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Density of states of a type-II superconductor in a high magnetic field: Impurity effects
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We have calculated the density of statesN~v! of a dirty but homogeneous superconductor in a high
magnetic field. We assume a dilute concentration of scalar impurities and find howN~v! behaves as one
crosses from the weak scattering to the strong scattering limit. At low energies,N(v);v2 for small values of
the impurity concentration and scattering strength. When the disorder becomes stronger than some critical
value, a finite density of states is created at the Fermi surface. These results are a consequence of the gapless
nature of the quasiparticle excitation spectrum in a high magnetic field.@S0163-1829~97!02925-1#
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I. MOTIVATION

When an electronic system is placed in an external m
netic field, the motion of electrons perpendicular to the fi
direction is confined to cyclotron orbits. The electronic en
gies are quantized in the form of a discrete set of Lan
levels ~LL’s ! separated by\vc , wherevc5eH/mc is the
cyclotron frequency. In high magnetic fields and at low te
peratures, LL quantization leads to the unusual behavio
many-body systems. Perhaps the most vivid example of s
behavior is the fractional quantum Hall effect in a tw
dimensional~2D! Fermi system subjected to a strong perpe
dicular magnetic field. There has also been much inte
lately in the influence of LL quantization on properties
superconductors in a magnetic field. It was shown by
šanović et al.1 that standard Abrikosov-Gor’kov theory o
type-II superconductors, which neglects LL quantizatio
necessarily breaks down at high fields and low temperatu
The inclusion of LL’s in the BCS description of the supe
conducting instability leads to reentrant behavior at h
fields @much larger than the semiclassical upper critical fi
Hc2(T)# where the superconductivity is enhanced by a m
netic field.1 As a consequence of the underlying LL structu
Hc2(T) or, rather, Tc(H) develops oscillations nea
Hc2(0). Similar types of quantum oscillations, with the sam
origin, have been predicted in various other measura
quantities which are particularly pronounced in 2D system2

An important theoretical question in this context is the nat
of the quasiparticle excitation spectrum at high magne
fields. It is well known that the existence~or, typically, ab-
sence! of low-energy excitations in the superconducting st
shapes the behavior of all superconducting thermodyna
and transport properties. The problem of quasiparticle e
tations has been studied extensively in the low-field lim
@H>Hc1(T)# in the context of an isolated vortex line. Sca
ning tunneling experiments3 have revealed the structure o
bound states in the cores of isolated vortices at low fie
thereby confirming an early prediction of localized midg
states by Caroli, de Gennes, and Matricon.4 Only recently
was the problem of quasiparticle excitations in high ma
netic fields in the presence of a vortex lattice addressed
560163-1829/97/56~2!/838~8!/$10.00
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number of groups:5–8 At high magnetic fields in extreme
type-II superconductors, vortices are closely packed@H
<Hc2(T)# so that the isolated vortex picture from the low
field limit necessarily breaks down. In clean samples at l
temperatures quasiparticles can propagate coherently
many unit cells of the vortex lattice. The solution of the BC
problem,5 where the coherent nature of quasiparticle exc
tions is fully accounted for, points to the qualitatively ne
nature of the energy spectrum at high fields: At fields n
Hc2 , this spectrum isgaplessat a discrete set of points o
the Fermi surface. This gapless behavior in 3D systems
sists to a surprisingly low magnetic field;0.5Hc2 ,

9 below
which the gaps start opening up, and the system eventu
reaches the regime of localized states in the cores of isol
vortices.10 The gapless character of the excitation spectr
leads to an algebraic behavior of various thermodyna
functions in the high-field and low-temperatures portion
theH-T phase diagram.5 In particular, it was shown by Du-
kan and Tesˇanović11 that the recent observations of the d
Haas–van Alphen~dHvA! oscillations in the mixed state o
A-15 superconductors12,13 follow from the presence of a
small portion of the Fermi surface containing gapless qu
particle excitations, surrounded by regions where the B
gap is large. This picture has received further support
dHvA experiments on YNi2B2C.

14

In this paper we address the influence of the nonmagn
~scalar! impurities on the gapless superconducting state
high fields by examining the behavior of the superconduct
density of states~DOS! in the presence of disorder. We a
interested ina dirty but homogeneoussuperconductor for
which the coherence lengthj is much longer then the effec
tive rangej imp of the impurity potential. Under this condition
the order parameter in the mixed state is not substanti
affected by the impurities and it is assumed to form a perf
triangular vortex lattice. In the opposite, inhomogeneo
limit the impurity potential can pin the vortex, making a
otherwise perfect vortex lattice disordered. The problem
the superconducting instability and the quasiparticle exc
tion spectrum in the presence of randomly distributed vor
lines has been addressed so far only by Gedik and Tesˇanović
in the quantum limit, where electrons occupy only the low
838 © 1997 The American Physical Society
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56 839DENSITY OF STATES OF A TYPE-II . . .
LL. It was demonstrated that the gaplessness of the ex
tion spectrum found in a pure superconductor is preser
even when the positions of the vortex lines are comple
random.15

To understand the effect of disorder on the supercond
ing properties in the high-field limit nearHc2(0), we start
with the normal state in this limit. This problem has be
thoroughly investigated in the study of transport properties
high fields,16 where it was found that the electronic scatteri
with scalar point-like impurities randomly distribute
through the sample leads to isotropic broadening bydE
5\/2t of the LL’s, where 1/2t is the scattering rate due t
the disorder. As long as the broadeningdE!\vc , the dis-
creteness of the LL structure is preserved and the effec
the disorder on the superconducting state can be anal
pertubatively, starting from the results for the pure superc
ductor in a high field. We present a Green’s function per
bative approach to impurity effects in this regime based
the theory of superconducting alloys of Abrikosov a
Gor’kov.17 This is a standard field-theory technique of tre
ing the disorder in the superconducting state and has b
used extensively in the study of anisotropic superconduc
such as heavy-fermion systems,p- or d-wave unconven-
tional superconductors,21 or the study of superfluidity in
3He films.22

This paper is organized as follows: In Sec. II we d
scribe a simple model of electronic scattering from pointl
scalar impurities randomly distributed in the supercondu
ing material. In Sec. III we develop a self-consistent pro
dure for calculating the electronic self-energies in the fram
work of the self-consistent Born~SCBA! approximation. We
discuss the behavior of the superconducting density of st
within this approximation. In Sec. IV we study the low
energy properties of the density of states in the s
consistentT-matrix approximation. In Sec. V we discuss th
consequences of our results on various experimentally m
surable properties of a superconductor in a high magn
field.

II. DESCRIPTION OF THE MODEL

We consider a three-dimensional~3D! BCS-type, weak-
coupling electronic system in a high magnetic field. We
sume that the system in question is translationally invar
in the normal state. The aspects associated with the true
structure of a particular material are not important for t
issues that we are planning to address and are not discu
in this work. Nevertheless, all the results presented here
be modified to include band structure effects. For a weakl
moderately interacting system, one uses a simple short-ra
attractive BCS model interactionV(r1 ,r2)52Vd(r1 ,r2)
between electrons. The dynamical origin of this interact
~i.e., whether mediated by phonons, charge density fluc
tions, etc.! is not important for our present purposes. W
assume that the presence of impurities does not effect
effective electron-electron interaction so that it is still of t
BCS form. Furthermore, the coupling constantV is taken to
be independent of the magnetic field. The mean-field~MF!
Hamiltonian for this model system is
a-
d
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H5 (
a,b51,2

E Ca
†~r !F 1

2m S 2 i\“1
e

c
AD 2dab

1Uab~r !2gmBs•H~r !2mGCb~r !d3r

1E D~r !C↑
†~r !C↓

†~r !d3r1H.c., ~1!

whereCa(r ) are the electron field operators for two-sp
components andm is the chemical potential.A is the vector
potential due to the external fieldH, which is taken to be
uniform everywhere in the system. The term2gmBs•H de-
scribes the Zeeman splitting, andUab(r )5( jUab(r
2Rj

imp) is the random impurity contribution.D(r )
5V^C↑

†(r )C↓
†(r )&, with ^•••& denoting thermodynamic aver

age, is the superconducting order parameter.
For simplicity, we consider a system in which Zeem

splitting is negligible, i.e.,g'0. The results are straightfor
wardly generalized to theg'2 case.5–9 We assume tha
there are only nonmagnetic~scalar! impurities present in the
sample so thatUab(r ) does not contain any spin-exchang
terms. We consider dilute impurity concentrations for whi
the MF picture presented in this paper is valid. For adirty
but homogeneoussuperconductor in which the coheren
lengthj is much longer than the effective distancej imp over
which the impurity potential changes, i.e.,j/j imp@1, the su-
perconducting order parameterD(r ) in Eq. ~1! is not affected
by the impurities apart from its overall magnitude and form
a perfect triangular Abrikosov lattice.18 A generic example
of such an impurity potential is an infinitely short-rang
d-function potential of the form

Uab~r !5(
i
U~r2Ri !5(

i
U0d~r2Ri !, ~2!

whereRi is the location of thei th impurity taken to be com-
pletely randomly distributed everywhere in the sample. T
scalar scattering amplitudeU0 is assumed to be isotropic.

It was shown in Ref. 5 that the unperturbed part of M
Hamiltonian ~1! with Uab(r )50 can be diagonalized in
terms of the basis function of the magnetic sublattice rep
sentation~MSR!,19 characterized by the quasimomentumq
perpendicular to the direction of the magnetic field. T
eigenfunctions of this representation in the Landau ga
A5H(2y,0,0) and belonging to themth Landau level are

fkz ,q,m
~r !5

1

A2nn!Ap l
A by

LxLyLz
exp~ ikzz!

3(
k

expS i pbx
2a

k22 ikqybyD
3expF i S qx1 pk

a D x21/2S y/ l1qxl

1
pk

a
l D 2GHmFyl 1S qx1 pk

a D l G , ~3!
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840 56SAŠA DUKAN AND ZLATKO TEŠANOVIĆ
where z is the spatial coordinate andkz is the momentum
along the field direction. a5(a,0) andb5(bx ,by) are the

unit vectors of the triangular vortex lattice,l5A\c/eH is the
magnetic length, andLxLyLz is the volume of the system.
Hm(x) is the Hermite polynomial of orderm. Quasimomenta
q are restricted to the first magnetic Brillouin zone~MBZ!
defined by the vectorsQ15(by / l

2,2bx / l
2) and Q2

5(0,2a/ l 2). In the Landau gauge the Abrikosov order p
rameter can be written as

D~r !5D(
n

expS ip bx
a
n2D

3exp@ i2pnx/a2~y/ l1pnl/a!2#, ~4!

whereD is the overall BCS amplitude. The above form
the order parameter is taken to be entirely contained in
lowest LL of Cooper charge 2e. This is an excellent approxi
mation in the high-field regime.1 Normal and anomalous
Green’s functions for the clean superconductor in this rep
sentation can be constructed as

G~r ,r 8;v!5 (
n,kz ,q

fn,kz ,q
~r !fn,kz ,q

* ~r 8!Gn~kz ,q;v!,

F†~r ,r 8;v!5 (
n,kz ,q

fn,2kz ,2q* ~r !fn,kz ,q
* ~r 8!Fn* ~kz ,q;v!,

~5!

where v5kBT(2m11)p are the electron Matsubara fre
quencies. In writing Eqs.~5! we have taken into account onl
diagonal ~in Landau-level indexn! contributions to the
Green’s functions, Eqs.~5!. This is an excellent approxima
tion in high magnetic fields whereD/\vc!1 and the num-
ber of occupied Landau levels,nc , is not too large. In this
situation we can use the diagonal approximation,1 in which
the BCS pairs are formed by electrons belonging to mutu
degenerate Landau levels at the Fermi surface while the
tribution from the Landau levels that are separated by\vc or
more is included in the renormalization of the effective co
pling constant@V→Ṽ(H,T)#.9 In lower fields, wherenc is a
large number, the off-diagonal terms in Eqs.~5! should be
included on equal footing. It was shown in Ref. 5 by nume
cally solving the BCS equations that the off-diagonal pair
does not change the qualitative behavior of the superc
ductor in a magnetic field as long as the magnetic field
larger than some critical fieldHcritical(T) ~estimated to be
'0.5Hc2 at T'0 in A-15 superconductors!: Placed in a
high magnetic field and cooled to low temperatures
type-II superconductor has a gapless excitation spectrum
the diagonal approximation the gapless branches in the s
trum can be found analytically as

En~kz ,q!56Aen
2~kz!1uDnn~q!u2,

en~kz!5
\2kz

2

2m
1\vc~n11/2!2m, ~6!
-

e

-

ly
n-

-

-

n-
s

e
In
c-

whereDnm(q) are the matrix elements of the Abrikosov o
der parameter~4! in the MSR representation and can be wr
ten as

Dnm~q!5
D

&

~21!m

2n1mAn!m! (
k

expS ip bx
a
k212ikqyby

2~qx1pk/a!2l 2DHn1m@&~qx1pk/a!l #. ~7!

Once the off-diagonal pairing is included, the excitati
spectrum cannot be written in the simple form~6! and a
closed analytic expression for the superconducting Gree
function cannot be found. Nevertheless, the qualitative
havior of the quasiparticle excitations, characterized by
nodes in the MBZ, remains the same. The main role of
off-diagonal terms in Eqs.~5! for magnetic field strengths
such thatH.Hcritical is to renormalize the slopes around th
nodes. Once the magnetic field is lowered belowHcritical , the
gaps start opening up at the Fermi surface, signaling
crossover to the low-field regime of quasiparticle states
calized in the cores of widely separated vortices.10 In this
paper we are interested in how the disorder affects the e
tation spectrum in the gapless regime and, in particular, h
the DOS behaves in this high-field~and low-temperature!
gapless regime of a dirty superconductor. For this purpo
we argue that taking only the diagonal terms in Eqs.~5! will
correctly capture the low-energy behavior of the DOS fo
wide range of magnetic fields~as long asH.Hcritical! while
considerably reducing the computational difficulties intr
duced by the off-diagonal terms.

Proceeding in the frame described above, the ‘‘Fouri
transformed’’~in the quasimomentum space! Green’s func-
tionsGn

0(kz ,q;v) andFn
0* (kz ,q;v) for the pure supercon

ductor can be easily calculated as

Gn
0~kz ,q;v!5

2 iv2en~kz!

v21En
2~q,kz!

,

Fn*
0~kz ,q;v!5

Dnn* ~q!

v21En
2~q,kz!

, ~8!

with En(kz ,q) andDnm(q) given by Eqs.~6! and~7!, respec-
tively.

III. SELF-CONSISTENT BORN APPROXIMATION

The equations of motion describing the mixed superc
ducting state in the presence of scalar impurities are

F iv1
1

2m
@¹ r2 ieA~r !#21m2(

i
U~r2Ri !GG~r ,r 8;v!

1D~r !F†~r ,r 8;v!5d~r2r 8!,

F2 iv1
1

2m
@¹ r1 ieA~r !#21m2(

i
U~r2Ri !G

3F†~r ,r 8;v!2D* ~r !G~r ,r 8;v!50, ~9!
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56 841DENSITY OF STATES OF A TYPE-II . . .
where normal and anomalous Green’s functions incorpo
the interactions between the electrons and impurities. We
interested in the quantitiesG andF† averaged over the pos
tions of the impurities.

In performing the average over the disorder, we follo
closely the diagrammatic technique developed by Abriko
and Gor’kov in Ref. 17 for the study of the superconducti
alloys in zero field. First, we notice that for a dirty but h
mogeneous superconductor the quasimomentumq is still a
good quantum number, since the Abrikosov lattice is
affected by the short-ranged impurity potential~2!. There-
fore, the Green’s functions in Eqs.~9! can be expanded in
terms of a complete set of eigenfunctions~3! as

G~r ,r 8;v!5(
k1

(
k2

fk1
~r !fk2

* ~r 8!G~k1 ,k2 ;v!,

F†~r ,r 8;v!5(
k1

(
k2

f2k1
* ~r !fk2

* ~r 8!F* ~k1 ,k2 ;v!,

~10!

wherek[(q,kz ,n).
The Hamiltonian for the interaction with impurities con

tains operator productsCC†. Therefore, when an impurity
is inserted into an electron line, two possibilities arise
each of the propagatorsG, F, andF†. These possibilities can
be written in a matrix form

Ĝ~x,x8!→Ĝ~x,y!ŝzĜ~y,x8!, ~11!

with the 232 matrix Ĝ(x,x8) defined in Nambu formalism
ŝz the Pauli matrix, andx[(r ,t), wheret is the imaginary
time. Taking into account the expansion~10!, this matrix
equation can be rewritten in terms of its ‘‘Fourier’’ comp
nents as

G~k1 ,k2 ;v!5G0~k1 ;v!d~k12k2!1G0~k1 ;v!

3 (
k3 ,Ri

Uk1k3
~Ri !G~k3 ,k2 ;v!2F0~k1 ;v!

3 (
k3 ,Ri

U2k32k1
~Ri !F* ~k3 ,k2 ;v!,

F* ~k1 ,k3 ;v!5F0* ~k1 ;v!d~k12k2!1F0* ~k1 ;v!

3 (
k2 ,Ri

Uk1k3
~Ri !G~k3 ,k2 ;v!1G0~2k1 ;

2v! (
k2 ,Ri

U2k32k1
~Ri !

3F* ~k3 ,k2 ;v!, ~12!

with a similar equation for the functionF(k1 ,k3 ;v).
Uk1k2

(Ri) is the matrix element of the impurity potentia

U(r2Ri) between two eigenstates~3!. In a high magnetic
field, we can assume that the scattering potential is w
compared to the separation between LL’s~given by \vc!.
Under these circumstances electrons scatter into the s
te
re

v

t

r

k

tes

belonging to the same LL. Therefore, in solving Eqs.~12! we
will neglect the inter-Landau-level scattering that becom
important only at much lower fields.

We first solve Eqs.~12! in the Born approximation by
summing the diagrams that describe two consecutive e
tronic scatterings from the same impurity. Since the impur
atoms are randomly distributed through the system, we h
to average expressions~12! over the position of each impu
rity. For a dilute concentration of scatterers with uncorrela
positions, we encounter two types of averages:

^Uk1k2
~Ri !Uk2k3

~Ri !&Ri5niU0
2 by

LxLyLzAp l
dkz1 ,kz3

3dq1 ,q3dn1 ,n3Sn1n2
N ~q12q2!,

~13!

^Uk1k2
~Ri !U2k32k2

~Ri !&Ri5niU0
2 by

LxLyLzAp l
dkz1 ,kz3

3dq1 ,q3dn1 ,n3Sn1n2
A ~q1 ,q2!,

~14!

where ^•••&Ri denotes the average over the impurity po

tions andni is the impurity concentration. We find by inspe
tion that Sn1n2

N (q12q2) in Eq. ~13! is a weak function of

quasimomentaq12q2 and LL indicesn1 and n2 . For n1
1n2>5, to a very good approximation,Sn1n2

N (q) is indepen-

dent of eitherq or n. The functionSn1n2
A (q1 ,q2) in Eq. ~14!

is obtained as

Sn1n2
A ~q1 ,q2!5& (

k50

min@n1,n2#
~2k21!!!

~2k!!!
f ~n12k!~n12k!~q1!

3 f ~n22k!~n22k!
* ~q2!, ~15!

where matrix elementsf nn(q)5Dnn(q)/D0 are calculated in
Eq. ~7! for the order parameterD(r ) from the lowest LL of
BCS pairs~4!.

Using the above averages and the expressions~8!, we can
bring the set of Eqs.~12! to the form

@ iv2en~kz!2SN~v!#Gn~kz ,q;v!

1@~Dnn~q!1Snn
A ~q;v!#Fn* ~kz ,q;v!51,

@ iv1en~kz!1SN~2v!#Fn* ~kz ,q;v!

1@Dnn* ~q!1Snn
A* ~q,v!#Gn~kz ,q;v!50. ~16!

The diagonal~normal! self-energySN(v) and off-diagonal
~anomalous! self-energySnn

A (q;v) can be expressed as

SN~v!5niU0
2 by

LxLyLzAp l
(

m,kz ,k
Gm~kz ,k;v!,
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Snn
A ~q;v!5niU0

2 by

LxLyLzAp l
(

m,kz ,k
Snm
A ~q,k!Fm~kz ,k;v!,

~17!

where the functionsGm(kz ,k;v) andFm(kz ,k;v) are found
as a solution of Eqs.~16! and can be written in the form

Gm~kz ,k;v!5
2 i ṽ2em~kz!

ṽ21em
2 ~kz!1uD̃mm~k!u2

,

Fm~kz ,k;v!5
D̃mm~k!

ṽ21em
2 ~kz!1uD̃mm~k!u2

, ~18!

with

i ṽ[ iv2SN~v!, D̃mm~k![Dmm~k!1Smm
A ~k;v!.

~19!

The sums overkz in Eqs. ~17! can be readily done so tha
Eqs. ~19! become self-consistent equations for the se
energies:

ṽ5v1G0

1

N~0!
(
n50

nc m

4p3kFn

E dk
ṽ

Aṽ21uD̃nn~k!u2
~20!

and

D̃nn~q!5Dnn~q!1
G0

N~0!
(
k50

n
&~2k21!!!

~2k!!!
f ~n2k!~n2k!~q!

3 (
n5k

nc m

4p3kFn

E dk
f ~n2k!~n2k!
* ~k!D̃nn~k!

Aṽ21uD̃nn~k!u2
, ~21!

whereN(0) is the density of states at the Fermi level of t
normal metal in zero field.G05pniU0

2N(0) is the scattering
rate due to the disorder~defined in zero field!. It is assumed
thatG0 /EF!1 within the Born approximation.

The exact self-consistent solution of Eqs.~20! and~21! is
extremely difficult to obtain due to the coupling of matr
elementsDnn(q) with D (n2k)(n2k)(q) in Eq. ~21!. Neverthe-
less, this problem can be simplified if we notice that t
behavior ofDnn(q) for different LL indices is very similar
around the gapless points in Eqs.~6! and differs considerably
only in the regions in the MBZ that are gapped by largeD.
We are primarily interested in the low-energy behavior of
density of states and low-temperature thermodynamic p
erties of a dirty superconductor in a high magnetic fie
These properties are governed by the quasiparticle ex
tions around nodes inDnn(q). Therefore, retaining only the
k50 term in Eq.~21! represents a reasonable approximat
in solving Eqs.~20! and~21!. Furthermore, we have demon
strated numerically that the sum ofkÞ0 terms in Eq.~21! is
<10% of thek50 term for small frequencies, while it i
negligible for higher frequencies~of order D!. Within this
approximationD̃nn(q)5D̃f nn(q) so that Eqs.~20! and ~21!
are combined as
-

e
p-
.
a-

n

u5
v

D
1z

1

N~0!
(
n50

nc m

4p3kFn
E dk

u~12&u f nn~k!u2!

Au21u f nn~k!u2
,

~22!

where u5ṽ/D̃ and z5G0 /D. The amplitude D
[D(H,T,G) has to be determined from the self-consiste
equation

D~r !5VT(
v

F~r ,r ;v!. ~23!

If we take the order parameterD(r ) entirely in the lowest
Landau level for the Cooper pair, Eq.~23! can be rewritten
as

D5ṼT
&by

Ap lL xl yLz
(
v

(
kzqn

f nn* ~q!D̃nn~q!

ṽ21«~kz!
21uD̃nn~q!u2

,

~24!

whereṼ(H,T) is the BCS pairing interaction that is, in gen
eral, renormalized by off-diagonal terms due to the coupl
of electrons from LL’s separated by\vc or more.

9 One can
think of Ṽ(H,T) as being chosen to reproduce the true se
consistentD(H,T) in a formalism that keeps only the diag
onal terms. Its explicit form is easily computed in th
D/\vc!1 regime.9 Note that, once disorder is included
Ṽ(H,T) itself has to be recomputed self-consistently. He
we ignore this complication on the grounds that a mod
sacrifice in quantitative accuracy~for D/\vc,1) is justified
in the face of overwhelming numerical difficulty in dete
mining fully self-consistentD(H,T) in presence of disorder

The set of equations~22! and ~24! completely describes
the effect of disorder on the superconducting state within
Born approximation and enables us to calculate vari
physical quantities. The superconducting density of state
the presence of impurities is defined as

Ns~v!52
1

p
Im E dr G~r ,r ; iv!

52
1

pLxLyLz
Im (

n,kz ,q
Gn~kz ,q; iv!u iv5v1 id ,

~25!

FIG. 1. Quasiparticle density of statesNs(v)/N(0) vs reduced
energyv/D in the Born approximation as a function of parame
z5G0 /D.



er

f

te

s
lle

at

the

that
gies
at
ow
be

up

-

-

-

56 843DENSITY OF STATES OF A TYPE-II . . .
whereG(kz ,q; iv)u iv5v1 id is given by expression~18! in
which the analytic continuation to real frequencies is p
formed. Equation~22! is an implicit equation from whichu
5u@v/D# is to be calculated. Onceu is known, the density
of states~25! can be obtained as

Ns~v!/N~0!5
1

N~0!
Im (

n50

nc m

4p3kFn

3E dq
u

Au f nn~q!u22u2
. ~26!

In Fig. 1 we plotNs(v)/N(0) for several values of the
parameterz5G0 /D when nc510. Two kinds of behavior
are present: Forz<0.9 the superconducting density o
states vanishes at the Fermi level andNs(v);v2 for small
v. This is the same behavior as one finds in a pure sys
just that the coefficient in front ofv2 is increased from its
clean system value. Whenz.0.9, a finite density of states i
created at the Fermi level, although of course it is sma
than in the normal state. In this regimeNs(v);Ns(0)

FIG. 2. Quasiparticle density of statesNs(v)/N(0) vs reduced
energyv/D whenc51.0, as a function of the impurity concentra
tion parameterz5G/D.

FIG. 3. Quasiparticle density of statesNs(v)/N(0) vs reduced
energyv/D whenc50.5, as a function of the impurity concentra
tion parameterz5G/D.
-

m,

r

1const3v for smallv. At higher energies, we observe th
the peak in the density of states located atv/D'1/& in the
clean system is reduced and broadened by disorder. As
impurity concentration~measured by the parameterz! in-
creases, the peak eventually disappears. Note, though,
our calculation might be less accurate at the higher ener
~of the orderD! due to the number of approximations th
are, as explained above, strictly applicable only at the l
energies. Furthermore, the true behavior of the peak can
investigated only ifD5D(G,T) is found from the self-
consistent equation~24!.

IV. T-MATRIX APPROXIMATION

The self-energiesSnn
N (q;v) andSnn

A (q;v) of the super-
conducting system obeying Eqs.~16! are closely related to
the diagonal~with respect to the magnetic translation gro
basis! T-matrix elements in a single-site approximation as

Snn
N ~k;v!5ni^T

11~k,k;v!&Ri,

Snn
A ~k;v!52ni^T

12~k,k;v!&Ri, ~27!

whereTi j (k1 ,k2 ;v) are the coefficients in theT-matrix ex-
pansion over the complete set of eigenstatesk[(kz ,k,n):

T 11~r ,r 8;v!5 (
k1 ,k2

fk1
~r !fk2

* ~r 8!T11~k1 ,k2 ;v!,

T 12~r ,r 8;v!5 (
k1 ,k2

f2k1
~r !fk2

~r 8!T12~k1 ,k2 ;v!.

~28!

The 232 T matrix T̂(r ,r 8;v) obeys the Lippmann-
Schwinger equations

T̂~r ,r 8;v!5U~r !d~r2r 8!ŝz1E dr1U~r !

3ŝzĜ~r ,r1;v!T̂~r1,rW8;v!, ~29!

FIG. 4. Quasiparticle density of statesNs(v)/N(0) vs reduced
energyv/D whenc50.0, as a function of the impurity concentra
tion parameterz5G/D.
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whereG matrix elements are given by Eqs.~10! andU(r ) is
the impurity potential~2!. As in the SCBA, we neglect the
inter-Landau-level scattering on the basis that in a high m
n

in

o
in
d

r-
e
th
g-

netic field the scattering potential is much weaker th
\vc . After averaging over the impurity position, Eq.~29!
for the dirty but homogeneous superconductor reduce to
ced

s

Tnn
11~kz ,k;v!5U01U0

by

LxLyLzAp l
(

qz ,q,m
Gm~qz ,q;v!Tmn

11 ~qz ,q;kz ,k;v!

1U0

by

l xLyLzAp l
(

qz ,q,m
Snm
A ~k,q!Fm~qz ,q;v!Tmn

21 ~qz ,q;kz ,k;v!, ~30!

and

Tnn
21~kz ,k;v!52U0

by

LxLyLzAp l
(

qz ,q,m
Snm
A* ~k,q!Fm* ~qz ,q;v!Tmn

11 ~qz ,q;kz ,k;v!

1U0

by

LxLyLzAp l
(

qz ,q,m
Gm~2qz ,2q;2v!Tmn

21 ~qz ,q;kz ,k;v!, ~31!

whereGm(qz ,q;v) andFm(qz ,q;v) are written in the form~18! andSnm
A (k,q) is given by formula~15!. Around the gapless

points of the excitation spectrum~6!, the second term in Eq.~30! is very small compared to the first term. This can be dedu
if one inspects expressions~15! and~31! around the nodes of the excitation spectrum~6! in the MBZ. Keeping this conclusion
in mind, Eqs.~30! and ~31! can be solved as

T11~v!5
~by /LxLyLzAp l !(qz ,q,m

Gm~qz ,q,m!

1/U0
22@~by /LxLyLzAp l !(qz ,q,m

Gm~qz ,q,m!#2
~32!

and

Tnn
21~k;v!52

~&by /LxLyLzAp l ! f nn* ~k!(qz ,q,m
fmm~q!Fm* ~qz ,q;v!

1/U0
22@~by /LxLyLzAp l !(qz ,q,m

Gm~qz ,q,m!#2
, ~33!

where we used the explicit form~15! for Snm
A (k,q) @taking only thek50 term in Eq.~15!; see the discussion in previou

section#. With the help of definitions~19! and ~27!, the set of equations~32! and ~33! can be brought into the form

u5
v

D
1z

(n@m/4p3kFnN~0!#*dq@12&u f nn~q!u2#u/Au21u f nn~q!u2

c21@(n@m/4p3kFnN~0!#*dqu/Au21u f nn~q!u2#2
, ~34!
of

tes
ter

i.e.,
ior
s

m
e

g
at
wherez5G/D andu5ṽ/D̃.
Disorder is characterized with two parameters:G

5ni /N(0)p5(ni /n)EF , which measures the concentratio
of impurities ni relative to the electron densityn, and c
51/pN(0)U0 , which measures the strength of the scatter
potential. The normal-state inverse scattering rate 1/2t is
found by taking f nn(q)50 in Eq. ~34! and lettingv→0.
This procedure yields 1/2t5G/(11c2), the result first ob-
tained by Ref. 17 in the study of the transport properties
normal metals in a high magnetic field. The weak-scatter
limit is approached whenc2 is much larger than the secon
term in the denominator of expression~34!, while the strong-
scattering limit is achieved whenc250. In the strong-
scattering limit, the approximation in which the inte
Landau-level scattering is neglected eventually becom
unphysical, unless the magnetic field is so high that only
lowest LL is occupied.
g

f
g

s
e

As in the previous section, the superconducting density
states in the presence of impurities is found from Eq.~26!
once the solutionu5u@v/D# of Eq. ~34! is found. Figures 2,
3, and 4 show how the superconducting density of sta
Ns(v)/N(0) behaves as a function of the energy parame
v/D as one crosses from a weak-scattering limitc51.0 ~Fig.
2! to a strong-scattering limitc50.0 ~Fig. 4!. For each value
of c ~measuring the scattering strength!, we present how the
density of states changes as the impurity concentration:
the parameterz increases. There are two types of behav
present in figures. Whenz,c2 the density of states vanishe
at the Fermi level withNs(v);v2 for small v, the coeffi-
cient in front ofv2 being increased from the clean syste
value. Whenz'c2, the density of states still vanishes at th
Fermi level, butNs(v);v for smallv. Further increase of
the concentrationni such thatz.c2 creates a finite density
of statesNs(0) at the Fermi level. In the strong-scatterin
limit c!1, the superconducting density of states is finite
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the Fermi level for any nonzero concentration of impuritie
In this limit, Ns(0)/N(0)'2(g/D), where g5DAz/2 for
z!1. Furthermore, belowv/D5Az in the strong-scattering
limit, a peak is observed centered at zero energy. This p
suggests the formation of quasibound resonant state whi
the analog of a Shiba state formed in the energy gap o
conventionals-wave superconductor, as a result of multip
scattering off a magnetic impurity.20 As one moves away
from the strong-scattering limit, this zero-energy peak dis
pears. At higher energies, we find a similar behavior of
density of states to the one observed in the Born approxi
tion of the previous section: The peak, located atv/D
'1/& in the clean system, is reduced and broadened as
impurity concentration~measured by parameterz! increases.
Also, this peak is slightly shifted to higherv/D as z in-
creases, suggesting a stronger reduction in the BCS am
tudeD5D(T,G) than what is found in the Born approxima
tion.

V. CONCLUSIONS

In this paper we have analyzed the influence of a dil
static disorder on superconducting properties in a high m
netic field. We considered a dirty but homogeneous sup
conductor for which the order parameterD(r ) is not influ-
enced by the presence of the impurities and still forms
perfect Abrikosov triangular lattice. We considered t
weak-scattering limit within a self-consistent Born appro
mation while the strong-scattering limit was treated within
T-matrix approximation for superconducting self-energies

We found that for small impurity concentrations an
weak-scattering potentials the superconducting density
.

B

. V

,

.

.

ak
is
a

-
e
a-

he

li-

e
g-
r-

e

of

states behaves asE2 for small energiesE, the same behavio
as that found for the pure superconductor in a magn
field.5 When disorder becomes stronger than some crit
value, a finite density of states~but still smaller then the
normal state value! is created at the Fermi level. The finit
superconducting density of states at the Fermi level sign
the broadening of gapless points into gapless regions in
MBZ. It is interesting to mention that this behavior is simil
to that of dirty superfluid3He films22 and somewhat similar
to the behavior of the density of states in anisotropic hea
fermion superconductors.21

The experimental property of a superconductor in wh
the absence of a quasiparticle gap over some region of
Fermi surface will be most obviously felt is the specific he
In a clean system in a high magnetic field at low tempe
turescv;AT3, whereA is the field dependent coefficient5

In a dirty but homogeneous superconductor, instead of
T3 law, one finds linear behavior at low temperatures w
the coefficient reduced by the factor;2(g/D) from the
normal-state value. Detailed measurements of heat capa
at very low temperatures and high magnetic fields are not
found in the literature. We propose a class ofA-15 super-
conductors as good candidates in which the linear temp
ture law of the heat capacity at high magnetic fields can
discovered. These systems have experimentally acces
upper critical fields and are clear examples of materials
which the LL quantization in high fields plays an importa
role.11–13
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~1994!.

6M. J. Stephen, Phys. Rev. B45, 5481~1992!.
7H. Akera, A. H. MacDonald, S. M. Girvin, and M. R. Norman
Phys. Rev. Lett.67, 2375~1991!; A. H. MacDonald, H. Akera,
and M. R. Norman, Phys. Rev. B45, 10 147 ~1992!; M. R.
Norman, H. Akera, and A. H. MacDonald, Physica C196, 43
~1992!.

8G. M. Bruun, V. Nikos Nicopoulos, and N. F. Johnson~unpub-
lished!. See also P. Miller and B. L. Gyo¨rffy, J. Phys. Condens
Matter7, 5579~1995! for a different but related approach.

9S. Dukan, Ph.D. thesis, Johns Hopkins University, 1995.
.

10M. R. Norman, A. H. MacDonald, and H. Akera, Phys. Rev.
51, 5927~1995!.

11S. Dukan and Z. Tesˇanović, Phys. Rev. Lett.74, 2311~1995!.
12R. Corcoran, N. Harrison, S. M. Hayden, P. Meeson, M. Spri

ford, and P. J. van der Wel, Phys. Rev. Lett.72, 701 ~1994!.
13N. Harrison, S. M. Hayden, P. Meeson, M. Springford, P. J. v

der Wel, and A. A. Menovsky, Phys. Rev. B50, 4208~1994!; R.
Corcoran, N. Harrison, C. J. Haworth, S. M. Hayden, P. Me
son, M. Springford, and P. J. van der Wel, Physica B206-207,
534 ~1995!.

14G. Goll, M. Heinecke, K. Winzer, and P. Wyder, Phys. Rev.
53, R8871~1996!.
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