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Nature of vibrational excitations in vitreous silica
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~Received 21 January 1997; revised manuscript received 22 May 1997!

The vibrational properties of models of vitreous silica constructed by molecular-dynamics simulation with
different interatomic potentials have been investigated. The static and dynamical structure factors of the model
systems are in good agreement with experimental data. Partial and total vibrational densities of states are
presented. The characteristics of vibrational modes in different frequency ranges are investigated using a
mode-projection technique.@S0163-1829~97!05737-8#
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I. INTRODUCTION

Vitreous silica is one of the principal network glas
forming systems and exhibits all the features that are typ
of disordered materials. For instance, the medium-range
der~MRO! of vitreous silica has been revealed by diffracti
experiments;1,2 e.g., pseudoperiodicity with a scale o
2p/Q1.4.1 Å is associated with the position of the fir
sharp diffraction peak~FSDP! at Q1.1.6 Å21.3 Excess vi-
brational modes, called the boson peak~BP!, have been ob-
served in Raman4 and inelastic neutron5 scattering, and IR
absorption6 in the low-frequency range;1 THz. Low-
temperature anomalies in thermodynamical properties
exhibited by vitreous silica as well.7,8 A hump around
T;10–30 K in the temperature dependence of the redu
heat capacity,Cv /T3 vs T, is associated with excess low
frequency vibrational modes in the BP region.7 Very-low-
temperature anomalies atT&1 K, e.g., a linear temperatur
dependence of heat capacity, are probably connected
excitations of two-level systems.9,10

A few theoretical, mainly computational, studies of t
problem of the vibrational behavior of vitreous silica and
crystalline counterparts~different polymorphs of SiO2) have
been performed.11–24,26The first step is the construction of
structural model ofv-SiO2; the simplest model, a handmad
random network cluster, was constructed by Bell and Dea11

Later, more sophisticated computer-simulation-based st
tural models were created. The quality of these compu
simulated models depends crucially on the choice of in
atomic potential. The very first simulations based
valence-force-field potentials took only the valence part
the interatomic interactions into consideration;12–16 the ionic
part was included later.17,18 Structural models of crystalline
polymorphs of SiO2 and v-SiO2 ~modeled by a Bethe
lattice17,19! based on these potentials were constructed
energy minimization. Two-body and three-body empiric
interatomic potentials were developed and implemented
molecular-dynamics~MD! simulations.20–25. The polarizable
ion model has been used to describe IR absorption
v-SiO2.26 A breakthrough was made by Tsuneyukiet al.
who derived a pairwise potential fromab initio calculations,
which was subsequently implemented in MD simulations
crystalline27,28 and vitreous29–31 SiO2. An improved ab
initio–based semiempirical pairwise potential was sub
quently obtained32 and used in a MD simulation ofv-
560163-1829/97/56~14!/8605~18!/$10.00
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SiO2.33–35 Ab initio ~Car-Parinello! MD simulation is the
best technique for creating realistic structural models,
though at present it is limited to small atomic structures; e
a model ofv-SiO2 containing 72 atoms was created usi
this approach.36,37

Vibrational analyses of SiO2 models have been per
formed by diagonalizing the dynamical matrices calcula
for crystalline12,16–18,38and vitreous14,24,34,37structural mod-
els, by the equation-of-motion technique,39 and by calculat-
ing the velocity-velocity autocorrelation function.20,23,29,30,40

By direct diagonalization of the dynamical matrix, J
et al.24 calculated the vibrational density of states~VDOS! of
a structural model of vitreous silica based on a three-b
empirical interatomic potential. The vibrational spectru
thus obtained reproduced the experimental data in the l
and intermediate-frequency regions reasonably well, but
peak splitting at around 35 THz in the high-frequency op
band was not found. Moreover, the structural model
v-SiO2 constructed in Ref. 24 contains an unrealistica
high concentration of coordination defects~dangling bonds
and overcoordinated atoms!. Della Valle and Venuttiet al.30

obtained the VDOS ofv-SiO2 from the velocity-velocity
autocorrelation function for a structural model based on
Tsuneyuki potential. The influence of the rate of the quen
on the shape of the VDOS has been investigated in Ref
using the van Beest potential.32 In the high-frequency region
use of the Tsuneyuki potential was found to result in a s
of the vibrational spectrum to lower frequencies compa
with experiment. Quite a good comparison with the expe
mental VDOS has been achieved for the first-princip
model ofv-SiO2.37

Mode-assignment analyses have been successfully m
for crystalline silica polymorphs.12,17,18In vitreous silica, the
mode-projection technique has been used to analyze the
of normal vibrations of some structural units~SiO2 and
SiO4) in different frequency ranges for a Bethe-lattic
model,19 for a structural model with an empirical interatom
potential acounting for polarization effects,26 and for anab
initio MD-constructed model.37 It has been shown in Refs
26 and 37 that the peaks at 37 THz and 32 THz in
high-frequency band can be associated with symmetric
asymmetric vibrations of SiO4 structural units, respectively
The VDOS of an SiO4 unit immersed in a silica matrix ob
8605 © 1997 The American Physical Society
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8606 56S. N. TARASKIN AND S. R. ELLIOTT
tained with the Tsuneyuki potential has been calculated
Ref. 31.

In our MD simulation, we have used the best availableab
initio–based semiempirical pairwise interatomic poten
due to van Beestet al.32 used to describe the properties
different silica polymorphs. The Tsuneyuki potential27 was
also implemented for comparison. All the structural mod
that we have constructed are free of any coordination def
and show good agreement with experimental diffract
data.34 The vibrational analysis was performed by direct
agonalization of the dynamical matrix.

The structure of the paper is the following. Section
describes details of the computer simulation. Characteris
of the static structure are analyzed in Sec. III. Dynami
properties of models of vitreous silica are considered in S
IV. In Sec. V, a mode analysis is performed. Conclusions
given in Sec. VI.

II. DETAILS OF SIMULATIONS

We have simulated vitreous SiO2 by a model containing
216 silicon and 432 oxygen atoms within a simulation cu
of side lengthL.21.39 Å ~with a densityr.2.2 g/cm3). A
set of MD runs using the packageDLPOLY ~Ref. 41! ~NVE,
cubic periodic boundary conditions! with time step51 fs
was performed at different fixed temperatures. The temp
ture of the system was adjusted by velocity rescaling ev
10 fs, making the time scale smaller than the minimum ty
cal inverse vibrational frequency 1/40 THz21525 fs.

The Coulomb interactions were calculated using
Ewald summation method. Real and reciprocal space cut
werea2150.31 Å21 andkmax.2.03 Å21, respectively, and
the pair interaction cutoff was.L/2. At small interatomic
distances~less than the average nearest-neighbor separat!,
the Tsuneyuki and the van Beest potentials have an en
barrier. However, the energy barrier is not high enough
prevent atoms from hopping over it at high temperatures
becoming coincident. We have therefore used modificati
of the Tsuneyuki and van Beest potentials42 which are free of
this fault, due to the replacement of the energy barrier
finite height by an infinitely high potential wall. Both th
Tsuneyuki and van Beest potentials have been modified
adding Lennard-Jones contributions@~18-6! and ~24-6!
terms, respectively; see Ref. 42 for more details# to the origi-
nal interatomic potentials. At small interatomic distances
modified potentials go to infinity while at interatomic sep
rations*1.2 Å for the Si-O interaction and*1.8 Å for the
O-O interaction they practically coincide with the origin
potentials.

We started from the fluid state atT55000 K. At this
temperature, significant diffusion takes place and the sys
has no memory of the initial valence network structu
within a period of;50 ps from the start of the simulatio
run. It was found that all valence bonds are broken, and
atoms change their nearest neighbors~previous connections
can be reestablished only accidentally!.

The temperature was gradually decreased by 100 K s
to T.2000 K with an average quench rate of.1012 K/sec.
This temperature quench resulted in a slowdown of diffus
accompanied by a related slowdown of bond-breaking kin
ics. At the final temperatureT.2000 K, atoms only vibrated
in
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around their equilibrium positions, and no diffusion occurr
on the time scale of the MD run,;100 ps. This temperature
is somewhat higher than the glass-transition temperatur
v-SiO2, Tg.1450 K.43 This known drawback can resu
both from deficiencies of the Tsuneyuki and van Beest
tentials in describing the properties of liquid silica42 and
from the dependence of the glass-transition temperature
the quench rate33 which is very far in the MD simulations
from the experimental values (;102 K/sec!. Use of the more
realisticN-P-T ensemble with the same quench rate for t
slightly modified van Beest potential results in a glass tr
sition atTg.3150 K @with densityr(Tg)52.35 g/cm3# and
in a cessation of diffusion aroundT'1500 K ~a detailed
discussion will be presented elsewhere!. Subsequently, the
system was relaxed to its equilibrium state atT&1025 K by
an effective MD energy-minimization run. Conjugat
gradient and steepest-descent methods were used to c
that the system was in a ‘‘glassy’’~metastable! energy mini-
mum.

The dynamical matrix was calculated in the metasta
glassy state and diagonalized directly. A complete set of
genvalues and eigenvectors was used for subsequent v
tional analysis.

III. STATIC-STRUCTURE CHARACTERISTICS

For a vibrational analysis, a high-quality structural mod
constructed by MD simulation is very important. The qual
of the structural model strongly depends on the interato
potential, andab initio calculated potentials are the mo
reliable ones. Such a potential has been used in the
simulation of small vitreous silica clusters (72 atoms! ~Ref.
36! and their vibrational analysis.37 We needed to study a
larger system and therefore had to use the pairwise ada
tion of many-particle interactions, e.g., the van Beest32 and
Tsuneyuki27 potentials. Using these potentials, we obtain
perfectly chemically bonded structural models of vitreo
silica, free of any structural defects such as dangling bo
and overcoordinated atoms. The majority of the calcula
data presented below are related~where it is not mentioned
explicitly! to the system constructed with the van Beest p
tential, this being better representative of the vibratio
properties of vitreous silica as compared to the Tsuney
potential.

A. Radial and angle distribution functions

Partial radial distribution functions are important stru
tural characteristics of amorphous structures. These funct
have pronounced first peaks corresponding to the first c
dination shell at the mean separation of atoms of differ
species~see Fig. 1!. The positions of these peaks are
dSi-O51.613 Å ~1.61 Å!, dO-O52.631 Å ~2.63 Å!, and
dSi-Si53.127 Å ~3.08 Å! which are in good agreement wit
the experimental values44 given in brackets. The shape of th
partial distribution functions is very similar to that obtaine
in Ref. 33 with the use of a cut-and-shifted van Beest pot
tial.

The structure of vitreous silica consists of corner-sha
tetrahedra~SiO4 units!. These units appear to be quite rig
because the average O-Si-O angle of 109.43°~see Fig. 2! is
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56 8607NATURE OF VIBRATIONAL EXCITATIONS IN . . .
close to the ideal tetrahedral angle, 109.5°, and the distr
tions of Si-O and O-O distances are very narrow. A sign
cant source of structural disorder in vitreous silica, therefo
as also mentioned in Ref. 36, is due to the comparativ
wide Si-O-Si bridging-angle distribution, this being one
the most important structural characteristics. A compari
between the oxygen bond-angle distribution for vitreo

FIG. 1. Partial pair radial distribution functions vs interatom
distance for the relaxed structural model ofv-SiO2 constructed with
use of the van Beest potential.

FIG. 2. Bond-angle Si-O-Si and O-Si-O distributions for o
model constructed using the van Beest potential~the solid lines! and
experimental data for the Si-O-Si distribution~Ref. 42! ~the dashed
line!. The areas under both curves are normalized to unity.
u-
-
e,
ly

n
s

silica obtained in our simulation using the van Beest pot
tial and that found in x-ray and neutron diffractio
experiments45 is given in Fig. 2. The Si-O-Si angle distribu
tion for our model is slightly broader in comparison with th
experimental one and its maximum~around.155°, in ac-
cordance with results of Ref. 33! is shifted to a higher value
relative to that for the experimental distribution~around
.142°). However, the experimental Si-O-Si angle distrib
tions measured by different techniques~including, e.g.,
NMR! do not coincide with each other and the maxima
these distributions lie in the range between 142° and 1
~see Ref. 45 for more details!. The maxima of the distribu-
tions obtained for computer-constructed models are a
quite different; e.g., the distribution for the Vashishta mod
has a maximum at 142°,24 while ab initio MD simulations
result in a maximum position around 130°.36

B. Static structure factor

Another important structural characteristic of amorpho
solids is the static structure factorS(Q), defined as46

S~Q!511
1

N^b2 &
(
iÞ i 8

bibi 8e
2Wii 8eiQ•~Ri2Ri 8!, ~1!

with the Debye-Waller term being given by

Wii 85
\Q2

6 (
j

S ei
j

Ami

2
ei 8

j

Ami 8
D 2

n̄ j11/2

v j
, ~2!

where^b2&5N21( ibi
2, bi is the neutron scattering length o

atom i (bi5bi* , the overbar meaning spin and isotope av
aging!, N is the number of atoms in the system,Q is the
momentum transfer,Ri(t) denotes the equilibrium spatia
position of atomi , ej are normalized 3N-component eigen-
vectors,v j are eigenfrequencies of the dynamical matrix,mi

is the mass of atomi , and n̄ j is the equilibrium occupation
number of the vibrational state characterized by the f
quencyv j :

n̄ j5
1

exp$\v j /kBT%21
. ~3!

For isotropic systems, analytical averaging over allQ direc-
tions gives

S~Q!5^S~Q!&V511
1

N^b2&
(
iÞ i 8

bibi 8e
2Wii 8

3
sinQuRi2Ri 8u

QuRi2Ri 8u
. ~4!

However, for the finite-sized models under considerati
only a restricted set ofQ vectors is available, i.e.
Q5$2pnx /Lx ,2pny /Ly ,2pnz /Lz% , whereLa are box side
lengths andna are integer numbers. Averaging overQ gives

S~Q!5
1

NQ
(
Q

S~Q!. ~5!
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8608 56S. N. TARASKIN AND S. R. ELLIOTT
Here the sum is taken over all availableQ or Q belonging to
a particular range, andNQ stands for the number of terms i
the sum. Results forS(Q) calculated using Eq.~4! for the
van Beest–potential–based model are indicated by the s
curve in Fig. 3; the bars indicate the region where the dots
representing the results of simple~arithmetic! averaging, ac-
cording to relation~5!, over all availableQ vectors with
fixed magnitude ofQ. The dashed curve is the experimen
data.2 As shown in Fig. 3, the static structure factor of t
model fits the experimental curve reasonably well. A slig
deviation appears, however, atQ*15 Å21. The static struc-
ture factor for the Tsuneyuki system shows very similar
havior. However, it is not too difficult to obtain good agre
ment between calculated and experimental static struct
data, and this is characteristic of the majority of reliab
structural models of vitreous silica.22,24,33,34,36

The analysis presented above shows that the use o
van Beest and Tsuneyuki potentials results in good-qua
structural models of vitreous silica. Indeed, both radial a
angle distribution functions and the static structure factor
in reasonable agreement with experimental data and the
sults ofab initio MD simulation.36

IV. DYNAMICAL PROPERTIES

Even at zero temperature, atoms vibrate around their e
librium positions. The amplitude of these vibrations i
creases with an increase in temperature, but the harm
approximation is applicable even for sufficiently high tem
peraturesT&Tg . In the harmonic approximation, any atom
vibration can be represented as a linear combination of
normal modes, or eigenvectors,$ej% ( j 51, . . . ,3N), of the
dynamical matrix. Here$ej% is a 3N-component vector
$ei

j ; i 51, . . . ,N% with ei
j the real-space vector proportion

to the displacementui
j of atom i , whereui

j;ei
j /Ami , with mi

being the mass of thei th atom. The eigenvectors satisfy th
orthonormality and closure conditions

(
i

ei
jei

j 85d j j 8, ~6!

FIG. 3. Dependence of the static structure factor on magnit
of momentum transfer for vitreous silica: The bars are related
numerical averaging over availableQ only; dashed line, analytica
averaging overQ directions; solid line, experimental data~Ref. 2!.
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with a and b related to the Cartesian components.47 In a
real-space representation, the Hermitian dynamical matri
real and symmetric, resulting in (ei

j )* 5ei
j .

A. Vibrational density of states

One of the most important quantities describing atom
dynamics is the VDOS, defined as

g~v!5
1

3N (
j 51

3N

d~v2v j !, ~8!

wherev j are eigenvalues of the dynamical matrix. The fun
tion g(v) in the whole frequency region is reported in Fig.
for the van Beest–potential–based model~the black solid
line! and for the Tsuneyuki-potential-based model~the gray
solid line!, whered functions in Eq.~8! have been broadene
by Gaussian functions with a typical widthdn;0.5 THz
which is much larger than the value (nmax2nmin)/3N.0.02
THz for the average separation between eigenvalues for
finite-size model. Herenmin.1 THz and nmax.40 THz
stand for the minimum and maximum frequencies of the
brational spectrum of the vitreous silica model in questio

Two bands are clearly seen in the spectrum. The high
optical band has two pronounced peaks related to the stre
ing longitudinal and transverse vibrations of SiO4 units ~see
below!. The structure of the lowest band is more complica
because of the overlap between acoustic and optical ba
Structural disorder in glasses causes a broadening of
sharp band edges of crystals, transforming them into b
tails. These band tails have the same origin—structu
disorder—as the well-known band tails in the electron
structure of amorphous semiconductors.48 One of the signifi-
cant points is that the lowest band tail lies in the backgrou
of the acoustic band, and, strictly speaking, the states in
tail are not truly localized, but rather quasilocalized, simi
to resonant electron states~e.g., in mixed-valence systems.49!

The main features of the VDOS shown in Fig. 4~a wide
lower frequency band between 0 and;25 THz and a narrow

e
o

FIG. 4. The vibrational density of states for the van Beest~VB!
model~the solid line!, the Tsuneyuki~Ts! model~the dashed line!,
the Debye law~the dot-dashed line!, and the experimental data fo
v-SiO2 ~the dashed line!.
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56 8609NATURE OF VIBRATIONAL EXCITATIONS IN . . .
upper band around;30–40 THz separated by a gap;1
THz! are similar to those obtained for different structu
models of silica24,30,33,37and the quartz and cristobalite poly
morphs of silica,16,17,25,29constructed with various reliabl
interatomic potentials, including the van Beest potentia33

However, the VDOS obtained in our simulations using t
van Beest potential~the black solid line in Fig. 4! fits the
experimental curve50~the dashed line in Fig. 4! better than
does the model constructed using the Tsuneyuki potent27

~gray solid line in Fig. 4!. A deficiency of the Tsuneyuk
potential results in a shift of the spectrum in the hig
frequency region to lower frequencies by;5 THz with re-
spect to the experimental VDOS. The vibrational spectr
of vitreous silica, constructed with the aid of a phenome
logical three-body interatomic potential,24 is not free of
drawbacks either~the highest-frequency band has no pr
nounced double-peak structure!. Neither the van Beest o
Tsuneuki potential can reproduce a pronounced peak in
intermediate-frequency region at 12.5 THz found in the
elastic neutron scattering. This may be due to a deficienc
the potentials which describe the bending modes of SiO4

42

structural units~these modes, as shown below, contribu
significantly to the VDOS in the intermediate-frequen
range! rather worse than the stretching ones~this drawback is
also present at the level of the originalab initio
calculations32!. Unfortunately, the majority of phenomeno
logical and semiphenomenological potentials that we kn
demonstrate this deficiency. The exception is the Feus
Garofalini potential which results in a peak around 10 T
but does not reproduce the structure of the high-freque
band.40 However, the rather simple random network11 or the
Bethe lattice19 andab initio MD-constructed model37 are free
of these drawbacks.

What should be noted when comparing with experimen
data is that only the effective VDOS,geff(v), can be mea-
sured experimentally using inelastic neutron scattering.51 In
multicomponent atomic systems,geff(v) is connected to the
true VDOS,g(v), via a correction functionc(v), given by34

c~v j !.11
A

3(
a

ba
2

ma
@ra~v j !2ra~0!#. ~9!

This correction function is derived in Ref. 34 and depends
the relative partial VDOS,ra(v j ), related to the partia
VDOS, ga(v j ), by

ra~v j !5ga~v j !/g~v j !5(
j

(
i {a

uei
j u2, ~10!

wherei signifies all atoms of typea and j denotes a definite
eigenmode. This correction function was taken into acco
in plotting the corrected VDOS@5c(v)g(v)# in Fig. 4
shown by the circles which is to be compared with the
perimental data~the dashed line!.

The partial VDOS curvesga(v)(a5Si,O! in Fig. 5 show
the relative contribution of atoms of Si~the dashed line in
Fig. 5! and O~the dotted line in Fig. 5! to modes at different
frequencies. As seen in Fig. 5, oxygen atoms contrib
dominantly to the highest optical band and mainly to t
lower-frequency band except the region around 22 T
where the motion of silicon atoms is dominant.
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The most frequently used approximation for the VDOS
different substances is the Debye law,47 gD(v)53v2/vD

3 ,
with vD52p(9rat/4p)1/3(ct

2312cl
23)21/3 being the Debye

frequency (nD5vD/2p.10.34 THz or\vD /kB.497 K for
vitreous silica!, whererat5N/V is the atomic concentration
(rat50.066 Å23 in vitreous silica!, and ct and cl are the
transverse and longitudinal velocities of sound, respectiv
(ct53.753105 cm/s and cl55.93105 cm/s in vitreous
silica.52,53! The Debye VDOS for vitreous silica, calculate
using experimental values of parameters, is shown by
dot-dashed line in Fig. 4. It is clearly seen that both t
computed and experimental VDOS in the low-frequency
gion (v,5 THz! appreciably exceed the Debye VDOS. Th
excess vibrational states in this frequency region form
well-known boson peak.54 The BP,gBP(v)5g(v)2gD(v),
is shown in Fig. 6~a! for the van Beest system. The norma
ized BP, g̃BP(v)5@g(v)2gD(v)#/g(v), measured in in-
elastic neutron scattering experiments, is given in Fig. 6~b!
for both van Beest~the solid line! and Tsuneyuki~the dashed
line! systems. The position of the normalized BP diffe
from that ofgBP(v), as clearly seen from Figs. 6~a! and 6~b!.
The location of the normalized BP in our structural models
around 1.5 THz, which is slightly higher than the experime
tally found value 1 THz~see experimental data by Buchen
in Ref. 33!. This is a consequence of the finite size of o
models resulting in a decrease of the VDOS atn&n t,min ,
with n t,min5ct /L.1.7 THz being the minimum frequenc
of the transverse sound wave allowed in a box of finite s
L. A detailed analysis55 shows that the vibrational states
the BP region~more precisely, at least in its right wing! are
comprised of a set of transverse acoustic waves~in accor-
dance with the results of Ref. 25! characterized by differen
magnitudes of the wave vectork, and forming an acoustic
peak aroundkmax

j 52pn j /ct ( j refers to a particular eigen
mode! with the half-widthdk;k ~i.e., satisfying the Ioffe-
Regel criterion!. The lowest-frequency eigenmodes a
found to have a localized component admixed with the wa
component and to exhibit, therefore, quasilocalized behav

Excess modes in the BP region influence the tempera
dependence of the heat capacityCv(T) in the temperature
rangeT.10–30 K. The vibrational contribution to the he
capacity is given by

FIG. 5. The relative partial VDOS for Si~the dashed line! and O
~the dotted line! atoms compared to the total VDOS~the solid line!.
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Cv~T!5(
j

S \v j

T D 2 exp$\v j /kBT%

~exp$\v j /kBT%21!2
. ~11!

The dependence ofCv(T)/T3 vs T calculated from the
model is shown in Fig. 7~the solid line!, compared with

FIG. 6. ~a! The boson peakg(v)2gD(v) ~the solid line!, the
VDOS for the van Beest model~the dashed line!, and the Debye
VDOS ~the dotted line!. ~b! The normalized boson pea
@g(v)2gD(v)#/gD(v) for the van Beest~the solid line! and the
Tsuneyuki~the dashed line! models.

FIG. 7. The dependence of the reduced heat capacityCv /T3 vs
temperature for the van Beest model~the solid line!, in the Debye
approximation~the dashed line! and the experimental data~the dot-
dashed line! ~Ref. 7!.
experiment~the dot-dashed line! and the Debye~the dashed
line! law. The poor comparison with the experimental da
especially at low temperaturesT&10 K is probably due to a
deficiency of the finite-size model not describing lon
wavelength vibrations which are very important at low te
peratures. The existence of the pronounced hump aroun
K is often associated with additional vibrational modes in t
low-frequency range. The nature of these modes~the boson
peak! is not established yet. However, there are several
potheses associating these modes with harmonic soft vi
tional modes,56 anharmonic soft modes,57 soft optic modes,58

damped acoustic modes,59 and a crossover from acoust
modes to fractons.60 In our view, these modes are the stat
from the bottom part of the lowest optic band strongly h
bridized with the acoustic waves~a detailed discussion o
this problem will be given elsewhere55!.

B. Squared average atomic displacements

Another important characteristic of atomic vibrations
the average atomic displacement^ui

2&, defined as47

^ui
2&5

\

ma
(

j

uei
j u2

v j
S nj1

1

2D , ~12!

where the indexi refers to atomi in the system. Averaging
over all atoms of typea in Eq. ~12! results in

^ua
2&5

\

Nama
(

j

1

v j
(
i Pa

uei
j u2S nj1

1

2D . ~13!

We can rewrite relation~13! using the partial VDOS:

^ua
2&5

3\

2nama
E ga~v!

2 n̄~v!11

v
dv, ~14!

wherena5Na /N stands for the relative number concentr
tion of atoms of typea. Plots of^ua

2& vs T for oxygen and
silicon atoms are reported in Fig. 8. In the high-temperat

FIG. 8. The mean-square displacement vs temperature for
con atoms~the dashed line! and for oxygen atoms~the dotted line!
for the van Beest model and the quantity averaged over ato
specieŝ u2& ~the solid line! for the van Beest model compared wit
^u2&D @see Eq.~15!# in the Debye approximation~the dot-dashed
line!.
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56 8611NATURE OF VIBRATIONAL EXCITATIONS IN . . .
regime (kBT.\vD), ^ua
2&;T in accordance with classica

statistics n̄ (v);T/\v, while at low temperatureŝua
2& is

temperature independent.
The mean-square displacement^u2& averaged over atom

of all species,̂ u2&5(aca^ua
2&, can also be calculated in th

Debye approximation:47

^u2&D5
9\

vD(acama
F1

4
1S kBT

\vD
D 2E

0

\vD /kBT xdx

ex21G .
~15!

A comparison of ^u2& calculated for the van Beest
potential–based model~the solid line! and ^u2&D ~the dot-
dashed line! is given in Fig. 8. The dependence of the mea
squared displacement on temperature in the De
approximation shows a behavior similar to that followin
from Eq. ~14! but greater in magnitude.

The mean-squared displacement in the Debye-Waller
tor is important in describing x-ray and neutron scattering
solids. The value of̂u2& can be extracted from neutron sca
tering experiments by comparing the elastic line in neut
scattering with neutron diffraction data.50,51 The experimen-
tal mean-squared displacements atT550 K are estimated
to be ^uSi

2 &50.0073 Å2, ^uO
2 &50.015 Å2, and ^u2&

50.013 Å2,50 and ^u2&50.0073 Å2 ~Ref. 51! at T533 K,
which agree rather well with our results^uSi

2 &50.0058 Å2,

^uO
2 &50.01 Å2, and ^u2&50.009 Å2 at T550 K and

^u2&50.008 Å2 at T533 K. The mean-squared displac
ments of atoms of different species obtained in Ref. 50 h
been calculated by assuming^uSi

2 &/^uO
2 &.0.48, which is the

average value for the various crystalline polymorphs
silica. In our calculations we found̂uSi

2 &/^uO
2 & to increase

slightly from 0.56 to 0.59 with increasing temperature from
to 300 K. The discrepancy between the calculated value
^u2& and experiment is probably due to the absence of ve
low-frequency vibrational modes (n&1 THz! caused by the
finite size of the model.

C. Dynamical structure factor

Inelastic neutron scattering is a powerful technique
investigating atomic dynamics, allowing such characteris
as the VDOS for all materials and dispersion curves for cr
tals to be obtained.46,61 The dynamical structure facto
S(Q,v) is proportional to the double-differential cross se
tion for neutrons and can be measured experimentally
compared to theoretical and/or simulation results. For vi
ous silica,S(Q,v) has been measured in a sufficiently wi
region of Q-v space.50 A comparison of the results of ou
simulation of S(Q,v) for the van Beest–potential–base
model with experimental data50 is given in Fig. 9 for two
frequenciesn153.02 THz andn2511.49 THz for which ex-
perimental data are available~see also Ref. 34 for more de
tail!. The same scaling factor was used when plotting
averagedS(Q,v) for both frequencies. This means that t
theoretical and experimental curves agree not only in sh
but also quantitatively. The error bars in Fig. 9 refer to n
merical averaging ofS(Q,v) over Q-vector directions simi-
lar to that in Eq.~5!, while the solid line represents analytic
-
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solid-angle averaging, as in Eq.~4!. For n2511.49 THz, the
agreement between experimental data and the results o
simulations is not as good as forn153.02 THz. This is,
probably, related to the same failure of the van Beest po
tial in reproducing a peak in the VDOS around 10 THz.

The reasonable agreement of our results with experim
tal data, demonstrated in Fig. 9, supports our choice of in
atomic potential used for constructing the structural mode
vitreous silica. The use of the Tsuneyuki interatomic pote
tial results in a poor agreement with experimental curves
the Q dependence of the dynamical structure factor at fix
frequencies.

V. MODE ANALYSIS

A complete knowledge of the eigenvectors and eigenv
ues of the dynamical matrix allows us to perform a detai
mode analysis of the system in question. The mode anal
includes the following points:~i! investigation of the degree
of mode localization, i.e., the number of atoms involved in
particular mode,~ii ! determination of the mode charact
~acousticlike or opticlike!, ~iii ! assignment of definite
structural-unit vibrations to a particular mode, and~iv! ascer-
taining the origin of eigenmodes in different frequen
ranges.

FIG. 9. The dependence of the dynamical structure factor o
for vitreous silica at two different frequencies for which a compa
son with experiment~Ref. 2! is available:~a! n153.02 THz and~b!
n1511.49 THz~the same notation as in Fig. 3!.
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8612 56S. N. TARASKIN AND S. R. ELLIOTT
A. Mode localization

In a perfect crystal, all vibrational modes extend over
whole system. This is a consequence of long-range or
Structural disorder results in the appearance of locali
modes. Localization can be quantitatively described us
the participation ratio,pj , for the eigenmodej ,11

pj5S (
i 51

N

uui
j u2D 2

•S N(
i 51

N

uui
j u4D 21

. ~16!

The participation ratio isp;1 for an extended mode (p51
for the rigid-body displacement at which all atoms a
equally displaced! and, in particular,p.0.6 for a plane
wave, whilep;1/N for a mode strongly localized to a few
atomic sites. Henceforth, the displacement eigenvectoruj

are normalized to unity, i.e.,( i 51
N uui

j u251.
The frequency dependence of the participation ratio

the van Beest–potential model of vitreous silica is shown
Fig. 10~a!. As seen from Fig. 10~a!, states in the middle o
the lower band are extended and characterized by value
the participation ratio close to 0.5. States belonging to a n
row high-frequency band in the region between 30 and
THz are characterized by smaller values of the participa
ratio (p;0.2) in the middle of the band and very low valu
of the participation ratio (p;1022) in the band tails. This is
due to a higher degree of localization of states in this b
which are comprised of just a few symmetric and asymm
ric vibrational modes of SiO4 tetrahedra~see below!. A de-
tailed analysis of mode localization will be given elsewhe

Structural disorder leads to a broadening of band ed
and the appearance of band tails containing localized mo
These tails are clearly seen~small values of the participation
ratio! at the top of the lower band and on both sides of
higher band. The appearance of the band tails results
narrowing of the band gap toDng.1 THz in vitreous silica
~cf. Dng.1 –5 THz ina-cristobalite25,16andDng.3 THz in
a-quartz17!. A similar narrowing of the gap has also bee
found in b-cristobalite28 due to dynamical disorder.

These changes in the band structure are also characte
of electronic excitations in disordered materials.48 A particu-
lar feature of atomic vibrations in some disordered structu
is, we propose,55 that long-wavelength acoustic excitation
coexist with the lowest optic band states; i.e., the acou
band overlaps the lowest optic band. This effect gives ris
a strong hybridization between acoustic waves and o
band states. Therefore the lowest optic-band-tail sta
~which would be localized in the absence of mixing! are
actually quasilocalized because of this hybridization a
hence resemble electronic in-band resonances. The parti
tion ratios of these states are one order of magnitude hig
than those of the truly localized tail states at higher frequ
cies. The lowest value of the participation ratio for the low
frequencies has been found for the Tsuneyuki potential ba
model (pmin.0.06). These quasilocalized states are actu
a mixture of an extended wave-like constituent and a loc
ized one~see Ref. 55 for more details!.

In order to investigate the contribution of different atom
species to the participation ratio, we calculated the par
participation ratios for silicon,pSi , and oxygen,pO, atoms
@see Figs. 10~b! and 10~c!#. Values ofpSi andpO were found
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from Eq. ~16! with the summation made only over silicon o
oxygen atoms. As seen in Figs. 10~b! and 10~c!, the depen-
dencepO(n) mainly coincides with the frequency depe
dence of the total participation ratio, meaning that oxyg
atoms define the localization behavior of the eigenmodes

B. Phase quotient

Atomic vibrations in crystals~i.e., phonons! can be di-
vided into acoustic and optic modes. In acoustic phono
neighboring atoms move practically in phase, while in op
modes, the relative motion is mainly out of phase. In dis
dered structures, atomic vibrations cannot be character
by a definite wave vector~see also Ref. 55!, and a division of

FIG. 10. The dependence of the participation ratio on frequen
~a! total and partial@for ~b! silicon and~c! oxygen#.
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56 8613NATURE OF VIBRATIONAL EXCITATIONS IN . . .
atomic vibrations into acoustic and optic modes is not p
sible in general. However, some phase characteristics ca
calculated for vibrational modes in disordered structur
One such quantity is the phase quotient for modej :11,24

qj5^cosu& j5
1

Nb
(

i
(
i 8

ui
j
•ui 8

j

uui
j u•uui 8

j u
, ~17!

which is just the average cosine of the angle between
placement vectors of neighboring atoms. In Eq.~17!, i runs
over all silicon atoms whilei 8 numerates all the nearest ox
gen neighbors of silicon atoms,Nb being the number of va
lence bonds. In terms of values of the phase quotient,
possible to speak about acousticlike and opticlike mode
disordered structures. In acousticlike waves, all atoms m
practically in phase, and the phase quotient is close to un
In optic modes, the relative motion of atoms is out of pha
and qj.21. For delocalized modes, different atoms gi
similar contributions toqj in averaging Eq.~17!. For local-
ized modes, this is not the case, and in order to take
account the different contributions of various atoms to
phase quotient we defined the weighted phase quotient,qj

(n) ,
weighted by thenth power of the amplitude of the eigenve
tor, which forn52 is

qj
~2!5

1

(
i ,i 8

uei
j u2

(
i

(
i 8

ui
j
•ui 8

j

uui
j u•uui 8

j u
•uei

j u2. ~18!

The dependence of the weighted phase quotient on frequ
is given in Fig. 11. The weighted phase quotient tends
unity with decreasing frequency, indicating an increas
acousticlike character of the eigenmodes. A slight decre
of qj

(2) at the lowest frequencies reflects their quasilocaliz
nature. In order to investigate this point in more detail,
extracted the localized constituent of the lowest-freque
eigenmode and found its phase quotient to be&0.5, indicat-
ing a more opticlike character of the localized componen~a
detailed analysis will be presented elsewhere; see also
55!. At high frequencies, the weighted phase quotient
mainly negative, meaning that eigenmodes in this freque
range can be regarded as opticlike vibrations. An abr
change in the weighted phase quotient around the band

FIG. 11. The variation of weighted phase quotient with fr
quency.
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~at n.27 THz! indicates a different nature of the opticlik
vibrations in the bands separated by the gap.

C. Stretching, bending, and rocking

The structure of vitreous silica consists of corner-sha
tetrahedral SiO4 units. These units are connected to ea
other via bridging oxygen atoms. Twofold-coordinate
bridging oxygen atoms can move quite easily compared
fourfold-coordinated silicon atoms and have been suppo
to give the main contribution to the atomic vibrations in th
system.6,11,19 The simplest and most frequently used proc
dure for describing oxygen motion is to decompose its d
placement into three components along three orthogona
rections,ui

j5uis
j 1uib

j 1uir
j , related to bond-stretching (uis

j ),
bond-bending (uib

j ), and rocking (uir
j ) motions.11 Then the

squared average displacement along these directions ca
calculated according to the following expression:

ur j us,b,r
2 5

1

(
i

uũi
j u2

(
i

uũi
j us,b,r

2 , ~19!

Bearing in mind that the two silicon atomsi 8 that are neigh-
bors of the oxygen atomi move as well, only the relative
motion of the oxygen atom has been decomposed
stretching, bending, and rocking components in Eq.~19!, so
that ũi

j5ui
j2(uSi1

j 1uSi2
j )/2 is the displacement of oxyge

atom i relative to the average displacement of its near
silicon neighbors. The convolution ofur j us,b,r

2 with the total
VDOS decomposesg(v) into the stretching, bending, an
rocking components,g(v)5gs(v)1gb(v)1gr(v), where

gs,b,r~v!5
1

3N(
j

ur j us,b,r
2 d~v2v j !. ~20!

The frequency dependences of the stretching, bending,
rocking components of VDOS are presented in Fig. 12. I
clearly seen that stretching motion~the dashed line! is im-
portant only for the highest opticlike band (n;30–40 THz!,
while bending~the dotted line! and rocking~the dot-dashed!
contribute equivalently at lower frequencies. A simil
analysis made for a Bethe-lattice model19 shows that stretch-

FIG. 12. The stretching~dashed!, bending~dotted!, and rocking
~dot-dashed! components of the total VDOS~solid!.
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8614 56S. N. TARASKIN AND S. R. ELLIOTT
ing results in a broad asymmetric peak around 30 T
which agrees quantitatively with our results. Rocking moti
in the Bethe-lattice model causes a peak around 13.5 T
while bending leads to a broad triangle-shaped peak at
THz and a narrow peak at 21 THz. The peaks for rock
and bending do not agree with our results.

D. Projections onto vibrational modes
of different structural units

Another way of investigating the atomic motion for di
ferent eigenmodes is to project the eigenvectors onto var
vibrational modes of typical structural units. The projecti
r A,i

j of the displacement eigenvectoruj onto the vibrational
displacement vectorA( i ) of the structural uniti can be writ-
ten as a dot product of these vectors:

r A,i
j 5 (

i 8~ i !

ui 8
j

•A i 8~ i ! , ~21!

where the sum is taken over all atomsi 8 comprising the
structural uniti . The displacement vectorA( i ) normalized to
unity consists of 3N( i ) components which are the Cartesi
coordinates of the displacement vectors of each of theN( i )
atoms comprising the structural uniti . The squared value o
the projection in Eq.~21! characterizes contributions of th
vibrational motion of a definite type of the structural uniti to
the eigenmodej . Averaging of the squared projections ov
all structural units of a definite type results in

~r A
j ~n!!25

1

( i~wi
j !n(

i
~wi

j !n~r A,i
j !2, ~22!

with n50,1,2, . . . being the exponent of the weightwi
j

given by

wi
j5F (

i 8~ i !

uei 8
j u2G1/2

. ~23!

For n>1, the weight (wi
j )n takes into account the differen

contributions of the various structural unitsi in the total
eigenmodej . Use of the weighted projections makes sen
for localized modes in order to enhance the contribution
the units at which the mode is mainly localized.

The displacement eigenvectorui 8
j can be renormalized

only over atoms comprising the structural unit, and the p
jection r̃ A( i )

j of this renormalized vector onto vibrationa

modeA( i ) , viz.,

r̃ A~ i !

j 5r A~ i !

j Y F (
i 8~ i !

uui 8
j u2G1/2

, ~24!

does not give information about the contribution of theA
mode to the total eigenvector but characterizes the typ
motion of the structural uniti ; i.e., it shows the relative con
tribution of the A mode to the vibrational motion of th
structural uniti in comparison with contributions of othe
vibrational modes of this unit. The averaging of the squa
renormalized projection with weights given by Eq.~23! over
all structural units gives rise to the expression
,

z,
.5

g

us

e
f

-

of

d

~ r̃ A
j ~n!!25

1

( i~wi
j !n(

i
~wi

j !n~ r̃ A~ i !

j !2, ~25!

which can be used~with n50) to calculate the partial VDOS
gA(v) for different types (A) of vibrations of the structura
unit,

gA~v!5
1

3N(
j

~ r̃ A
j ~0!!2d~v2v j !. ~26!

If the vibrational modes of the structural unit comprise
complete set, then

g~v!5(
A

gA~v!. ~27!

The weighted squared renormalized projections withn>1
can be used to characterize localized vibrational modes
should be noted that the use of weights in Eq.~25! cannot
compensate for the renormalization of the displacement
genvector in Eq.~24!.

Vitreous silica can be imagined as being comprised
structural units of different types. The nonlinear three-at
Si-O-Si units and corner-shared tetrahedral SiO4 units are
usually considered11,17,19 to be the basic ones. In the ide
case, these structural units~isolated molecules! have the
point-group symmetriesC2v andTd , respectively. The mos
convenient way to characterize the vibrations of these u
is to introduce symmetry coordinates for which the dynam
cal matrix has a block form. These coordinates transfo
like different irreducible representations~species! of the cor-
responding point group. In the case of Si-O-Si structu
units, one symmetry coordinate~asymmetric stretching! be-
longs to the nondegenerate speciesB1 and two other symme-
try coordinates~symmetric stretching and bending! belong to
the nondegenerate speciesA1. In the case of SiO4 units, one
symmetry coordinate~symmetric stretching! belongs to the
nondegenerate speciesA1, a single pair of symmetry coordi
nates~bending! belongs to the doubly degenerate speciesE,
and two triplets~asymmetric stretching and bending! belong
to the triply degenerate speciesF2.62 The symmetry coordi-
nates of the speciesB1 ~for Si-O-Si! and of the speciesA1
and E ~for SiO4) coincide with the normal coordinates o
these structural units while the others do not and the nor
coordinates are the linear combinations of the symmetry
ordinates belonging to the same species~e.g., of the
F2-stretching and theF2-bending coordinates in case o
SiO4). The coefficients in these linear combinations are
lated to the off-diagonal dynamical matrix elements, the v
ues of which depend on the specific model used to desc
the potential field. Therefore the normal modes cannot
used in a projection analysis.

The symmetry coordinates do not describe the motion
the structural unit as a whole unit~solid-body displacements
and rotations! but are related to the internal coordinates, i.
the bond angles and interatomic distances. Bearing thi
mind, we define and consider the relative displacement
genvectorui ( i 0)

j ,

ui ~ i 0!
j 5~ui

j2ui 0
j !/ACi 0

j , ~28!
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56 8615NATURE OF VIBRATIONAL EXCITATIONS IN . . .
with Ci 0
j the normalization constant given by

Ci 0
j 5(

i
uui

j2ui 0
j u2. ~29!

Here i 0 denotes the central atom in the structural unit~oxy-
gen for Si-O-Si and silicon for SiO4) which thus becomes
the reference point for the components of the displacem
eigenvector. The symmetry coordinates are defined belo
consistency with Eq.~28! so that the central atom is immo
bile for them as well. To obtain a ‘‘complete’’ set of vibra
tions of the structural unit we also added three solid-u
rotations to the symmetry modes.

1. Projection onto vibrations of Si-O-Si structural units

Here we present the results of projecting the eigenmo
onto the symmetry vibrational coordinates of Si-O-Si un
Three symmetry displacement vectors characterizing s
metric (A1) and asymmetric (B1) stretching, and also bend
ing (A1), can be defined for these units~see also Ref. 62!:

S
~ i !
~A1!

5
1

A2
$âi i 8,0,âi i 9%, S

~ i !
~B1!

5
1

A2
$âi i 8,0,2âi i 9%,

B
~ i !
~A1!

5
1

A2
$b̂i 8 i 9,0,b̂i 9 i 8%, ~30!

with âi 8 i 9 being the unit vector directed from atomi 8 to atom
i 9 andb̂i 8 i 9 the unit vector perpendicular to the bond betwe
atomsi andi 8 and directed from atomi 8 to atomi 9 as shown
in the inset in Fig. 13. The first component of the displa
ment vectors in Eq.~30! characterizes the displacement
atom i 8, the second of atomi ~immobile!, and the third of
atom i 9.

For all Si-O-Si structural units, we calculated the proje
tions of the renormalized eigenvectors onto symmetry co

FIG. 13. The partial VDOS for the projections onto the vibr
tions of Si-O-Si structural units:A1 stretching~the gray solid line,
A1s), B1 stretching~the dashed line,B1s), A1 bending~the dotted
line; A1b), solid-unit rotations~the dot-dashed line!, and their sum
~the black solid line! coinciding with the total VDOS. The atomic
displacements in Si-O-Si units for symmetric (A1s) and asymmetric
(B1s) stretching and also bending (A1b) are shown schematically in
the inset.
nt
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dinates of these units according to Eqs.~21!–~25!, using the
expressions in Eq.~30! for A( i ) and replacingui 8

j by the

relative displacement eigenvectorui 8( i )
j defined in Eq.~28!.

Then, an averaging over all units has been made as in
~25! with n50 and the partial VDOS for different projec
tions were calculated in accordance with Eq.~26!. The re-
sults are shown in Fig. 13, where the partial VDOS for t
solid unit rotations is also represented by a dot-dashed l
The rotations have been made around three perpendic
axes passing through the central~oxygen! atoms; then the
squared projections onto rotations have been summed
every unit and averaged over all units. It follows from Fi
13 that the symmetric stretching of Si-O-Si units~the gray
solid line! is a maximum at frequencies around 22 THz~al-
though this is not the dominant contribution overall! and
asymmetric stretching~the dashed line! contributes at fre-
quencies in the region of the two peaks at 32 and 36 T
while bending~the dotted line! is essential in a broad regio
between 1 and 27 THz. Rotational motion~the dot-dashed
line! contributes to the motion of Si-O-Si units in the who
frequency range: not very appreciably in the high
frequency band, comparable to bending in the middle of
lower-frequency band and appreciably in the low-frequen
region. The latter feature is quite important in clarifying th
nature of the low-frequency vibrations. The sum of all part
VDOS ~the solid black line! calculated according to Eq.~27!
coincides with the total VDOS. The lack of coincidence
these two lines, especially in the lower-frequency band
due to the fact that the Si-O-Si structural units in our stru
tural model are not perfectly symmetric (C2v) three-atom
‘‘molecules’’ and the displacement vectors@Eq. ~30!# plus
three solid-unit rotations do not form an exactly complete
of vectors. Use of the weighted projections@n52 or n54 in
Eq. ~25!# leads just to small corrections in the partial VDO

We have also calculated the projections of nonrenorm
ized eigenvectors onto the symmetry displacement vec
for Si-O-Si units using Eqs.~21!–~23!. Such projections take
into account the different amplitudes of a definite eigenv
tor on the various structural units and therefore give m
precise information about the type of atomic motion for
definite eigenmode. Nonweighted (n50) squared projec-
tions onto symmetric~solid circles! and asymmetric~open
circles! stretching, bending~open diamonds!, and rotations
~crosses! are shown in Fig. 14~a!. It follows from this figure
that symmetric and asymmetric stretching within Si-O-
units takes place mainly for eigenmodes around 22 THz
around 32 and 36 THz, respectively, which agrees with
peak positions ofgS(A1)(v) andgS(B1)(v) in Fig. 13. The data
for bending, however, show an appreciable maximum n
the upper edge of the lower-frequency band (27 THz! which
is not seen in Fig. 13. This means that bending motion gi
the essential contribution to the eigenmodes mainly in t
frequency region. The squared projection onto rotational m
tion has a pronounced maximum at 22 THz, which is n
seen in Fig. 13 as well. In this respect, we would like
stress again that the commonly used partial VDOS~Refs. 19
and 26! for different projections gives information just abo
how atoms move within the structural units on average,
taking into account the different amplitudes of vibrations
various units.
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The use of weighted projections@e.g.,n52 in Eq. ~22!#
enhances the contribution of localized vibrational states
allows conclusions to be made about the type of atomic m
tion for localized modes. The weighted (n52) squared pro-
jections of nonrenormalized eigenvectors onto different sy
metry displacement vectors are shown in Fig. 14~b!. The
difference between Figs. 14~a! and 14~b! occurs mainly in
the high-frequency region around the band edges where
eigenmodes are strongly localized. It is seen from Fig. 14~b!
that the localized states at the top of the lowest-freque
band (;28 THz! are characterized by bending motion
Si-O-Si structural units, while the localized states at the b
tom of the higher-frequency band (;29 THz! are dominated
by asymmetric stretching and rotational motion. Practica
only asymmetric stretching takes place for the states at
top of the higher-frequency band (;39 THz!. We also men-
tion a slight increase in the values of the weighted squa
projections onto rotational and bending coordinates for
lowest frequencies (;1 THz!, which can be related to th
quasilocalization of these states.

2. Projection onto vibrations of SiO4 tetrahedra

Similar projectional analyses have been performed
SiO4 structural units, the results of which are presented
low. The perfect SiO4 tetrahedron has nine symmet

FIG. 14. The squared projections of the eigenvectors o
Si-O-Si symmetry coordinates:A1 stretching ~solid circles!, B1

stretching~open circles!, A1 bending ~open diamonds!, and onto
solid-unit rotations~crosses!: ~a! nonweighted;~b! weighted with
n52.
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modes.62 The symmetric-stretching displacement eigenvec
(A1 symmetry! is given by the following relation:

S~A1!5
1

A4
$0,â1 ,â2 ,â3 ,â4%, ~31!

where the first component characterizes the displacemen
the central silicon atomi ~the indexi is omitted below! and
the rest are related to the oxygen atomsi 851, . . . ,4 ~the
unit vectorsâi 8 are directed from atomi to atomsi 8; see
inset in Fig. 15!. The three degenerate asymmetric-stretch
coordinates (F2 symmetry! are

S1
~F2!

5
1

A4
$0,â1 ,â2 ,2â3 ,2â4%,

S2
~F2!

5
1

A4
$0,â1 ,2â2 ,2â3 ,â4%,

S3
~F2!

5
1

A4
$0,â1 ,2â2 ,â3 ,2â4%. ~32!

Bending coordinates can be divided into two groups: th
degenerate coordinates (F2 symmetry! ,

B1
~F2!

5
1

A4
$0,b̂12,b̂21,2b̂34,2b̂43%, ~33!

B2
~F2!

5
1

A4
$0,b̂14,2b̂23,2b̂32,b̂41%,

B3
~F2!

5
1

A4
$0,b̂13,2b̂24,b̂31,2b̂42%

and two degenerate coordinates (E symmetry!,

o

FIG. 15. The partial VDOS for the projections onto the vibr
tions of SiO4 structural units:A1 stretching~the solid gray line!, F2

stretching~the dashed line!, F2 bending~the dotted line!, E bending
~the dot-dashed line!, solid-unit rotations~the triple dot-dashed
line!, and their sum~the black solid line! coinciding with the total
VDOS. The atomic displacements in SiO4 units for symmetric (A1)
and asymmetric (F2s) stretching and alsoF2 and E bending are
shown schematically in the inset.
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B1
~E!5B1$0,2b̂122b̂132b̂14,2b̂212b̂232b̂24,2b̂342b̂31

2b̂32,2b̂432b̂412b̂42,%,

B2
~E!5B2$0,~ b̂132b̂14!,2~ b̂231b̂24!,~ b̂312b̂32!,

2~ b̂411b̂42!%, ~34!

with b̂i 8 i 9 being the unit vector perpendicular to the bo
between the central silicon atom and an oxygen atomi 8 and
directed from atomi 8 to atom i 9, as shown in the inset in
Fig. 15, andB1,2 are normalization constants, withuB1,2

(E)u
51.

First, we calculated the projections of the renormaliz
eigenvectors onto these symmetry displacement vectors@see
Eq. ~24!# for every tetrahedron and then averaged them o
all tetrahedra using Eq.~25! with n50. The convolution of
the averaged squared renormalized projections with the
VDOS according to Eq.~26! results in the partial VDOS for
different type of symmetry vibrations and solid-unit rotatio
which are presented in Fig. 15. The symmetric stretch
~the gray solid line!, as seen from Fig. 15, gives a contrib
tion to the motion of SiO4 units only for states around th
upper peak at 37 THz in the high-frequency band, while
asymmetric stretching~the dashed line! contributes apprecia
bly to the motion of SiO4 units for the states in both peaks
32 and 37 THz. The stretching vibrations of SiO4 tetrahedra
give practically no contribution to the motion of the tetrah
dra at frequencies below the band gap (n&27 THz! except
for an insubstantial contribution of asymmetric stretching
the states in the peak around 22 THz. This picture agr
with the results discussed in Refs. 26, 30 and 37 but con
dicts the conclusions of Ref. 18. It should be noted, howe
that the authors of Ref. 26 found essentially a larger con
bution of A1 stretching for the states in the upper peak
THz and an additional contribution of this type of motion f
the states in a peak around 21 THz. TheF2 stretching found
in Ref. 26 gives a contribution to the states in a peak at
THz in the lower band~as compared to the peak at 22 TH
obtained in our calculations!.

The bending vibrations, in contrast to stretching, prov
the major contribution to SiO4 motion for the states in the
intermediate-frequency region in the vicinity of the bro
peaks at 15 THz (E bending shown by the dot-dashed line
Fig. 15! and 20 THz (F2 bending, dotted line!. The authors
of Ref. 26 generated a structural model of silica based o
different interatomic potential and found sharper peaks a
THz (E bending! and at 14.5 THz which are quite differen
from those obtained in our simulations, the result, probab
of the use of a different interatomic potential.

The rotational motion~the triple-dot-dashed line! gives
the main contribution to SiO4 motion for the states in the
lowest part of the frequency spectrum. This feature is rat
important from our viewpoint to clarify the origin of th
low-frequency vibrations. The sum of all partial VDOS fo
different squared projections, including rotational ones,
represented by the solid black line in Fig. 15 which coincid
with the calculated total VDOS. The partial VDOS calc
lated with the use of weighted projections differ only sligh
from those presented in Fig. 15.
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The projections of nonrenormalized eigenvectors o
symmetry displacement vectors for SiO4 units @see Eqs.~21!
and~22!# are presented in Fig. 16. The stretchingA1 andF2
vibrations~solid and open circles! show the same features a
in Fig. 15, whileF2 bending~open diamonds! mainly con-
tributes in the region around 19 THz and at the top of
lower frequency band (27 THz!. The E bending~solid dia-
monds! exhibits a narrower peak at 15 THz as compared
the peak at 12 THz in Fig. 15. The rotational motion
SiO4 units ~crosses! is the most important for eigenmode
around 7 THz.

3. Projection onto vibrations of O-Si-O structural units

Vitreous silica can also be considered as being compr
of O-Si-O units. A projection analysis for these units h
been performed similarly to that for Si-O-Si units~see Sec.
V D 1!. The results for the partial VDOS characterizing t
averaged squared projections of the renormalized eigen
tors onto symmetry modes are given in Fig. 17 and can
compared to Fig. 13. The most essential difference occur
the lower-frequency band, where the rotations of O-S
units ~the dotted line in Fig. 17! play the most important role
as compared to bending. This is a consequence of the rig
of the O-Si-O angle in comparison with the quite flexib
Si-O-Si angle.

E. Projections onto coupled rotations

It follows from the above analysis that the rotational m
tion of all the structural units analyzed is important at lo
frequencies. In trying to explain the nature of low-frequen
vibrations, Buchenauet al.5 proposed a model of couple
rotations of SiO4 tetrahedra. These coupled rotations of
restricted number of tetrahedra~e.g., 5! could be responsible
for the low-frquency modes in the boson-peak region.
verify this suggestion, we have projected the eigenvec
onto coupled-rotation modes with the aim of searching for
appreciable enhancement in the values of the squared pr
tions at the lowest frequencies.

The coupled-rotation mode has been constructed in
following way. Consider rotating an SiO4 tetrahedron

FIG. 16. The squared nonweighted projections of the eigenv
tors onto SiO4 symmetry coordinates:A1 stretching~solid circles!,
F2 stretching~open circles!, F2 bending~open diamonds!, E bend-
ing ~solid diamonds! and onto solid-unit rotations~crosses!.
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8618 56S. N. TARASKIN AND S. R. ELLIOTT
around random axes passing through the central immo
silicon atomi . The vectora characterizes the displaceme
of one (i 0) of the oxygen atoms~see the inset in Fig. 18!.
The motion of atomi 0 causes the coupled motion of th
attached tetrahedron with the Si atomi 8 at the center. We
suppose that this tetrahedron moves as a rigid unit,
changing its shape, i.e., being displaced as a whole in a
tational manner. In order to describe the motion of the
tached tetrahedron, we decompose the vectora5ai1a' into
two components which are parallel (ai) to the bond between
atoms i 0 and i 8 and perpendicular (a') to that bond. All
atoms in the attached tetrahedron have the displacem
componentai . The rotational componenta' induces a rota-
tion of the attached tetrahedron around an axis pas
through the atomi 8 and perpendicular to the plane formed
the bond between atomsi 0 and i 8 and the vectora' , thus
providing the three other oxygen atoms with the proper
tational displacement vectorsai 9

(r) . The oxygen atoms~except
i 0) can also rotate around the bond connecting atomsi 0 and

FIG. 17. The partial VDOS’s for the projections onto the vibr
tions of O-Si-O structural units:A1 stretching~the gray solid line!,
B1 stretching~the dashed line!, A1 bending~the dot-dashed line!,
solid-unit rotations~the dotted line!, and their sum~the black solid
line! coinciding with the total VDOS.

FIG. 18. The squared nonweighted projections of the eigenv
tors onto coupled rotations of SiO4 tetrahedra. The atomic displace
ments for the coupled rotational motion of two connected Si4

units are shown schematically in the inset.
ile
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i 8. The amplitude of this rotation is a free parameter for t
coupled-rotation mode~the results presented below are pra
tically independent of this parameter!.

Following this approach, we attached three more tetra
dra and constructed the coupled-rotation mode involving
atoms~or 5 coupled tetrahedra!. Then we projected the ac
tual vibrational eigenvectors onto such modes and avera
them over all silicon atomsi at the origin of the centra
tetrahedron using Eqs.~21!–~23! with n50, where the rela-
tive displacement vectoru(0)

j was used instead ofuj . The
results of the averaged squared projection of the eigenvec
onto coupled-rotation modes are shown in Fig. 18. Th
data practically coincide with those for projections onto no
coupled rotations presented in Fig. 16. This means that
the basis of this analysis, essentially all rotations are coup
to each other. However, it is likely, in fact, that the rotatio
are coupled together. Our analysis may miss this behav
since we do not search for the unique axis of coupled ro
tions, but instead perform an average over all angles
which the contribution from coupled rotations may redu
effectively to zero.

F. Rigid-unit modes

Structural phase transitions in quartz andb-cristobalite
can be described using rigid-unit modes.63 Rigid-unit modes
represent the collective motion of all atoms which does
cause changes in the shape of SiO4 tetrahedra but influence
their mutual orientation. These modes have comparativ
low energies~only bond bending around oxygen atoms
involved! and consequently could be supposed to be resp
sible for the excess modes in the low-frequency~BP!
region.25 We made an attempt to find rigid-unit modes in o
model structures of vitreous silica by calculating the av
aged relative changes of the volume of SiO4 tetrahedra. The
volumeVi

j of an SiO4 tetrahedron with an Si atomi in the
center changes~relative to its initial valueVi

(0) for the equi-
librium static structure! because of the atomic motion. Th
volume can be represented as a sum of the volumesVia of
four smaller tetrahedra with a common Si atomi at the apex
~see inset in Fig. 19!, Vi

j5(a51
4 Via

j . In the rigid-unit mode,
the shape of a tetrahedron should not be changed, so tha
relative changes in volumes,dVia

j , of each small tetrahedron
constituting an SiO4 tetrahedron,dVia

j 5(Via
j 2Via

(0))/Via
(0)

should approach zero for the rigid-unit mode. We plot t
weighted (n52) averaged relative changes in the volume
SiO4 tetrahedradVj (n) against frequency in Fig. 19, where

dVj ~n!5
1

( i~wi
j !n(

i
~wi

j !n(
a

udVia
j u, ~35!

with the weightwi
j defined in Eq.~23!. In Eq. ~35!, we sum

the absolute values of the relative changes in order no
take into account modes that change the shape of a tetr
dron but conserve its total volume. As seen in Fig. 19,dVj (n)

decreases monotonically with decreasing frequency
shows no abrupt decrease~expected if rigid-unit modes ex
ist! in the low-frequency region. Excess modes in the
region, therefore, cannot be associated with rigid-unit mo
in our structural model.

c-
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G. Vibrational spectrum of small structural units
as representative of the spectrum

of the entire system

We consider a system of finite size containing quite
large number of atoms. For a system of such size, the m
features of the vibrational spectrum~VDOS! are found to be
independent of the number of particles, except in the reg
of the lowest frequencies where acousticlike waves form
spectrum. The very-low-frequency region of the spectr
can be investigated by constructing and analyzing essent
larger systems, and this is not the subject of our consid
ation. The question we answer in this subsection is whe
or not it is possible to describe the main features of
vibrational spectrum of the entire system by investigating
vibrations of small structural units. In other words, what
the most representative of the small structural units in giv
the vibrational properties of the entire system?

In order to answer these questions, we have performe
vibrational analysis for our systems using different appro
mations in the evaluation of the dynamical matrix. Name
small blocks in the dynamical matrix corresponding to a
propriate structural units~clusters of atoms! were considered
separately, i.e., extracted from the true dynamical mat
and the resulting effective dynamical matrix was then dia
nalized. The resulting vibrational spectrum obtained for d
nite structural units can help in understanding the origin
particular features in the total VDOS and reveal the imp
tance of ‘‘interactions’’ between atoms in such definite stru
tural units.

First, we considered a small structural unit~e.g., an SiO4
tetrahedron! and calculated its dynamical matrix, evaluatin
properly the self-interaction matrix elements~i.e.,
;]2V/]xa,i]xb,i , a standing for the Cartesian coordinate!
for all atomsi comprising the unit and taking into accou
only ‘‘interactions’’ (;]2V/]xa,i]xb,i 8) between different
atomsi and i 8 within the unit. Then, the size of the unit wa
increased by taking into account the second~and third,
fourth, or fifth! neighbors to the central atom in the unit. Th
eigenvalues of these dynamical matrices have been fo
and averaged over all atoms~being the central atoms in th
units! in the whole model and the corresponding VDOS ha
been obtained.

FIG. 19. The weighted@n52 in Eq. ~35!# averaged relative
changes in volume of SiO4 tetrahedra involved in a particula
eigenmode vs the eigenmode frequency.
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The VDOS for the units comprised of the silicon ato
and its first, third, and fifth neighbors are shown in Fig. 20~a!
while those for the units comprised of the silicon atom a
its second and fourth neighbors are given in Fig. 20~b!. The
analogous VDOS for the structural units containing an o
gen atom at the center are presented in Figs. 21~a! and 21~b!.
The units containing an odd number of nearest neighbor
a silicon atom actually comprise SiO4 tetrahedra, while the
units containing an odd number of nearest neighbors to
oxygen atom comprise Si-O-Si structural units~molecules!.
A comparison of Figs. 20~a! and 21~a!, and especially the
curves for the fifth-nearest neighbors, shows that in the c
of Si as the origin atom the approximate curve@the dot-
dashed line in Fig. 20~a!# fits the calculated VDOS~the solid
lines in Figs. 20 and 21! better than in the case of O as th
origin atom@the dot-dashed line in Fig. 21~a!#. This means
that SiO4 units are better representative structural units th
Si-O-Si units. This conclusion agrees with the opinion of t
authors of Ref. 6 but contradicts the conclusions of Ref.
The units containing an even number of nearest neighbor
a silicon atom comprise an integral number of Si-O-Si un
and the partial VDOS in Fig. 20~b! resembles the partia

FIG. 20. The VDOS for structural units with silicon atoms
the origin and theirnth nearest neighbors:~a! first (n51) neighbors
~the dotted line!, third (n53) neighbors~the dashed line!, and fifth
(n55) neighbors~the dot-dashed line!; ~b! second (n52) neigh-
bors~the dotted line! and fourth (n54) neighbors~the dashed line!.
The VDOS of the entire system obtained in our simulations is r
resented by the solid line.
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8620 56S. N. TARASKIN AND S. R. ELLIOTT
VDOS for O-centered units containing an odd number
nearest neighbors@see Fig. 21~a!# andvice versa.

The other important conclusion we can make is that
bottom of the frequency spectrum is shifted to lower f
quencies when an increasing number of nearest neighbo
taken into account. Even the inclusion of fifth neighbors (
atoms with Si as the origin! is not enough to obtain correc
frequencies for the low-frequency modes. This means
many atoms~in fact, practically all atoms in the structure, a
follows from our projection analysis involving plan
waves55! are involved in the low-frequency vibrations~in
agreement with Ref. 31!.

VI. CONCLUSIONS

We have investigated the vibrational excitations in tw
structural models of vitreous silica constructed by molecu
dynamics. Two of the best, to our knowledge, interatom
potentials ~due to van Beestet al. and Tsuneyukiet al.!,
based onab initio calculations for a small moleculelik
SiO4 unit, have been implemented in the simulations. B
models show good agreement with experimental data w
respect to the partial radial distribution functions, the O-S

FIG. 21. The VDOS for structural units with oxygen atoms
the origin and theirnth nearest neighbors:~a! first (n51) neighbors
~the dotted line!, third (n53) neighbors~the dashed line!, and fifth
(n55) neighbors~the dot-dashed line!; ~b! second (n52) neigh-
bors~the dotted line! and fourth (n54) neighbors~the dashed line!.
The VDOS of the entire system obtained in our simulations is r
resented by the solid line.
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and Si-O-Si bond-angle distributions, and static struct
factor. The van Beest model also exhibits a good agreem
with experimental data for the dynamical structure factor a
fairly good agreement with the vibrational density of sta
extracted from inelastic neutron scattering. The Tsuney
model shows poorer agreement for the dynamical struc
factor and the vibrational density of states, mainly due t
shift of the spectrum in the high-frequency region to low
frequencies.

The structural models were relaxed to the equilibriu
glassy state and the dynamical matrix was calculated
diagonalized directly, resulting in a complete set of eige
vectors and eigenvalues. Knowing all the eigenvectors,
have investigated the temperature dependence of the m
square displacement and compared it with the Debye de
dence. The experimental value of the mean-square displ
ment found atT550 K from inelastic and elastic neutro
scattering was in good agreement with our calculations.

In the low-frequency region (n;1 THz!, we have found
excess ~compared to the Debye law! vibrational modes
known as the boson peak. The structure and origin of
lowest-frequency modes were briefly discussed and a
model for the states in the boson peak is proposed: The l
frequency states are the transverse acoustic waves stro
overdamped due to hybridization with the states from
bottom part of the lowest optic band~see Ref. 55 for more
details!. The contributions of these modes to the heat cap
ity have been investigated and a pronounced bump aro
T520 K has been found. Unfortunately, we could not inve
tigate the very low-frequency region because of the fin
size of our models. Creation of larger models is in progre

The vibrational analysis performed in order to reveal t
nature of vibrational modes included an investigation of
degree of mode localization, phase relations, and mode
jections onto the symmetry coordinates of definite structu
units. We have found the existence of truly localized state
the high-frequency band tails and quasilocalized states in
low-frequency region. We have also found that the vibratio
in the low-frequency range are mainly in phase, resemb
acoustic waves, while in the high-frequency range they
mainly out of phase, resembling optic modes. Projections
the modes onto the stretching, bending, and rocking coo
nates of oxygen atoms have been made, revealing
stretching is significant only in the high-frequency band, a
rocking and bending contribute equally in the low- a
medium-frequency range.

Projecting the eigenmodes onto the symmetry coordina
of Si-O-Si, SiO4, and O-Si-O structural units allows us t
make a conclusion about the origin of the different featu
in the VDOS. On the one hand, for Si-O-Si units,B1 stretch-
ing ~asymmetric! gives dominant contributions to the eige
vectors characterized by frequencies in the region of the
high-frequency peaks in the VDOS at 32 and 37 THz,A1
bending to the states around the top of the lower-freque
band (;27 THz!, andA1 stretching and solid-unit rotation
to the peak around 22 THz. On the other hand, for Si4
units, A1 stretching ~asymmetric! contributes only to the
eigenvectors characterized by frequencies in the region of
upper peak at 37 THz in the high-frequency band of
VDOS, F2 stretching~asymmetric! appreciably to the two
high-frequency peaks in the VDOS at 32 and 37 THz a
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56 8621NATURE OF VIBRATIONAL EXCITATIONS IN . . .
slightly to the upper part of the lower band at 22 THz,F2
bending appreciably to the states around the top of the low
frequency band (;27 THz! and around 19 THz,E bending
to the middle of the lower band around 15 THz, and sol
unit rotations to the bottom part of the lower frequency ba
at 527 THz. Projecting onto the coupled rotations of SiO4
tetrahedra showed that they play an important role in
same frequency region as noncoupled ones (;5 –7 THz!. No
significant enhancement of their contribution in the lo
frequency region (;1 THz! has been found.

We searched for rigid-unit modes, investigating the re
tive change in the average volume of tetrahedra for differ
eigenmodes, but found no peculiarities indicative of th
presence in the low-frequency region.

We have studied the question of the suitable choice o
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small structural unit as being representative of the vibratio
properties of the entire system. It was shown that a clu
containing an integral number of SiO4 tetrahedra describe
the vibrational properties of vitreous silica better than,
least, a cluster containing an integral number of Si-O
structural units. The vibrations of finite-size clusters conta
ing up to 69 atoms do not contribute to the lowest-frequen
range;1 THz.
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