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Nature of vibrational excitations in vitreous silica
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The vibrational properties of models of vitreous silica constructed by molecular-dynamics simulation with
different interatomic potentials have been investigated. The static and dynamical structure factors of the model
systems are in good agreement with experimental data. Partial and total vibrational densities of states are
presented. The characteristics of vibrational modes in different frequency ranges are investigated using a
mode-projection techniquéS0163-182807)05737-9

. INTRODUCTION Si0,.3373% Ab initio (Car-Parinellp MD simulation is the

] o o best technique for creating realistic structural models, al-
Vitreous silica is one of the principal network glass- hoygh at present it is limited to small atomic structures; e.g.,

forming systems and exhibits all the features that are typical, moqe| ofy-SiO, containing 72 atoms was created using
of disordered materials. For instance, the medium-range o

der(MRO) of vitreous silica has been revealed by diffraction
experiments;? e.g., pseudoperiodicity with a scale of
27w/Q,=4.1 A is associated with the position of the first
sharp diffraction peakFSDP at Q;=1.6 A~1.3 Excess vi-

brational modes, called the boson pd8iP), have been ob-

served in Ramahand inelastic neutrdnscattering, and IR N9 the velocity-velocity autocorrelation functigh*2%:20:40
absorptiofi in the low-frequency range~1 THz’. Low- BY direct diagonalization of the dynamical matrix, Jin

temperature anomalies in thermodynamical properties art &l calculated the vibrational density of statOS) of
exhibited by vitreous silica as welf A hump around @ Structural model of vitreous silica based on a three-body
T~10-30 K in the temperature dependence of the reduce@mPpirical interatomic potential. The vibrational spectrum
heat capacityC, /T3 vs T, is associated with excess low- thus obtained reproduced the experimental data in the low-
frequency vibrational modes in the BP regi7oN(ery-I0W- and intermediate-frequency regions reasonably well, but the
temperature anomalies @ts1 K, e.g., a linear temperature peak splitting at around 35 THz in the high-frequency optic
dependence of heat capacity, are probably connected witpand was not found. Moreover, the structural model of
excitations of two-level systen?s- v-SiO, constructed in Ref. 24 contains an unrealistically
A few theoretical, mainly computational, studies of the high concentration of coordination defedtfangling bonds
problem of the vibrational behavior of vitreous silica and itsand overcoordinated atom®ella Valle and Venuttet al°
crystalline counterpart§lifferent polymorphs of SiQ) have  obtained the VDOS ob-SiO, from the velocity-velocity
been performed:~>*?°The first step is the construction of a autocorrelation function for a structural model based on the
structural model ob-SiO5; the simplest model, a handmade Tsuneyuki potential. The influence of the rate of the quench
random network cluster, was constructed by Bell and Déan. gn, the shape of the VDOS has been investigated in Ref. 33
Later, more sophisticated computer-s_imulation-based StruGssing the van Beest potenti#lin the high-frequency region,
tural models were created. The quality of these computeryge of the Tsuneyuki potential was found to result in a shift
simulated models depends crucially on the choice of interys e vibrational spectrum to lower frequencies compared

atomic potential. The very first simulations based onyuh experiment. Quite a good comparison with the experi-
vale.nce-force.-ﬂgld potgnﬂal; took only th? valencg pgrt Ofmental VDOS has been achieved for the first-principles
the interatomic interactions into consideratfdn*®the ionic

Qi 37

part was included latér*8 Structural models of crystalline model ofv-SiO.

polymorphs of SiQ and v-SiO, (modeled by a Bethe Mode-assignment analyses have been successfully made
- 2

for crystalline silica polymorph&1"18|n vitreous silica, the

lattice'”'9 based on these potentials were constructed b¥n . .
energy minimization. Two-body and three-body empirical ode-projection technique has been used to analyze the role
of normal vibrations of some structural unit§io, and

interatomic potentials were developed and implemented in’" ' v ]
molecular-dynamicéMD) simulations?®~2 The polarizable SiO4) in different frequency ranges for a Bethe-lattice
ion model has been used to describe IR absorption i,ﬁnodel,lgforastructural model with an empirical interatomic
v-Si0,.28 A breakthrough was made by Tsuneyu al. potential acounting for polarization effe@sand for anab

who derived a pairwise potential froeb initio calculations,  initio MD-constructed mode¥. It has been shown in Refs.
which was subsequently implemented in MD simulations 0f26 and 37 that the peaks at 37 THz and 32 THz in the
crystalliné”?® and vitreou&’3! SiO,. An improved ab  high-frequency band can be associated with symmetric and
initio—based semiempirical pairwise potential was subseasymmetric vibrations of Si@structural units, respectively.
quently obtainetf and used in a MD simulation of- The VDOS of an SiQ unit immersed in a silica matrix ob-

this approacfi®®

Vibrational analyses of Si© models have been per-
formed by diagonalizing the dynamical matrices calculated
for crystallind®16-18383nd vitreou&*?*3*3’structural mod-
els, by the equation-of-motion technigtfeand by calculat-

0163-1829/97/5@.4)/860518)/$10.00 56 8605 © 1997 The American Physical Society



8606 S. N. TARASKIN AND S. R. ELLIOTT 56

tained with the Tsuneyuki potential has been calculated irmround their equilibrium positions, and no diffusion occurred
Ref. 31. on the time scale of the MD runr; 100 ps. This temperature

In our MD simulation, we have used the best availaile is somewhat higher than the glass-transition temperature in
initio—based semiempirical pairwise interatomic potentialy-SiO,, T,=1450 K* This known drawback can result
due to van Beeset al>? used to describe the properties of both from deficiencies of the Tsuneyuki and van Beest po-
different silica polymorphs. The Tsuneyuki poterffalvas  tentials in describing the properties of liquid siffézand
also implemented for comparison. All the structural modelsirom the dependence of the glass-transition temperature on
that we have constructed are free of any coordination defecthe quench raf8 which is very far in the MD simulations
and show good agreement with experimental diffractionfrom the experimental values<(10? K/sed. Use of the more
data®* The vibrational analysis was performed by direct di- realisticN-P-T ensemble with the same guench rate for the
agonalization of the dynamical matrix. slightly modified van Beest potential results in a glass tran-

The structure of the paper is the following. Section Il sition atT,=3150 K[with densityp(T4)=2.35 g/cnt] and
describes details of the computer simulation. Characteristici a cessation of diffusion aroun@i=1500 K (a detailed
of the static structure are analyzed in Sec. lll. Dynamicaldiscussion will be presented elsewherSubsequently, the
properties of models of vitreous silica are considered in Segystem was relaxed to its equilibrium stateTat10™° K by
IV.In Sec. V, a mode analysis is performed. Conclusions aren effective MD energy-minimization run. Conjugate-
given in Sec. VI. gradient and steepest-descent methods were used to check
that the system was in a “glassy(inetastableenergy mini-
mum.

The dynamical matrix was calculated in the metastable
We have simulated vitreous Siby a model containing glassy state and diagonalized directly. A complete set of ei-
216 silicon and 432 oxygen atoms within a simulation cubegenvalues and eigenvectors was used for subsequent vibra-

of side lengthL=21.39 A (with a densityp=2.2 g/cn?). A tional analysis.
set of MD runs using the packageproLy (Ref. 41 (NVE,
cubic periodic boundary conditionsvith time step=1 fs
was performed at different fixed temperatures. The tempera-
ture of the system was adjusted by velocity rescaling every For a vibrational analysis, a high-quality structural model
10 fs, making the time scale smaller than the minimum typi-constructed by MD simulation is very important. The quality
cal inverse vibrational frequency 1/40 THZ= 25 fs. of the structural model strongly depends on the interatomic
The Coulomb interactions were calculated using thepotential, andab initio calculated potentials are the most
Ewald summation method. Real and reciprocal space cutoffeliable ones. Such a potential has been used in the MD
weree” '=0.31 A"t andk,,=2.03 A~1, respectively, and simulation of small vitreous silica clusters (72 atoniRef.
the pair interaction cutoff was=L/2. At small interatomic  36) and their vibrational analysi¥. We needed to study a
distancegless than the average nearest-neighbor sepayatiorlarger system and therefore had to use the pairwise adapta-
the Tsuneyuki and the van Beest potentials have an energdion of many-particle interactions, e.g., the van B&eand
barrier. However, the energy barrier is not high enough toTsuneyuld’ potentials. Using these potentials, we obtained
prevent atoms from hopping over it at high temperatures angerfectly chemically bonded structural models of vitreous
becoming coincident. We have therefore used modificationsilica, free of any structural defects such as dangling bonds
of the Tsuneyuki and van Beest potentfalshich are free of and overcoordinated atoms. The majority of the calculated
this fault, due to the replacement of the energy barrier otlata presented below are relat@ehere it is not mentioned
finite height by an infinitely high potential wall. Both the explicitly) to the system constructed with the van Beest po-
Tsuneyuki and van Beest potentials have been modified biential, this being better representative of the vibrational
adding Lennard-Jones contributior[$18-6) and (24-6) properties of vitreous silica as compared to the Tsuneyuki
terms, respectively; see Ref. 42 for more detaidsthe origi-  potential.
nal interatomic potentials. At small interatomic distances the
modified potentials go to infinity while at interatomic sepa-
rations=1.2 A for the Si-O interaction ang:1.8 A for the
0-0 interaction they practically coincide with the original  Partial radial distribution functions are important struc-
potentials. tural characteristics of amorphous structures. These functions
We started from the fluid state dt=5000 K. At this have pronounced first peaks corresponding to the first coor-
temperature, significant diffusion takes place and the systemination shell at the mean separation of atoms of different
has no memory of the initial valence network structurespecies(see Fig. 1 The positions of these peaks are at
within a period of~50 ps from the start of the simulation dg.o=1.613 A (1.61 A), do.0=2.631 A (2.63 A), and
run. It was found that all valence bonds are broken, and alils;.s=3.127 A(3.08 A) which are in good agreement with
atoms change their nearest neighb@mevious connections the experimental valuégiven in brackets. The shape of the
can be reestablished only accidentally partial distribution functions is very similar to that obtained
The temperature was gradually decreased by 100 K steps Ref. 33 with the use of a cut-and-shifted van Beest poten-
to T=2000 K with an average quench rate-efl0'? K/sec. tial.
This temperature quench resulted in a slowdown of diffusion The structure of vitreous silica consists of corner-shared
accompanied by a related slowdown of bond-breaking kinettetrahedrgSiO, units). These units appear to be quite rigid
ics. At the final temperatur€=2000 K, atoms only vibrated because the average O-Si-O angle of 109.4&8&%t Fig. 2 is

II. DETAILS OF SIMULATIONS

Ill. STATIC-STRUCTURE CHARACTERISTICS

A. Radial and angle distribution functions
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8.0 - . ' silica obtained in our simulation using the van Beest poten-
) tial and that found in x-ray and neutron diffraction
6.0 | Si-O0 | experiment® is given in Fig. 2. The Si-O-Si angle distribu-
tion for our model is slightly broader in comparison with the
40 | | experimental one and its maximufaround=155°, in ac-

cordance with results of Ref. 38 shifted to a higher value
relative to that for the experimental distributigiaround
=142°). However, the experimental Si-O-Si angle distribu-
tions measured by different techniquémcluding, e.g.,
NMR) do not coincide with each other and the maxima of
these distributions lie in the range between 142° and 152°
(see Ref. 45 for more detajlsThe maxima of the distribu-
tions obtained for computer-constructed models are also
quite different; e.g., the distribution for the Vashishta model
has a maximum at 142* while ab initio MD simulations
result in a maximum position around 13%°.

20 |

0.0 ;

B. Static structure factor

Another important structural characteristic of amorphous

6.0 | L . :
solids is the static structure facts(Q), defined a¥

Partial radial distribution functions
'
Qo

4.0 |

1 - ,
S(Q)=1+——2>, bbe Virg@Ri-Rin (1)
20} : N(b2)is
00 . ‘ /WM with the Debye-Waller term being given by
1.0 2.0 3.0 4.0 5.0 6.0 L,
o 2 i "
Interatomic distance (A) W, = fﬂz (i_i n+i/2 @)
6 9 \/ﬁ VM, j

FIG. 1. Partial pair radial distribution functions vs interatomic o .
distance for the relaxed structural modebeSiO, constructed with Where<b2) = N_lEibiZ, b_I is the neutron scattering length of

use of the van Beest potential. atomi (b;=b;*, the overbar meaning spin and isotope aver-
aging, N is the number of atoms in the systeR, is the

close to the ideal tetrahedral angle, 109.5°, and the distribumomentum transferR;(t) denotes the equilibrium spatial

tions of Si-O and O-O distances are very narrow. A signifi-position of atomi, € are normalized Bl-component eigen-

cant source of structural disorder in vitreous silica, thereforeyectors,w; are eigenfrequencies of the dynamical matnix,

as also mentioned in Ref. 36, is due to the comparativelys the mass of atori, and n; is the equilibrium occupation

wide Si-O-Si bridging-angle distribution, this being one of nymber of the vibrational state characterized by the fre-

the most important structural characteristics. A comparisor&luencyw_:
between the oxygen bond-angle distribution for vitreous !

— 1

0.1 r L S T T T nl:exp{hﬂ)]/kBT}_l (3)
[2]
5 008 L For isotropic systems, analytical averaging overCaltlirec-
g tions gives
2 I
g 0.06 ‘ 1
E S(Q)=(S =1+ ——> bibj,e Wi
2 (Q=(S@a=1+ 2 bib
© .

I SiNQ|R — R,

% 0.02 [ X | I I | (4)
g [ QIRi—Ry/|

However, for the finite-sized models under consideration,
80 100 120 140 160 180 only a restricted set ofQ vectors is available, i.e.,
Angle (degrees) Q={2mn,/Ly,2mny/Ly,27n,/L,} , whereL , are box side

lengths andh, are integer numbers. Averaging ov@rgives
FIG. 2. Bond-angle Si-O-Si and O-Si-O distributions for our g “« 9 ging 0\@rg

model constructed using the van Beest poteiftied solid lineg and 1
experimental data for the Si-O-Si distributiéRef. 42 (the dashed )= — ). (5
line). The areas under both curves are normalized to unity. @ NQ% SQ



8608 S. N. TARASKIN AND S. R. ELLIOTT 56

0.05 T T T

]
2.0 " ; -, _experiment /‘
K ’ H
?
] \
0.04 . I’/VB corrected 1
1.5 | —
| 'N .
T 003
=
g 1ot . 8
& ) ]
g o002
>
0.5 [ R 0.01 B
I 1
A
\-
0.00
0.0 : ‘ 0 10 20 30 40 50
0 4 8 12 16 20
. v (THz)
Q@A)

] ) FIG. 4. The vibrational density of states for the van B&¥®&)
FIG. 3. Dependence of the static structure factor on magn'tUd?nodel(the solid ling, the TsuneyukiTs) model (the dashed ling

of momentum transfer for vitreous silica: The bars are related tqug Debye law(the dot-dashed lineand the experimental data for
numerical averaging over availab@ only; dashed line, analytical v-SiO, (the dashed line

averaging oveR directions; solid line, experimental dafRef. 2.

Here the sum is taken over all availalf)eor Q belonging to 2 éaiejﬁi,z Saplii’ (7)
a particular range, anlg stands for the number of terms in !
the sum. Results foB(Q) calculated using Eq(4) for the  \ith o and g related to the Cartesian componetftdn a

van Beest—potential-based model are indicated by the soligha|-space representation, the Hermitian dynamical matrix is
curve in Fig. 3; the bars indicate the region where the dots ligag| and symmetric, resulting ire,io* :e.i

representing the results of simplarithmetig averaging, ac-

cording to relation(5), over all availableQ vectors with

fixed magnitude of). The dashed curve is the experimental

data? As shown in Fig. 3, the static structure factor of the ~One of the most important quantities describing atomic

model fits the experimental curve reasonably well. A slightdynamics is the VDOS, defined as

deviation appears, however,@=15 A~1. The static struc- -~

ture factor for the Tsuneyuki system shows very similar be- 1

havior. However, it is not too difficult to obtain good agree- 9(w)= 3_NJZl So—w)), ®)

ment between calculated and experimental static structural

data, and this is characteristic of the majority of reliablewherew; are eigenvalues of the dynamical matrix. The func-

structural models of vitreous silica:2433:34:36 tion g(w) in the whole frequency region is reported in Fig. 4
The analysis presented above shows that the use of tHer the van Beest—potential-based modgle black solid

van Beest and Tsuneyuki potentials results in good-qualityine) and for the Tsuneyuki-potential-based mogek gray

structural models of vitreous silica. Indeed, both radial andsolid line), whereé functions in Eq(8) have been broadened

angle distribution functions and the static structure factor ardy Gaussian functions with a typical widtbv~0.5 THz

in reasonable agreement with experimental data and the rahich is much larger than the value {a— vmin)/3N=0.02

sults ofab initio MD simulation®® THz for the average separation between eigenvalues for our

finite-size model. Herev,,=1 THz and v =40 THz

stand for the minimum and maximum frequencies of the vi-

brational spectrum of the vitreous silica model in question.
Even at zero temperature, atoms vibrate around their equi- TW0 bands are clearly seen in the spectrum. The highest

librium positions. The amplitude of these vibrations in- Optical band has two pronounced peaks related to the stretch-

creases with an increase in temperature, but the harmonigg longitudinal and transverse vibrations of SiOnits (see

approximation is applicable even for sufficiently high tem- below). The structure of the lowest band is more complicated

peratureT <T,. In the harmonic approximation, any atomic because of the overlap between acoustic and optical bands.

vibration can be represented as a linear combination of thétructural disorder in glasses causes a broadening of the

normal modes, or eigenvectof®} (j=1,...,3N), of the sharp band edges of crystals, transforming them into band

dynamica| matrix. Here{el} is a a\]_component vector tails. These band tails have the same Origin—structural
{d:i=1,... N} with € the real-space vector proportional disorder—as the well-known band tails in the electronic

to the displacement! of atomi, whereul~el/\m;, with m, structure of amorphous semiconduct&t©ne of the signifi-
being the mass of th'ﬁh atom. The eiglenvectorls satisfyl the cant points is that the lowest band tail lies in the background
orthonormality and closure cénditions of the acoustic band, and, strictly speaking, the states in this

tail are not truly localized, but rather quasilocalized, similar
to resonant electron statésg., in mixed-valence systerf.
E ef'eli’:a_, 6) The main features of the VDOS shown in Fig(gwide

i e lower frequency band between 0 ar@®5 THz and a narrow

A. Vibrational density of states

IV. DYNAMICAL PROPERTIES
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upper band around-30-40 THz separated by a gapl 0.0 '
THz) are similar to those obtained for different structural '
models of silicd**%3337and the quartz and cristobalite poly-
morphs of silicat®!"?>?9constructed with various reliable
interatomic potentials, including the van Beest poteritial.
However, the VDOS obtained in our simulations using the
van Beest potentiafthe black solid line in Fig. Jfits the
experimental curvd(the dashed line in Fig.)4better than
does the model constructed using the Tsuneyuki potéhtial
(gray solid line in Fig. 4. A deficiency of the Tsuneyuki
potential results in a shift of the spectrum in the high-
frequency region to lower frequencies by5 THz with re-
spect to the experimental VDOS. The vibrational spectrum
of vitreous silica, constructed with the aid of a phenomeno- v (THz)
logical three-body interatomic potentfdl,is not free of
drawbacks eithefthe highest-frequency band has no pro-
nounced double-peak structuréNeither the van Beest or
Tsuneuki potential can reproduce a pronounced peak in the

intermediate-frequency region at 12.5 THz found in the in- The most frequently used approximation for the VDOS of
elastic neutron scattering. This may be due to a deficiency dfifferent substances is the Debye I&wgp(w) =3w2/w%,

the potentials which describe the bending modes of,$i0  \ith wp=27(9pf4m) ¥ (c; 3+ 2¢, %) 13 being the Debye
s.trut_:t.ural units(these modes, as shown bellow, contrlbutefrequency Vo= wp/2m=10.34 THz orh wp/ke=497 K for
significantly to the VDOS in the intermediate-frequency
range rather worse than the stretching orféss drawback is
also present at the level of the originab initio

VDOS (THZ ')

FIG. 5. The relative partial VDOS for $the dashed lineand O
(the dotted ling atoms compared to the total VDGe solid ling.

vitreous silica, wherep,=N/V is the atomic concentration
(pa=0.066 A3 in vitreous silica, andc, andc, are the

: o transverse and longitudinal velocities of sound, respectively
calculationg?). Unfortunately, the majority of phenomeno (6=3.75¢ 16 cmis and ¢,—5.9¢16° cm/s in  vitreouss

logical and semiphenomenological potentials that we know ' 2 ; .
demonstrate this deficiency. The exception is the Feustor‘?—'"_ca' ) The Deblye \I/DOS ffor vitreous S|I_|ca,hcalculgtedh
Garofalini potential which results in a peak around 10 THZUSINg experimental values of parameters, is shown by the

but does not reproduce the structure of the high-frequenc§fot-dashed line in Fig. 4. It is clearly seen that both the
band*® However, the rather simple random netwdrr the ~ computed and experimental VDOS in the low-frequency re-
Bethe lattic&® andab initio MD-constructed mod&f are free  9ion (<5 TH2) appreciably exceed the Debye VDOS. The
of these drawbacks. excess vibrational states in this frequency region form the
What should be noted when comparing with experimentaivell-known boson peak The BP,ggp(@) =g(w) —gp(w),
data is that only the effective VDOBeq(w), can be mea- is shown in Fig. 6a) for the van Beest system. The normal-
sured experimentally using inelastic neutron scattettlg.  ized BP, ggp(®)=[9(®)—gp(w)]/d(w), measured in in-
multicomponent atomic systemg,s(w) is connected to the elastic neutron scattering experiments, is given in Fif) 6
true VDOS,g(w), via a correction functios(w), given by"*  for both van Beestthe solid line and Tsuneyukithe dashed
line) systems. The position of the normalized BP differs

A b_i from that ofggp(w), as clearly seen from Figs(&® and Gb).
C(wj)=1+§2 m—[Pa(wj)—Pa(O)]- (9 The location of the normalized BP in our structural models is

around 1.5 THz, which is slightly higher than the experimen-
This correction function is derived in Ref. 34 and depends orially found value 1 THZsee experimental data by Buchenau

the relative partial VDOSp,(w;), related to the partial in Ref. 33. This is a consequence of the finite size of our
VDOS, g,(w;), by models resulting in a decrease of the VDOSv&t v; min,

with vy in=C¢/L=1.7 THz being the minimum frequency
- of the transverse sound wave allowed in a box of finite size
ol @) =0u(w)/g(w)) =2 iaza eI, (10 . A detailed analysf€ shows that the vibrational states in
. the BP region(more precisely, at least in its right wihgre
wherei signifies all atoms of typer andj denotes a definite comprised of a set of transverse acoustic walilesaccor-
eigenmode. This correction function was taken into accountlance with the results of Ref. R&haracterized by different
in plotting the corrected VDO$=c(w)g(w)] in Fig. 4 magnitudes of the wave vectér and forming an acoustic
shown by the circles which is to be compared with the exfeak aroundk! ,.=2mv!/c, (j refers to a particular eigen-
perimental datdthe dashed line mode with the half-width sk~k (i.e., satisfying the loffe-
The partial VDOS curveg,(w)(a=Si,0) in Fig. 5 show Regel criteriof. The lowest-frequency eigenmodes are
the relative contribution of atoms of $ihe dashed line in found to have a localized component admixed with the wave
Fig. 5 and O(the dotted line in Fig. bto modes at different component and to exhibit, therefore, quasilocalized behavior.
frequencies. As seen in Fig. 5, oxygen atoms contribute Excess modes in the BP region influence the temperature
dominantly to the highest optical band and mainly to thedependence of the heat capad@y(T) in the temperature
lower-frequency band except the region around 22 THzangeT=10-30 K. The vibrational contribution to the heat
where the motion of silicon atoms is dominant. capacity is given by
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VDOS for the van Beest modéthe dashed ling and the Debye
VDOS (the dotted ling (b) The normalized boson peak
[9(w)—gp(w)]/gp(w) for the van Beestthe solid ling and the
Tsuneyuki(the dashed linemodels.

exp{f w; /KgT}
(explfiw; /kgT}—1)%

hoi)?
C(M=2 (—TJ) (11)
J

The dependence o€,(T)/T® vs T calculated from the
model is shown in Fig. Athe solid ling, compared with
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FIG. 7. The dependence of the reduced heat cap&cityi® vs
temperature for the van Beest modgie solid ling, in the Debye
approximationthe dashed lineand the experimental datthe dot-
dashed ling (Ref. 7).
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FIG. 8. The mean-square displacement vs temperature for sili-
con atomgthe dashed lineand for oxygen atomé&he dotted ling
for the van Beest model and the quantity averaged over atomic
species(?) (the solid ling for the van Beest model compared with
(F)D [see Eq.(15)] in the Debye approximatiofthe dot-dashed
line).

experiment(the dot-dashed lineand the Debydthe dashed
line) law. The poor comparison with the experimental data
especially at low temperaturds< 10 K is probably due to a
deficiency of the finite-size model not describing long-
wavelength vibrations which are very important at low tem-
peratures. The existence of the pronounced hump around 10
K is often associated with additional vibrational modes in the
low-frequency range. The nature of these mo@ks boson
peak is not established yet. However, there are several hy-
potheses associating these modes with harmonic soft vibra-
tional modes? anharmonic soft mode¥ soft optic modes®
damped acoustic mod&%,and a crossover from acoustic
modes to fracton® In our view, these modes are the states
from the bottom part of the lowest optic band strongly hy-
bridized with the acoustic wave@ detailed discussion of
this problem will be given elsewhet®.

B. Squared average atomic displacements

Another important characteristic of atomic vibrations is
the average atomic displaceménf), defined a¥

S |e|2< )

where the index refers to atom in the system. Averaging
over all atoms of typexr in Eq. (12) results in

{7+ 5

We can rewrite relatioril3) using the partial VDOS:

2n(w)+1
f Qo) —_—do,

wheren,=N_,/N stands for the relative number concentra-

tion of atoms of typex. Plots of(u_§> vs T for oxygen and
silicon atoms are reported in Fig. 8. In the high-temperature

(12

<ua>_N m (13)

w] |ED(

3%
2n,m,

(u2)= (14)
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regime keT>%wp), (U2)~T in accordance with classical 18 ‘ '

statisticsn(w)~ T/%w, while at low temperature$u_§> is
temperature independent.
The mean-square dlsplaceménf-> averaged over atoms

of all species{u? =3 ,c,(u?), can also be calculated in the
Debye approximatiofi’

— 9 [1 [kgT)?
<u >D_wDEaCama[Z+ ﬁwD

(@) v=3.02 THz

S(Q,v) (relative units)

fth/kBT xXdx
0 e“—1
(15)

A comparison of (u?) calculated for the van Beest-
potential-based modéthe solid ling and (u?)p (the dot-
dashed lingis given in Fig. 8. The dependence of the mean-
squared displacement on temperature in the Debye 05 '

approximation shows a behavior similar to that following (b) v=11.49 THz
from Eq. (14) but greater in magnitude.

The mean-squared displacement in the Debye-Waller fac-
tor is important in describing x-ray and neutron scattering by
solids. The value ofu?) can be extracted from neutron scat-
tering experiments by comparing the elastic line in neutron
scattering with neutron diffraction dat&>! The experimen-
tal mean-squared displacementsTat 50 K are estimated
to be (u)=0.0073 A, (u3)=0.015 A%, and (u?)
=0.013 A2° and (u?)=0.0073 & (Ref. 5) at T=33 K,
which agree rather well with our resuksi3)=0.0058 A2,
(u3)=0.01 A?, and (u?)=0.009 A% at T=50 K and
(u?)=0.008 A? at T=33 K. The mean-squared displace-
ments of atoms of different s&acieiobtained in Ref. 50 have
been calculated by assummgsl>/<uo> 0.48, which is the FIG. 9. The dependence of the dynamical structure factor on Q

average value for the various crystalline polymorphs offor vitreous silica at two different frequencies for which a compari-
silica. In our calculations we founduZ)/(u2) to increase SON With experimentRef. 3 is available:) »;=3.02 THz andb)

slightly from 0.56 to 0.59 with increasing temperature from 0" =11.49 THz(the same notation as in Fig).3
to 300 K. The discrepancy between the calculated values of

(u?) and experiment is probably due to the absence of verys’OIId angle averaging, as in E). For »,=11.49 THz, the

low-frequency vibrational modes/€1 TH2) caused by the agreement between experimental data and the results of the
finite size of the model simulations is not as good as for;=3.02 THz. This is,

probably, related to the same failure of the van Beest poten-
tial in reproducing a peak in the VDOS around 10 THz.
C. Dynamical structure factor The reasonable agreement of our results with experimen-
Inelastic neutron scattering is a powerful technique fortal data, demonstrated in Fig. 9, supports our choice of inter-
investigating atomic dynamics, allowing such characteristicgtomic potential used for constructing the structural model of
as the VDOS for all materials and dispersion curves for crysvitreous silica. The use of the Tsuneyuki interatomic poten-
tals to be obtainet?’ The dynamical structure factor tial results in a poor agreement with experimental curves for
S(Q,w) is proportional to the double-differential cross sec-the Q dependence of the dynamical structure factor at fixed
tion for neutrons and can be measured experimentally antfequencies.
compared to theoretical and/or simulation results. For vitre-
ous silica,S(Q,w) has been measured in a sufficiently wide
region of Q-w space® A comparison of the results of our
simulation of S(Q,w) for the van Beest—potential-based A complete knowledge of the eigenvectors and eigenval-
model with experimental datdis given in Fig. 9 for two ues of the dynamical matrix allows us to perform a detailed
frequencies; =3.02 THz andv,=11.49 THz for which ex- mode analysis of the system in question. The mode analysis
perimental data are availab{see also Ref. 34 for more de- includes the following points(i) investigation of the degree
tail). The same scaling factor was used when plotting theof mode localization, i.e., the number of atoms involved in a
averagedS(Q,w) for both frequencies. This means that the particular mode,(ii) determination of the mode character
theoretical and experimental curves agree not only in shapéacousticlike or opticlikg (iii) assignment of definite
but also quantitatively. The error bars in Fig. 9 refer to nu-structural-unit vibrations to a particular mode, dhd ascer-
merical averaging 08(Q, ) over Q-vector directions simi- taining the origin of eigenmodes in different frequency
lar to that in Eq(5), while the solid line represents analytical ranges.

S(Q,v) (relative units)

V. MODE ANALYSIS
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A. Mode localization 1.0 T T

(a)

08 ]

In a perfect crystal, all vibrational modes extend over the
whole system. This is a consequence of long-range order
Structural disorder results in the appearance of localizec
modes. Localization can be quantitatively described using
the participation ratiop;, for the eigenmodg,**

0.6

0.4

participation ratio, pj

02

N ' 2 N ' -1
p,»=(i21 |uf|2) -(NiEl |ua|4) . s

The participation ratio ip~1 for an extended modeE 1 0.0
for the rigid-body displacement at which all atoms are 0 10 20 80 40
equally displaced and, in particular,p=0.6 for a plane v (THz)

wave, whilep~ 1/N for a mode strongly localized to a few 1o
atomic sites. Henceforth, the displacement eigenveatbrs (b)
are normalized to unity, i.e3N ,|ul|?=1.

The frequency dependence of the participation ratio for
the van Beest—potential model of vitreous silica is shown in
Fig. 10a). As seen from Fig. 1@), states in the middle of
the lower band are extended and characterized by values ¢
the participation ratio close to 0.5. States belonging to a nar
row high-frequency band in the region between 30 and 4C
THz are characterized by smaller values of the participation
ratio (p~0.2) in the middle of the band and very low values
of the participation ratiog~ 10~ 2) in the band tails. This is
due to a higher degree of localization of states in this banc
which are comprised of just a few symmetric and asymmet- v (THz)
ric vibrational modes of SiQ tetrahedrasee below. A de-
tailed analysis of mode localization will be given elsewhere. 1.0 '

Structural disorder leads to a broadening of band edge: ' (c)
and the appearance of band tails containing localized mode:
These tails are clearly se¢small values of the participation
ratio) at the top of the lower band and on both sides of the
higher band. The appearance of the band tails results in
narrowing of the band gap thvy=1 THz in vitreous silica
(cf. Avg=1-5 THz ina-cristobalité>*°andA v4=3 THz in
a-quartZ’). A similar narrowing of the gap has also been
found in B-cristobalité® due to dynamical disorder.

These changes in the band structure are also characterist
of electronic excitations in disordered materi&l#\ particu- 0.0 ‘
lar feature of atomic vibrations in some disordered structures 0 10 20 30 40
is, we proposé® that long-wavelength acoustic excitations v (THz)
coexist with the lowest optic band states; i.e., the acoustic
band overlaps the lowest optic band. This effect gives rise to FIG. 10. The dependence of the participation ratio on frequency:
a strong hybridization between acoustic waves and opti¢a) total and partia[for (b) silicon and(c) oxygen.
band states. Therefore the lowest optic-band-tail states
(which would be localized in the absence of mixXingre  from Eq.(16) with the summation made only over silicon or
actually quasilocalized because of this hybridization anthbxygen atoms. As seen in Figs.(bpand 1@c), the depen-
hence resemble electronic in-band resonances. The participdence po(») mainly coincides with the frequency depen-
tion ratios of these states are one order of magnitude highefence of the total participation ratio, meaning that oxygen

than those of the truly localized tail states at higher frequenatoms define the localization behavior of the eigenmodes.
cies. The lowest value of the participation ratio for the lowest

frequencies has been found for the Tsuneyuki potential based
model (p,,in=0.06). These quasilocalized states are actually
a mixture of an extended wave-like constituent and a local- Atomic vibrations in crystalgi.e., phonons can be di-
ized one(see Ref. 55 for more detajls vided into acoustic and optic modes. In acoustic phonons,
In order to investigate the contribution of different atomic neighboring atoms move practically in phase, while in optic
species to the participation ratio, we calculated the partialmodes, the relative motion is mainly out of phase. In disor-
participation ratios for siliconpg;, and oxygenpg, atoms  dered structures, atomic vibrations cannot be characterized
[see Figs. 1() and 1dc)]. Values ofpg; andpg were found by a definite wave vectdsee also Ref. 55and a division of

08 [ 7

participation ratio, pj

40

04 [

participation ratio, pj

0.2

B. Phase quotient
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0.05

0.0

VDOS (THz Y

-0.5

phase quotient, q )

v (THz) 0 10 20 30 40
v (THz)
FIG. 11. The variation of weighted phase quotient with fre-
guency. FIG. 12. The stretchingdasheg bending(dotted, and rocking
(dot-dashedcomponents of the total VDO&olid).
atomic vibrations into acoustic and optic modes is not pos-
sible in general. However, some phase characteristics can gt v=27 TH2) indicates a different nature of the opticlike
calculated for vibrational modes in disordered structuresyibrations in the bands separated by the gap.
One such quantity is the phase quotient for mpdé?
O C. Stretching, bending, and rocking
= .:i Ui Ui, The structure of vitreous silica consists of corner-shared
gy =(costh =12 2 — (17) ire of :
b1 i [ul]-u tetrahedral SiQ units. These units are connected to each
o ] _other via bridging oxygen atoms. Twofold-coordinated
which is just the average cosine of the angle bereen d'Soridging oxygen atoms can move quite easily compared to
placement vectors of neighboring atoms. In L), i runs  foyrfold-coordinated silicon atoms and have been supposed
over all silicon atoms while’ numerates all the nearest oxy- to give the main contribution to the atomic vibrations in this
gen neighbors of silicon atomsl, being the number of va- - systenf 11 The simplest and most frequently used proce-
lence bonds. In terms of values of the phase quotient, it igjyre for describing oxygen motion is to decompose its dis-

possible to speak about acousticlike and opticlike modes iRjacement into three components along three orthogonal di-

disordered structures. In acousticlike waves, all atoms MOVEactions,ul = ul,+ ul, + ul, , related to bond-stretchingil,),

practically in phase, and the phase quotient is close to uni%ond-bending l@ijb)- and rocking Q{'r) motionst! Then the

In gptliriolde[s:, thg rlelatll\_/e ?Ot'og of a(;(_)f;ns |stoutt of pha.‘sesquared average displacement along these directions can be
and g;=—1. or delocalized modes, ailterent aloms give ¢ qj5ted according to the following expression:

similar contributions tag; in averaging Eq(17). For local-
ized modes, this is not the case, and in order to take into

_ 1 ~
account the different contributions of various atoms to the |rl|§yb’r:—2 lulzy . (19
phase quotient we defined the weighted phase quotié!Ht, 2 |[]{'|2 !
weighted by thenth power of the amplitude of the eigenvec- [
tor, which forn=2 is Bearing in mind that the two silicon atoms that are neigh-
- bors of the oxygen atormnh move as well, only the relative
2 _ 1 2 ul-uj, ~|<-;J|2 (18) motion of the oxygen atom has been decomposed into
g 2 ST |uf| . |uf,| stretching, bending, and rocking components in @), so
&l that ul=ul — (ul,; +ul,)/2 is the displacement of oxygen

) ) atomi relative to the average displacement of its nearest
The dependence of the weighted phase quotient on frequeng)mcon neighbors. The convolution f|2, . with the total

is given in Fig. 11. The weighted phase quotient tends tQ,5~g decomposeg(w) into the stretc?]?f;g bending, and
unity with decreasing frequency, indicating an increasin ' '

acousticlike character of the eigenmodes. A slight decreagrngmg componentgy(w) =gs(w) + gn(w) +gr(w), where

of qf*) at the lowest frequencies reflects their quasilocalized 1 .

nature. In order to investigate this point in more detail, we Os,b,r(@)= mz IS 0. 80— w)). (20)
extracted the localized constituent of the lowest-frequency !

eigenmode and found its phase quotient toh@5, indicat- The frequency dependences of the stretching, bending, and
ing a more opticlike character of the localized comporant rocking components of VDOS are presented in Fig. 12. It is
detailed analysis will be presented elsewhere; see also Reflearly seen that stretching motidthe dashed lineis im-

55). At high frequencies, the weighted phase quotient isportant only for the highest opticlike bana+ 30—40 TH3,
mainly negative, meaning that eigenmodes in this frequencyhile bending(the dotted ling and rocking(the dot-dashed
range can be regarded as opticlike vibrations. An abruptontribute equivalently at lower frequencies. A similar
change in the weighted phase quotient around the band gamalysis made for a Bethe-lattice modedhows that stretch-
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ing results in a broad asymmetric peak around 30 THz, - 1 o

which agrees quantitatively with our results. Rocking motion (ri\(n))2=mj)—nz (wh"(r k(i))z. (25
in the Bethe-lattice model causes a peak around 13.5 THz, R

while bending leads to a broad triangle-shaped peak at 16 ghich can be usetith n=0) to calculate the partial VDOS

THz and a narrow peak at 21 THz. The peaks for rockingg, (w) for different types A) of vibrations of the structural
and bending do not agree with our results. unit,

D. Projections onto vibrational modes 1 ~i(on2
of different structural units galw)= 3_N$ (ra’) (0= o). (26)

Another way of investigating the atomic motion for dif-
ferent eigenmodes is to project the eigenvectors onto variod
vibrational modes of typical structural units. The projection COMPplete set, then
rh; of the displacement eigenvectot onto the vibrational
displacement vectoh ;) of the structural unit can be writ- g(w)=2, ga(w). (27)
ten as a dot product of these vectors: A

{ the vibrational modes of the structural unit comprise a

_ _ The weighted squared renormalized projections withl
Thi= > ul Ay (21)  can be used to characterize localized vibrational modes. It
i"(i) should be noted that the use of weights in E2p) cannot
compensate for the renormalization of the displacement ei-

genvector in Eq(24).

Vitreous silica can be imagined as being comprised of
structural units of different types. The nonlinear three-atom
Si-O-Si units and corner-shared tetrahedral Siiits are
usually consideréd!’'°to be the basic ones. In the ideal
case, these structural unitssolated moleculeshave the
point-group symmetrie€,, and Ty, respectively. The most
convenient way to characterize the vibrations of these units
is to introduce symmetry coordinates for which the dynami-
cal matrix has a block form. These coordinates transform
:__nZ (Wf')“(rg D2, (220 like different irreducible representatiotspecies of the cor-

Zi(wh)"g ’ responding point group. In the case of Si-O-Si structural
units, one symmetry coordinatasymmetric stretchingoe-

: longs to the nondegenerate spedgsand two other symme-
given by try coordinategsymmetric stretching and bendingelong to
12 the nondegenerate specigs In the case of SiQ units, one
W{:{ 2 |e|',|2 (23 symmetry coordinatésymmetric stretchingbelongs to the
i()

where the sum is taken over all atori's comprising the
structural uniti. The displacement vectdx;, normalized to
unity consists of 8l;) components which are the Cartesian
coordinates of the displacement vectors of each ofNpe
atoms comprising the structural umitThe squared value of
the projection in Eq(21) characterizes contributions of the
vibrational motion of a definite type of the structural unio
the eigenmode. Averaging of the squared projections over
all structural units of a definite type results in

(rfA(n))Z

with n=0,1,2 ... being the exponent of the Weiglw{

nondegenerate specifs, a single pair of symmetry coordi-

, nates(bending belongs to the doubly degenerate speé&ies
Forn=1, the weight @!)" takes into account the different and two tripletsiasymmetric stretching and bendjrgelong
contributions of the various structural unitsin the total to the triply degenerate specifs.%? The symmetry coordi-
eigenmodej. Use of the weighted projections makes sensenates of the specieB, (for Si-O-Sj and of the specied,;

for localized modes in order to enhance the contribution oland E (for SiO,) coincide with the normal coordinates of
the units at which the mode is mainly localized. these structural units while the others do not and the normal

The displacement eigenvectug‘, can be renormalized coordinates are the linear combinations of the symmetry co-
lated to the off-diagonal dynamical matrix elements, the val-
Tioo=yl
Ta0 = A /
The symmetry coordinates do not describe the motion of
tribution of the A mode to the vibrational motion of the mind, we define and consider the relative displacement ei-
all structural units gives rise to the expression

> |l

i'(i)

only over atoms comprising the structural unit, and the proordinates belonging to the same speciesg., of the
jection Tl of this renormalized vector onto vibrational Fz-Stretching and the-,-bending coordinates in case of
(O SiO,). The coefficients in these linear combinations are re-
mOdeA(i) , VIZ.,
2 ues of which depend on the specific model used to describe
21, (24)  the potential field. Therefore the normal modes cannot be
used in a projection analysis.
does not give information about the contribution of e  the structural unit as a whole urgolid-body displacements
mode to the total eigenvector but characterizes the type Qind rotationsbut are related to the internal coordinates, i.e.,
motion of the structural untt, i.e., it shows the relative con- the bond angles and interatomic distances. Bearing this in
structural uniti in comparison with contributions of other envectom{(i ys
vibrational modes of this unit. The averaging of the squareéJ 0
renormalized projection with weights given by E&3) over i P
uliigy=(ul=ul )/ \/C],

(28)
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dinates of these units according to E(&1)—(25), using the
expressions in Eq(30) for A,y and replacingu{, by the
relative displacement eigenvectoilr,(i) defined in Eq.(28).
Then, an averaging over all units has been made as in Eq.
(25 with n=0 and the partial VDOS for different projec-
tions were calculated in accordance with EB6). The re-
sults are shown in Fig. 13, where the partial VDOS for the
solid unit rotations is also represented by a dot-dashed line.
The rotations have been made around three perpendicular
axes passing through the centfakygern atoms; then the
squared projections onto rotations have been summed for
every unit and averaged over all units. It follows from Fig.
13 that the symmetric stretching of Si-O-Si unitee gray
solid line) is a maximum at frequencies around 22 Tk

FIG. 13. The partial VDOS for the projections onto the vibra- though this is not the dominant contribution overadind
tions of Si-O-Si structural unitsA; stretching(the gray solid line, asymmetric stretchingthe dashed linecontributes at fre-
A;q), By stretching(the dashed lineB,s), A, bending(the dotted  quencies in the region of the two peaks at 32 and 36 THz,
line; Aqp), solid-unit rotationgthe dot-dashed lineand their sum  \hile bending(the dotted lingis essential in a broad region
(the black solid ling coinciding with the total VDOS. The atomic patween 1 and 27 THz. Rotational motigthe dot-dashed
displacements in Si-O-Si units for symmetri,) and asymmetric  |ine) contributes to the motion of Si-O-Si units in the whole
(Bls_) stretching and also bendind\{,) are shown schematically in frequency range: not very appreciably in the higher-
the inset. frequency band, comparable to bending in the middle of the
lower-frequency band and appreciably in the low-frequency
region. The latter feature is quite important in clarifying the
nature of the low-frequency vibrations. The sum of all partial
Cij :2 |u{— u{ 2 (29) VI:?QS (the splid black ling calculated according_to _E(127)

R 0 coincides with the total VDOS. The lack of coincidence of
these two lines, especially in the lower-frequency band, is
due to the fact that the Si-O-Si structural units in our struc-
tural model are not perfectly symmetri€§,) three-atom

ntm " .
. X . .“molecules” and the displacement vectorgqg. (30)] plus
eigenvector. The symmetry coordinates are defined below 'three solid-unit rotations do not form an exactly complete set

consistency with Eq(28) so that the central atom is immo- of vectors. Use of the weighted projectids=2 orn=4 in

t_)|le for them as well. To c_>bta|n a “complete” set of v!bra- .Eq.(25)] leads just to small corrections in the partial VDOS.
tions of the structural unit we also added three solid-unit We have also calculated the projections of nonrenormal-
rotations to the symmetry modes. ized eigenvectors onto the symmetry displacement vectors
for Si-O-Si units using Eqg21)—(23). Such projections take
into account the different amplitudes of a definite eigenvec-
Here we present the results of projecting the eigenmodesr on the various structural units and therefore give more
onto the symmetry vibrational coordinates of Si-O-Si units.precise information about the type of atomic motion for a
Three symmetry displacement vectors characterizing symdefinite eigenmode. Nonweightech£0) squared projec-
metric (A;) and asymmetricB;) stretching, and also bend- tions onto symmetrigsolid circle3 and asymmetridopen
ing (A;), can be defined for these unitsee also Ref. 682 circles stretching, bendingopen diamonds and rotations
(crossepare shown in Fig. 14). It follows from this figure
5<A1>_i 5 04 S<Bl>_i 503 that symmetric and asymmetric stretching within Si-O-Si
i) — \/E{aii" iy, S = \/E{aii" '~ Gink, units takes place mainly for eigenmodes around 22 THz and
around 32 and 36 THz, respectively, which agrees with the
1 peak positions ofig»,)(w) andgge,(w) in Fig. 13. The data
—{By/in,0,br;:}, (30)  for bending, however, show an appreciable maximum near
NA the upper edge of the lower-frequency band (27 Jihich
R is not seen in Fig. 13. This means that bending motion gives
with &.;» being the unit vector directed from atdrhto atom  the essential contribution to the eigenmodes mainly in this
i"” andb;;» the unit vector perpendicular to the bond betweenfrequency region. The squared projection onto rotational mo-
atomsi andi’ and directed from aton to atomi” as shown tion has a pronounced maximum at 22 THz, which is not
in the inset in Fig. 13. The first component of the displaceseen in Fig. 13 as well. In this respect, we would like to
ment vectors in Eq(30) characterizes the displacement of stress again that the commonly used partial VDBE&fs. 19
atomi’, the second of atom (immobile), and the third of and 26 for different projections gives information just about
atomi”. how atoms move within the structural units on average, not
For all Si-O-Si structural units, we calculated the projec-taking into account the different amplitudes of vibrations in
tions of the renormalized eigenvectors onto symmetry coorvarious units.

VDOS (THZ ")

v (THz)

with Cfo the normalization constant given by

Herei, denotes the central atom in the structural yoky-
gen for Si-O-Si and silicon for Sig) which thus becomes

1. Projection onto vibrations of Si-O-Si structural units

(A _
B(i) -
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0.003

(a) SiOSi

0.002

(r 1(0))2

0.001

0.000

0.005

0.004

0.001

0.000

20
v (THz)

FIG. 14. The squared projections of the eigenvectors ont
Si-O-Si symmetry coordinatesA; stretching (solid circles, B;
stretching(open circley A; bending(open diamonds and onto
solid-unit rotations(crossegs (a) nonweighted;(b) weighted with
n=2.

S. R. ELLIOTT

VDOS (THz ")

20
v (THz)

40

FIG. 15. The partial VDOS for the projections onto the vibra-

tions of SiQ, structural unitsA, stretching(the solid gray ling F,
stretching(the dashed ling F, bending(the dotted ling E bending
(the dot-dashed line solid-unit rotations(the triple dot-dashed
line), and their sunithe black solid ling coinciding with the total
VDOS. The atomic displacements in Si@Onits for symmetric 4;)
and asymmetric K,s) stretching and alsé&, and E bending are
shown schematically in the inset.

modes>? The symmetric-stretching displacement eigenvector
(A, symmetry is given by the following relation:

1 N A A A
S<A1)=ﬁ{0,al,a2,a3,a4}, (31

Qvhere the first component characterizes the displacement of
the central silicon atom (the indexi is omitted below and
the rest are related to the oxygen atoms 1, ... ,4 (the

unit vectorsa,, are directed from atoni to atomsi’; see

inset in Fig. 13. The three degenerate asymmetric-stretching

The use of weighted projectioris.g.,n=2 in Eq. (22)]
enhances the contribution of localized vibrational states and
allows conclusions to be made about the type of atomic mo-
tion for localized modes. The weighted<2) squared pro-
jections of nonrenormalized eigenvectors onto different sym-
metry displacement vectors are shown in Fig(kl4 The
difference between Figs. (@ and 14b) occurs mainly in

the high-frequency region around the band edges where the

eigenmodes are strongly localized. It is seen from FigbjL4
that the localized states at the top of the lowest-frequency
band (~28 TH2 are characterized by bending motion of
Si-O-Si structural units, while the localized states at the bot-
tom of the higher-frequency band-Q9 TH2) are dominated
by asymmetric stretching and rotational motion. Practicallyd
only asymmetric stretching takes place for the states at the
top of the higher-frequency band-@9 TH2). We also men-
tion a slight increase in the values of the weighted squared
projections onto rotational and bending coordinates for the
lowest frequencies~1 THz), which can be related to the
guasilocalization of these states.

2. Projection onto vibrations of SiQ tetrahedra

Similar projectional analyses have been performed for
SiO, structural units, the results of which are presented be-

coordinates F, symmetry are

Fo_ L 08 5 —5 —3
S 4{0,31,612, ag, —ay},

i

Fa) _ i

S(Z \/Z{O’éll_éZ!_é3!é4}y
(Fz):i s A
S; \/Z{O!alv & ,83,— A} (32

Bending coordinates can be divided into two groups: three
egenerate coordinateB{ symmetry ,

l . n ~ PN
B(1F2) N ﬁ{O, b12,021, D34, — D}, 33
B<F2):_l {0,614, Dp3,— b3y, b4}

2 g e e

- L 0B BB —b

53 _ﬁ{o, 13, — D24,D31, — by}

low. The perfect SiQ tetrahedron has nine symmetry and two degenerate coordinatds gymmetry,
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~ ~ ~ ~ ~ ~ ~ ~ 0.008
B<1E> = Bl{o’ 2b15—b13= 014,201 = b33—bys, 2b34— b3y
0.007

- l332 ' 2643_ l341_ l’:\)42 1}1

0.006

0.005 [

BYY=B{0,(b13— b14), — (B3t b2g), (31— bs),

i(0))2

0.004

—(bstbg)}, (34 = 003

. ~ X . . 0.002
with b;.;» being the unit vector perpendicular to the bond
between the central silicon atom and an oxygen aitbrnd 0.001
directed from atomi’ to atomi”, as shown in the inset in 0.000 |
Fig. 15, andB, , are normalization constants, wifl{")|
=1. v (THz)

First, we calculated the projections of the renormalized ) L )
eigenvectors onto these symmetry displacement vefses FIG. 16. The squared nonweighted projections of the eigenvec-

rs onto SiQ symmetry coordinate®\; stretching(solid circles,
S ] o cvry et and e v b oS0 T ST SO
the averaged squared renormalized projections with the total? (solid diamondlsand onto solid-unit fotationcrosse:
VDOS according to Eq(26) results in the partial VDOS for . . .
different type of symmetry vibrations and solid-unit rotations 1€ Projections of nonrenormalized eigenvectors onto
which are presented in Fig. 15. The symmetric stretchingYMMmetry displacement vectors for Sj@nits[see Eqs(21)
(the gray solid ling as seen from Fig. 15, gives a contribu- @nd(22)] are presented in Fig. 16. The stretchihgandF,
tion to the motion of SiQ units only for states around the Vibrations(solid and open circlgsshow the same features as
upper peak at 37 THz in the high-frequency band, while thd" Fig- 15, whileF; bending(open diamondsmainly con-
asymmetric stretchinghe dashed linecontributes apprecia- Uibutes in the region around 19 THz and at the top of the
bly to the motion of SiQ units for the states in both peaks at /oWer frequency band (27 ThizThe E bending(solid dia-
32 and 37 THz. The stretching vibrations of Si@trahedra Monds exhibits a narrower peak at 15 THz as compared to
give practically no contribution to the motion of the tetrahe-the peak at 12 THz in Fig. 15. The rotational motion of
dra at frequencies below the band gap<(27 TH2) except SiO, units (crossey is the most important for eigenmodes
for an insubstantial contribution of asymmetric stretching to&round 7 THz.
the states in the peak around 22 THz. This picture agrees
with the results discussed in Refs. 26, 30 and 37 but contra- 3. Projection onto vibrations of O-Si-O structural units
dicts the conclusions of Ref. 18. It should be noted, however, vitreous silica can also be considered as being comprised

that the authors of Ref. 26 found essentially a larger contrigf O-Si-O units. A projection analysis for these units has
bution of A; stretching for the states in the upper peak 37heen performed similarly to that for Si-O-Si unitsee Sec.
THz and an additional contribution of this type of motion for vy p 1). The results for the partial VDOS characterizing the
the states in a peak around 21 THz. Thestretching found  averaged squared projections of the renormalized eigenvec-
in Ref. 26 gives a contribution to the states in a peak at 24ors onto symmetry modes are given in Fig. 17 and can be
THz in the lower bandas compared to the peak at 22 THz compared to Fig. 13. The most essential difference occurs in
obtained in our calculations the lower-frequency band, where the rotations of O-Si-O
The bending vibrations, in contrast to stretching, provideunits (the dotted line in Fig. 1j7play the most important role
the major contribution to SiQ) motion for the states in the as compared to bending. This is a consequence of the rigidity

intermediate-frequency region in the vicinity of the broadof the O-Si-O angle in comparison with the quite flexible
peaks at 15 THzE bending shown by the dot-dashed line in Sj-O-Si angle.

Fig. 19 and 20 THz £, bending, dotted line The authors
of Ref. 26 generated a structural model of silica based on a
different interatomic potential and found sharper peaks at 12
THz (E bending and at 14.5 THz which are quite different It follows from the above analysis that the rotational mo-
from those obtained in our simulations, the result, probablytion of all the structural units analyzed is important at low
of the use of a different interatomic potential. frequencies. In trying to explain the nature of low-frequency
The rotational motion(the triple-dot-dashed linegives  vibrations, Buchenawet al® proposed a model of coupled
the main contribution to Si@Q) motion for the states in the rotations of SiQ tetrahedra. These coupled rotations of a
lowest part of the frequency spectrum. This feature is ratherestricted number of tetrahedfe.g., 5 could be responsible
important from our viewpoint to clarify the origin of the for the low-frquency modes in the boson-peak region. To
low-frequency vibrations. The sum of all partial VDOS for verify this suggestion, we have projected the eigenvectors
different squared projections, including rotational ones, ionto coupled-rotation modes with the aim of searching for an
represented by the solid black line in Fig. 15 which coincidesappreciable enhancement in the values of the squared projec-
with the calculated total VDOS. The partial VDOS calcu- tions at the lowest frequencies.
lated with the use of weighted projections differ only slightly =~ The coupled-rotation mode has been constructed in the
from those presented in Fig. 15. following way. Consider rotating an SiQ tetrahedron

E. Projections onto coupled rotations
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i". The amplitude of this rotation is a free parameter for the
coupled-rotation modéhe results presented below are prac-
tically independent of this parameter
Following this approach, we attached three more tetrahe-
dra and constructed the coupled-rotation mode involving 21
atoms(or 5 coupled tetrahedyraThen we projected the ac-
tual vibrational eigenvectors onto such modes and averaged
them over all silicon atoms$ at the origin of the central
tetrahedron using Eq$21)—(23) with n=0, where the rela-
tive displacement vectom{o) was used instead ail. The
results of the averaged squared projection of the eigenvectors
onto coupled-rotation modes are shown in Fig. 18. These
data practically coincide with those for projections onto non-
v (TH2) coupleo! rotatic_)ns presgnted in Eig. 16. This_ means that, on
the basis of this analysis, essentially all rotations are coupled
FIG. 17. The partial VDOS's for the projections onto the vibra- to each other. However, it is likely, in fact, that the rotations
tions of O-Si-O structural unitsA; stretching(the gray solid ling ~ are coupled together. Our analysis may miss this behavior,
B, stretching(the dashed line A; bending(the dot-dashed line  since we do not search for the unique axis of coupled rota-
solid-unit rotationg(the dotted ling and their sunthe black solid  tions, but instead perform an average over all angles for
line) coinciding with the total VDOS. which the contribution from coupled rotations may reduce
effectively to zero.

around random axes passing through the central immobile
silicon atomi. The vectora characterizes the displacement F. Rigid-unit modes
of one (o) of the oxygen atomgsee the inset in Fig. 18

The motion of atomi, causes the coupled motion of the i S . R ;
attached tetrahedron with the Si atafat the center. We ¢@" be described using r|g|d.-un|t mo sngld-umt modes
represent the collective motion of all atoms which does not

suppose that this tetrahedron moves as a rigid unit, not ; . .
chgﬁging its shape, i.e., being displaced as a V\Q/]hole in a r&ause changes in the shape of gi®trahedra but influences

tational manner. In order to describe the motion of the at—he'r mutual orientation. These modes have comparatively

tached tetrahedron, we decorpose the vstoa +a, into 00 SEOTEETE, CEE IR B0 e Cee S
two components which are paralled) to the bond between q y PP P

atomsiy andi’ and perpendicularg() to that bond. All S'bl.e 2‘3-,“ the excess modes n the_ _Iow—f_requen@P)
atoms in the attached tetrahedron have the displacemeh‘?glon' We made an attempt t.o.fmd rigid-unit r_nodes ih our
componenty . The rotational componer, induces a rota- model structures of vitreous silica by ca_lculatmg the aver-
tion of the attached tetrahedron around an axis passingged relajtlve chan_ges of the volumg of S@Frahe.dfa- The
through the aton” and perpendicular to the plane formed by olumeV; of an S'Q“ tetra.\heldr-o.n with an(o?l atomin th?
the bond between atonig andi’ and the vectom, , thus qenter char_1geére|at|ve to its initial valuev; _for thg equi-
providing the three other oxygen atoms with the proper rolibrium static structurgbecause of the atomic motion. This
tational displacement vectoa{sr,). The oxygen atom&xcept volume can be represented as a sum of the volurhgsf

i) can also rotate around the bond connecting af d four smaller tetrahedra with a common Si atomt the apex
0 g aly (see inset in Fig. 29V!=3%_ V! . In the rigid-unit mode,

the shape of a tetrahedron should not be changed, so that the
relative changes in volumesV! ,, of each small tetrahedron
constituting an SiQ tetrahedron,sV! = (V! —V{©)/v©
should approach zero for the rigid-unit mode. We plot the
y weighted f=2) averaged relative changes in the volume of

SiO, tetrahedrasV!(" against frequency in Fig. 19, where

Structural phase transitions in quartz agecristobalite

0.005

0.004 |

SVitn =

1 . ,
S ("2 Vi @9

0.001
with the weightw! defined in Eq(23). In Eq. (35), we sum
- the absolute values of the relative changes in order not to
0-000 take into account modes that change the shape of a tetrahe-
dron but conserve its total volume. As seen in Fig. 2¢\("
decreases monotonically with decreasing frequency and
FIG. 18. The squared nonweighted projections of the eigenvecShows no abrupt decreagexpected if rigid-unit modes ex-
tors onto coupled rotations of SiQetrahedra. The atomic displace- ist) in the low-frequency region. Excess modes in the BP
ments for the coupled rotational motion of two connected SiO region, therefore, cannot be associated with rigid-unit modes
units are shown schematically in the inset. in our structural model.

v (THz)
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changes in volume of SiQ tetrahedra involved in a particular
eigenmode vs the eigenmode frequency.

G. Vibrational spectrum of small structural units
as representative of the spectrum
of the entire system

VDOS (THz ")

We consider a system of finite size containing quite a
large number of atoms. For a system of such size, the main
features of the vibrational spectrufdDOS) are found to be
independent of the number of particles, except in the region
of the lowest frequencies where acousticlike waves form the
spectrum. The very-low-frequency region of the spectrum
can be investigated by constructing and analyzing essentially
larger systems, and this is not the subject of our consider-
ation. The question we answer in this subsection is whether FIG. 20. The VDOS for structural units with silicon atoms as
or not it is possible to describe the main features of thehe origin and theinth nearest neighborga) first (n=1) neighbors
vibrational spectrum of the entire system by investigating thethe dotted ling third (n=3) neighborgthe dashed ling and fifth
vibrations of small structural units. In other words, what is(n=>5) neighbors(the dot-dashed line (b) second (=2) neigh-
the most representative of the small structural units in givingPors(the dotted lingand fourth f=4) neighborgthe dashed line
the vibrational properties of the entire system? The VDOS of the entire system obtained in our simulations is rep-

In order to answer these questions, we have performed gsented by the solid line.
vibrational analysis for our systems using different approxi-
mations in the evaluation of the dynamical matrix. Namely, The VDOS for the units Comprised of the silicon atom
small blocks in the dynamical matrix corresponding to ap-and its first, third, and fifth neighbors are shown in Fig(&20
propriate structural unitclusters of atomswere considered hile those for the units comprised of the silicon atom and
separately, i.e., extracted from the true dynamical matrixjis second and fourth neighbors are given in Figl20The

and the resulting effective dynamical matrix was then d'ago'analogous VDOS for the structural units containing an oxy-

nalized. The resulting vibrational spectrum obtained for defi- en atom at the center are presented in Fig&)2ind 21b).

nlte_structural units can help in understanding the origin ofr o nits containing an odd number of nearest neighbors to
particular features in the total VDOS and reveal the impor-_ .. . : ;

s, . - a silicon atom actually comprise SjQetrahedra, while the
tance of “interactions” between atoms in such definite struc-

. units containing an odd number of nearest neighbors to an
tural units. ¢ ise Si-O-Si structural uriitsolecul
First, we considered a small structural ufgtg., an SiQ oxygen atom comprise Si-O-Si structural unisolecules.

tetrahedropand calculated its dynamical matrix, evaluatingA comparison 9f Figs. 2@) apd 21a), and especiglly the
properly the self-interaction matrix elementsi.e., curves for the fifth-nearest neighbors, shows that in the case

~3*VIdx,9%g;, a standing for the Cartesian coordingtes of Si as the origin atom the approximate curftee dot-

for all atomsi comprising the unit and taking into account dashed line in Fig. 2@)] fits the calculated VDO$he solid
only “interactions” (~(?2V/<9Xa,if?xg,i/) between different Im_eg in Figs. 20 and ajbetter_ thgn in the case (_)f O as the
atomsi andi’ within the unit. Then, the size of the unit was 0rigin atom[the dot-dashed line in Fig. 24]. This means
increased by taking into account the secofahd third, that SiO, units are better representative structural units than
fourth, or fifth) neighbors to the central atom in the unit. The Si-O-Si units. This conclusion agrees with the opinion of the
eigenvalues of these dynamical matrices have been fourguthors of Ref. 6 but contradicts the conclusions of Ref. 19.
and averaged over all atonfseing the central atoms in the The units containing an even number of nearest neighbors to
units) in the whole model and the corresponding VDOS havea silicon atom comprise an integral number of Si-O-Si units
been obtained. and the partial VDOS in Fig. 2B) resembles the partial

v (THz)
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03 T and Si-O-Si bond-angle distributions, and static structure

Pri (a) factor. The van Beest model also exhibits a good agreement

h o with experimental data for the dynamical structure factor and
fairly good agreement with the vibrational density of states
extracted from inelastic neutron scattering. The Tsuneyuki
model shows poorer agreement for the dynamical structure
factor and the vibrational density of states, mainly due to a
shift of the spectrum in the high-frequency region to lower
frequencies.

The structural models were relaxed to the equilibrium
glassy state and the dynamical matrix was calculated and
diagonalized directly, resulting in a complete set of eigen-
vectors and eigenvalues. Knowing all the eigenvectors, we
have investigated the temperature dependence of the mean-
square displacement and compared it with the Debye depen-
dence. The experimental value of the mean-square displace-
ment found atT=50 K from inelastic and elastic neutron
scattering was in good agreement with our calculations.

In the low-frequency regiony~1 THz), we have found
excess (compared to the Debye lawibrational modes
known as the boson peak. The structure and origin of the
lowest-frequency modes were briefly discussed and a new
model for the states in the boson peak is proposed: The low-
frequency states are the transverse acoustic waves strongly
overdamped due to hybridization with the states from the
bottom part of the lowest optic baridee Ref. 55 for more
detailg. The contributions of these modes to the heat capac-
0 1o 20 80 40 ity have been investigated and a pronounced bump around
T=20 K has been found. Unfortunately, we could not inves-
tigate the very low-frequency region because of the finite

FIG. 21. The VDOS for structural units with oxygen atoms as size of o_ur m,0d6|s' Creat_ion of larger mOdels is in progress.
the origin and theinth nearest neighborg) first (n=1) neighbors The vibrational analysis performed in order to reveal the
(the dotted ling third (n=3) neighborgthe dashed line and fith ~ Nature of vibrational modes included an investigation of the
(n=5) neighbors(the dot-dashed line (b) second G=2) neigh-  degree of mode localization, phase relations, and mode pro-
bors(the dotted lingand fourth o=4) neighborgthe dashed line  jections onto the symmetry coordinates of definite structural
The VDOS of the entire system obtained in our simulations is repunitS. We have found the existence of truly localized states in
resented by the solid line. the high-frequency band tails and quasilocalized states in the

low-frequency region. We have also found that the vibrations
VDOS for O-centered units containing an odd number ofin the low-frequency range are mainly in phase, resembling
nearest neighbofisee Fig. 21a)] andvice versa acoustic waves, while in the high-frequency range they are

The other important conclusion we can make is that thenainly out of phase, resembling optic modes. Projections of
bottom of the frequency spectrum is shifted to lower fre-the modes onto the stretching, bending, and rocking coordi-
quencies when an increasing number of nearest neighbors figtes of oxygen atoms have been made, revealing that
taken into account. Even the inclusion of fifth neighbors (69stretching is significant only in the high-frequency band, and
atoms with Si as the origjris not enough to obtain correct rocking and bending contribute equally in the low- and
frequencies for the low-frequency modes. This means thahedium-frequency range.
many atomgin fact, practically all atoms in the structure, as  Projecting the eigenmodes onto the symmetry coordinates
follows from our projection analysis involving plane of Si-O-Si, SiQ,, and O-Si-O structural units allows us to
waves®) are involved in the low-frequency vibrationgn ~ make a conclusion about the origin of the different features
agreement with Ref. 31 in the VDOS. On the one hand, for Si-O-Si unibs, stretch-
ing (asymmetri¢ gives dominant contributions to the eigen-
vectors characterized by frequencies in the region of the two
high-frequency peaks in the VDOS at 32 and 37 TIAz,

We have investigated the vibrational excitations in twobending to the states around the top of the lower-frequency
structural models of vitreous silica constructed by moleculaband (~27 TH2), andA; stretching and solid-unit rotations
dynamics. Two of the best, to our knowledge, interatomicto the peak around 22 THz. On the other hand, for SiO
potentials (due to van Beestt al. and Tsuneyukiet al)), units, A; stretching (asymmetri¢ contributes only to the
based onab initio calculations for a small moleculelike eigenvectors characterized by frequencies in the region of the
SiO, unit, have been implemented in the simulations. Bothupper peak at 37 THz in the high-frequency band of the
models show good agreement with experimental data wittvDOS, F, stretching(asymmetri¢ appreciably to the two
respect to the partial radial distribution functions, the O-Si-Ohigh-frequency peaks in the VDOS at 32 and 37 THz and

VDOS (THz ')

VDOS (THz )

VI. CONCLUSIONS
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slightly to the upper part of the lower band at 22 THEz,  small structural unit as being representative of the vibrational
bending appreciably to the states around the top of the loweproperties of the entire system. It was shown that a cluster
frequency band 27 THz and around 19 THzE bending containing an integral number of SjQetrahedra describes
to the middle of the lower band around 15 THz, and solid-the vibrational properties of vitreous silica better than, at
unit rotations to the bottom part of the lower frequency bandeast, a cluster containing an integral number of Si-O-Si
at 5—7 THz. Projecting onto the coupled rotations of SiO structural units. The vibrations of finite-size clusters contain-
tetrahedra showed that they play an important role in théng up to 69 atoms do not contribute to the lowest-frequency
same frequency region as noncoupled ore5£7 TH2. No  range~1 THz.
significant enhancement of their contribution in the low-
frequency region 1 THz) has been found. ACKNOWLEDGMENTS
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