitian random problem, complex eigenvalues theref
indicate directly the extreme sensitivity to boundary con
tions associated with delocalized states.

For columnar defects, an important component of the r
domness often comes from position of the extended def
rather than on-site disorder as assumed in this tight-bind
model. However, if we coarse grain a system with the po
tional randomness, the resulting effective Hamiltonian w
contain on-site disorder.10 By varying the energy and type o
heavy ions that produce columnar defects, one can also
erate on-site disorder directly. We expect that similar ene
spectra and delocalization phenomena arise for both rand
site and random-hopping models and will present results
a random hopping model in Sec. V C.

Similar to the discussion below Eq.~2.16! for the con-
tinuum model, the eigenvalues of the non-Hermitian latt
model ~1.2! also appear in complex conjugate pairs, th
ensuring that the partition functionZ is real. Another sym-
metry is

H~g!T5H~2g!. ~5.4!

Because of this symmetry, the right eigenfunction ofH~g! is
equal to the left eigenfunction ofH(2g) with the same ei-
genvalue.

If Vx[0, eigenstates are Bloch waves and the eigenva
for general dimensiond are
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«~k!52t (
n51

d

cos@~kn1 ign /\!a# ~5.5!

or

Re«~k!52t (
n51

d

cos~kna!cosh~gna/\!,

Im«~k!5t (
n51

d

sin~kna!sinh~gna/\!, ~5.6!

with kn52nnp/Ln , wherenn is an integer. In one dimen
sion, the eigenvalues lie on an ellipse, given by

F Re«

cosh~ga/\!G
2

1F Im«

sinh~ga/\!G
2

5t2. ~5.7!

Its low-energy structure is the same as the dispersion rela
~3.11! of the impurity-free continuum model~3.9!. The high
end of the ellipse~5.7! is the dispersion relation for hol
excitations. The eigenfunctions take the formcR(x)
}exp(ik•x), with cL(x)}exp(2ik•x).

Numerical calculations forVxÞ0 were carried out with a
random potentialVx uncorrelated in space and uniformly di
tributed in the range@2D,D#. For such a symmetric distri
bution, the complex spectrum is statistically symmetric w
respect to the axis Re«50.

Figure 12~a! shows thed51 spectrum withN51000 sites
for various values ofḡ. As discussed above, a complex e
genvalue indicates that a flux line occupying that state
depinned. There is a region ofḡ where all the eigenstates a
localized. As we increaseḡ further, the first delocalized stat
appears in the band center and a pair of mobility edges m
outward toward the band edges. As long as an eigenvalu
real or the eigenstate is localized, the eigenvalue is indep
dent of ḡ; see Fig. 12~b! for an expanded version of th
bottom of the band: The localized eigenvalues are in per
registry for different values ofḡ. The behavior of the delo
calized states, on the other hand, is similar to the impur
free case~5.7! except near the mobility edges. Close to t
mobility edge the imaginary part of the eigenvalue appear
vanishlinearly with the real part of the eigenvalue.

In Fig. 13 we show the imaginary part of the curre
defined by Eq.~2.16!, another indicator of the delocalizatio
transition. Upon comparing Fig. 13 with Fig. 12~a!, we note
that, for each value ofḡ, the states with complex eigenvalue
coincide with those carrying a nonzero imaginary curre
This observation is consistent with the mechanism of
delocalization transition presented in Sec. III. The nega
imaginary part of the current in the upper half of the band
due to delocalization of hole excitations.

States near the band center get delocalized first bec
the inverse localization lengthsk are smaller near the ban
center than near the band edges. Figure 14 shows the r
of a numerical calculation of an approximate inverse loc
ization length forḡ50, defined by

kn8[ KAE x2ucn~x!u2dx2S E xucn~x!u2D 2L
av

,

~5.8!
on

is

ve
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ct
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t
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e
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se
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where we took the random average^ &av over 100 realiza-
tions of the random potential. According to the delocaliz
tion criterion gc5\k, delocalized states appear first at t
band center and the mobility edges move outward, in ag
ment with our numerical results.

FIG. 12. ~a! Energy spectrum of the one-dimensional tigh
binding model with randomnessD/t51 andLx51000a. Plots for
different values ofḡ[ga/\ are offset for clarity. The same realiza
tion of the random potential was used for all plots here. Each eig
state is marked by a cross.~b! Blowup of a part of~a!; note that the
real eigenvalues, corresponding to localized states, are indepen
of ḡ.

FIG. 13. Imaginary part of the current~or the tilt slope of the
corresponding flux line! plotted against Re« for the same sample a
in Fig. 12.
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In practice, it is convenient todefinethe inverse localiza-
tion length using the delocalization criteriongc5\k ~Ref.
17! instead of using Eq.~5.8!; if a state becomes delocalize
at a certain valuegc , the inverse localization length of th
state is thenk5gc /\, shown as a dashed line in Fig. 14. Th
numerical estimation ofk using Eq.~5.8! is difficult near the
band edges, where the number of data points is small,
hence a large statistical error appears. In addition, the d
nition ~5.8! is not tied directly to the asymptotic behavio
exp(2kux2xnu).

B. Probability distribution of a flux line

Diagonalization of the lattice Hamiltonian~1.2! enables
us to calculate the imaginary-time evolution of the wa
function and more importantly the probability distribution
the flux line, Eq.~2.27!. The expansion of Eq.~2.27! with
respect to the energy eigenstates results in

P~x;t!5
1

Z (
m,n

^c f ucm&^cmux&^xucn&

3^cnuc i&e2~Lt2t!«m /\2t«n /\, ~5.9!

with

Z5(
n

e2Lt«n /\^c f ucn&^cnuc i&. ~5.10!

In the limit Lt→`, in particular, we have

P~x;t!.
^cg.s.ux&

^cg.s.uc i& (
n

^xucn&^cnuc i&e2tD«n /\,

~5.11!

whereD«n[«n2«g.s..
We used this formula to demonstrate numerically, fo

particular realization of the random potential, that a flux li
in the one-dimensional random system tips over near

FIG. 14. The solid curve shows an approximate inverse lo
ization lengthk8, as determined from Eq.~5.8!, plotted against Re«
for D/t51, Lx5500a, andg50. The value was averaged over 10
samples binned with energy window 0.04t. The dashed line show
an estimation ofk based on the delocalization criteriongc5\k. For
this purpose, we applied increasingg to a sample of sizeLx5500a.
The states at the mobility edges for a value ofg ~e.g., the dotted
line! have the inverse localization lengthk5g/\.
nd
fi-

a

e

surface under the influence of the transverse magnetic fi
For g5gc , the flux line is strictly localized for larget at the
strongest pinning center. As we increaseg, kink configura-
tions arise that allow hopping from one pin to the next. F
ure 15~a! showsP(x;t) for ‘‘free’’ boundary conditions at
the bottom (t50) of the sample, corresponding to

uc i&[E dxux&. ~5.12!

Note that the probability distribution near the surface h
been pulled in the negativex direction by the transverse
field. Once the flux line is depinned, spiral trajectories ari
To see this more clearly, we show in Fig. 15~b! the probabil-
ity distribution for largeg with the initial vector

uc̃ i&[ux0&, ~5.13!

so that the end of the flux line is fixed tox0 for t50.

l-

FIG. 15. Probability distribution of a flux line as a function oft
for the one-dimensional random tight-binding model~1.2! with a
specific random potentialV(x) with D/t51. The spatial size is
Lx5100a. The front end of the figures corresponds to the bott
surface of the superconductor, while the bulk partt.50\/t is omit-
ted.~a! Caseḡ50.8,ḡc with free boundary conditions and~b! case
ḡ52.0.ḡc with a d-function initial condition.@The peak att50 in
~b! has been reduced in size for visualization purposes.#
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C. Random-hopping model

A one-dimensional Hamiltonian with off-diagonal ran
domness may be more suitable for describing the experim
tal situation in Ref. 16 than the present diagonal randomn
Mutually parallel twin boundaries might represent the p
ning potential in this situation. As discussed above,
project out the coordinate that is parallel to the twin boun
aries and perpendicular to thet axis. Randomness arise
from the separation of the binding twin boundaries rat
than from the strength of the pinning. Thus we have

H[2
1

2 (
j

~ t j
1bj 11

† bj1t j
2bj

†bj 11!, ~5.14!

wheret j
6[Vbind exp@(2l6g)aj /\#, l[A2mVbind, andaj is

the separation between thej th and (j 11)th binding impuri-
ties. If the twin boundaries are located randomly, the rand
separation follows the Poisson distributio
P(aj )5ā21e2a / ā, whereā is the average separation.

The delocalization phenomenon discussed above aris
this off-diagonal case as well; see Fig. 16. In this exam
we neglect the randomness embodied in the fac
exp@6gaj /\# and use a square distribution of the hoppi
elements

t6[te6g ā/\, ~5.15!

wheret is a random variable with probability

P~ t !5H 1/~2D! for t02D,t,t01D~ t0.D!

0 otherwise.
~5.16!

Figure 16 is remarkably similar to the one-dimensional sp
trum found earlier for site randomness.22 The currents car-
ried by the extended states resemble those shown in Fig

VI. TWO-DIMENSIONAL NON-HERMITIAN
TIGHT-BINDING MODEL

We now discuss numerical results for the tight-bindi
model ~1.2! in two dimensions for a square lattice wit
Lx5Ly . We assumegx5gy , i.e., a tilt field along the diag-
onal, in order to reduce artifacts due to lattice periodicity

FIG. 16. Energy spectrum of the random-hopping model~5.14!
with the randomness defined by Eqs.~5.15! and~5.16!. The param-
eter values areL51000ā andD/t050.5.
n-
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3.

A. Impurity-free case and one-impurity case

First we describe the impurity-free case of the no
Hermitian tight-binding model~1.2!:

Vx[0. ~6.1!

The energy eigenvalues are given by Eq.~5.6! with d52. In
the case ofgx5gy[g, we have

Re«522t coshS ga

\ D cos
~kx1ky!a

2
cos

~kx2ky!a

2
,

Im«52t sinhS ga

\ D sin
~kx1ky!a

2
cos

~kx2ky!a

2
,

~6.2!

with

kx50,6
2p

Lx
,6

4p

Lx
,...,

ky50,6
2p

Ly
,6

4p

Ly
,..., ~6.3!

or

F Re«

cosh~ga/\!G
2

1F Im«

sinh~ga/\!G
2

54t2 cos2S kx2ky

2
aD .

~6.4!

Thus the spectrum consists of ellipses with various radii a
shown forNx5Ny[N520 in Fig. 17. Two levels withkx
andky interchanged are degenerate at each cross of the fi
except for the point«50, whereN levels withkx2ky5p/a
~mod 2p/a! are degenerate. The eigenfunctions have
usual Bloch form

uk&[bk
†u0&[

1

ALxLy
(

x
eik•xbx

†u0&. ~6.5!

The important phenomenon of level repulsion in t
complex plane can be illustrated with one attractive po
impurity

FIG. 17. Energy spectrum of the two-dimensional no
Hermitian tight-binding model without impurities, with
gx5gy51.03\/a andLx5Ly520a.
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Vx52U0dxx0
, ~6.6!

where x0 denotes the position of the impurity. Figure 1
shows the results for the 20320 lattice with periodic bound-
ary conditions. Without the transverse field, we have o
impurity level separated from a cluster of~delocalized! ex-
cited states, as seen in Fig. 18~a!. As we introduceg diago-
nally (gx5gy), most excited states acquire imaginary eige
values @Fig. 18~b!#, showing a spectrum similar to th
impurity-free case, Fig. 17. The localized impurity level do
not change its energy as long asugu,gc , while the extended

FIG. 18. Energy spectra of the two-dimensional non-Hermit
tight-binding model with one attractive impurity of well depthU0 .
We show here the caseLx5Ly520a and U0510t with ~a!
gx5gy50, ~b! gx5gy51.03\/a, and~c! gx5gy523\/a.
e

-

s

excited levels expand, following Eq.~6.4! of the impurity-
free case approximately. In Fig. 18~c! we observe level re-
pulsion between the impurity level and the excited leve
Note that the twofold degeneracy of the pure system is s
on the side of the spectrum, where the impurity state is ab
to enter. For even largerugu, the bound state enters the regio
of delocalized levels and the spectrum is again elliptical w
an extra state near the origin.

B. Random case

In the two-dimensional random tight-binding model, w
again find energy bands of localized levels bounded b
mobility edge. For certain values ofg, however, extended
and localized states aremixedin a complicated way near th
band center. It appears that we have three regimes with
spect to the fieldg. One is the pinning phase for smallg.
Another is the Bloch-wave regime for largeg. Finally, there
is an exotic intermediate regime with chaotic eigenva
spectra. We describe these regimes on the basis of our
merical data.

First, it is widely accepted forg50 that all eigenstates o
two-dimensional random systems are localized with fin
localization lengths~except for a possible exception at th
band center22!. Hence there is again a region of smallg
where all states remain localized. As discussed earlier, th
localized states retain the real eigenvalues that they had
g50; see the energy spectrum in Fig. 19~a! for an example
with Nx5Ny540.

As we increaseg, delocalized levels with complex eigen
values appear as shown in the energy spectrum in Fig. 19~b!.
A remarkable difference of the energy spectrum from
one-dimensional case is that localized levels and delocal
levels coexist in the same range of Re« in the two-
dimensional case. This phenomenon can be understoo
terms ofanisotropiclocalization of the Hermitian system~in
the caseg50!. To take advantage of anisotropic fluctuatio
in the site potential, there can be states with different loc
ization lengths in specific directions. As shown schema
cally in Fig. 20, in a large system there can be another s
with nearly the same energy, but whose contours are rot
by 90° from the first one. According to the argument dev
oped in Sec. III, the delocalization point of each state
gc5\k, wherek is now the inverse localization length o
the state in the direction ofg. The state with the larges
localization length in the direction ofg gets delocalized first.
Up to the delocalization point, however, both states ha
nearly identical real energies.

After passing through an intermediate region whose
ergy spectrum is exemplified in Fig. 19~c!, we move onto the
region of largeg. The energy-spectrum structure shown
Fig. 19~d! is similar to the impurity-free case shown in Fig
17.

It is tempting to conclude from Fig. 19~d! that the large-g
limit is well described by the extended Bloch-wave fun
tions, just as in one dimension. However, unliked51, the
Bloch approximation breaks down ind52 for sufficiently
large systems forany value ofg. To see this, recall that al
Bloch statesukx ,ky& with kxÞky are twofold degenerate in
the impurity-free case: Ifg points along the lattice diagona
as in Eq.~6.2!, thenukx ,ky& anduky ,kx& have the same com

n
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FIG. 19. Energy spectra of the two-dimensional non-Hermitian tight-binding model with site randomness. We show here t
Lx5Ly540a andD510t with ~a! gx5gy50.73\/a, ~b! gx5gy51.23\/a, ~c! gx5gy51.53\/a, and~d! gx5gy54.03\/a.
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plex energy. More generally, states related by a reflec
across theg axis are degenerate.@In d53, the degenerate
states lie on a circle in (kx ,ky ,kz) space centered on a lin
passing throughg.# This degeneracy is split by the random
ness. Degenerate perturbation theory requires diagona
tion of the set of 232 matrices

FIG. 20. Schematic view of two localized wave functions of t
Hermitian system in two dimensions. The solid curves indicate c
tours on which the localized wave function takes the same va
The anisotropy arises because of anisotropic fluctuations in the
purity distribution. We show an impurity fluctuation that leads
two nearly degenerate wave functions related by a 90° rotation
n

a-

S «0~kx ,ky! Ṽ~kx2ky ,ky2kx!

Ṽ~ky2kx ,kx2ky! «0~kx ,ky!
D , ~6.7!

where

Ṽ~ka ,kb![
1

LxLy
(
x,y

eikax1 ikbyVx,y ~6.8!

is the Fourier-transformed disorder potential and«0(kx ,ky)
is given by Eq.~6.2!. The eigenvalues of Eq.~6.7! are

«6~kx ,ky!5«0~kx ,ky!6D, ~6.9!

where

D[uṼ~kx2ky ,ky2kx!u. ~6.10!

The real splitting of the degenerate doublets predicted by E
~6.9! is clearly visible in Fig. 19~d!.

The Bloch spectrum is only a good approximation pro
vided these corrections are small compared to the spac
between the doublets. However, a typical spacing betwe
the real parts of the Bloch levels forLx5Ly5L given by Eq.
~6.2! is

D«.Ud Re«0

dk UDk.2ta coshS ga

\ D 2p

L
. ~6.11!

-
e.

-
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FIG. 21. Ground-state right eigenfunctions in two dimensions. We show the caseLx5Ly540a and D510t with ~a! gx5gy50, ~b!
gx5gy51.73\/a, ~c! gx5gy53.03\/a, and ~d! gx5gy55.03\/a. The vertical scale was rescaled by 1/10 and 10 in~b! and ~d!,
respectively. The highest peak in~b! was reduced in size for the visualization purposes.
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The splittingD due to the randomness is thus only a sm
correction to the Bloch levels whenever

4p

L
ta coshS ga

\ D.D, ~6.12!

a condition that isalwaysviolated in sufficiently large sys
tems asL→`. When the inequality~6.12! is not satisfied,
level repulsion interacts with the randomness in a comp
way to produce chaotic spectra like that in Fig. 19~c!. The
Bloch states are nondegenerate ind51, so this problem does
not arise.

Some insight into the meaning of the chaotic eigenva
spectra follows from tracking the ground-state wave funct
as a function ofg. As shown in Fig. 21, the ground state fir
streaks out in the direction ofg. ~For very largeg, the wave
function eventually broadens to cover the entire lattice. Ho
ever, as discussed above, we believe that this Bloch-w
behavior is an artifact of the small system size.! Arguments
given in Ref. 5 show that the ground state can never
simply delocalized in theg direction while remaining local-
ized in the perpendicular direction whenL→`. In Ref. 7 it
is argued that the long-wavelength, low-frequency behav
of the non-Hermitian Schro¨dinger equation in 211 dimen-
sions for largeg is described by a (111)-dimensional Bur-
gers equation. The tilted flux lines described in this w
wander away from theg direction to take advantage of ex
ll

x

e
n

-
ve

e

r

y

ceptionally deep minima in the disorder potential. This ma
ping predicts a streaked-out but roughened ground-s
wave function with roughness exponent 2/3.7 At present, our
system sizes are too small to provide a good quantita
check of this hypothesis.

For system small enough so that Bloch states are a g
first approximation for largeg, most states are approximate
twofold degenerate as discussed above. However, for
L3L square lattice, there is a very largeL-fold degeneracy
for the state at the origin of the complex energy plane. P
turbation theory explains the removal of the degeneracy
the following way. We show that the first-order perturbati
theory reduces to a diagonal one-dimensional random mo
which is readily solved. We take the hopping term of E
~1.2! as the nonperturbative part and the random-poten
term as the perturbation so that the zeroth-order spect
may be given by Eq.~6.2! or Fig. 17. The zeroth-order wav
functionsukx ,ky& of the degenerate levels in question satis
the relationkx2ky5p/a ~mod 2p/a!. The secular equation
for the first-order perturbation of the degenerate levels c
sists of the matrix elements

K kx ,kyU(
x

Vxbx
†bxUkx8 ,ky8L 5

1

L2 (
x,y

ei ~kx2kx8!~x1y!Vx,y ,

~6.13!
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where we usedky2ky85kx2kx8 ~mod 2p/a!. The above ma-
trix elements are in fact equivalent to the momentum rep
sentation of the one-dimensional Hamiltonian

Heff5(
j

Veff~j!bj
†bj , ~6.14!

where

Veff~j![
1

L (
h

Vx,y , ~6.15!

with j[x1y ~mod L! andh[x2y ~mod L!. The effective
potential ~6.15! is thus obtained by integrating the origin
potentialVx,y along a line parallel tog. The first-order per-
turbation spectrum is readily solved since the effect
Hamiltonian ~6.14! is already diagonalized. Thus we arriv
at the first-perturbation energy

«j
~1!5Veff~j! ~6.16!

for j50,1,...,L21, which accounts for the horizontal sprea
of eigenvalues in Fig. 19~d!.

VII. TRANSVERSE MEISSNER EFFECT
AND ITS PENETRATION DEPTH

In this section we discuss the penetration depth associ
with the transverse Meissner effect for superconductors w
columnar defects in the localized regime. The vortex den
is assumed to be finite. The surface deflection that defines
penetration depth for asingle vortex line is shown in Fig.
15~a!. We discuss only field penetration in directions para
to the columns. For a more general discussion of vari
penetration depths, frequency dependences, etc., see Re

As shown in Sec. IV B for the one-dimensional case,
displacement of the pinned flux line near the surface of
superconductor with one defect has, in general, an expo
tial t dependence. The penetration deptht* has the singu-
larity t* ;j';(g2gc)

21. We show below that the mea
displacement at deptht in the many-defectcase ind dimen-
sions is given by a stretched exponential form

Š~^x&t2^x&`!‹av ;
t→`

exp@2a~t/t* !1/~d11!#, ~7.1!

where we now assume for simplicity that the fieldg is par-
allel to the x axis. The average displacement in directio
perpendicular tog vanishes because of statistical symmet
The quantity^x&` is the center of the localized state in th
bulk, which is identical to the average position of the cor
sponding state forg50. Moreover, we show that the pen
etration depth has the singularityt* ;j'

z ;(gc2g)2z, with
the dynamical exponentz5d, thus justifying Eqs.~1.8! and
~1.9!. Note thatd is the dimensionality of the quantum sy
tem corresponding to flexible lines ind11 dimensions.

Consider a low but finite density of interacting flux line
As discussed in Sec. II, we fill up the localized states in or
of increasing energy up to the average chemical poten
«5m. Consider the deflection of the most unstable~pinned!
flux line near the surface. Since we forbid double occupa
of localized states, we can approximate
-

e
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th
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he
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^x&t.(
n

8 cnE ddx^cmux&x^xucn&e
2tD«n /\, ~7.2!

where

cn[
E ^cnux8&ddx8

E ^cmux8&ddx8

~7.3!

and

D«n[«n2«m , ~7.4!

in contrast to Eqs.~4.27!, ~4.28!, and~4.29! appropriate to a
single line. Herecm denotes an eigenstate at the chemi
potential and the summation(n8 is restricted to states with
the energies«>m. Note that the coefficientcn for an ex-
tended state will be quite small owing to oscillatory facto
in the integration over the space. Because of the expone
factor in Eq.~7.2!, the main contributions come from loca
ized states near and above the chemical potential. We us
asymptotic form~3.5! for localized states to estimate Eq
~7.2!. The term withcn5cm gives ^x&` . The other leading
terms after the integration are approximately

u^x&t2^x&`u.(
n

9 c̃ne2 f n~t!, ~7.5!

where

f n~t![@\k~m!2g cosun#r n1tD«n /\, ~7.6!

r n[uxn2xmu, cosun[g•(xm2xn)/ugur n , and(n9 is the sum-
mation over localized excited states with the energies«.m.
The inverse localization lengthkn was approximated by
k~m!. The new coefficientc̃n is c̃n;cnr n cosun . As in con-
ventional Mott variable-range hopping in semiconductors24

we estimate the energy differenceD«n from10

g~m!r n
dD«n;1, ~7.7!

whereg(m) is the density of states at the chemical potent
The quantityf n(t) gives the energy of a tilted flux-line

configuration; see Fig. 22. The first term is the energy due
a kink joining columns atxm and xn . Hence the energy is
proportional to the widthr n of the kink. The second term is

FIG. 22. Kink in a vortex configuration near the top surface o
superconducting sample.
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the energy loss arising because the flux line stays atxn over
the distancet rather than at the most stable positionxm . This
energy loss is proportional tot. Because of Eq.~7.7!, the first
and the second terms compete: The further the flux line h
from xm , the more the kink energy costs, but the lower t
binding energy atxn . In variable-range hopping of electron
in semiconductors,24 D«n is the energy difference betwee
localized electronic states and the kink energy is replaced
a WKB tunneling matrix element.

Figure 23 shows the relaxation function^x&t2^x&` for
the one-dimensional tight-binding model with a particu
realization of randomness. In this example, only two sta
contribute significantly to the summation(n9 in Eq. ~7.5!.
Upon averaging over many realizations of randomness~or
close to the depinning transition!, we expect contributions
from many states as depicted schematically in Fig. 24. F
fixed t, the largest contribution to the summation in Eq.~7.5!
comes from the state at

r n5S td

\g~m!@\k~m!2g# D
1/~d11!

, ~7.8!

FIG. 23. t dependence of the displacement of a flux line fo
realization of randomness in the one-dimensional tight-bind
model. Since only two terms off n contribute to the summation(n9
in Eq. ~7.5! in this example, the whole curve consists approximat
of two lines. The slope of each line is2D«n /\, while its y inter-
cept is2(\kn2g)r n . The parameters areLx5500a, D/t51, and
g/t50.6.

FIG. 24. Schematic of the situation where many different ex
nential terms contribute to the summation in Eq.~7.5!.
ps

by

r
s

a

which yields

min
n

f n5aS t

t* D 1/~d11!

, ~7.9!

with

t* 5
\g~m!

@\k~m!2g#d ~7.10!

anda5d1/(d11)(111/d). This gives the stretched expone
tial form ~7.1!. Since the displacement at the surface, or
surface transverse magnetization, is given
j';M's;(\k2g)21, we havet* ;j'

d .
We obtain the stretched exponential form only in the lim

t→`. Deep in the Bose-glass phase, it may be difficult
observe this form experimentally because the amplitude
the surface displacement is small in this limit. However, t
characteristic scalet* in the t direction diverges,
t* ;@\k(m)2g#2d, where stretched-exponential relaxatio
should be relatively easy to observe.

VIII. EFFECT OF INTERACTIONS
IN THE DELOCALIZED REGIME

A. 111 dimensions: Continuous phase transition

We conclude with a discussion of interaction effects. T
delocalization transitions discussed above were treated u
an independent-particle~or ‘‘independent-vortex-line’’! pic-
ture. As outlined above, interactions can be taken into
count in the Bose-glass phase, provided that we forbid m
tiple occupancy of the localized states. The physics her
similar to the bands of localized impurity states describ
electrons in disordered semiconductors.24 In both Bose and
Fermi glasses, localized states are filled in order of incre
ing energies up to a chemical potential. In the localized
gime, the differences between Bose statistics of repel
flux lines interacting with columnar defects and Fermi sta
tics of electrons in disordered semiconductors are not
pected to be important.10

Interactions must be handled differently in the delocaliz
phase. Consider what happens to the states described b
(111)-dimensional non-Hermitian spectra of Fig. 12~a!
with increasing fieldH i along thet axis. We assume that th
tilt field lies in a range such that there is a mobility ed
separating low-energy localized states from high-energy
localized ones. The fieldH i controls the chemical potentia
of the equivalent disordered boson system.10 As H i in-
creases, we fill the unoccupied levels in order of increas
energy to obtain the ground state. Eventually all states be
the mobility edge are filled and additional vortices must th
go into extended states above this boundary. These exte
states describe macroscopically tilted vortex lines and as
can see from Fig. 13, the corresponding tilt slope is finite
the mobility edge. Interactions have a weaker effect on
localized, tilted lines, so we expect thatmany lines can be
accommodated by only a few delocalized states with en
gies just above the mobility edge. In the presence of ther
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fluctuations, there is not a sharp distinction between til
and untilted lines; any individual line will be both tilted o
localized in different regions along thet axis. Alternatively,
we can imagine that the delocalization transition happen
fixed H i , with increasing external tilt fieldH' , as in Fig. 3.

A physical picture of the delocalized phase in 111 di-
mensions in the presence of interactions has been devel
by Hwa et al.25 Tilted lines are represented by chains
kinks and the density of these chains goescontinuouslyto
zero with decreasing tilt field. Thus we predict that a co
tinuous phase transition is possible, in contrast to argum
based on depinning of a single line, which suggest a fi
order transition.14 A phenomenon like Bose condensation d
scribes the physics of the tilted fraction of the lines, cons
tent with many lines entering just a few extended sta
above the mobility edge. However, because phase fluc
tions are so strong in 111 dimensions, correlations of th
boson parameter decayalgebraically to zero at large dis-
tances instead of approaching a nonzero constant. The
also algebraic order in a translational order parameter a
ciated with the density of tilted lines; the tilted phase is
fact a ‘‘supersolid.’’25

B. 211 dimensions: Existence of a phase transition

The physical picture of lines in the delocalized regime
more complicated in 211 dimensions, as suggested by t
intricate spectra for finiteg displayed in Fig. 19. However
here again there is a range of intermediate tilt fields wh
only localized states exist at low energies. A ‘‘mobili
edge’’ now separates real eigenvalues in the localized reg
from a region along the real energy axis where extended
localized statescoexist. Building up a ground state as i
111 dimensions, we would expect some vortices to en
extended states describing tilted lines once the chemical
tential ~controlled by H i! crosses this mobility edge. A
bosonic superfluid fraction of tilted lines will coexist with
‘‘normal fluid’’ fraction of lines localized on columns. As in
111 dimensions, however, any single line will participate
both ‘‘fractions’’ as it crosses a sufficiently thick sampl
Although a single tilted line probably goes into a glass
ground state described by the Burgers equation,7 interactions
in a dense liquid of tilted lines can screen out random p
ning potentials in a weakly perturbed superfluid phase
entangled lines.13 The tilted liquid in this dense regim
should be pinned only weakly and exhibit a linear resistivi

If the tilted regime is entered by increasingH' at fixed
H i , one is shifting the mobility edges in th
(211)-dimensional spectra at fixed chemical potential. T
sequence of possible phases probably resembles vortex
ter subjected to point disorder nearHc1.26 For smallH' , the
Bose glass with its transverse Meissner effect resembles
usual Meissner phase forH,Hc1. Suppose now thatH' is
increased untilH'.H'c such that the lower mobility edg
drops below the chemical potential. As illustrated in Fig.
one probably encounters a flux-liquid phase~with a finite
fraction of tilted, entangled lines! if H' is increased athigh
temperatures. At low temperatures and large tilt fields, ho
ever, the stable phase is probably a crystalline vortex-sme
phase, where the tilted lines are arranged in sheets per
d
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cally spaced along the column direction to minimize the
teraction energies.27 Hwa et al.25 have discussed a theory o
how a continuous transition directly from this vortex smec
into the Bose glass might proceed. However, it is hard to r
out the possibility of a melted silver of tilted flux liquid atall
nonzero temperatures when the density of tilted lines
comes very small near the transition curveH'c(T), similar
to what happens in vortices subjected to point disorder n
Hc1(T). It is not yet known if a point disorder is sufficient t
produce a distinct ‘‘vortex-glass’’ phase with a finite vorte
density interposed between the flux liquid and the Meiss
phase.13 There are similar uncertainties about a distin
glassy phase nearH'c(T) in the present problem.

Although we will not resolve these uncertainties here,
can show that there must be at leastone phase transition
separating a Bose glass at smallH' from a tilted superfluid
of entangled lines whenH' is large. In other words, the
transition suggested by the existence of a sharp mob
edge in the (211)-dimensional single-line spectra survive
the imposition of repulsive interline interactions. We proce
by first noting that the tilt modulus

c44[
B2

4p S ]B'

]H'
D 21

~8.1!

is divergent in the Bose-glass phase that results for sm
H' .10 This infinity is a consequence of the transverse Mei
ner effect: Although the lines tilt near the sample surfaces
response to a perpendicular external field~as in Fig. 22!,
there is no macroscopic response in an infinite sample
]B' /]H'50. We will show that the tilt modulusc44 re-
mainsfinite in a superfluid liquid of entangled, tilted line
that results forH'.H'c , so that theremustbe at least one
sharp phase transition as one increasesH' . The tilt modulus
is proportional to the inverse superfluid density of t
equivalent boson system and the corresponding results
the superfluid densityrs are indicated in Fig. 3.

We start with the generalization of Eq.~2.1! for N lines
$xj (t)%, namely,10

Eflux@$xj~t!%#[
«̃1

2 (
j 51

N E
0

Lt
dtF S dxj

dt D 2

2g•

dxj

dt
1V@xj~t!#G

1
1

2 (
iÞ j

E
0

Lt
dtVint@ uxi~t!2xj~t!u#, ~8.2!

whereg[f0H' /4p and we have added a repulsive potent
Vint between the lines. We neglect point disorder and assu
for simplicity that the columnar pinning potential is weak
the temperature is fairly high, so that the transition out of
Bose glass occurs for relatively small values ofg}H' . The
assumptions of small line tilts and local~in t! interactions
between flux lines that justify Eq.~8.2! ~Ref. 10! are then
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satisfied even forH'.H'c . The many-line partition func-
tion associated with Eq.~8.2! is

Z~g![)
j 51

N E Dxj~t!e2Eflux[ $xj ~t!%]/kBT. ~8.3!

Upon defining an operatorXop[( j 51
N xj

op acting on position
eigenstatesux1 ,...,xN& such that
b
l

Xopux1 ,...,xN&5S (
j 51

N

xj D ux1 ,...,xN&, ~8.4!

standard manipulations allow us to write this multidime
sional path integral in terms of a quantum-mechanical ma
element
Z~g!5E d2r18•••d
2rN8 E d2r1•••d2rN^r18•••rN8 ueg•Xop /~kBT!e2H~0!Lt /kBTe2g•Xop /~kBT!ur1•••rN&, ~8.5!
he
.

is
e

ting
e

e-
n

ent
where the ‘‘Hamiltonian’’H~0! is

H~0!52
~kBT!2

2«̃1
(
j 51

N

¹ j
21(

j 51

N

V@xj #1
1

2 (
iÞ j

Vint~ uxi2xj u!.

~8.6!

Upon noting that

eg•Xop /~kBT!e2H~0!Lt /kBTe2g•Xop /kBT

5 (
n50

`
1

n!
eg•Xop /kBTS 2

H~0!Lt

kBT D n

e2g•Xop /kBT

5e2H~g!Lt /kBT, ~8.7!

where

H~g!5eg•Xop /kBTH~0!e2g•Xop /kBT

5
1

2«̃1
(
j 51

N S kBT

i
¹ j1 igD 2

1(
j 51

N

V@xj #

1
1

2 (
iÞ j

Vint~ uxi2xj u!, ~8.8!
and referring to Table I, we see that this Hamiltonian is t
generalization of Eq.~1.1! for many interacting vortex lines

Note that if a many-body eigenfunctionCn(x1 ,...,xN ;0)
of H(g50) for localized lines in the Bose glass phase
known, a potentially exact right eigenfunction with the sam
energy forgÞ0 is then

Cn
R~x1 ,...,xN ;g!5eg•Xop /kBTCn~x1 ,...,xN ;0!, ~8.9!

as follows immediately from the first line of Eq.~8.8!. As in
the single-particle case, this gauge transformation connec
the g50 and gÞ0 problems only works provided that th
new eigenfunction is normalizable.17

To treat the tilted phase of entangled lines, it is conv
nient to modify the original path-integral partition functio
via the change of variables

xj~t!5xj8~t!1
g

«̃1
t. ~8.10!

Upon transforming to a quantum-mechanical matrix elem
as before, we arrive at
Z~g!5E d2r18•••d
2rN8 E d2r1•••d2rNK r18•••rN8UT expS 2

1

kBT E
0

Lt
H8~g;t!dt D Ur1•••rNL , ~8.11!
he
es
and

se

us
n for
with

H8~g;t!52
~kBT!2

2«̃1
(
j 51

N

¹ j
21(

j 51

N

V8@xj ,t#

1
1

2 (
iÞ j

Vint~ uxi2xj u!, ~8.12!

where the constant imaginary vector potential is missing,
V@xj # has been replaced by at-dependent disorder potentia

V8@xj ,t#[VFxj1
g

«̃1
tG . ~8.13!
ut

The symbolT in front of the exponential in Eq.~8.11! stands
for time ordering. The above new Hamiltonian@related to
Eq. ~8.8! via an imaginary Galilean transformation13# de-
scribes a set of vortex lines moving along thet axis in the
presence of a set of parallel, tilted columnar defects. T
response functions for a liquid of interacting entangled lin
in the presence of tilted disorder have been discussed
reviewed by Ta¨uber and Nelson.19 The vortex tilt moduli
both parallel and perpendicular to the plane of tilt in this ca
are different. However, both are explicitly found to befinite,
in contrast to the infinite tilt moduli in the Bose glass. Th
there must indeed be at least one genuine phase transitio
the (211)-dimensional system with increasingH'}g in the
presence of interactions and disorder.
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APPENDIX: EXACT SOLUTION
OF THE ONE-DIMENSIONAL SCHRO¨ DINGER

EQUATION WITH A POINT IMPURITY

In this appendix we describe the derivation of the sing
impurity results given in Sec. IV A. The derivation is subt
even in the Hermitian case, since we are interested in fin
size effects as well as the thermodynamic limit. Through
this appendix we assumeg.0 without loss of generality.

We have found it useful to solve the Schro¨dinger equation
HcR(x)5«cR(x) in a way different from that sketched i
Ref. 5. Because of the periodic boundary conditions~4.2!,
we define the Fourier transformation in the form

cR~x!5
2p

Lx
(

k
c̃R~k!eikx, ~A1!

where the summation runs overk52pn/Lx for integer n.
The inverse transformation is given by

c̃R~k!5
1

2p E
0

Lx
cR~x!e2 ikxdx. ~A2!

The Schro¨dinger equation becomes

~\k1 ig !2c̃R~k!2
mV0

p
cR~0!52m«c̃R~k!. ~A3!

Upon assuming thatC[cR(0) is finite, we have

c̃R~k!5
mV0C

p\2 F S k1 i
g

\ D 2

2K2G21

, ~A4!

where K(«)[A2m«/\. The real-space wave function
given by substitutingc̃R(k) in Eq. ~A1! with Eq. ~A4!.

The conditioncR(0)5C results in the equation for th
energy spectrum«, namely,

2p

Lx
(

k
F S k1 i

g

\ D 2

2K2~«!G21

5
p\2

mV0
. ~A5!

Let us first analyze this equation in the limitLx→`:

E
2`

`

dkF S k1 i
g

\ D 2

2K2~«!G21

5
p\2

mV0
. ~A6!

The integrand has two poles atk56K2 ig/\ in the com-
plex plane ofk. For uIm Ku,g/\, the integral~A6! vanishes
when we close the integration contour in the upper h
plane. Thus nonzero solutions arise only foruImKu>g/\. In
the following, we derive solutions foruImKu.g/\ and for
uImKu5g/\ separately.
-
ns
d
.
i-
.
-

-

e-
t

lf

For uImKu.g/\, the poles straddle the real axis and w
have

p i

K
5

p\2

mV0
~A7!

or

K5 i
mV0

\2 [ ikg.s.. ~A8!

Thus we arrive at the unique localized ground-state solu
for uImKu.g/\ given as Eq.~4.4!. The boundary for the ex-
istence of this localized state is the critical field, which lea
to Eq. ~4.3!.

For ImK5g/\, one of the poles of the integrand of E
~A6! approaches the realk axis, which makes the evaluatio
of the integral in the limitLx→` difficult. Hence we return
to Eq. ~A5! and explore the solutions including finite-siz
corrections, using the formula

2p

L (
n52`

`

RS 2p

L
nD52(

z
ResS R~z!

2p i

eiLz21
;z D ,

~A9!

whereR(z) is a rational function with the conditions that~i!
the order inz of the denominator is greater than the order
the numerator at least by 2 and~ii ! the function does not
have any poles at integral points. The summation with
spect toz runs over the residues arising from all poles
R(z). The formula follows from evaluating

R dz R~z!
2p i

eiLz21
, ~A10!

with the integration contour as in Fig. 25. Thus Eq.~A5!
becomes

~eiKL x1Lxg/\21!212~e2 iKL x1Lxg/\21!215
i\2K

mV0
~A11!

or

FIG. 25. Integration contour used in the evaluation of Eq.~A10!.
The crosses on the horizontal axis indicate the poles of the fa
(eiLz21)21, while the other two crosses indicate the poles of t
function R(z).
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KFcoshS Lx

g

\ D2cos~LxK !G1
mV0

\2 sin~LxK !50.

~A12!

The wave function corresponding to each solution of E
~A11! is

cR~x!}
eiKx1xg/\

eiKL x1Lxg/\21
2

e2 iKx1xg/\

e2 iKL x1Lxg/\21
~A13!

for 0<x,Lx . In the case of limLx→` ImK(Lx).g/\, putting

K to be pure imaginary results in the ground-state solut
~A8! and ~4.7! for g,gc in the limit Lx→`.

We are now in a position to discuss the case

lim
Lx→`

ImK~Lx!5
g

\
, ~A14!

whereK(Lx) denotes a solution of Eq.~A12!. This case in-
cludes all delocalized wave functions. By setting

K~Lx!5k~Lx!1 i
g

\
1 idk~Lx!, ~A15!

with

lim
Lx→`

dk~Lx!50, ~A16!

Eq. ~A11! becomes

Lx

g

\
e2w.LxS g

\
2

gc

\ D1w ~A17!
.

n

in the limit Lx→`, where

w[Lxdk~Lx!2 iL xk~Lx!. ~A18!

We notice thatk(Lx) and k(Lx) have the same order o
magnitude with respect toLx .

For gÞgc , the second term on the right-hand side of E
~A17! is negligible compared to its first term and hence

w. ln
g

g2gc
. ~A19!

This gives a series of solutions in addition to the ground s
~A8!. For g,gc , we have

Lxdk5 ln
g

gc2g
, ~A20!

Lxk5 ln~21!5 ip~2n11!, ~A21!

with n an integer, i.e., the excited states given in Eqs.~4.10!
and ~4.11!. For g.gc , we have

Lxdk5 ln
g

g2gc
, ~A22!

Lxk5 ln 152ipn, ~A23!

or the excited states given in Eqs.~4.14! and~4.15!. Finally,
for g5gc , Eq. ~A17! yields a solutionw5O(ln Lx), or Eq.
~4.19!.
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