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Charge modulation at the surface of highd . superconductors

Thorsten Emig, Kirill Samokhiri, and Stefan Scheidl
Institut fir Theoretische Physik, Universttau Kdn, Zupicher Strasse 77, D-50937 g Germany
(Received 12 February 1997

It is shown here that surfaces of high-temperature superconductors are covered by dipole layers. The
charge-density modulation is induced by the local suppression of the gap function at the surface. This effect is
studied in the framework of the Ginzburg-Landau theory and crucially depends on the appropriate boundary
conditions. Those are derived from Gor’kov’'s equations fat-&ave pairing symmetry. Within this frame-
work the structure of the surface dipole layer is determined. The contribution of this charging to a lens effect
of superconducting films with holes, which has been studied in recent experiments, is discussed.
[S0163-18297)04137-4

[. INTRODUCTION surface near the hole could provide an explanation of this
electro-optical effect. This mechanism will be studied quan-
If superconductors were absolutely “perfect” conductors, titatively in this work.
they should screen charges and would be completely free of During the last few years increasing evidence has been
internal electric fields. While this is true on macroscopicfound for d-wave pamng instead of a conventioraivave
length scales, it certainly cannot be expected on atomi@airing in HTSC's? For this reason we take specifically ac-
length scales. Some recent attention focused on the surprigount of ad-wave symmetry. In the case of a vortex line the
ing fact that such electrostatic effects may even occur ogap vanishes for topological reasons in the vortex center for
scales of the correlation length, which typically is consider-d-wave pairing as well as fes-wave pairing’ The structure
ably larger than an atomic length. of the vortex core does not feel the underlying symmetry of
Electrons in the superconductor are equilibrated if theirthe order parameter, at least in the vicinityTof. However,
electrochemicapotential is spatially constant. However, the at a superconductor/insulator interface the strength of the
formation of a superconducting state is in general accompasuppression oA and eventually also the charginigpescru-
nied by a change of the chemical potential of electrons. In &ially depend on the symmetry.
spatially inhomogeneous situation the modulation of the In Sec. Il we give a derivation of the gap profile near the
chemical potential induces an accumulation of electridnterface for general singlet pairing on the basis of the BCS
charge density 3 such that the resulting electrochemical po-theory. In particular, we formulate appropriate boundary
tential is constant. These charging effects strongly depend ogonditions for the order parameter in a phenomenological
the ratio of the gap to the Fermi energyr and therefore  Ginzburg-Landau description. The resulting charging effects
are more strongly pronounced in high-temperature supercor@t an infinite plane surface are calculated in Sec. lll. The
ductors(HTSC’g) than in conventional superconductors. electrostatic calculation of the lens strength of a supercon-
Several aspects of charging effects have been examingtiicting film with a hole follows in Sec. IV. Section V con-
since the availability of the HTSC’s: an anomalous temperacludes with a discussion.
ture dependence of the work functidicharge redistribution
effects within the layered structure of HTSC'’s, and charging
of vortices?® As a direct probe for the latter effect Blatter
et al. suggestetito observe the electric stray field near the
surface by atomic force microscopy. Unfortunately, at A spatially varying order-parameter profile can be de-
present the expected effects are beyond the resolution of thiribed in the framework of the phenomenological Ginzburg-
experimental technique. Landau(GL) theory. The physics near the surface crucially
In order to investigate alternative possibilities to observedepends on the imposed boundary conditions. As shown by
such charging effects, we examiserfacesof HTSC’s ina  Gor’kov, this phenomenological theory can be derived from
vacuum. Our motivation is twofold(i) The higher dimen- the microscopic Bardeen-Cooper-Schrieffer thébWe es-
sionality of a surface compared to a vortex line can be exsentially follow this approach in order to determine the
pected to lead to the accumulation of much larger chargéoundary conditions appropriate for HTSC's.
quantities. Even if this does not necessarily lead to much The fact that the tetragonal HTSC’s materials
higher electric field amplitudes, the field will be extendedYBa,Cu;0O;_sand Lg_,Sr,CuO, belong to the class of un-
over a much larger regioriii) In a recent experimehthe  conventionald-wave superconductors appears to have been
influence of a thin superconducting film on an electron beanteliably establisheflThe term “unconventional” means that
penetrating a hole in the material has been examined.;At the spatial symmetry of the superconducting order parameter
a change of beam intensity behind the hole was observed ,s~(ax,a_xg) is lower than in the normal stafe.
i.e., the hole effectively acted as a lens. In principle, charging More specifically evidence favorsdz_,2 symmetry. In
induced by the suppression of the order parameter at thihis case the order parameter can be written in the form

II. BOUNDARY CONDITIONS
FOR d-WAVE ORDER PARAMETER
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Ay ap(r)=(ioy) oph(K)A(r) 2.1 ()
with the Pauli matrixo, . The momentum dependence at the
Fermi surface is described by the following normalized basis
function of the irreducible representati@é of the tetrago- Y, f i)
V15 . - I
w(k) = 5= (Kx—kJ), (2.2

whereX andY are internal axes of the crystal, ake- k/|K|.

In the vicinity of T, the gap profileA(r) near the
superconductor/insulator interface is determined by the solu-
tion of the GL equation

—§|2(T)<

Explicit values of the correlation lengti, y(T) along dif-
ferent axes and the gap saturation amplitdgeare given in
Appendixeq Egs.(A10) and (B4)].

To obtain the boundary condition for the GL equation

X2 oy?

) §Z(T)(92A A+ 1 |A|?2A=0
= oze |Aol? ' (b) n L
(2.3 2

%A

(2.3) microscopically, we start by noting that the Gor'kov I S

equations take the form of a linearized integral equation near

T.:®

The kernelK can be calculated in the quasiclassical approxi-

A(rl):J d3r2K(rl,r2)A(r2). (2.9

mation, making use of the method of classical trajectdti@s.

Depending on the roughness of the surface, different kinds of ©
reflection of electrons, usually referred to as diffusive and
specular, are to be considerezkbe Fig. 1

We consider the following geometry: The normal veator
to the superconductor/insulator interface lies in the ba¥s
plane, the angle betweenand the axi€ X of the underlying
tetragonal lattice being equal tb. The interface is assumed
to be macroscopically flat, i.e., the roughness is restricted to
scales smaller than the correlation length. We derfete, I
unless stated otherwise.

Let us start with the case of diffusive reflection for micro-
scopically rough surfaces. In the absence of an external mag-
netic field the order parameter depends only on the distance
x from the surface. It is convenient to introduce the dimen-
sionless coordinat&=x/&; (é,=vg/2mT, is the coherence
length, and the gap equatiof2.4) takes the form

where

_ VN 1ds 2n+1
K(lexz):To ; [j ?FO(S)9X4 - | |

FIG. 1. Electron paths of the quasiclassical approximatian:
straight paths contribute to the kernel independent of the surface,

A(Xy) = J dX,K(X1,X2)A(X5), (2.5 (b) for specular reflecting surfaces one additional trajectory contrib-
0

utes, (c) for diffusively reflecting surfaces a whole group of addi-
tional trajectories contributes.

where V is the coupling constant, and, is the electron
density of states. The kernklin Eq. (2.6) is composed of a

S bulk and a surface contribution. Both crucially depend on the
angle® through the function&, andF, :

0

1 1
X [X1 =% +fo dslfo dsyFi(s1,S;)

L Fo(s)= ES(3—1432+ 19s*)cog2d + ES(sz—s“)sin22<1>,
% % 32 2

—+ —)H (2.6) 2.7
S, S,

xexp{—|2n+1|
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15 2 2 5 ' )
Fi(s1,52)= 5 (1-3s7)(1-3sp)cos20. (2.9 ". ,,
Details of the derivation of these expressions can be found in 4
Appendix B. = \ !
In order to obtain the boundary condition we have to = 3 \\ !
evaluate the linearized gap equati@h5 with the kernel %‘ !
(2.6). We will do this at the critical temperature., where 9 ;
the BCS condition I |
+ oo . - 1t \‘\ ///
f dXKo(X;—Xz) =1, (2.9 : ;
holds. HereK is the bulk part of Eq(2.6). In the region 0 0 —= 7/4 /2
1<X<&(T)/ &, the surface contribution of the kernel is small >

compared to the bulk contribution and the nonlinearity of the
gap equation still can be neglected. Therefore the gap equa- FIG. 2. Extrapolation length as a function of the anglé for
tion is solved by a linear function (X) = A(0)(1+X/b), so the diffusive(solid line) and the speculaidashed lingcase.
that the effective boundary condition for the order parameter
in the GL region takes the form The extrapolation length can be related to this minimum
value as follows: Eq(2.11) can be rewritten as an equation
for Q(X)=q(X) —b, which vanishes fok— . Upon multi-
(2.10  plying both sides of the equation f@ by X;, integrating
X=0 over X; and taking into account Eq(2.13, we finally
“ , " , in? (see also Ref. )3an exact expression for the ex-
The “extrapolation length”b acquires from the kernel a obtai ) pt
dependence on the orientation of the surface with respect f6apolation lengttb=Db&,:
the underlying crystal lattice. 4
We evaluate the parametér using the variational ap- Bz 1 1 T jldss?F (s)
proach of Ref. 11. It is convenient to introduce the function & 74(3) JodssFo(s) | 24| Jo 0
a(x) by A(X)=C[x+q(x)], from which the parameteb

1 1
follows according tdo=lims_.. q(X). The gap equation can +j dslf ds,s?s2F (S1,5;)
now be rewritten as 0 0

dA
—=| ==A
oX

X=0 b

Lt
VNO}—min ,

(2.19
-1 * - — o~
q(xy) = 5 E(x1)+ fo dXK(X1,X2)A(X2), (21D where¢(x) is the Riemann zeta function.
Now we are able to apply the variational principle. Sub-

where stituting in Eq.(2.12 unity as a trial function, we have
ERX —2focdfw|<~~ X VNoFyi= o
(X1)= 0 XoXoK (X1,X5) = 2Xy Ofmin_m
S flds oE(s) _J0dSSR(S) — Jgds1 5d,815F (51,57)
°F (2n+1)?] Jo [[odsSFo(s)+gds S 5ds,8185F ((51,5,)]*
|2n+1] _ 1 (2.19
Xexp — S X1 ~l—f ds;
0

As one can see from Appendix B, the corresponding ex-
pressions for the specular case follow from E@s14 and
(2.19 by replacingF(s;,s,) with (1/s,5)8(s1—S2)F (),
whereF,(s) is given by

[2n+1| _
X1

1
xj ds, ngr(sl,sz)exp(—
0

1

Apart from a prefactor, the solution of Eq2.11) can be

. P ETa ) 15 15 .
obtained by minimizing the functional Fi(s)=35(3~ 145+ 19s*) cog2d — ?(sz—s“)smzzb.
 J5dXa(O[q(®) — f5d% KX )q(X')] (2.19
Fal= [fgﬁq('i)E('i)]z Then the results of Ref. 11 are recovered.
(2.12 The extrapolation lengths for the diffusive and specular

cases, which result from the substitution of express{@ri,

with respect tog. The minimum value is given by (2.16, and (2.8) in Eq. (2.15, are plotted in Fig. 2 as a

1 function of the angleb.
= The profile of the order parameter near the surface is de-
Fin= 5o (213
2[5 dXE(X)q(X) termined by the ratio of the extrapolation lendihand the
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correlation lengthé(T). In the diffusive case the value of the In the case of a diffusively reflecting boundary we have ob-
extrapolation lengtlp just slightly oscillates as a function of tainedb~§&,. Thus, in this case it is reasonable to use the
®. For all orientations of the surface it is of the order of theestimatex,~0 nearT,.

coherence lengtlf,. In the GL region it is therefore much

smaller than the characteristic scale of the order parameter, I1l. SURFACE CHARGING

the correlation lengtt¥(T), and the boundary condition for , ) o
the GL equation effectively becomes To obtain the charge modulation near an infinite plane

surface we follow the calculations for the charging of a flux
Aly_o=0. (2.17  line by Blatteret al?® The spatial variation in the order pa-
rameter induces a modulation of the chemical poteptighs

from O to ». However, in the GL regiom(®)<&(T) for  ©Of the local charge density

most orientations, and effectively|,_,=0 again. Only in a .

narrow range of orientatiorts> ¢, where the boundary con- Oex(X)=—eNy InT_C[AS_AZ(X)]
Cc

dition is effectively
€. \Qx)
—lexp — —|, 3.1
Tc) p( g Y

whereNy is the derivative of the density of states at the Fermi
In the consideration given above, the normal vectaras  level, €. is the energy cutoff of the electron interactiakg
assumed to lie in the basis plane of a tetragonal crystal. If denotes the bulk value of the gap function, axgldenotes
is directed along the fourth-order axis, then the functibgs the density of states at the Fermi level. We consiglgy(x)
andF, take the following form: as “external” charge density since screening has not yet
been taken into account.
15 Metallic screening can be included within a Thomas-
Fo(S)=Fr(S)=§(1—SZ)2, (219 Fermi approximation by introducing the spatially constant
electrochemical potentigk +e¢ instead ofu. The electro-
(2.20 static .poten.tialgb is then determined in Iinear order by the
one-dimensional screened Poisson equation:

dA ~—4eN)A3 In
&, =0. (2.18

=0

Fi(s1,52)=0

[see Eqs(B8), (B11), and(B13)]. As follows from(2.19), the
exactboundary condition along direction for specular re-
flection is(cf. Refs. 9, 11

d2

W_)\_%F P(X)=4TQ xl(X). (3.2

The Thomas-Fermi screening length is given by
da Nec— (87702N.) ~ 12

—| =o. (221  Me=(87€Ng) 7~ o _

dz 720 Overall charge neutrality in the superconducting halfspace
x>0 requires a solution that meets the boundary condition

In the diffusive case the corresponding gap equation can, i’ (x=0)=0. In the limit \;e<¢ this requirement is ful-
principle, be solved exactly since it has a Wiener-Hopf formsjjieq by the solution

due to Eq.(2.20. However, we shall not proceed in this

rather cumbersome way but instead use the variational ) )@F €c
method again, which givels~0.46Z,. d(X)~— 16776’\'6%?'”(-?)
Thus, the final conclusion is the following: We are able to ¢
use the boundary conditiof2.17) for all orientations of a X [V2N e XMF— e V2XE], (3.3

diffusively reflecting surface with a normal vector lying in Th di q h densit .
the XY plane. For a specularly reflecting surface this condi- € cor,r,espon Ing ~screene charge ensity —1s
o(X)=—¢"(x)/4x. In the case ofl-wave pairing one gets,

tion holds foralmost all orientations, except from very nar- <) - .
b y with the specific gap Eq(A10) and correlation length Eq.

row angular regions neapr =0, 3, etc., where we should use h . . -
Eq. (2.3& instegd. The width o?‘ these regions is of the order(B4) fer a three-dimensional parabolic band, the explicit ex-
pression

of &,/&(T), which is negligibly small neaf ..
The profile of the order parameter at the surface is deter- 1 eaq

mined by the solution of the GL equatid®.3) subject to the o(X)~=—51In

boundary conditiori2.10. One obtains 5> ¢

ﬁefx/)\ﬂ:_ Eeﬂ/ixlg (34)
Nte 3

€c

c

with the Bohr atom radiusg .

A(x)=Agtanh (x—Xo)/vV2£(T)] (2.22 Due to screening this charge distribution forms a double
layer of opposite charge, see Fig. 3. The outer layer with a
thickness of the order of ¢ In(&v2\1g) contributes a total
charge

U AL
xoz—ﬁg(T)arctamE _FbJr 1+ W) VI eaq

(2.23 5 &

with

(3.5
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T T pressed gap function at the boundary of the hole. Due to the
preparation of the hole this surface should be rough leading
to a decrease of the order parameter around the hole accord-
A(_{)_ __________ ing to Eq.(2.17). Thus one obtains a charge accumulation
around the hole only* Since the real charge distribution
consists of two layers of positive and negative charge one
px) can think of this distribution as a ring of dipoles oriented
normal to the boundary of the hole, see Fig. 4. The corre-
sponding electrostatic field should be observable in different
ways. One possible way to detect the ring of dipoles is to
send a very slow and weak beam of electrons through the
hole. The intensity in the center of the beam image behind
the hole then changes when the sample is cooled b&lpow
due to the(de)focusing caused by the accumulated dipoles.
X In the actual experiment by Kriebek al® a similar ge-
ometry was examined by transmission electron microscopy.
FIG. 3. Modulation of the gap(x) and the charge densip(x) ~ They have observed a very small change in the image inten-
at an infinite plane surface as a function of the normal distance sity of the electron beam at the superconducting transition.
from the surfacdarbitrary units. However, the actual sample was polycrystalline and cannot
) ] be expected to lead to such a well-defined field distribution
per unit surface area. Here we have used thatI) iS55 in our ideal situation described above. Nevertheless, to
usually of order of unity for highf. superconductors. The qptain the order of magnitude of this lens effect, it is suffi-
corresponding dipole momegtper unit area of the surface cjent to consider the simplified setup.

ME &M

is given by The calculation of the lens effect amounts to solving the
¢ electrostatic potential problem for the ring of dipoles. From
g:j xo (X)dx~— —Q. (3.6) the elef:trlc_ﬂeld we calculate the optical effect in an eikonal

0 V2 approximation for the electrons.

Since we can assume that the radius of the hole is much
larger than the correlation length the curvature of the
boundary can be neglected. Therefore the accumulated

So far we have derived that the surface of a highsu-  charge can be approximated by the charge density(E4).
perconductor can induce a charge modulation. Now we comebtained for a plane surface. With theonstank dipole mo-
ment on a possible experimental observation of this effectmentg per unit area from Eq(3.6) the electric potential
One setup, an “electrooptical lens,” is shown in Fig. 4 andoutside the superconducting film is given by
can be considered as idealization of a recent experifhent.

Motivated by the observed lens effect, which sets in when _9 ( 1 ) /
. i . . o(r)= . —1dS 4.1
the material becomes superconducting, we will examine to 47 Jting [r—r’]
what extent it can be ascribed to a surface charging accord-. o
ing to the presented mechanism. with the surface normal vectar Iy_mg in the XY plane ar_1d

Let us assume that the sample is a thimave supercon- the_surface eIe_memiS’ of_the ring. For a cylinder with
ducting monocrystalline film with a microsize circular hole fadiusR and heightd<R this leads to
inside. The surfaces of the film are assumed to be smooth

IV. LENS EFFECT

27 _R?
and parallel to theXY crystal plane. Assuming specular re- d(p,2)= g_d j do— ZRp CZOS‘P R -
flection, the order parameter is not suppressed at these sur- am [p°+2°+R°—2Rp cosp]
faces according to Eq2.21). But the inner surface of the (4.2

hole is normal to theXY plane leading to a strongly Sup- Thjs integral can be expressed in terms of complete elliptic
integrals. But we are only interested in the radial electric-
field component averaged along thelirection to obtain the
total intensity change. Let us assume that an electron moves
initially at a radial distance; from the center in the negative
z direction with vanishing radial velocity. To minimize the
influence of the source of the electron on the effect one
should assume that the source is asymptotically far away.
For this radial distance; from the z axis the averaged
value of the deflecting field for- L<z<0, defined by

— 1 0
E,(p)=T f_LdzEp(pi 2), 4.3

FIG. 4. Superconducting film with circular hole inside acting ascan be calculated as follows: Consider a virtual cylinder of
lens for a penetrating electron beam. radiusp; around thez axis with its ends at=0 andz=—L,
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respectively. For symmetry reasons the flux of the electric  1/(1 — 4)
field across the abutting face a0 vanishes. If the lower
face of the cylinder is far away from the dipoles, ilex R,

the electric potential at the lower face can be approximated
by an asymptotical expansion of E.2) in z. Then the
angular integration is trivial and one obtains for theom-
ponent of the asymptotic electric field

1

py)

3gdR? 222—10p?—5R? e
EAp.2)=—, 5 +0(z7°%). (4.9

Because there is no charge located inside the virtual cylinder, . . . .
the total flux of the electric field across the surface of the 0 0.2 0.4 0.6 0.8 1
cylinder vanishes. Using the asymptotic value E§4) to pi/R

calculate the flux across the facezat —L one obtains the
averaged radial field foz<0

FIG. 5. Variation of the relative intensity p) of the electron-
beam image across the hole behind the superconducting film.
— 3 5(p{+R*)—2L° . . . .
E (pi)~ §gdpiR2 — Q0 (4.5 (4.6 is shown in Fig. 5. Strictly, the shown numerical result
is valid only for distanceg;<R due to the truncation of
For symmetry reasons the same expression holds for an aligher-order terms op; in Eq. (4.6).
erage of the electric field in the upper half space. We take
L—oo as starting position of the electrons. Therefore the V. DISCUSSION
electric field in the upper half space does not contribute to L .
the total deflection of the electron, as can be seen easily from " Se€c. Il we have presented an explicit microscopic cal-
Eq. (4.5). Since the whole change in the intensity comes therfulation of the extrapolation length hwave superconduct-
from the path of the electron behind the film, the optimal®'S: Within the quasiclassical approximation we found
positionz= — L of the detector has to be obtained by a maxi-P~ €0, Which is of the order of 12 A in Y-Ba-Cu-O. Within
mization of the averaged radial field E@.5) as a function e Same approximation microscopic calculatfonsor
of L. For electrons near by the center of the hgle<(0) the ~ S"Wave superconductors gie=cc, i.e., no suppression of

optimal distance i&. = (\VI4/2)R. For this rather small value the order parameter at the surface. In$h&ave case a finite

of L it can be checked numerically that the asymptotic ap_value of

proximation used for the average procedure underestimates b~ £2/a (5.1)
e . . . _— 0 .
E, only by a factor~2 if p;<R. Using this optimized value, ) ) )
the electron will be detected at — L with a radial distance c¢an be found only if one goeseyondthe quasiclassical ap-
pi(p;) from the center given by proximation, taking special care of the finite thickness of the
metal-vacuum transition layéf:'> From this expression one
pi(pi)=pi(l—ap+ azpiz) (4.6 can expect smalh, i.e., a notable suppression of the conden-
sate near the surface, §f is small(i.e., of the order of).
This is the case for HTSC’s as has been pointed out by
d Deutscher and Mier.t” However, Eq.(5.1) is based on ap-
—, 4.7 proximations which are valid only as long & ¢,. For
0 d-wave superconductivity the situation is very different: as
our calculation shows, the most important reason for the re-
7 (4.8  duction ofb is thed-wave symmetry itself. In this case the
m R°vy effect is so pronounced that it can be obtained within the

wherev, is averaged velocity of the electron with respect toquasmhlaszcsl appr?]xmatl(cj)nh i this artic n
the z direction. The relative enhancement of the intensity at It should be emphasized that in this article we assume the

the center is then given by superconducting order parameter to have the e 2
symmetry[see Eq.(2.2)], which immediately follows from

dpi 1 the chosen form of the pairing potenti@3) containing the
dp, 1o (4.9  spherical harmonics corresponding only to the irreducible
Flpi=0 0 representatiorB,, of the tetragonal group. In general, one

Using the density of the dipole moment E8.6) we obtain could allow for the possibility of a small admixture of the

with

for the deflection parameter s-wave component. As shown in Ref. 18, such an admixture
appears whenever one deals with a spatially nonuniform dis-
3 e’ag d 10 %evd tribution of the order parameter, e.g., near surfaces, twinning
ag~—3.2X10 M2 R Eq R’ (4.10  planes, columnar defects, etc., and is brought about by the
0 in

presence of the mixed-gradient terms in the GL expansion of
where we have useg~10 A as a typical value for higiiz  the free energy. In our work we neglect this effect due to the
superconductors in the last expression. The spatial variatioresults of Ref. 18(i) The induceds-wave component is al-
of the relative intensityl (p;) =dp;/dp; determined by Eq. ways much smallefby one order of magnitude at leagtan
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the d-wave one. This holds in particular at temperatureshese fields should give an even weaker deflection of the
close toT., since thes-wave component vanishes faster electrons since the local field sources do not sum up con-
with (T;—T) than thed-wave component(ii) The s-wave structively.

componentvanishesat the surface together with tllewave In order to clarify this situation it would be desirable to
component, so that the modulation @fx) shown in Fig. 3  use lower electron energies where the the electro-optical ef-
remains unaffected. fect should become stronger. FBi;,=100 eV as used in

The fact that thel-wave order parameter is strongly sup- low-energy electron diffractiong,~10~° can be achieved
pressed at diffusively reflecting superconductor/insulator indue to surface charging at the optimum distance. In addition,
terfaces, could explain an anomalously weak temperature déhe use of a single-crystalline sample with a more regular
pendence of the Josephson critical curjgrt(T.—T)? near  shape of the hole would be desirable as well as a spatial
T., as observed in Ref. 19. Indeed, the critical current igresolution of the density profile.
proportional to the square of the order parameter at the sur- Finally, to detect the charging effect, other experimental
face:j.~A?|g. However, as it follows from our resulfsee  techniques might be more promising than the lens effect ex-
EQ. (2.22]: Alg~(b/&(T))Ap~ (£0/£(T))A,. Hence amined above. For example, the local stray field outside the

superconductor may be probed by atomic force microscopy,
&2 as already suggested by Blattral? for vortices.
e~ A3T) gz~ (Te=T) (5.2
ACKNOWLEDGMENTS

for all orientations, instead ¢f,~T,—T, as expected fora ~ The authors gratefully acknowledge helpful discussions
conventional superconductor-insulator-superconductor juncvith B. Buchner, R. Gross, and O. Hoffels and a critical
tion. The same result has been obtained in Ref. 20 for disteading of the manuscript by L.K. Sundman. This work was
tinguished orientations of a specularly reflecting interfacesupported by the Deutsche Forschungsgemeinschaft SFB

(see also the discussion in the end of Sec. II 341 and by the German-Israeli Foundati@iF).
In the present analysis we have neglected possible anisot-
ropy of the Fermi surface, which is characteristic for APPENDIX A: d-WAVE PAIRING

HTSC's. In terms of the ratio of effective masses in a . . .
Ginzburg-Landau theory this anisotropy can be of the order W€ briefly point out the most important changes for
m, /m,~100. The generalization of our analysis to aniso-Jx2-y2 Pairing in contrast to conventionaiwave pairing in a

tropic Fermi surfaces is straightforward but rapidly leads toV€@k-coupling BCS model. A discussion of arbitrary sym-

cumbersome analytic expressions. Such a generalization hJ2try has been summarized in Ref. 9. For calculational con-
been performed by Shapofhfor the case of an anisotropic VENIENCe We ignore mass anisotropy and use a dispersion
s-wave pairing. Fod-wave pairing we expect that this gen- relatione,=k*/2m—p of single electron states. They have a
eralization leads only to quantitative changes which onlydensity of stategper spin projection

weakly affect the boundary conditidn< &(T), althoughN, d3k [2m3(e+ u) ]2
and A=~ N 2 drastically depend on the mass anisotropy. N, : =J Wé(e— @=——F=2— (A
r a

In contrast the combinatioNj\ 2 is insensitive. Therefore

only the spatial distribution of chargewill be affected, but

not the total _charg@ or the dipole momeng. tion for singlet Cooper pairs with relative momentikntan
The amplitude of the electro-optical lens effect, Ed.pe written as

(4.10, crucially depends on the beam energy of the elec-

trons. In the experiment of Ref5 a beam energy of 3k’

Exn=120 keV was used, which leads te,~10 ° at the Ak,aﬁz(iay)aﬁz/x(k)%:f ﬁV(k,k’)(ak,aa,k,B).

optimum distancé ~ R behind the lens. However, the actual (2m) (A2)

picture was generated much further away, where the inten-

sity rapidly decreases according to E4.5). In addition, the For a singlet state the potential can be approximated by

sample had a much more irregular shape than in our ideal-

ized geometry. We expect this irregularity to reduce the

electro-optical effect of the dipole layer. Therefore we be- V(k,k’)=[

lieve that surface charging has to be excluded as the origin of

the lens effect withwo~ 1072 observed in this particular ex- with an energy cutofie, of the interaction. For anisotropic

periment. o masses the definitiof2.2) of s was normalized such that
At present, the actual origin for the observed effect cannot y2(k)),=1 with an average

be deduced unambiguously from the experiment. One contri-

bution could be due to a charge accumulation at the surface 1 d3k

of the superconductor which is directly hit by the electron <("‘)>0=N— j Wg(fk)('”) (A4)
beam. The amount of accumulated charge then strongly de- 0

pends on the conductivity of the sample which drasticallydefined on the Fermi surface.

changes atT.. Since in the experiment polycrystalline In the BCS mean-fieldMF) approximation the Hamil-
samples have been used, there are small magnetic fields itenian is diagonalized by the Bogoliubov transformation
duced by the Josephson currents between the grains. Bufith parameters

Irrespective of specific pairing mechanism, the gap func-

=Vy(k)y*(k'), |ed.|ew|=<e
0, otherwise

(A3)
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[uy|?=(1+ € /E,)/2, (A5) trary symmetry of the order parameter:
2_ _ e}
lol*=(1-e/E/2, (AG) K(ry,ry)=maVNyTY, J dt exp—2|wp|t)
n 0
Ex= Vet Ao?y?(k). (A7)
X i i . X<¢*(n1) ¢(n2)>e:O,classicab (Bl)
The self-consistency equation for the MF approximation ] ] ] ]
reads wheret>0 is the time of motion along the trajectory and
w,=(2n+1)7T is a Matsubara frequency. The angular
, 1=21(Ey) brackets denote the averaging over all possible classical tra-
1= Vf —3( [y (k)| —Ek (A8) jectoriesr(t) of a particle, moving with the Fermi velocity

ve, which connect the points; andr, and satisfy the con-
with the Fermi-Dirac distribution function  dition r(0)=r, (one has to take into account both the trajec-
f(E)=1[1+expET)]. The primed integral runs ovek  tories, for whichr(t)=r,, and the time-reversed trajectories,
with | ] <e. only. which give just a Hermitian-conjugated contribution to the
For Ap—0 Eq.(A8) implicitly determines kerne). The unit vectors; andn, denote the directions of
velocity in the corresponding points. We shall keep below
Te=1.14; exp(—1VNo). (A9) the general notations for the basis functignéich are cho-
Due to the choice of the normalization ¢f this relation Sen to be rea) so that our results are applicable for any
does not depend explicitly on pairing symmetry or mass anone-dimensional spin-singlet order parameter.
isotropy. Let us first consider the contribution from straight trajec-
In the critical region the amplitude of the gap follows tories. The expression in the angular brackets in the right-
from Eq. (A8) after expansion in second order af and hand side of Eq(B1) has the form:
linearizing in 1-T/T:

do ,
<("')>direct:f E 5(r2—r(t))¢ (n)+H-C-’ (BZ)

2_ a1 8’ 2
[Ao(DI*=(¥*0 74(3)(1—T/TC)TC- (A10)
wherer(t)=r,;+vgnt is the only straight path from; tor,
In comparison to the isotropis-wave case this result is [see Fig. 1a), n,=n,=n]. Here, integration is over all di-

modified by a factoK ¢*),=15/7. rections ofn. Hence
We now calculate for fixed electrochemical potential the )
change in electron density due to formation of a gap. In the K(Fie 1) =K _ VNp #=(n) B3
superconducting state a single electron skateas occupa- o1 =r2) =Ko(r)= 47&y r? sinh(r/&y) (B3)
tion number ) - .
with ég=vg/27T,, andn=r/|r|. In the critical region the
ny=|v 2+ (Ju 2= vl ?) F(Ep) (A11)  correlation lengths; along different directions are given by
compared to the normal state witl}= f(€,). The change of 7¢(3) T\ 1 )
the total electron density §M=r—7 (1— 7| & (B4)
C
N d%k s_.n Due to thed-wave pairing, there is an anisotroggven for
on=2| ——=(ng—ny) (A12) : . .
(27) the spherical Fermi surfagedescribed by the factors

=YY= 9/7 and'}’Z: 3/7
Equation(2.5) follows from Eq.(2.4) as a result of inte-
gration over the differenceg,—y; andz,—

can be evaluated using the Sommerfeld approximatior?x
N.~Ng+ eNj. One finds to lowest order iy, i.e. close to
Te,

Ax=fmdex,x A(X5), B5
5n~N6|Ao|2|n$, (A13) (X1) , e (X1,X2)A(X2) (B5)
C

the kernel being given by the sum of two terms:
where again all dependence on pairing symmetry and mass
anisotropy is contained ifi.. Since the condensate density _ _

|Ao|? has a discontinuous slope néar, Eq. (A13) implies KX1x2) =Kol =) + KX o) (B6)

that for fixed electrochemical potential the electron densitywhere the contributionK, andK, come, respectively, from
has a discontinuous slope or, vice versa, the chemical potethe straight trajectories and those ones, which are reflected
tial for fixed electron density. This effect and its conse-against the surface.

qguences for the work function has been pointed out by van Substituting Eq(B2) in Eg. (B1), we obtain

der Marel*
VN ds
Ko(X) = OE J S)exrl( lwg' X),
F

APPENDIX B: METHOD OF CLASSICAL TRAJECTORIES 2&o

As shown in Ref. 9, the kerné{ in Eq. (2.4) is deter-
mined by the following expression, which is valid for arbi- where

(B7)
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27 do In the case of diffusive surface one needs to take into
Fo(3)=j 4—[¢2(5.<P)+ P (—s,0)]. (B8)  account all possible trajectories, reflected in all directions
o am [see Fig. 10)]:
Heres=cos#6, 6, and ¢ are the polar and azimuthal angles do
respectively, so that= (s, J1—s? cosp, \1—5 sing). The ((---))reﬂected:J’ —1 J dQ,P(ng,ny) 8(r,—r(t))
polar axis is chosen along the normal vector to the surface 4m
(Fig. 1). Note thatfjdsFy(s)=1 because of the normaliza- X p(ny)(ny) +H.c.,

tion condition of the basis functions. where P(ny,n,) is the probability distribution for the par
; : - 1.Ny )
The form ofK,(x4,X,) is determined by the reflection of icle to be reflected in the direction,, provided it moved

electrons at the boundary. For the case of specularly reﬂecg-

. : efore along the directiom;. Assuming the reflection is
ing boundary we have from E@B1) the following expres- completely diffusivei.e., the “memory” is completely lot

sion: we obtain that this probability density depends onlyrgn
do As usual, it is convenient to choose it in the following man-
<(...)>reﬂemed:f — 8(ro—r(t))g(ny) ¥(n,)+H.c. ner: P(n,)=(1/m)cosh,=(1/7)s,. The corresponding tra-
4m jectories are given by EqB9), wheren; andn, are now
The only possible reflected path[isee Fig. 1b)]: independent unit vectors. After integrations, the resulting ex-
pression forK, is'?
X1
r{+vengt, t<tg=— ——, VN 1 1
=y "o (BY KOa)= 55, 3 | ds ] dsiss
vEN(t—to), t>to, o
wheret, corresponds to the moment when the particle hits xexp{ — 2]nl (ﬁJr ﬁ) 1 (B12)
the surface and, ,=(=s,y1—s?cosp,\'1—s’sing) (s, <0). Vr \S1 %2
Performing integrations we obtain where
VN, 1ds 2m depy (27 do;
Kr(XLXZ)_Z_go; jo < Fil® Fr(SLSz)—fO 27 s S L5100 ¥(=S2,92)
2w +i(—5Sq, S,, . B13
Xexy{— | nl(Xl+X2) . (B10 - .‘.ﬂ( 1,01 ¥(S2,¢2) ] (B13)
VS Using the specific angular dependeri2e?) of the order pa-
where rameter, the general expressidB8) and(B13) lead to Egs.

(2.7 and(2.9).
27 do Note that if the contribution from the diffusively reflected
Fr(S):f o V(S eP(=s.e). (B11)  trajectories vanishes then the integral equati®is) can be
0 solved exactly using the Wiener-Hopf method. This takes
The results(B8) and (B11) obviously coincide with those place for any spin-triplet order parameter, in particular for
obtained in Ref. 11 by another method. p-wave order parameter in the superfluid phasesHg.?
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