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Environment-dependent interatomic potential for bulk silicon
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We use recent theoretical advances to develop a functional form for interatomic forces in bulk silicon. The
theoretical results underlying the model include an analysis of elastic properties for the diamond and graphitic
structures and inversions ofab initio cohesive energy curves. The interaction model includes two-body and
three-body terms which depend on the local atomic environment through an effective coordination number.
This formulation is able to capture successfully~i! the energetics and elastic properties of the ground-state
diamond lattice,~ii ! the covalent rehybridization of undercoordinated atoms, and~iii ! a smooth transition to
metallic bonding for overcoordinated atoms. Because the essential features of chemical bonding in the bulk are
built into the functional form, this model promises to be useful for describing interatomic forces in silicon bulk
phases and defects. Although this functional form is remarkably realistic by the usual standards, it contains a
small number of fitting parameters and requires computational effort comparable to the most efficient existing
models. In a companion paper, a complete parametrization of the model is given, and excellent performance for
condensed phases and bulk defects is demonstrated.@S0163-1829~97!08537-8#
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I. INTRODUCTION

The study of materials properties is increasingly relyi
on a microscopic description of the underlying atomic str
ture and dynamics. While many of the key features can
described by a small number of atoms that are actively p
ticipating in a physical process, many problems of inter
require of order 103– 106 or even higher number of atom
and time scales of 10–100 ps for a proper description.Ab
initio methods based on density functional theory1 and the
local density approximation~DFT and LDA! have been in-
tensively and successfully used to provide a microscopic
scription of simple structures.2 For more complex cases, in
cluding, for instance, disordered or stepped surfac
dislocations, grain boundaries, crystal growth, and
amorphous-to-crystal transition, a large number of atom
required, making anab initio description untenable. A pos
sible alternative for these cases might be empirical in
atomic potentials which are computationally much less
pensive. The difficulty in employing empirical potentials
their unproven ability to capture the physics of structures
from the fitting data used to construct them. Developing
liable empirical potentials remains an issue of great inte
and possibly of great rewards.

Silicon is a test case for the development of empiri
potentials for covalent materials. Its great technological
portance, the vast amount of relevant experimental and
oretical studies available, and its intrinsic interest as the r
resentative covalent material make it an ideal candidate
exploring to what extent the empirical potential approach
be exploited. In recent years, more than 30 empirical po
tials for silicon have been developed and applied to a num
of different systems, and more recently compared to e
other.3,4 They differ in degree of sophistication, function
form, fitting strategy, and range of interaction, and each
560163-1829/97/56~14!/8542~11!/$10.00
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accurately model various special atomic configurations. S
faces and small clusters are the most difficult to handle3,5

but even bulk material~crystalline and amorphous phase
solid defects, and the liquid phase! has resisted a transferab
description by a single potential. Realistic simulations of i
portant bulk phenomena such as plastic deformation, di
sion, and crystallization are still problematic.

In this article, we derive a general model for the fun
tional form of interatomic forces in bulk tetrahedral semico
ductors. This functional form is applied to the prototypic
case of silicon in a companion article.6 The development of
the model is organized as follows: In Sec. II, we brie
review existing potentials and approximations of quant
models for silicon and extract important conclusions ab
the desirable features of a successful interatomic poten
Recent theoretical advances used in deriving our model f
ab initio total energy data are outlined in Sec. III. A fun
tional form that incorporates the theoretical results usin
minimal number of fitting parameters is presented and d
cussed in Sec. IV. Finally, Sec. V contains some conclud
remarks.

II. REVIEW OF EMPIRICAL POTENTIALS
AND APPROXIMATIONS

A. Empirical potentials

The usual approach for deriving empirical potentials is
guess a functional form, motivated by physical intuition, a
then to adjust parameters to fitab initio total energy data for
various atomic structures. A covalent material presents a
ficult challenge because complex quantum-mechanical
fects such as chemical bond formation and rupture, hyb
ization, metalization, charge transfer, and bond bending m
be described by an effective interaction between atoms
which the electronic degrees of freedom have somehow b
8542 © 1997 The American Physical Society
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‘‘integrated out.’’ 7 In the case of Si, the abundance of p
tentials in the literature illustrates the difficulty of the pro
lem and lack of specific theoretical guidance. In spite of
wide range of functional forms and fitting strategies, all p
posed models possess comparable~and insufficient! overall
accuracy.3 It has proved almost impossible to attribute t
successes or failures of a potential to specific features o
functional form. Nevertheless, much can be learned fr
past experience, and it is clear that a well-chosen functio
form is more useful than elaborate fitting strategies.

To appreciate this point we compare and contrast so
representative potentials for silicon. The pioneering poten
of Stillinger and Weber~SW! has only eight parameters an
was fitted to a few experimental properties of solid cu
diamond and liquid silicon.8 The model takes the form of
third-order cluster potential7 in which the total energy of an
atomic configuration$RW i j % is expressed as a linear combin
tion of two- and three-body terms,

E5(
i j

V2~Ri j !1(
i jk

V3~RW i j ,RW ik!, ~1!

where RW i j 5RW j2RW i , Ri j 5uRW i j u and we use the conventio
that multiple summation is over all permutations of distin
indices. The range of the SW potential is just short of
second-neighbor distance in the equilibrium diamond latt
and so the pair interactionV2(r ) has a deep well at the
first-neighbor distance to represent the restoring force aga
stretchingsp3 hybrid covalent bonds. The three-body inte
action is expressed as a separable product of radial func
g(r ) and an angular functionh(u),

V3~rW1 ,rW2!5g~r 1!g~r 2!h~ l 12!, ~2!

where l 125cosu125rW1•rW2 /(r 1r 2). The angular function
h( l )5( l 11/3)2 has a minimum of zero at the tetrahedr
angle to represent the angular preference ofsp3 bonds, and
the radial functiong(r ) decreases with distance to redu
this effect when bonds are stretched. The SW three-b
term captures the directed nature of covalentsp3 bonds in a
simple way that selects the diamond lattice over clo
packed structures. Although the various terms lose th
physical significance for distortions of the diamond latti
large enough to destroysp3 hybridization, the SW potentia
seems to give a reasonable description of many states ex
mentally relevant, such as point defects, certain surf
structures, and the liquid and amorphous states.3 The SW
potential continues to be a favorite choice in the literatu
due in large part to its appealing simplicity and appar
physical content.

Another popular and innovative empirical model is t
Tersoff potential, with three versions generally called T9

T2,10 and T3.11 The original version T1 has only six adjus
able parameters, fitted to a small database of bulk polyty
Subsequent versions involve seven more parameters to
prove elastic properties. The Tersoff functional form is fu
damentally different from the SW form in that the strength
individual bonds is affected by the presence of surround
atoms. Using Carlsson’s terminology, the Tersoff potentia
a third-order cluster functional7 with the cluster sums appea
ing in nonlinear combinations. As suggested by theoret
arguments,12–14 the energy is the sum of a repulsive pa
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interaction fR(r ) and an attractive interactionp(z)fA(r )
that depends on the local bonding environment, which
characterized by a scalar quantityz,

E5(
i j

@fR~Ri j !1p~z i j !fA~Ri j !#, ~3!

z i j 5(
k

V3~RW i j ,RW ik!, ~4!

where the functionp(z) represents the Pauling bond orde
The three-body interaction has the form of Eq.~2! with the
important difference that the angular function, although s
positive, may not have a minimum at the tetrahedral an
The T1, T2, and T3 angular functions are qualitatively d
ferent, possessing minima at 180°, 90°, and 126.745°,
spectively. The Tersoff format has greater theoretical jus
cation away from the diamond lattice than SW, but the th
versions do not outperform the SW potential overall, perh
due to their handling of angular forces.3 Nevertheless, the
Tersoff potential is another example of a successful poten
for bulk properties with a physically motivated function
form and simple fitting strategy.

The majority of empirical potentials fall into either th
generic SW~Refs. 15–17! or Tersoff~Refs. 18–22! formats
just described, but there are notable exceptions that pro
further insight into successful approaches for designing
tentials. First, a number of potentials possess functio
forms that have either limited validity or no physical mo
vation at all, suggesting that fitting without theoretical gui
ance is not the optimal approach. The valence force field23,24

and related potentials25,26 ~of which there are over 40 in the
literature25! involve scalar products of the vectors connecti
atomic positions, an approximation that is strictly valid on
for small departures from equilibrium. Thus, extending the
models to highly distorted bonding environments und
mines their theoretical basis. The potential of Pears
et al.,27 as the authors emphasize, is not physically mo
vated, but rather results from an exercise in fitting. Their u
of Lennard-Jones two-body terms and Axilrod-Teller thre
body terms, characteristic of van der Waals forces, has
justification for covalent materials. The potential of Mistrio
tis, Flytzanis, and Farantos28 ~MFF! is an interesting attemp
to include four-body interactions. Although the importan
of four-body terms is certainly worth exploring, the inclusio
of a four-body term in a linear cluster expansion is n
unique, and theoretical analysis tends to favor nonlin
functionals.7,13,14

A natural strategy to improve on the SW and Ters
models is to replace simple functional forms with more fle
ible ones and complement them with more elaborate fitt
schemes. The Bolding-Andersen~BA! potential29 generalizes
the Tersoff format with over 30 adjustable parameters fit
an unusually wide range of structures. Although it has
been thoroughly tested, the BA potential appears to desc
simultaneously bulk phases, defects, surfaces, and s
clusters, a claim that no other potential can make.3 However,
its complexity makes it difficult to interpret physically, an
since a large fitting database was used, it is unclear whe
the potential can reliably describe structures to which it w
not explicitly fit. In this vein, the spline-fitted potentials o
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the force matching method30 represent the opposite extrem
of the SW and Tersoff approaches: Physical motivation
bypassed in favor of elaborate fitting. These potentials
volve complex combinations of cubic splines, which ha
effectively hundreds of adjustable parameters, and the s
egy of matching forces on all atoms in various defect str
tures is the most elaborate attempted thus far. Although
method may be worth pursuing as an alternative, it has
yet produced competitive potentials.31 Moreover, even if a
reliable potential could result from such fitting strategies
would make it hard to interpret the results of atomistic sim
lations in terms of simple principles of chemical bondin
Such an interpretation is essential, in our view, if physi
insight is to be gained from computer simulations.

In spite of relentless efforts, no potential has demo
strated a transferable description of silicon in all its form3

leading us to another important conclusion: It may be
ambitious to attempt a simultaneous fit of all of the importa
atomic structures~bulk crystalline, amorphous and liqui
phases, surfaces, and clusters! since qualitatively different
aspects of bonding are at work in different types of str
tures. Theory and general experience suggest that the
ingredient needed to differentiate between surface and
bonding preferences is a more sophisticated descriptio
the local atomic environment. A notable example in this
spect is the innovative thermodynamic interatomic force fi
~TIFF! potential of Chelikowskyet al.,32 which includes a
quantity called the ‘‘dangling bond vector’’ that is
weighted average of the vectors pointing to the neighbor
an atom. For symmetric configurations characteristic of
ideal ~or slightly distorted! bulk material, the dangling bond
vector vanishes~or is exceedingly small!. Conversely, a non-
zero value of the dangling bond vector indicates an as
metric distribution of neighbors. While the TIFF danglin
bond vector description appears to be very useful for und
coordinated structures like surfaces and small clusters, in
work we restrict ourselves to bulk material and thus us
simpler, scalar environment description. Our goal is to obt
the best possible description of condensed phases and de
with a simple, theoretically justified functional form.

B. Approximation of quantum models

An alternative to fitting guessed functional forms is
derive potentials by systematic approximation of quantu
mechanical models. So far, this approach has failed to
duce superior potentials, but important connections betw
electronic structure and effective interatomic potentials h
been revealed. Although attempts are being made to dire
approximate density functional theory,33 the most useful con-
tributions involve approximating various tight-binding~TB!
models, which can themselves be derived as approximat
of first principles theories.34 These methods are based
low-order moment approximations of the TB local density
states~LDOS!, which is used to express the average ba
energy as the sum of occupied bonding states.7,14,35–39Petti-
for has derived a many-body potential, similar in form to t
Tersoff potential, by approximation of the TB bond order14

More recently, an angular dependence remarkably clos
the T3 angular function has been derived fors bonding from
the lowest-order two-site term in the bond order poten
expansion,35 but the analytically derived function has a fl
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minimum around 130° and thus differs qualitatively with th
T1 and T2 potentials. With hindsight, a simple physical pr
ciple explains these results: As bond is most weakened
~desaturated! by the presence of an another atom when
resulting angle is small (u,100°) because in such cases t
atom lies near the bond axis, thus interfering with thes
orbital where it is most concentrated. Working within th
same framework of the TB LDOS, Carlsson and co-work
have derived potentials with the generalized embedded a
method.36–38 Harrison has arrived at a similar model by e
panding the average band energy in the ratio of the width
the bonding band to the bond-antibond splitting, the relev
small parameter in semiconductors.39 These potentials re
semble the SW potential in its description of angular forc
with an additive three-body term, particularly for small di
tortions of the diamond lattice. The transition to metal
behavior in overcoordinated structures involves interbond
teractions similar to the Tersoff and embedded atom po
tials.

Many-body potentials can be derived from quantu
mechanical models if we restrict our attention to importa
small sets of configurations. Using a basis ofsp3 hybrid
orbitals in a TB model, Carlssonet al.7,36 have shown that a
generalization of the SW format, in which Eq.~2! is replaced
by a form similar to that used by Biswas and Haman15

~BH!,

V3~rW1 ,rW2!5 (
m50

2

gm~r 1!gm~r 2!l 12
m , ~5!

is valid in the vicinity of the equilibrium diamond lattice. In
general, the fourth moment controls the essential band ga
a semiconductor, implying four-body interactions, but t
separable, three-body SW-BH terms are a consequenc
the open topology of the diamond lattice: The only fou
atom hopping circuit between first neighbors is the se
retracing pathi→ j→ i→k→ i .7

We can make analogous arguments for the graphitic
tice to draw conclusions aboutsp2 hybrid bonds. Ignoring
the weak, long-range interaction between hexagonal pla
we can assume a TB basis ofsp2 hybrid orbitals and follow
Carlsson’s derivation. Because the self-retracing path is
the only first-neighbor hopping circuit in a graphitic plane
cluster expansion with the generic BH three-body interact
is also valid for hexagonal configurations, with the functio
in Eqs. ~1! and ~5! differing from their diamondsp3 coun-
terparts, as described below. These calculations also sug
that a locally valid cluster expansion should acquire stro
environment dependence for large distortions from the re
ence configuration.7

These studies provide theoretical evidence that the lin
three-body SW-BH format is appropriate near equilibriu
structures, while the nonlinear many-body Tersoff format d
scribes general trends across different bulk structures.
the asymmetric configurations found in surfaces and sm
clusters, these theories also suggest that a more complic
environment dependence than Tersoff’s is needed, like
dangling bond vector of the TIFF potential.14,36 In conclu-
sion, direct approximation of quantum models can prov
insight into the origins of interatomic forces, but apparen
cannot produce improved potentials. The reason may be
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56 8545ENVIRONMENT-DEPENDENT INTERATOMIC POTENTIAL . . .
the long chain of approximations connecting first princip
and empirical theories is uncontrolled, in the sense that th
is no small parameter which can provide an asympto
bound for the neglected terms for a wide range
configurations.40

III. INVERSION OF ab initio ENERGY DATA

There are very few hard facts concerning the nature
interatomic forces. Although there has been a proliferation
ab initio energy and force calculations for a wide range
atomic structures, it has proved difficult to discover any co
crete information regarding the functional form of inte
atomic potentials. With the ubiquitous fitting approach, it
never clear whether discrepancies withab initio data result
from an incorrect functional form or simply suboptim
fitting.3 Thus, in addition to the practical problem of desig
ing potentials, it is also difficult to build a simple conceptu
framework within which to understand the complexities
chemical bonding. In this section, we summarize our rec
efforts to extract features of interatomic forces directly fro
ab initio total energy data. In order to investigate the glob
trends in bonding across bulk structures predicted by qu
tum theories, we first perform inversions ofab initio cohe-
sive energy curves in Sec. III A. By analyzing elastic pro
erties of covalent solids in Sec. III B, we then explore t
cohesive forces in certain special~high-symmetry! bonding
states, which can be viewed as an inversion ofab initio en-
ergies restricted to selected important configurations.

A. Inversion of cohesive energy curves

We have recently shown that it is possible to derive
fective interatomic potentials for covalent solids direc
from ab initio data.41,42 The inversion procedure generaliz
the ‘‘ab initio pair potential’’ of Carlsson, Gelatt, an
Ehrenreich43 to many-body interactions and for arbitra
strains beyond uniform volume expansion.44 For the case of
silicon, this work provides first principles evidence in fav
of the generic bond order form of the pair interaction,

V2~r ,Z!5fR~r !1p~Z!fA~r !, ~6!

wherefR(r ) represents the short-range repulsion of ato
due to Pauli exclusion of their electrons,fA(r ) represents
the attractive force of bond formation, andp(Z) is the bond
order, which determines the strength of the attraction a
function of the atomic environment, measured by the co
dinationZ. The theoretical behavior of the bond order is
follows:7,13,14,37,38 The ideal coordination for Si isZ054,
due to its valence. As an atom becomes increasingly ove
ordinated (Z.Z0), nearby bonds become more metall
characterized by delocalized electrons. In terms of electro
structure, the LDOS for overcoordinated atoms can be
sonably well described by its scalar second moment. It
well-established result that the leading-order behavior of
bond order is p(Z);Z21/2 in the second-momen
approximation.7,14,38For Z<Z0 , on the other hand, a matri
second-moment treatment predicts a roughly constant b
order ~additive bond strengths!.36 For small coordinations
higher moments are needed to incorporate important feat
of band shape characteristic of covalent bonding, prima
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the formation of a gap in the LDOS.7,14,36,37Thus, the bond
order should depart from the divergentZ21/2 behavior at
lower coordinations with a shoulder at the ideal coordinat
of Z5Z0 where the transition to metallicZ21/2 dependence
begins.

Inversion ofab initio cohesive energy curves verifies th
trends in chemical bonding across various bulk bonding
rangements are indeed consistent with these theore
predictions.41 Previously, the only evidence in support of th
bond order formalism came fromequilibrium bond lengths
and energies for a small set of ideal crys
structures.9–11,13,19The inversion approach has revealed th
the bond order decomposition expressed by Eq.~6! is actu-
ally valid for a wide range of volumes away from equilib
rium and for a representative set of low-energy crystal str
tures. In addition to selecting the generic form of the p
interaction, inversion provides a precise measure of the r
tive bond orders in various local atomic configurations. F
example, the bond order ofsp2 bonds involving threefold-
coordinated atoms is about 5% greater than that of fourfo
coordinatedsp3 bonds in silicon.

These results have immediate implications for empiri
potentials. The main conclusion is that the generic Ters
format is much more realistic than the SW format for high
distorted configurations. However, the inversion results a
indicate that a coordination-dependent pair interaction
provide a fair description of high-symmetry crystal structur
without requiring additional many-body interactions. In pa
ticular, angular forces are only needed to stabilize th
structures under symmetry-breaking distortions, prima
for small coordinations. In order to make a quantitative co
nection between Tersoff’s functional form and our invert
ab initio data, angular contributions to the bond order m
somehow be suppressed for ideal crystal structures.

The inversion procedure applied to explicit three-body
teractions has also led to some useful conclusions. Altho
it is not always the case,42 inverted three-body radial func
tionsg(r ) tend to be strictly decreasing functions~like SW!,
especially when an overdetermined set of input structure
used.41 Inverted angular functionsh( l ) also tend to penalize
small angles (u,p/2) less than most existing models,
agreement with a comparative study of empirical potentia3

We must emphasize, however, that the results of this sec
concern general trends in chemical bonding, and have l
to offer in terms of the precise nature of interatomic forces
special atomic configurations, such as the low-energy st
of hybrid covalent bonds. To understand better these crit
cases, we employ a related inversion strategy.

B. Analysis of elastic properties

A useful theoretical approach to guide the developmen
potentials, which has been pursued recently only by a
authors,45,35is to predict elastic properties implied by gener
functional forms and compare with experimental orab initio
data. This tool for understanding interatomic forces da
back to the 19th century, when St. Venant showed that
assumption of central pairwise forces supported by Cau
and Poisson implies a reduction in the number of indep
dent elastic constants from 21 to 15.46 The corresponding six
dependences, given by the single equationC125C44 if atoms
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TABLE I. Comparison of elastic constants~in units of Mbar! for diamond cubic Si computed from empirical models with experimen
or ab initio ~LDA ! values. The values for experiment~Expt! are from Simmons and Wang~Ref. 54!, for tight-binding~TB! from Bernstein
and Kaxiras~Ref. 55!, and for the empirical potentials Biswas-Haman~BH!, Tersoff ~T2, T3!, Dodson ~DOD!, and Pearson-Takai
Halicioglu-Tiller ~PTHT! from Balamane~Ref. 3!. The Stillinger-Weber~SW! values were calculated with the analytic formulas of Cowl
~Ref. 45! and scaled to set the binding energy to 4.63 eV~Ref. 3!. In the lower half of the table, we test the elastic constant relati
discussed in the text by calculating the ratiosaH[(7C1112C12)C44/3(C1112C12)(C112C12) andaB[(4C1115C12)/9C44

o .

Expt. LDA SW BH T2 T3 DOD PTHT TB

C11 1.67 1.617 2.042 1.217 1.425 1.206 2.969 1.45
C12 0.65 0.816 1.517 0.858 0.754 0.722 2.697 0.845
C44 0.81 0.603 0.451 0.103 0.690 0.659 0.446 0.534
C44

0 1.11 1.172 1.049 0.923 1.188 3.475 2.190 1.35
aH 1.16 1.00 0.98 2.99 2.31 1.69 1.71 2.80
aB 0.99 1.00 1.67 1.10 0.89 0.27 1.29 0.82
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are at centers of cubic symmetry, are commonly called
Cauchy relations.46,47 They provide a simple test for selec
ing which materials can be described by a pair potential.48,49

Once it was realized that the Cauchy relations are not s
fied by the experimental data for semiconductors, a num
of authors in this century, led by Born,50,51 derived general-
ized Cauchy relations for noncentral forces in the diamo
structure.52,48 Building upon this body of work, we have re
cently analyzed the elastic properties of several gen
classes of many-body potentials in the diamond and grap
crystal structures in order to gain insight into the mechan
behavior of sp3 and sp2 hybrid covalent bonds
respectively.44 These high-symmetry atomic configuratio
must be accurately described by any realistic model of in
atomic forces in a tetravalent solid. Here we will only outlin
results directly related to the model presented in the n
section.

sp3 hybrids. The simplest model of elastic forces th
captures the essential physics of a tetrahedral semicond
is given by Eqs.~1! and~2! with the additional assumption
of nearest-neighbor interactions and an angular function h
ing a minimum of zero at the tetrahedral angle~h5h850,
h9.0!. This functional form, which includes the SW pote
tial as a special case, is equivalent to a general model
posed by Harrison with two degrees of freedom for elas
behavior,V29 and h9, the curvatures of the pair interactio
and of the angular function at their respective minima.48,53,57

Since cubic symmetry allows for three independent ela
moduli, there is an implied relation due to Harrison,

~7C1112C12!C4453~C1112C12!~C112C12!. ~7!

Using the experimental data for Si~Ref. 54! shown in Table
I, the ratio of the two sides of the equation is 1.16, indicat
a reasonable description by the Harrison model. In contr
the potentials with the Tersoff format, T2, T3, and Dods
~DOD!,18 are far from satisfying this relation. This does n
imply rejection of the Tersoff format, because the function
form has more than enough degrees of freedom to exa
reproduce all the elastic constants. However, as such,
inability of Tersoff potentials to accurately describe elas
behavior when constrained to fit other important proper
does suggest a potential shortcoming in the functional fo

A more compelling reason to select the Harrison mo
over others comes from the unrelaxed shear modulusC44
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which does not include relaxation of the internal degrees
freedom in the crystal unit cell. In the early literature o
elastic forces, unrelaxed elastic moduli were ignored,
cause they are not experimentally accessible. With the
vent of ab initio calculations that predict elastic constan
within a few percent of experimental values, we can n
analyze unrelaxed elastic properties as well. Conside
again the simple Harrison model, with its two degrees
freedom, we report another relation for the unrelax
moduli,

4C1115C1259C44
0 . ~8!

As shown in Table I,the experimental and ab initio elasti
moduli for silicon satisfy this relationwithin experimental
and computational error. On the other hand, more gen
cluster potentials and functionals, including the Tersoff fo
mat, BH, and PTHT, do not require this relation, and app
ently cannot satisfy it under the usual circumstances. Thi
demonstrated in Table I and explains why it has proved
ficult to obtain good elastic properties with the Terso
potential.56 These results unambiguously select the Harris
model for describing small homogeneous strains of the d
mond lattice in Si. Although imperfect, internal relaxatio
with the Harrison model is also much better than with oth
models. Combining Eqs.~7! and ~8!, we arrive at a relation
involving all four moduli,C11, C12, C44, andC44

0 ,

C44
0 2C445

~C1118C12!
2

9~7C1112C12!
, ~9!

which expresses the effect of internal relaxation. If the t
degrees of freedom in the Harrison model are used to re
duce the experimental values ofC11 andC12, and thus also
C44

0 by Eq. ~8! for Si, then the predicted value ofC44 from
Eq. ~9! is 0.71 Mbar, which is only 12% smaller than th
experimental value of 0.81 Mbar. The elastic behavior of
Harrison model is quite remarkable considering it has o
half of the necessary degrees of freedom, while most o
models are overdetermined for elastic behavior. This
plains the surprising fact3 that the SW potential gives one o
the best descriptions of elastic properties in spite of not h
ing been fit to any elastic constants. We conclude that i
the superiority of the simple SW functional form that giv
the desirable properties, not a complex fitting procedure.
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Using analytic expressions for the elastic constants i
possible to devise a simple prescription to achieve good e
tic properties with the Harrison model.57 As a simple conse-
quence ofh(21/3)50, the curvature of the pair potential
given by

f9~r d!5
3Vd

4r d
2 ~C1112C12!. ~10!

The curvature of the angular function can be related to
second shear modulus,

g~r d!2h9~21/3!5
9Vd

32
~C112C12!, ~11!

where r d , ad , and Vd5ad
3/8 denote the equilibrium first

neighbor distance, lattice constant, and atomic volume.
ing theab initio data in Table I, the right-hand sides of Eq
~10! and~11! evaluate to 8.1 eV/Å2 and 3.6 eV, respectively
This provides a simple two-step procedure to maintain g
elastic behavior while fitting any potential reducing to t
Harrison model near the diamond lattice:~i! Scale the pair
interaction V2(r ) to obtain the correct bulk modulu
K5(C1112C12)/3, and ~ii ! scale the three-body energy
set the second shear modulus. As shown above, this will
to perfect unrelaxed elastic constants and only a 12% erro
C44 in the case of Si.

sp2 hybrids. We have also obtained useful informatio
about interatomic forces due tosp2 hybrid bonds from the
elastic moduli of the graphitic structure.44 In this analysis we
neglect interplanar interactions, which are insignificant co
pared to the covalent bonds within a single, hexagonal pla
Our goal is to understand the elastic properties ofsp2 hy-
brids appearing around threefold-coordinated atoms in a b
environment, such as a dislocation core or a gr
boundary.58 An isolated hexagonal plane embedded in thr
dimensional space has two independent elastic constantsC11
and C12 with units of energy per unit area.59 There is no
relation implied by empirical models because any reason
functional form must possess at least two degrees of f
dom, for pair bonding and angular forces.

Drawing on the TB approximations described abo
which correctly predict the general form of interactions m
diated bysp3 hybrids, we proceed by assuming a separ
three-body cluster potential forsp2 hybrids given by Eqs.~1!
and~5!. By analogy with thesp3 case, we further assume th
simpler SW form of Eq.~2! for the three-body interaction
with the important difference that the angular function ha
minimum of zero at thehexagonal angleof 2p/3 rather than
at the tetrahedral angle. We again restrict the interac
range to nearest neighbors engaged in the covalent b
that dominate cohesion. These are not the only poss
choices, but we can evaluate their validity through analy
of elastic moduli.

With such a functional form,61 which differs from all ex-
isting empirical potentials,62 stability considerations imply
C11.3C12, which is indeed satisfied by theab initio values
for Si, C1151.79 Mbar andC1250.51 Mbar.60 More impor-
tantly, we can relate the mechanical properties ofsp2 and
sp3 hybrids because we have assumed simple Harrison
is
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models for both. The relative radial stiffness is given by
simple ratio of elastic constants,

fh9~r h!

fd9~r d!
5

8r d
2

9r h
2

Ah~C111C12!h

Vd~C1112C12!d
, ~12!

where the subscripth refers to the equilibrium hexagona
plane with area per atomAh5ah

2)/4, andd refers to the
diamond lattice. For most covalent solids, the prefact
8r d

2/9r h
2 , is close to 1.0~using theab initio result for Si,

r h52.23 Å, it is 0.99!, and so the elastic constant ratio o
the right-hand side of Eq.~12! provides a direct compariso
of sp2 andsp3 radial forces. Ourab initio value of that ratio
is 1.460.1, implying thatsp2 bonds have a 40% greate
radial stiffness thansp3 bonds in Si. The same result als
follows directly from inverted pair potentials for the gra
phitic and diamond structures.41

A similar elastic analysis yields an expression for the re
tive angular stiffness ofsp2 andsp3 hybrid bonds,

hh9~21/2!

hd9~21/3!
5

256gd~r d!2

243gh~r h!2

Ah~C1123C12!h

Vd~C112C12!d
. ~13!

Using ourab initio data for Si, we have the general resu
gh(r h)2hh9(21/2)/gd(r d)2hd9(21/3)50.4660.15. Assuming
gd(r )'gh(r ) with each function decreasing in accordan
with inversion results,41 then the prefactor
256gd(r d)2/243gh(r h)2 is nearly unity. In that case the rati
of elastic constants on the right-hand side of Eq.~13! allows
us to quantify the relative bending strength of the hyb
bonds. Theab initio value for the ratio of 0.4460.15 indi-
cates that the angular stiffness ofsp2 bonds is smaller than
that ofsp3 bonds in Si by about a factor of 2, in spite of th
greater radial stiffness ofsp2 bonds. Our conclusion for the
relative bending strength ofsp2 and sp3 hybrids would be
reversed only ifgg(r g) were smaller thangd(r d) by at least
a factor of 2, which seems unlikely in light of the bon
orders.

Elastic constant analysis suggests that a hybrid cova
bond is well represented by a separable, first-neighbor, th
body cluster potential whose angular function has a m
mum of zero at the appropriate angle. This may seem
contradict the ample evidence we have cited in favor of
Tersoff format for large distortions of the diamond lattic
particularly those involving changes in coordination. The
findings are consistent, however, in light of Carlsson’s ar
ment that cluster potentials like SW can accurately fit narr
ranges of configurations while cluster functionals like Te
soff’s provide a less accurate but physically acceptable fi
a much broader set of configurations.63

This body of results forms a reliable foundation up
which to build empirical potentials for bulk tetravalent so
ids. In general, we conclude that the functional form
atomic interactions should reduce exactly to appropri
cluster potentials in special bonding geometries, with en
ronment dependence that interpolates smoothly betw
these special cases and captures general trends. We
refer to this theoretically motivated functional form as t
environment-dependent interatomic potential~EDIP! for
bulk Si.
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IV. FUNCTIONAL FORM

Although reasonable interaction potentials can be deri
using the analytic methods of the previous section, such
version schemes become most powerful when used as t
retical guidance for fitting. The reason is that inversion n
essarily involves a restricted set ofab initio data. Although
the input data can be perfectly reproduced~unless it is over-
determined!, it is desirable to allow an imperfect descriptio
of the inversion data in order to achieve a better overall fi
a widerab initio database that includes low-symmetry defe
structures. Thus, our approach is to incorporate the theo
cally derived features of the previous section directly in
our functional form, and then to fit the potential to a ca
fully chosenab initio database with a minimal number o
parameters. In this way, we can systematically derive a r
able potential for bulk properties while keeping the fun
tional form simple enough to allow for efficient computatio
of forces as well as intuitive understanding of chemi
bonding in covalent solids.

A. Scalar environment description

The simplest description of the local environment of
atom is the number of nearest neighbors, determined b
effective coordination numberZi for atom i ,

Zi5 (
mÞ i

f ~Rim!, ~14!

where f (Rim) is a cutoff function that measures the cont
bution of neighborm to the coordination ofi in terms of the
bond lengthRim . The specialsp2 and sp3 bonding geom-
etries can be uniquely specified by their coordinations du
their high symmetry. Since environment dependence is
needed in those cases, it is natural to take the coordina
number to be a constant, except when large distortions f
equilibrium occur. Moreover, covalent bonds tend to invo
only first neighbors, as indicated byab initio charge density
calculations of open structures like the diamond lattice65

Thus, we choose the neighbor function to be exactly un
for typical covalent bond lengths,r ,c, with a gentle drop to
zero above a cutoffb that excludes second neighbors,

f ~r !5H 1 if r ,c,

expS a

12x23D if c,r ,b,

0 if r .b,

~15!

where x5(r 2c)/(b2c). This particular choice of cutoff
function is appealing because it has two continuous der
tives at the inner cutoffc, and is perfectly smooth at th
outer cutoffb. The cutoffsb and c are restricted to lie be
tween first and second neighbors of both the hexagonal p
and diamond lattice in equilibrium, so that their coordin
tions are 3 and 4, respectively.

Our scalar description of the atomic environment is sim
lar to Tersoff’s, but there are notable differences. First,
perspective is that of the atom rather than the bond: With
potential, the preferences for special bond angles, b
strengths, and angular forces are the same for all bond
volving a particular atom. This is in contrast to the Ters
d
n-
o-
-

f
t
ti-

-

li-
-

l

an

to
ot
on
m

y

a-

ne
-

-
e
r
d

in-
f

format9–11,18,29in which a mixed bond-atom perspective
adopted: The contribution of atomi to the strength of bond
( i j ) is affected by the ‘‘interference’’ of other bonds (ik)
involving atomi . This model provides an intuitive explana
tion for trends in chemical reaction paths of molecules64 and
allows for both covalent and metallic bonds to be centere
the same atom, as observed, for example, inab initio charge
densities for the bct5 lattice,65 which lies between the cova
lent diamond lattice and the metallicb-tin lattice. However,
the analysis of elastic properties discussed earlier favors
present approach for environment dependence near the
mond lattice. Another important difference between o
model and Tersoff’s is the separation of angular depende
from the bond order. As we shall see, this allows us to c
trol independently the preferences for bond strengths, b
angles, and angular forces in a way that the Tersoff poten
cannot. By keeping the bond order simple, we can also
rectly use the important theoretical results that motivated
Tersoff potential in the first place.

B. Coordination-dependent chemical bonding

Our potential consists of coordination-dependent two- a
three-body interactions corresponding to the defining f
tures of covalent materials:pair bonding and angular forces.

The energy of a configuration$RW i% is a sum over single-atom
energies,E5( iEi , each expressed as a sum of pair a
three-body interactions,

Ei5(
j

V2~Ri j ,Zi !1(
jk

V3~RW i j ,RW ik ,Zi !, ~16!

depending on the coordinationZi of the central atom. The
pair functionalV2(Ri j ,Zi) represents the strength of bon

( i j ), while the three-body functionalV3(RW i j ,RW ik ,Zi) repre-
sents preferences for special bond angles, due to hybrid
tion, as well as the angular forces that resist bending aw
from those angles. From our atomic perspective, the p
interaction is broken into a sum of contributions from ea
atom, and similarly the three-body interaction is broken in
a sum over the three angles in each triangle of atoms. N
that due to the environment dependence, the contribution
the bond strength from each pair of atoms are not symme
in general,V2(Ri j ,Zi)ÞV2(Rji ,Zj ).

Pair bonding.We adopt the well-established bond ord
format of Eq. ~6! for the pair interaction. Drawing on the
popularity of the SW potential, we use those function
forms for the attractive and repulsive interactions,

V2~r ,Z!5AF S B

r D r

2p~Z!GexpS s

r 2aD , ~17!

which go to zero at the cutoffr 5a with all derivatives con-
tinuous. This choice can reproduce the shapes of inve
pair potentials for Si.41 Because we have constructedZ, and
hencep(Z), to be constant near the diamond lattice, our p
interaction reduces exactly to the SW form for configuratio
near equilibrium, thus allowing us to obtain excellent elas
properties as explained above. Making this choice of rep
sive term with the parameters obtained by fitting to def
structures,6 we can follow the procedure of Bazant an
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Kaxiras41 to extract the implied bond orderp(Z) from ab
initio cohesive energy curves for the following crystal struc
tures~with coordinations given in parentheses!: graphitic~3!,
diamond~4!, bc-8~4!, bct-5~5!, b-tin ~6!, sc~6!, and bcc~8!.
These structures span the full range from threefold- an
fourfold-coordinated covalent bonding insp2 and sp3 ar-
rangements, to overcoordinated atoms in metallic phase
The invertedab initio bond order versus coordination is
shown in Fig. 1, along with two additional data points. Since
we have only first-neighbor interactions in the diamond lat
tice, we can obtain another bond order for threefold coord
nation from theab initio formation energy~3.3 eV! for an
unrelaxed vacancy. An additional data point for unit coordi
nation comes from the experimental binding energy~3.24
eV! and bond length~2.246 Å! of the Si2 molecule.66

The bond order data has a clear shoulder atZ5Z054
where the predicted transition from covalent to metallic
bonding occurs. For overcoordinated atoms withZ.Z0 , the
bond order approaches its rough asymptotic behavior,p
}Z21/2, characteristic of metallic band structure. For coordi
nationsZ<Z0 , the bond order departs from theZ21/2 diver-
gence, due to the formation of a band gap in the LDOS
associated with covalent bonds. A natural choice to captu
this shape is a Gaussianp(Z)5e2bZ2

. In Fig. 1, we see that
the bond order function we obtain from fitting6 is fairly close
to the inversion data. It is intentionally somewhat too large
for coordinations 5–8 to compensate for the small, but non
vanishing many-body energy for those structures, as d
scribed below. The collapse of the attractive functions
fA(r )5@V2(r ,Z)2VA(r )#/p(Z) with this choice of bond
order shown in Fig. 2 is reasonably good, thus justifying th
bond order formalism across a wide range of volumes. Ou
potential is the first to have a bond order in such close agre
ment with theory, which is a direct result of our novel treat-
ment of angular forces.

FIG. 1. Ab initio values for the bond order as a function of
coordination, obtained from the inversion of cohesive energy curve
for the graphitic~GRA!, cubic diamond~DIA !, bc8, bct5, sc,b-tin,
and bcc bulk structures and with additional points for the unrelaxe
vacancy~VAC! and the dimer molecule (Si2), as explained in the
text. For comparison the solid line shows the Gaussianp(Z) ob-
tained from fitting to defect structures. The dotted line shows th
1/AZ dependence, the theoretically predicted approximate behavi
for large coordinations.
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Angular terms.In a thorough comparative study of Si
potentials, Balamaneet al.attribute the limitations of empiri-
cal models to the inadequate description of angular forces.3

Our potential contains a number of innovations in handling
angular forces, leading to a significant improvement over
existing models in reproducingab initio data. Analysis of
elastic properties shows that, at least near equilibrium, the
three-body functional should be expressed as a single, sep
rable product of a radial functiong(r ) for both bonds and an
angular functionh(u,Z),

V3~RW i j ,RW ik ,Zi !5g~Ri j !g~Rik!h~ l i jk ,Zi !. ~18!

Although the radial functions could vary with coordination,
in the interest of simplicity we have focused on the angular
function as the most important source of coordination depen
dence. Inversion ofab initio cohesive energy curves41 sug-
gests that a consistent choice for the radial functions is the
monotonic SW form

g~r !5expS g

r 2bD , ~19!

which also goes to zero smoothly at a cutoff distanceb, a
value different from the two body cutoffa. Having separate
cutoffs for two- and three-body interactions is reasonable
because they describe fundamentally different features o
bonding. Although the pair interaction might extend consid-
erably beyond the equilibrium first-neighbor distance, the an-
gular forces should not be allowed to extend beyond first
neighbors, if they are to be interpreted as representing th
resistance to bending of covalent bonds.

Much of the new physics contained in our potential comes
from the angular functionh( l ,Z). Theoretical considerations
lead us to postulate the following general form:

s

d

e
or

FIG. 2. Attractive pair interactions from inversion ofab initio
cohesive energy curves for the structures in Fig. 1 using the bond
order and repulsive pair potential of our model. The solid lines are
for the covalent structures with coordinations 3 and 4, while the
dotted lines are for the overcoordinated metallic structures. The
reasonable collapse of the attractive pair potentials indicates th
validity of the bond order functional form of the pair interaction
across a wide range of volumes and crystal structures.
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h~ l ,Z!5HS l 1t~Z!

w~Z! D , ~20!

whereH(x), w(Z), and t(Z) are generic functions whose
essential properties we now describe. The overall shape
the angular function is given byH(x), a non-negative38,7

function with a quadratic minimum of zero at the origin
H(0)5H8(0)50 and H9(0).0. The quantum-mechanica
studies described earlier suggest a polynomial form forH(x)
~expansions inl 5cosu!, but the exact shape is a fundamen
tal gap in our theoretical understanding, requiring addition
research. A useful tool in this regard may be the inversion
ab initio cohesive energy versus shear strain curves.

Motivated by theory, we choose the functiont(Z) to con-
trol the coordination-dependent minimum of the angul
function, l 0(Z)5cos@u0(Z)#52t(Z), with the form61,62

t~Z!5u11u2~u3e2u4Z2e22u4Z!. ~21!

The parameters u1520.165 799, u2532.557,
u350.286 198, andu450.66 were chosen to make the pre
ferred angleu0(Z)5cos21@2t(Z)# interpolate smoothly be-
tween several theoretically motivated values, as shown
Fig. 3: We have already argued thatt(4)51/3 and
t(3)51/2 ~so thatsp3 andsp2 bondings correspond to the
diamond and graphitic structures, respectively!, which deter-
mines two of the four parameters int(z). The remaining two
parameters were selected so thatt(2)5t(6)50 or
u0(2)5u0(6)5p/2. For twofold coordination, this choice
reproduces the preference for bonding along two orthogo
p states with the low-energy, nonbondings state fully occu-
pied. For sixfold coordination, the choiceu0(6)5p/2 also
reflects thep character of the bonds. However, structure
with Z56 like sc andb-tin are metallic, with delocalized
electrons that tend to invalidate the concept of bond bend
underlying the angular function, a crucial point we shall a
dress shortly. The vanishing many-body energies for the g
phitic plane and diamond structures allow fitting of the pa
interactionsV2(r ,3) andV2(r ,4) to be guided by Eq.~10!,
which determinesV29(r d,4) from the bulk modulus, and Eq.
~12!, which requiresV29(r h,3)/V29(r d,4)'1.4. Moreover, the

FIG. 3. The coordination dependence of the preferred bo
angleu0(Z) ~in degrees!, which interpolates the theoretically moti-
vated points forZ52,3,4,6, indicated by diamonds.
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shifting of the minimum of the angular function in our mod
incorporates coordination-dependent hybridization in a w
that other potentials cannot.

Through the functionw(Z), our angular function has an
other coordination dependence to represent the covalen
metallic transition. The width of the minimumw(Z) is
broadened with increasing coordination, thus reducing
angular stiffness of the bonds as they become more meta
Similarly, as coordination is decreased from 4 to 3, the wi
of the minimum is increased to reproduce the smaller ang
stiffness ofsp2 bonds compared to that ofsp3 bonds. Thus,
the functionw(Z) should have a minimum atZ054 and
diverge with increasingZ. Fitting of the model can be
guided by Eq.~11!, which determinesw(4) from the second
shear modulus, and by Eq.~13!, which requires
w(3)/w(4)'&. The softening of the angular function i
important because it allows the decrease in cohesive en
per atom concomitant with overcoordination to be mode
by a weakening of pair interactions. In contrast, cluster
tentials like SW penalize overcoordinated structures with
increased three-body energy that overcomes the decrea
pair-bonding energy. This is an unphysical feature, sin
overcoordinated structures do not even have covalent bo
and the many-body energy cannot be viewed as a co
quence of stretchingsp3 bonds far from the tetrahedral ge
ometry. In this sense, the reasonably good description
liquid Si ~a metal with about six neighbors per atom! with
the SW potential appears to be fortuitous.

The coordination dependence of our angular funct
makes it possible for the first time to reproduce the we
known behavior of the bond order. The reason is that
contribution of the three-body functional to the total ener
is suppressed for ideal crystals and overcoordinated st
tures. The shifting of the minimum makes the three-bo
energy vanish identically forsp2 and sp3 hybrids, and the
variable width greatly reduces the three-body energy in m
tallic structures. With the three-body energy suppressed,
can use our knowledge of the bond order for the graphi
diamond,b-tin, and other lattices from inversion of cohesiv
energy curves to capture the energetics of these structur
the pair interaction, as described above. Several other po
tials have tried to incorporate the bond order predicted fr
theory, but the uncontrolled many-body energy makes it
possible to connect directly with theory. Our treatment
angular forces is intuitively appealing because the forces
marily model the bending of covalent bonds, with the cont
of global energetics left to the pair interactions.

Although our model contains a complicated environme
dependence, forces can still be evaluated with computatio
speed comparable to much simpler existing potentials.
coordination dependence introduces an extra loop into e
force calculation. For the three-body functional, this intr
duces a fourth nested loop over atomsm outside each triplet
( i jk ) that contribute to coordination of atomsi , which
would make force evaluation much slower than the typi
three-body cluster expansions used in most other potent
However, our choice off (r ) greatly reduces the frequency o
four-body computations because nonzero forces result if
fourth atom lies in the range of being a partial neighb
c,r im,b, which happens only for a small number of neig
bors in most cases. If coordinations stay relatively const

d
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during a simulation, as in a low-temperature solid, the fo
body force computation is insignificant. Indeed, we ha
found that force evaluation with our model can be almost
fast as with the SW potential,6 which is an advantage of ou
model over others of comparable sophistication.

V. CONCLUSION

In summary, we have used recent theoretical innovati
to arrive at a functional form that describes the depende
of chemical bonding on the local coordination number. Bo
order, hybridization, metalization, and angular stiffness
all described in qualitative agreement with theory. Consist
with our motivation, we have kept the form as simple
possible, reproducing the essential physics with little m
complexity than existing potentials. The fitted implemen
tion of the model described in the companion paper6 involves
only 13 adjustable parameters. Using the results of
present article, we provide theoretical estimates of alm
half of the parameters, thus greatly narrowing the region
parameter space to be explored during fitting. The remain
parameters are chosen to fit important bulk defect structu

Considering the theory behind our model, we can ant
pate its range of applicability. We have shown that the str
ture and energetics of the diamond lattice can be almost
fectly reproduced. Because small distortions ofsp3 hybrids
are accurately modeled, we would also expect a good
scription of the amorphous phase. Defect structures inv
.
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ing sp2 hybridization should also be well described. In ge
eral, the model should perform best whenever
coordination number can adequately specify the local ato
environment. This certainly includessp2 andsp3 hybridiza-
tion and some metallic states, but might also include m
general situations in which atoms are more or less symm
cally distributed, like the liquid and amorphous phases a
reconstructed dislocation cores and grain boundaries.
theory behind the model begins to break down for noninte
coordinations, since our effective coordination number i
way of smoothly interpolating between well-understood
cal structures. More seriously, no attempt is made to han
asymmetric distributions of neighbors, which are abundan
surfaces and small clusters. Theory suggests that our m
may be fitted to provide a good description of condens
phases and defects in bulk tetrahedral semiconductors,
as Si, Ge, and with minor extensions perhaps alloys suc
SiGe, which can be understood in terms of simple princip
of covalent bonding.
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