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Charge modulation at the surface of high-Tc superconductors

Thorsten Emig, Kirill Samokhin,* and Stefan Scheidl
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Strasse 77, D-50937 Ko¨ln, Germany

~Received 12 February 1997!

It is shown here that surfaces of high-temperature superconductors are covered by dipole layers. The
charge-density modulation is induced by the local suppression of the gap function at the surface. This effect is
studied in the framework of the Ginzburg-Landau theory and crucially depends on the appropriate boundary
conditions. Those are derived from Gor’kov’s equations for ad-wave pairing symmetry. Within this frame-
work the structure of the surface dipole layer is determined. The contribution of this charging to a lens effect
of superconducting films with holes, which has been studied in recent experiments, is discussed.
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I. INTRODUCTION

If superconductors were absolutely ‘‘perfect’’ conducto
they should screen charges and would be completely fre
internal electric fields. While this is true on macroscop
length scales, it certainly cannot be expected on ato
length scales. Some recent attention focused on the sur
ing fact that such electrostatic effects may even occur
scales of the correlation length, which typically is consid
ably larger than an atomic length.

Electrons in the superconductor are equilibrated if th
electrochemicalpotential is spatially constant. However, th
formation of a superconducting state is in general accom
nied by a change of the chemical potential of electrons. I
spatially inhomogeneous situation the modulation of
chemical potential induces an accumulation of elec
charge density1–3 such that the resulting electrochemical p
tential is constant. These charging effects strongly depen
the ratio of the gapD to the Fermi energyeF and therefore
are more strongly pronounced in high-temperature super
ductors~HTSC’s! than in conventional superconductors.

Several aspects of charging effects have been exam
since the availability of the HTSC’s: an anomalous tempe
ture dependence of the work function,4 charge redistribution
effects within the layered structure of HTSC’s, and charg
of vortices.2,3 As a direct probe for the latter effect Blatte
et al. suggested3 to observe the electric stray field near t
surface by atomic force microscopy. Unfortunately,
present the expected effects are beyond the resolution of
experimental technique.

In order to investigate alternative possibilities to obse
such charging effects, we examinesurfacesof HTSC’s in a
vacuum. Our motivation is twofold.~i! The higher dimen-
sionality of a surface compared to a vortex line can be
pected to lead to the accumulation of much larger cha
quantities. Even if this does not necessarily lead to m
higher electric field amplitudes, the field will be extend
over a much larger region.~ii ! In a recent experiment5 the
influence of a thin superconducting film on an electron be
penetrating a hole in the material has been examined. ATc
a change of beam intensity behind the hole was obser
i.e., the hole effectively acted as a lens. In principle, charg
induced by the suppression of the order parameter at
560163-1829/97/56~13!/8386~10!/$10.00
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surface near the hole could provide an explanation of
electro-optical effect. This mechanism will be studied qua
titatively in this work.

During the last few years increasing evidence has b
found for d-wave pairing instead of a conventionals-wave
pairing in HTSC’s.6 For this reason we take specifically a
count of ad-wave symmetry. In the case of a vortex line th
gap vanishes for topological reasons in the vortex center
d-wave pairing as well as fors-wave pairing.7 The structure
of the vortex core does not feel the underlying symmetry
the order parameter, at least in the vicinity ofTc . However,
at a superconductor/insulator interface the strength of
suppression ofD and eventually also the chargingdoescru-
cially depend on the symmetry.

In Sec. II we give a derivation of the gap profile near t
interface for general singlet pairing on the basis of the B
theory. In particular, we formulate appropriate bounda
conditions for the order parameter in a phenomenolog
Ginzburg-Landau description. The resulting charging effe
at an infinite plane surface are calculated in Sec. III. T
electrostatic calculation of the lens strength of a superc
ducting film with a hole follows in Sec. IV. Section V con
cludes with a discussion.

II. BOUNDARY CONDITIONS
FOR d-WAVE ORDER PARAMETER

A spatially varying order-parameter profile can be d
scribed in the framework of the phenomenological Ginzbu
Landau~GL! theory. The physics near the surface crucia
depends on the imposed boundary conditions. As shown
Gor’kov, this phenomenological theory can be derived fro
the microscopic Bardeen-Cooper-Schrieffer theory.8 We es-
sentially follow this approach in order to determine t
boundary conditions appropriate for HTSC’s.

The fact that the tetragonal HTSC’s materia
YBa2Cu3O72d and La22xSrxCuO4 belong to the class of un
conventionald-wave superconductors appears to have b
reliably established.6 The term ‘‘unconventional’’ means tha
the spatial symmetry of the superconducting order param
Dk,ab;^akaa2kb& is lower than in the normal state.9

More specifically evidence favors adx22y2 symmetry. In
this case the order parameter can be written in the form
8386 © 1997 The American Physical Society



e
s

ol

n
v
e

x
.
s
n

d

o-
a
n
n

the

ace,
rib-
i-

56 8387CHARGE MODULATION AT THE SURFACE OF HIGH-Tc . . .
Dk,ab~r !5~ isy!abc~k!D~r ! ~2.1!

with the Pauli matrixsy . The momentum dependence at th
Fermi surface is described by the following normalized ba
function of the irreducible representationB1g of the tetrago-
nal groupD4h :

c~k!5
A15

2
~ k̂X

22 k̂Y
2 !, ~2.2!

whereX andY are internal axes of the crystal, andk̂5k/uku.
In the vicinity of Tc the gap profileD(r ) near the

superconductor/insulator interface is determined by the s
tion of the GL equation

2j i
2~T!S ]2D

]X2 1
]2D

]Y2D2j'
2 ~T!

]2D

]Z2 2D1
1

uD0u2 uDu2D50.

~2.3!

Explicit values of the correlation lengthsj i(')(T) along dif-
ferent axes and the gap saturation amplitudeD0 are given in
Appendixes@Eqs.~A10! and ~B4!#.

To obtain the boundary condition for the GL equatio
~2.3! microscopically, we start by noting that the Gor’ko
equations take the form of a linearized integral equation n
Tc :8

D~r1!5E d3r2K~r1 ,r2!D~r2!. ~2.4!

The kernelK can be calculated in the quasiclassical appro
mation, making use of the method of classical trajectories8,10

Depending on the roughness of the surface, different kind
reflection of electrons, usually referred to as diffusive a
specular, are to be considered~see Fig. 1!.

We consider the following geometry: The normal vectorn
to the superconductor/insulator interface lies in the basisXY
plane, the angle betweenn and the axisOX of the underlying
tetragonal lattice being equal toF. The interface is assume
to be macroscopically flat, i.e., the roughness is restricted
scales smaller than the correlation length. We denotej[j i

unless stated otherwise.
Let us start with the case of diffusive reflection for micr

scopically rough surfaces. In the absence of an external m
netic field the order parameter depends only on the dista
x from the surface. It is convenient to introduce the dime
sionless coordinatex̃5x/j0 (j05vF/2pTc is the coherence
length!, and the gap equation~2.4! takes the form

D~ x̃1!5E
0

`

dx̃2K~ x̃1 ,x̃2!D~ x̃2!, ~2.5!

where

K~ x̃1 ,x̃2!5
VN0

2 (
n

H E
0

1 ds

s
F0~s!expS 2

u2n11u
s

3ux̃12 x̃2u D1E
0

1

ds1E
0

1

ds2F r~s1 ,s2!

3expF2u2n11uS x̃1

s1
1

x̃2

s2
D G J , ~2.6!
is
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where V is the coupling constant, andN0 is the electron
density of states. The kernelK in Eq. ~2.6! is composed of a
bulk and a surface contribution. Both crucially depend on
angleF through the functionsF0 andFr :

F0~s!5
15

32
~3214s2119s4!cos22F1

15

2
~s22s4!sin22F,

~2.7!

FIG. 1. Electron paths of the quasiclassical approximation:~a!
straight paths contribute to the kernel independent of the surf
~b! for specular reflecting surfaces one additional trajectory cont
utes,~c! for diffusively reflecting surfaces a whole group of add
tional trajectories contributes.
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F r~s1 ,s2!5
15

8
~123s1

2!~123s2
2!cos22F. ~2.8!

Details of the derivation of these expressions can be foun
Appendix B.

In order to obtain the boundary condition we have
evaluate the linearized gap equation~2.5! with the kernel
~2.6!. We will do this at the critical temperatureT c , where
the BCS condition

E
2`

1`

dx̃2K0~ x̃12 x̃2!51, ~2.9!

holds. HereK0 is the bulk part of Eq.~2.6!. In the region
1! x̃!j(T)/j0 the surface contribution of the kernel is sma
compared to the bulk contribution and the nonlinearity of
gap equation still can be neglected. Therefore the gap e
tion is solved by a linear function,D( x̃)5D(0)(11 x̃/b̃), so
that the effective boundary condition for the order parame
in the GL region takes the form

]D

] x̃
U

x̃50

5
1

b̃
DU

x̃50

. ~2.10!

The ‘‘extrapolation length’’b acquires from the kernel a
dependence on the orientation of the surface with respe
the underlying crystal lattice.

We evaluate the parameterb using the variational ap
proach of Ref. 11. It is convenient to introduce the functi
q( x̃) by D( x̃)5C@ x̃1q( x̃)#, from which the parameterb̃
follows according tob̃5 lim x̃→` q( x̃). The gap equation can
now be rewritten as

q~ x̃1!5
1

2
E~ x̃1!1E

0

`

dx̃2K~ x̃1 ,x̃2!q~ x̃2!, ~2.11!

where

E~ x̃1!52E
0

`

dx̃2x̃2K~ x̃1 ,x̃2!22x̃1

5VN0(
n

1

~2n11!2 F E
0

1

ds sF0~s!

3expS 2
u2n11u

s
x̃1D1E

0

1

ds1

3E
0

1

ds2 s2
2F r~s1 ,s2!expS 2

u2n11u
s1

x̃1D G .
Apart from a prefactor, the solution of Eq.~2.11! can be
obtained by minimizing the functional

F@q#5
*0

`dx̃q~ x̃!@q~ x̃!2*0
`dx̃8K~ x̃,x̃8!q~ x̃8!#

@*0
`dx̃q~ x̃!E~ x̃!#2

~2.12!

with respect toq. The minimum value is given by

Fmin5
1

2*0
`dx̃E~ x̃!q~ x̃!

. ~2.13!
in

e
a-

r

to

The extrapolation length can be related to this minimu
value as follows: Eq.~2.11! can be rewritten as an equatio
for Q( x̃)5q( x̃)2b̃, which vanishes forx̃→`. Upon multi-
plying both sides of the equation forQ by x̃1 , integrating
over x̃1 and taking into account Eq.~2.13!, we finally
obtain12 ~see also Ref. 13! an exact expression for the ex
trapolation lengthb5b̃j0 :

b

j0
5

1

7z~3!

1

*0
1dss2F0~s! H p4

24 F E
0

1

dss3F0~s!

1E
0

1

ds1E
0

1

ds2s1
2s2

2Fr~s1 ,s2!G1
1

VN0Fmin
J ,

~2.14!

wherez(x) is the Riemann zeta function.
Now we are able to apply the variational principle. Su

stituting in Eq.~2.12! unity as a trial function, we have

VN0Fmin5
2p2

49z2~3!

3
*0

1dssF0~s!2*0
1ds1*0

1ds2s1s2Fr~s1 ,s2!

@*0
1dss2F0~s!1*0

1ds1*0
1ds2s1s2

2Fr~s1 ,s2!#2 .

~2.15!

As one can see from Appendix B, the corresponding
pressions for the specular case follow from Eqs.~2.14! and
~2.15! by replacingF r(s1 ,s2) with (1/s2)d(s12s2)F r(s),
whereF r(s) is given by

F r~s!5
15

32
~3214s2119s4!cos22F2

15

2
~s22s4!sin22F.

~2.16!

Then the results of Ref. 11 are recovered.
The extrapolation lengths for the diffusive and specu

cases, which result from the substitution of expressions~2.7!,
~2.16!, and ~2.8! in Eq. ~2.15!, are plotted in Fig. 2 as a
function of the angleF.

The profile of the order parameter near the surface is
termined by the ratio of the extrapolation lengthb and the

FIG. 2. Extrapolation lengthb as a function of the angleF for
the diffusive~solid line! and the specular~dashed line! case.
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56 8389CHARGE MODULATION AT THE SURFACE OF HIGH-Tc . . .
correlation lengthj(T). In the diffusive case the value of th
extrapolation lengthb just slightly oscillates as a function o
F. For all orientations of the surface it is of the order of t
coherence lengthj0 . In the GL region it is therefore much
smaller than the characteristic scale of the order param
the correlation lengthj(T), and the boundary condition fo
the GL equation effectively becomes

Dux5050. ~2.17!

In the specular case the ratiob(F)/j0 strongly oscillates
from 0 to `. However, in the GL regionb(F)!j(T) for
most orientations, and effectivelyDux5050 again. Only in a
narrow range of orientationsb@j, where the boundary con
dition is effectively

dD

dx U
x50

50. ~2.18!

In the consideration given above, the normal vectorn was
assumed to lie in the basis plane of a tetragonal crystal.n
is directed along the fourth-order axis, then the functionsF0
andF r take the following form:

F0~s!5F r~s!5
15

8
~12s2!2, ~2.19!

F r~s1 ,s2!50 ~2.20!

@see Eqs.~B8!, ~B11!, and~B13!#. As follows from~2.19!, the
exactboundary condition alongz direction for specular re-
flection is ~cf. Refs. 9, 11!

dD

dz U
z50

50. ~2.21!

In the diffusive case the corresponding gap equation can
principle, be solved exactly since it has a Wiener-Hopf fo
due to Eq.~2.20!. However, we shall not proceed in th
rather cumbersome way but instead use the variatio
method again, which givesb'0.46j0 .

Thus, the final conclusion is the following: We are able
use the boundary condition~2.17! for all orientations of a
diffusively reflecting surface with a normal vector lying
the XY plane. For a specularly reflecting surface this con
tion holds foralmost allorientations, except from very nar
row angular regions nearF50, p

2, etc., where we should us
Eq. ~2.18! instead. The width of these regions is of the ord
of j0 /j(T), which is negligibly small nearTc .

The profile of the order parameter at the surface is de
mined by the solution of the GL equation~2.3! subject to the
boundary condition~2.10!. One obtains

D~x!5D0tanh@~x2x0!/&j~T!# ~2.22!

with

x052&j~T!arctanhS 2
j~T!

&b
1A11

j2~T!

2b2 D .

~2.23!
er,

in

al

i-

r

r-

In the case of a diffusively reflecting boundary we have o
tainedb;j0 . Thus, in this case it is reasonable to use
estimatex0'0 nearTc .

III. SURFACE CHARGING

To obtain the charge modulation near an infinite pla
surface we follow the calculations for the charging of a fl
line by Blatteret al.3 The spatial variation in the order pa
rameter induces a modulation of the chemical potentialm. As
derived in Appendix A@Eq. ~A13!#, this generates a variatio
of the local charge density

%ext~x!52eN08 ln
ec

Tc
@D0

22D2~x!#

'24eN08D0
2 lnS ec

Tc
DexpS 2

&x

j D , ~3.1!

whereN08 is the derivative of the density of states at the Fer
level, ec is the energy cutoff of the electron interaction,D0
denotes the bulk value of the gap function, andN0 denotes
the density of states at the Fermi level. We consider%ext(x)
as ‘‘external’’ charge density since screening has not
been taken into account.

Metallic screening can be included within a Thoma
Fermi approximation by introducing the spatially consta
electrochemical potentialm1ef instead ofm. The electro-
static potentialf is then determined in linear order by th
one-dimensional screened Poisson equation:

F d2

dx2 2
1

lTF
2 Gf~x!54p%ext~x!. ~3.2!

The Thomas-Fermi screening length is given
lTF5(8pe2N0)21/2.

Overall charge neutrality in the superconducting halfsp
x.0 requires a solution that meets the boundary condit
f8(x50)50. In the limit lTF!j this requirement is ful-
filled by the solution

f~x!'216peN08D0
2
lTF

2

j
lnS ec

Tc
D

3@&lTFe
2x/lTF2je2&x/j#. ~3.3!

The corresponding screened charge density
%(x)52f9(x)/4p. In the case ofd-wave pairing one gets
with the specific gap Eq.~A10! and correlation length Eq
~B4! for a three-dimensional parabolic band, the explicit e
pression

%~x!'
1

5

eaB

j3 lnS ec

Tc
D F &lTF

e2x/lTF2
2

j
e2&x/jG ~3.4!

with the Bohr atom radiusaB .
Due to screening this charge distribution forms a dou

layer of opposite charge, see Fig. 3. The outer layer wit
thickness of the order oflTF ln(j/&lTF) contributes a total
charge

Q'
&

5

eaB

j3 ~3.5!
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8390 56THORSTEN EMIG, KIRILL SAMOKHIN, AND STEFAN SCHEIDL
per unit surface area. Here we have used that ln(ec /Tc) is
usually of order of unity for high-Tc superconductors. The
corresponding dipole momentg per unit area of the surfac
is given by

g5E
0

`

x%~x!dx'2
j

&
Q. ~3.6!

IV. LENS EFFECT

So far we have derived that the surface of a high-Tc su-
perconductor can induce a charge modulation. Now we c
ment on a possible experimental observation of this eff
One setup, an ‘‘electrooptical lens,’’ is shown in Fig. 4 a
can be considered as idealization of a recent experime5

Motivated by the observed lens effect, which sets in wh
the material becomes superconducting, we will examine
what extent it can be ascribed to a surface charging acc
ing to the presented mechanism.

Let us assume that the sample is a thind-wave supercon-
ducting monocrystalline film with a microsize circular ho
inside. The surfaces of the film are assumed to be smo
and parallel to theXY crystal plane. Assuming specular r
flection, the order parameter is not suppressed at these
faces according to Eq.~2.21!. But the inner surface of the
hole is normal to theXY plane leading to a strongly sup

FIG. 3. Modulation of the gapD(x) and the charge densityr(x)
at an infinite plane surface as a function of the normal distancx
from the surface~arbitrary units!.

FIG. 4. Superconducting film with circular hole inside acting
lens for a penetrating electron beam.
-
t.

t.
n
to
d-

th

ur-

pressed gap function at the boundary of the hole. Due to
preparation of the hole this surface should be rough lead
to a decrease of the order parameter around the hole acc
ing to Eq. ~2.17!. Thus one obtains a charge accumulati
around the hole only.14 Since the real charge distributio
consists of two layers of positive and negative charge
can think of this distribution as a ring of dipoles oriente
normal to the boundary of the hole, see Fig. 4. The cor
sponding electrostatic field should be observable in differ
ways. One possible way to detect the ring of dipoles is
send a very slow and weak beam of electrons through
hole. The intensity in the center of the beam image beh
the hole then changes when the sample is cooled belowTc
due to the~de!focusing caused by the accumulated dipole

In the actual experiment by Kriebelet al.5 a similar ge-
ometry was examined by transmission electron microsco
They have observed a very small change in the image in
sity of the electron beam at the superconducting transit
However, the actual sample was polycrystalline and can
be expected to lead to such a well-defined field distribut
as in our ideal situation described above. Nevertheless
obtain the order of magnitude of this lens effect, it is suf
cient to consider the simplified setup.

The calculation of the lens effect amounts to solving t
electrostatic potential problem for the ring of dipoles. Fro
the electric field we calculate the optical effect in an eikon
approximation for the electrons.

Since we can assume that the radius of the hole is m
larger than the correlation lengthj, the curvature of the
boundary can be neglected. Therefore the accumula
charge can be approximated by the charge density Eq.~3.4!
obtained for a plane surface. With the~constant! dipole mo-
ment g per unit area from Eq.~3.6! the electric potential
outside the superconducting film is given by

f~r !5
g

4p E
ring

n•¹S 1

ur2r 8u DdS8 ~4.1!

with the surface normal vectorn lying in the XY plane and
the surface elementdS8 of the ring. For a cylinder with
radiusR and heightd!R this leads to

f~r,z!5
gd

4p E
0

2p

dw
Rr cosw2R2

@r21z21R222Rr cosw#3/2.

~4.2!

This integral can be expressed in terms of complete ellip
integrals. But we are only interested in the radial electr
field component averaged along thez direction to obtain the
total intensity change. Let us assume that an electron mo
initially at a radial distancer i from the center in the negativ
z direction with vanishing radial velocity. To minimize th
influence of the source of the electron on the effect o
should assume that the source is asymptotically far awa

For this radial distancer i from the z axis the averaged
value of the deflecting field for2L,z,0, defined by

Er~r i !5
1

L E
2L

0

dzEr~r i ,z!, ~4.3!

can be calculated as follows: Consider a virtual cylinder
radiusr i around thez axis with its ends atz50 andz52L,
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56 8391CHARGE MODULATION AT THE SURFACE OF HIGH-Tc . . .
respectively. For symmetry reasons the flux of the elec
field across the abutting face atz50 vanishes. If the lower
face of the cylinder is far away from the dipoles, i.e.,L@R,
the electric potential at the lower face can be approxima
by an asymptotical expansion of Eq.~4.2! in z. Then the
angular integration is trivial and one obtains for thez com-
ponent of the asymptotic electric field

Ez~r,z!5
3gdR2

4

2z2210r225R2

z6 1O~z28!. ~4.4!

Because there is no charge located inside the virtual cylin
the total flux of the electric field across the surface of
cylinder vanishes. Using the asymptotic value Eq.~4.4! to
calculate the flux across the face atz52L one obtains the
averaged radial field forz,0

Er~r i !'
3

8
gdr iR

2
5~r i

21R2!22L2

L7 . ~4.5!

For symmetry reasons the same expression holds for an
erage of the electric field in the upper half space. We t
L→` as starting position of the electrons. Therefore
electric field in the upper half space does not contribute
the total deflection of the electron, as can be seen easily f
Eq. ~4.5!. Since the whole change in the intensity comes th
from the path of the electron behind the film, the optim
positionz52L of the detector has to be obtained by a ma
mization of the averaged radial field Eq.~4.5! as a function
of L. For electrons near by the center of the hole (r i'0) the
optimal distance isL5(A14/2)R. For this rather small value
of L it can be checked numerically that the asymptotic
proximation used for the average procedure underestim
Er only by a factor'2 if r i!R. Using this optimized value
the electron will be detected atz52L with a radial distance
r f(r i) from the center given by

r f~r i !5r i~12a01a2r i
2! ~4.6!

with

a0'0.016
e

m

gd

Rv0
2 , ~4.7!

a2'0.04
e

m

gd

R3v0
2 , ~4.8!

wherev0 is averaged velocity of the electron with respect
the z direction. The relative enhancement of the intensity
the center is then given by

dr i

dr f
U

r f50

5
1

12a0
. ~4.9!

Using the density of the dipole moment Eq.~3.6! we obtain
for the deflection parameter

a0'23.231023
e2aB

mv0
2j2

d

R
'2

1024eV

Ekin

d

R
, ~4.10!

where we have usedj'10 Å as a typical value for high-Tc
superconductors in the last expression. The spatial varia
of the relative intensityI (r f)5dr i /dr f determined by Eq.
ic

d

r,
e

v-
e
e
o
m
n
l
-

-
tes

t

on

~4.6! is shown in Fig. 5. Strictly, the shown numerical resu
is valid only for distancesr f!R due to the truncation of
higher-order terms ofr i in Eq. ~4.6!.

V. DISCUSSION

In Sec. II we have presented an explicit microscopic c
culation of the extrapolation length ind-wave superconduct
ors. Within the quasiclassical approximation we fou
b;j0 , which is of the order of 12 Å in Y-Ba-Cu-O. Within
the same approximation microscopic calculations15 for
s-wave superconductors giveb5`, i.e., no suppression o
the order parameter at the surface. In thes-wave case a finite
value of

b;j0
2/a ~5.1!

can be found only if one goesbeyondthe quasiclassical ap
proximation, taking special care of the finite thickness of t
metal-vacuum transition layer.16,15 From this expression one
can expect smallb, i.e., a notable suppression of the conde
sate near the surface, ifj0 is small ~i.e., of the order ofa!.
This is the case for HTSC’s as has been pointed out
Deutscher and Mu¨ller.17 However, Eq.~5.1! is based on ap-
proximations which are valid only as long asb@j0 . For
d-wave superconductivity the situation is very different:
our calculation shows, the most important reason for the
duction ofb is thed-wave symmetry itself. In this case th
effect is so pronounced that it can be obtained within
quasiclassical approximation.

It should be emphasized that in this article we assume
superconducting order parameter to have the puredx22y2

symmetry@see Eq.~2.2!#, which immediately follows from
the chosen form of the pairing potential~A3! containing the
spherical harmonics corresponding only to the irreduci
representationB1g of the tetragonal group. In general, on
could allow for the possibility of a small admixture of th
s-wave component. As shown in Ref. 18, such an admixt
appears whenever one deals with a spatially nonuniform
tribution of the order parameter, e.g., near surfaces, twinn
planes, columnar defects, etc., and is brought about by
presence of the mixed-gradient terms in the GL expansio
the free energy. In our work we neglect this effect due to
results of Ref. 18:~i! The induceds-wave component is al-
ways much smaller~by one order of magnitude at least! than

FIG. 5. Variation of the relative intensityI (r f) of the electron-
beam image across the hole behind the superconducting film.
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the d-wave one. This holds in particular at temperatu
close to Tc , since thes-wave component vanishes fast
with (Tc2T) than thed-wave component.~ii ! The s-wave
componentvanishesat the surface together with thed-wave
component, so that the modulation ofr(x) shown in Fig. 3
remains unaffected.

The fact that thed-wave order parameter is strongly su
pressed at diffusively reflecting superconductor/insulator
terfaces, could explain an anomalously weak temperature
pendence of the Josephson critical currentj c;(Tc2T)2 near
Tc , as observed in Ref. 19. Indeed, the critical curren
proportional to the square of the order parameter at the
face: j c;D2uS. However, as it follows from our results@see
Eq. ~2.22!#: DuS;„b/j(T)…D0;„j0 /j(T)…D0 . Hence

j c;D0
2~T!

j0
2

j2~T!
;~Tc2T!2 ~5.2!

for all orientations, instead ofj c;Tc2T, as expected for a
conventional superconductor-insulator-superconductor ju
tion. The same result has been obtained in Ref. 20 for
tinguished orientations of a specularly reflecting interfa
~see also the discussion in the end of Sec. II!.

In the present analysis we have neglected possible an
ropy of the Fermi surface, which is characteristic f
HTSC’s. In terms of the ratio of effective masses in
Ginzburg-Landau theory this anisotropy can be of the or
m' /mi;100. The generalization of our analysis to anis
tropic Fermi surfaces is straightforward but rapidly leads
cumbersome analytic expressions. Such a generalization
been performed by Shapoval21 for the case of an anisotropi
s-wave pairing. Ford-wave pairing we expect that this gen
eralization leads only to quantitative changes which o
weakly affect the boundary conditionb!j(T), althoughN08
and lTF;N0

21/2 drastically depend on the mass anisotrop
In contrast the combinationN08lTF

2 is insensitive. Therefore
only the spatial distribution of charge% will be affected, but
not the total chargeQ or the dipole momentg.

The amplitude of the electro-optical lens effect, E
~4.10!, crucially depends on the beam energy of the el
trons. In the experiment of Ref. 5 a beam energy o
Ekin5120 keV was used, which leads toa0;1029 at the
optimum distanceL;R behind the lens. However, the actu
picture was generated much further away, where the in
sity rapidly decreases according to Eq.~4.5!. In addition, the
sample had a much more irregular shape than in our id
ized geometry. We expect this irregularity to reduce
electro-optical effect of the dipole layer. Therefore we b
lieve that surface charging has to be excluded as the origi
the lens effect witha0;1022 observed in this particular ex
periment.

At present, the actual origin for the observed effect can
be deduced unambiguously from the experiment. One co
bution could be due to a charge accumulation at the sur
of the superconductor which is directly hit by the electr
beam. The amount of accumulated charge then strongly
pends on the conductivity of the sample which drastica
changes atTc . Since in the experiment polycrystallin
samples have been used, there are small magnetic field
duced by the Josephson currents between the grains.
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these fields should give an even weaker deflection of
electrons since the local field sources do not sum up c
structively.

In order to clarify this situation it would be desirable
use lower electron energies where the the electro-optica
fect should become stronger. ForEkin5100 eV as used in
low-energy electron diffraction,a0;1026 can be achieved
due to surface charging at the optimum distance. In addit
the use of a single-crystalline sample with a more regu
shape of the hole would be desirable as well as a spa
resolution of the density profile.

Finally, to detect the charging effect, other experimen
techniques might be more promising than the lens effect
amined above. For example, the local stray field outside
superconductor may be probed by atomic force microsco
as already suggested by Blatteret al.3 for vortices.
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APPENDIX A: d-WAVE PAIRING

We briefly point out the most important changes f
dx22y2 pairing in contrast to conventionals-wave pairing in a
weak-coupling BCS model. A discussion of arbitrary sym
metry has been summarized in Ref. 9. For calculational c
venience we ignore mass anisotropy and use a disper
relationek5k2/2m2m of single electron states. They have
density of states~per spin projection!

Ne :5E d3k

~2p!3 d~e2ek!5
@2m3~e1m!#1/2

2p2 . ~A1!

Irrespective of specific pairing mechanism, the gap fu
tion for singlet Cooper pairs with relative momentumk can
be written as

Dk,ab5~ isy!abc~k!D05E d3k8

~2p!3 V~k,k8!^ak8aa2k8b&.

~A2!

For a singlet state the potential can be approximated

V~k,k8!5H 2Vc~k!c* ~k8!, ueku,uek8u<ec

0, otherwise
~A3!

with an energy cutoffec of the interaction. For anisotropic
masses the definition~2.2! of c was normalized such tha
^c2(k)&051 with an average

^~••• !&05
1

N0
E d3k

~2p!3 d~ek!~••• ! ~A4!

defined on the Fermi surface.
In the BCS mean-field~MF! approximation the Hamil-

tonian is diagonalized by the Bogoliubov transformati
with parameters
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uuku25~11ek /Ek!/2, ~A5!

uvku25~12ek /Ek!/2, ~A6!

Ek5Aek
21uD0u2c2~k!. ~A7!

The self-consistency equation for the MF approximat
reads

15VE 8 d3k

~2p!3 uc~k!u2
122 f ~Ek!

2Ek
~A8!

with the Fermi-Dirac distribution function
f (E)51/@11exp(E/T)#. The primed integral runs overk
with ueku,ec only.

For D0→0 Eq. ~A8! implicitly determines

Tc51.14ec exp~21/VN0!. ~A9!

Due to the choice of the normalization ofc, this relation
does not depend explicitly on pairing symmetry or mass
isotropy.

In the critical region the amplitude of the gap follow
from Eq. ~A8! after expansion in second order ofD0 and
linearizing in 12T/Tc :

uD0~T!u25^c4&0
21 8p2

7z~3!
~12T/Tc!Tc

2 . ~A10!

In comparison to the isotropics-wave case this result i
modified by a factor̂ c4&0515/7.

We now calculate for fixed electrochemical potential t
change in electron density due to formation of a gap. In
superconducting state a single electron statek has occupa-
tion number

nk
s5uvku21~ uuku22uvku2! f ~Ek! ~A11!

compared to the normal state withnk
n5 f (ek). The change of

the total electron density

dn52E 8 d3k

~2p!3 ~nk
s2nk

n! ~A12!

can be evaluated using the Sommerfeld approxima
Ne'N01eN08 . One finds to lowest order inD0 , i.e. close to
Tc ,

dn'N08uD0u2 ln
ec

Tc
, ~A13!

where again all dependence on pairing symmetry and m
anisotropy is contained inTc . Since the condensate densi
uD0u2 has a discontinuous slope nearTc , Eq. ~A13! implies
that for fixed electrochemical potential the electron dens
has a discontinuous slope or, vice versa, the chemical po
tial for fixed electron density. This effect and its cons
quences for the work function has been pointed out by
der Marel.4

APPENDIX B: METHOD OF CLASSICAL TRAJECTORIES

As shown in Ref. 9, the kernelK in Eq. ~2.4! is deter-
mined by the following expression, which is valid for arb
-

e

n

ss

y
n-

-
n

trary symmetry of the order parameter:

K~r1 ,r2!5pVN0T(
n
E

0

`

dt exp~22uvnut !

3^c* ~n1!c~n2!&e50,classical, ~B1!

where t.0 is the time of motion along the trajectory an
vn5(2n11)pT is a Matsubara frequency. The angul
brackets denote the averaging over all possible classical
jectoriesr (t) of a particle, moving with the Fermi velocity
vF , which connect the pointsr1 and r2 and satisfy the con-
dition r (0)5r1 ~one has to take into account both the traje
tories, for whichr (t)5r2 , and the time-reversed trajectorie
which give just a Hermitian-conjugated contribution to t
kernel!. The unit vectorsn1 andn2 denote the directions o
velocity in the corresponding points. We shall keep bel
the general notations for the basis functions~which are cho-
sen to be real!, so that our results are applicable for an
one-dimensional spin-singlet order parameter.

Let us first consider the contribution from straight traje
tories. The expression in the angular brackets in the rig
hand side of Eq.~B1! has the form:

^~••• !&direct5E dV

4p
d„r22r ~ t !…c2~n!1H.c., ~B2!

wherer (t)5r11vFnt is the only straight path fromr1 to r2
@see Fig. 1~a!, n15n25n]. Here, integration is over all di-
rections ofn. Hence

K0~r12r2!5K0~r !5
VN0

4pj0

c2~n!

r 2 sinh~r /j0!
~B3!

with j05vF/2pTc , and n5r /ur u. In the critical region the
correlation lengthsj i along different directions are given b

j i
2~T!5g i

7z~3!

12 S 12
T

Tc
D 21

j0
2 . ~B4!

Due to thed-wave pairing, there is an anisotropy~even for
the spherical Fermi surface! described by the factors
gX5gY59/7 andgZ53/7.

Equation~2.5! follows from Eq.~2.4! as a result of inte-
gration over the differencesy22y1 andz22z1 :

D~x1!5E
0

`

dx2K~x1 ,x2!D~x2!, ~B5!

the kernel being given by the sum of two terms:

K~x1 ,x2!5K0~x12x2!1K r~x1 ,x2!, ~B6!

where the contributionsK0 andK r come, respectively, from
the straight trajectories and those ones, which are refle
against the surface.

Substituting Eq.~B2! in Eq. ~B1!, we obtain

K0~x!5
VN0

2j0
(

n
E

0

1 ds

s
F0~s!expS 2

2uvnu
vFs

uxu D ,

~B7!

where
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F0~s!5E
0

2p dw

4p
@c2~s,w!1c2~2s,w!#. ~B8!

Here s5cosu, u, andw are the polar and azimuthal angl
respectively, so thatn5(s,A12s2 cosw, A12s2 sinw). The
polar axis is chosen along the normal vector to the sur
~Fig. 1!. Note that*0

1dsF0(s)51 because of the normaliza
tion condition of the basis functions.

The form ofK r(x1 ,x2) is determined by the reflection o
electrons at the boundary. For the case of specularly refl
ing boundary we have from Eq.~B1! the following expres-
sion:

^~••• !& reflected5E dV

4p
d„r22r ~ t !…c~n1!c~n2!1H.c.

The only possible reflected path is@see Fig. 1~b!#:

r ~ t !5H r11vFn1t, t,t052
x1

vFs1
,

vFn2~ t2t0!, t.t0 ,

~B9!

where t0 corresponds to the moment when the particle
the surface andn1,25~6s,A12s2cosw,A12s2sinw) (s1,0).
Performing integrations we obtain

K r~x1 ,x2!5
VN0

2j0
(

n
E

0

1 ds

s
F r~s!

3expS 2
2uvnu
vFs

~x11x2! D , ~B10!

where

F r~s!5E
0

2p dw

2p
c~s,w!c~2s,w!. ~B11!

The results~B8! and ~B11! obviously coincide with those
obtained in Ref. 11 by another method.
s

e

ct-

s

In the case of diffusive surface one needs to take i
account all possible trajectories, reflected in all directio
@see Fig. 1~c!#:

^~••• !& reflected5E dV1

4p E dV2P~n1 ,n2!d„r22r ~ t !…

3c~n1!c~n2!1H.c.,

where P(n1 ,n2) is the probability distribution for the par-
ticle to be reflected in the directionn2 , provided it moved
before along the directionn1 . Assuming the reflection is
completely diffusive~i.e., the ‘‘memory’’ is completely lost!,
we obtain that this probability density depends only onn2 .
As usual, it is convenient to choose it in the following ma
ner: P(n2)5(1/p)cosu25(1/p) s2 . The corresponding tra-
jectories are given by Eq.~B9!, wheren1 and n2 are now
independent unit vectors. After integrations, the resulting
pression forK r is12

K r~x1 ,x2!5
VN0

2j0
(

n
E

0

1

ds1E
0

1

ds2F r~s1 ,s2!

3expF2
2uvnu

vF
S x1

s1
1

x2

s2
D G , ~B12!

where

F r~s1 ,s2!5E
0

2p dw1

2p E
0

2p dw2

2p
@c~s1 ,w1!c~2s2 ,w2!

1c~2s1 ,w1!c~s2 ,w2!#. ~B13!

Using the specific angular dependence~2.2! of the order pa-
rameter, the general expressions~B8! and~B13! lead to Eqs.
~2.7! and ~2.8!.

Note that if the contribution from the diffusively reflecte
trajectories vanishes then the integral equation~2.5! can be
solved exactly using the Wiener-Hopf method. This tak
place for any spin-triplet order parameter, in particular f
p-wave order parameter in the superfluid phases of3He.22
nd
d

nd
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