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Density of states of a type-Il superconductor in a high magnetic field: Impurity effects
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We have calculated the density of statb$w) of a dirty but homogeneous superconductor in a high
magnetic field. We assume a dilute concentration of scalar impurities and find\fi@yvbehaves as one
crosses from the weak scattering to the strong scattering limit. At low enefg{es,~ »? for small values of
the impurity concentration and scattering strength. When the disorder becomes stronger than some critical
value, a finite density of states is created at the Fermi surface. These results are a consequence of the gapless
nature of the quasiparticle excitation spectrum in a high magnetic fie@l63-1827)02925-]

l. MOTIVATION number of groupsT® At high magnetic fields in extreme
type-1l superconductors, vortices are closely packéd
When an electronic system is placed in an external mag=H_,(T)] so that the isolated vortex picture from the low-
netic field, the motion of electrons perpendicular to the fieldfield limit necessarily breaks down. In clean samples at low
direction is confined to cyclotron orbits. The electronic enertemperatures quasiparticles can propagate coherently over
gies are quantized in the form of a discrete set of Landaunany unit cells of the vortex lattice. The solution of the BCS
levels (LL's) separated byiw., wherew.=eH/mc is the  problem? where the coherent nature of quasiparticle excita-
cyclotron frequency. In high magnetic fields and at low tem-tions is fully accounted for, points to the qualitatively new
peratures, LL quantization leads to the unusual behavior imature of the energy spectrum at high fields: At fields near
many-body systems. Perhaps the most vivid example of sudH,,, this spectrum igjaplessat a discrete set of points on
behavior is the fractional quantum Hall effect in a two- the Fermi surface. This gapless behavior in 3D systems per-
dimensional2D) Fermi system subjected to a strong perpen-sists to a surprisingly low magnetic field 0.5H,,° below
dicular magnetic field. There has also been much intereswvhich the gaps start opening up, and the system eventually
lately in the influence of LL quantization on properties of reaches the regime of localized states in the cores of isolated
superconductors in a magnetic field. It was shown by Tewvortices'® The gapless character of the excitation spectrum
sanovic et all that standard Abrikosov-Gor'’kov theory of leads to an algebraic behavior of various thermodynamic
type-ll superconductors, which neglects LL quantization,functions in the high-field and low-temperatures portion of
necessarily breaks down at high fields and low temperatureshe H-T phase diagram.n particular, it was shown by Du-
The inclusion of LL’s in the BCS description of the super- kan and Téanovic! that the recent observations of the de
conducting instability leads to reentrant behavior at highHaas—van AlpheridHvA) oscillations in the mixed state of
fields[much larger than the semiclassical upper critical fieldA-15 superconductot$®® follow from the presence of a
H»(T)] where the superconductivity is enhanced by a magsmall portion of the Fermi surface containing gapless quasi-
netic field! As a consequence of the underlying LL structure,particle excitations, surrounded by regions where the BCS
Ho(T) or, rather, T.(H) develops oscillations near gap is large. This picture has received further support in
H¢»(0). Similar types of quantum oscillations, with the samedHVA experiments on YNB,C.1*
origin, have been predicted in various other measurable In this paper we address the influence of the nonmagnetic
quantities which are particularly pronounced in 2D systéms.(scalay impurities on the gapless superconducting state in
An important theoretical question in this context is the naturehigh fields by examining the behavior of the superconducting
of the quasiparticle excitation spectrum at high magnetidensity of statesDOS) in the presence of disorder. We are
fields. It is well known that the existender, typically, ab- interested ina dirty but homogeneousuperconductor for
sencg of low-energy excitations in the superconducting statewhich the coherence lengthis much longer then the effec-
shapes the behavior of all superconducting thermodynamitive rangeé;,,, of the impurity potential. Under this condition
and transport properties. The problem of quasiparticle excithe order parameter in the mixed state is not substantially
tations has been studied extensively in the low-field limitaffected by the impurities and it is assumed to form a perfect
[H=H_.(T)] in the context of an isolated vortex line. Scan- triangular vortex lattice. In the opposite, inhomogeneous,
ning tunneling experimentshave revealed the structure of limit the impurity potential can pin the vortex, making an
bound states in the cores of isolated vortices at low fieldsptherwise perfect vortex lattice disordered. The problem of
thereby confirming an early prediction of localized midgapthe superconducting instability and the quasiparticle excita-
states by Caroli, de Gennes, and MatrioBnly recently  tion spectrum in the presence of randomly distributed vortex
was the problem of quasiparticle excitations in high mag-ines has been addressed so far only by Gedik andriaesc
netic fields in the presence of a vortex lattice addressed by ia the quantum limit, where electrons occupy only the lowest

0163-1829/97/5@)/8388)/$10.00 56 838 © 1997 The American Physical Society



56 DENSITY OF STATES OF A TYPEIL. .. 839
LL. It was demonstrated that the gaplessness of the excita- 1 e \2
tion spectrum found in a pure superconductor is preserved H= X f ‘I’Z(r)[m (—ihV+ EA) Oap
even when the positions of the vortex lines are completely wpm12
random®®

To understand the effect of disorder on the superconduct- +tUqp(r) —gupo- H(r)—,u}\[fﬁ(r)d%
ing properties in the high-field limit nedt .,(0), we start
with the normal state in this limit. This problem has been
thoroughly investigated in the study of transport properties in
high fields!® where it was found that the electronic scattering
with scalar point-like impurities randomly distributed where ¥ (r) are the electron field operators for two-spin
through the sample leads to isotropic broadening 8 components ang is the chemical potential. A is the vector
=#/27 of the LL's, where 1/2 is the scattering rate due to Potential due to the external field, which is taken to be
the disorder. As long as the broadenif§<7% w,, the dis-  uniform everywhere in the system. The tefigugo- H de-
creteness of the LL structure is preserved and the effect cicribes the Zeeman splitting, andl,z(r)==;U ,4(r
the disorder on the superconducting state can be analyzedR] ) is the random impurity contribution.A(r)
pertubatively, starting from the results for the pure supercon=V{(¥[(r)¥(r)), with (---) denoting thermodynamic aver-
ductor in a high field. We present a Green’s function pertu-29€, is the superconducting order parameter.
bative approach to impurity effects in this regime based on For simplicity, we consider a system in which Zeeman
the theory of superconducting alloys of Abrikosov andsplitting is negl!glble, i.e.g~0. The resgults are straightfor-
Gorkov This is a standard field-theory technique of treat-Wardly generalized to thg~2 C?‘Sé_ We assume that
ing the disorder in the superconducting state and has bedR€e aré only nonmagnetiscalay impurities present in the
used extensively in the study of anisotropic superconductor§ample SO thaU.“B(r) _does not contain any s_pm—exchan_ge
such as heavy-fermion systems; or d-wave unconven- terms. We consider dilute impurity concentrations for which

tional superconductors, or the study of superfluidity in the MF picture presented in this paper IS valid. Fodiey
3He films 22 but homogeneousuperconductor in which the coherence

This paper is organized as follows: In Sec. Il we de_Iengthgls much longer than the effective distangg, over

ib ol del of electroni ttering f intlik which the impurity potential changes, i.€/§n,> 1, the su-
SCTIbe a SImp'e model of electronic scattering from pointl eperconducting order paramet®(r) in Eg. (1) is not affected
scalar impurities randomly distributed in the superconductby the impurities apart from its overall magnitude and forms

ing material. In Sec. Il we develop a self-consistent proce-; perfect triangular Abrikosov latticé. A generic example

dure for calculating the electronic self-energies in the frameys sych an impurity potential is an infinitely short-range
work of the self-consistent BorfSCBA) approximation. We s function potential of the form

discuss the behavior of the superconducting density of states

within this approximation. In Sec. IV we study the low-

energy properties of the density of states in the self- _ _

consistenfr-matrix approximation. In Sec. V we discuss the Uap(r)= EI Ur=Ri)= EI Uod(r=Ry), )
consequences of our results on various experimentally mea-

surable properties of a superconductor in a high magnetighereR. is the location of théth impurity taken to be com-

field. pletely randomly distributed everywhere in the sample. The
scalar scattering amplitudé, is assumed to be isotropic.
It was shown in Ref. 5 that the unperturbed part of MF
Il. DESCRIPTION OF THE MODEL Hamiltonian (1) with U,4(r)=0 can be diagonalized in
terms of the basis function of the magnetic sublattice repre-
sentation(MSR),*® characterized by the quasimomentam
perpendicular to the direction of the magnetic field. The
d’genfunctions of this representation in the Landau gauge
=H(-y,0,0) and belonging to theth Landau level are

+f AP ¥I(Ndr+H.c, (&)

We consider a three-dimension@D) BCS-type, weak-
coupling electronic system in a high magnetic field. We as
sume that the system in question is translationally invarian
in the normal state. The aspects associated with the true ba
structure of a particular material are not important for the
issues that we are planning to address and are not discussed
in this work. Nevertheless, all the results presented here can
be modified to include band structure effects. For a weakly to b (r)= 1 [_ By exp(ik,¢)
moderately interacting system, one uses a simple short-range kz.G.m \/znm \/;| LyLyL, z
attractive BCS model interactioV(rq,r,)=—Vé(r{,r»)
between electrons. The dynamical origin of this interaction
(i.e., whether mediated by phonons, charge density fluctua-
tions, etc) is not important for our present purposes. We
assume that the presence of impurities does not effect the Xex;{i
effective electron-electron interaction so that it is still of the
BCS form. Furthermore, the coupling constdhis taken to 5
be independent of the magnetic field. The mean-fitléF) " W_k I) }H
Hamiltonian for this model system is a m
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840 SASA DUKAN AND ZLATKO TES ANOVIC 56
where ¢ is the spatial coordinate arld, is the momentum whereA,(q) are the matrix elements of the Abrikosov or-
along the field direction. a=(a,0) andb=(b,,by) are the  der parametefd) in the MSR representation and can be writ-

unit vectors of the triangular vortex lattides \zc/eH is the  t€n as

magnetic length, antd,L L, is the volume of the system.

H(X) is the Hermite polynomial of orden. Quasimomenta A (=M b,

g are restricted to the first magnetic Brillouin zo(ldBZ) Ap(d)=— ———= E ex;{iw — K%+ 2ikqgyb,
: _ 2 2 V2 2" nim! "k a

defined by the vectorsQ,=(b,/I*,—b,/I7) and Q,

=(0,2a/1?). In the Landau gauge the Abrikosov order pa-

rameter can be written as —(gy+ 7kla)?I?

HimlV2(ax+ ki)l ], (7)

b Once the off-diagonal pairing is included, the excitation
A(r)=AE exg im — nZ) spectrum cannot be written in the simple fori®) and a
n closed analytic expression for the superconducting Green’s
function cannot be found. Nevertheless, the qualitative be-
havior of the quasiparticle excitations, characterized by the

whereA is the overall BCS amplitude. The above form of nodes in the MBZ, remains the same. The main role of the
the order parameter is taken to be entirely contained in th@ff-diagonal terms in Eqs(5) for magnetic field strengths
lowest LL of Cooper chargee? This is an excellent approxi- SUch that>H icq is to renormalize the slopes around the
mation in the high-field regimé.Normal and anomalous nodes. Once the magnetic field is lowered betdica, the

Green’s functions for the clean superconductor in this repred@ps start opening up at the Fermi surface, signaling the
sentation can be constructed as crossover to the low-field regime of quasiparticle states lo-

calized in the cores of widely separated vortite$n this
paper we are interested in how the disorder affects the exci-
reoN— * / . tation spectrum in the gapless regime and, in particular, how
olr.r 'w)_n%,q P alF) P, ol 1) Calkz G ), the DOS behaves in this high-fieldnd low-temperatuje
gapless regime of a dirty superconductor. For this purpose,
we argue that taking only the diagonal terms in E&g will
4 b * * N . correctly capture the low-energy behavior of the DOS for a
FH(r.r ,w)—n%’q bn.—k,.—alM) Pn, o1 Fn (ke 0 0), wide range of magnetic fieldsgs long asH>H i) While
(5) considerably reducing the computational difficulties intro-
duced by the off-diagonal terms.
where w=kgT(2m+1)7 are the electron Matsubara fre-  Proceeding in the frame described above, the “Fourier-
quencies. In writing Eq¥5) we have taken into account only transformed” (in the quasimomentum spac&reen’s func-
diagonal (in Landau-level indexn) contributions to the tions Gﬂ(kz,q;w) and Fﬂ*(kz,q;w) for the pure supercon-
tion in high magnetic fields whera/f w.<1 and the num-
ber of occupied Landau levelg., is not too large. In this .
situation we can use the diagonal approximation,which Gok,,q;0)= M
the BCS pairs are formed by electrons belonging to mutually mee w?+ En(a.ky)’
degenerate Landau levels at the Fermi surface while the con-
tribution from the Landau levels that are separated by or A* (q)
more is included in the renormalization of the effective cou- F*O(k, ;@)= 2+
pling constanfV—V(H,T)].° In lower fields, wheran, is a @™+ Eq(d.k,)
Iarge number, the Off-diagonal terms in E(QS) should be with En(kz,q) andAnm(q) given by Eqs(6) and(?), respec-
included on equal footing. It was shown in Ref. 5 by numeri-tively.
cally solving the BCS equations that the off-diagonal pairing

xexgi2mwnx/a— (y/l+ wnl/a)?], (4)

®

does not change the qualitative behavior of the SUPErcon- | S| F-CONSISTENT BORN APPROXIMATION
ductor in a magnetic field as long as the magnetic field is
larger than some critical fieltH .ico(T) (estimated to be The equations of motion describing the mixed supercon-

~0.8H., at T=~0 in A-15 superconductors Placed in a ducting state in the presence of scalar impurities are

high magnetic field and cooled to low temperatures the

type-ll superconductor has a gapless excitation spectrum. In 1

the diagonal approximation the gapless branches in the spec{iaﬂr >m [V,—ieA(r)]?+u— 2 U(r— Ri)}g(r,r’;w)

trum can be found analytically as !
+HAMF(r ' w)=8(r-r"),

En(ky,q)== \/fﬁ(kz)+|Ann(Q)|21
. 1 .
—lo+ 5 [Vr+|eA(r)]2+,u—Ei U(r—Ri)}

2k2

En(kz)zﬂ—}_ﬁwc(n'}_llz)_lua (6) X]:T(r,r’;w)—A*(r)g(r,r’;w)zo, (9)
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where normal and anomalous Green’s functions incorporatbelonging to the same LL. Therefore, in solving EG®) we
the interactions between the electrons and impurities. We angill neglect the inter-Landau-level scattering that becomes
interested in the quantitie and ' averaged over the posi- important only at much lower fields.
tions of the impurities. We first solve Egs(12) in the Born approximation by

In performing the average over the disorder, we followsumming the diagrams that describe two consecutive elec-
closely the diagrammatic technique developed by Abrikosouronic scatterings from the same impurity. Since the impurity
and Gor’kov in Ref. 17 for the study of the superconductingatoms are randomly distributed through the system, we have
alloys in zero field. First, we notice that for a dirty but ho- to average expressiori$2) over the position of each impu-
mogeneous superconductor the quasimomerquis still a  rity. For a dilute concentration of scatterers with uncorrelated
good guantum number, since the Abrikosov lattice is nofpositions, we encounter two types of averages:
affected by the short-ranged impurity potent{d). There-
fore, the Green’s functions in Eq&9) can be expanded in

terms of a complete set of eigenfunctiof® as U R)Uy 1 (R))g =n U2 y S
(Ui, (R Ui (Ri)Yr =niUG Ly Ky ko
N
g(r,r’;w)zkE kZ bi (NG (1) G (kg ko ), X 84, 590, .ngSh,n, (1~ 02),
1 2
(13

Frrio)=2 3 ¢ (N (ke ko), . b,
1 2 . . =nN. _—
(10) (Ui ko (ROU i i, (Ri))r =NiUG Ly LoV 8,1 kg
wherek=(q,k,,n).
The Hamiltonian for the interaction with impurities con- x 5q1'q35”1'”3sﬁ1”2(q1’q2)’

tains operator product¥ ¥'. Therefore, when an impurity (14)

is inserted into an electron line, two possibilities arise for _ _ _
each of the propagatos F, andF'. These possibilities can Where(---)g denotes the average over the impurity posi-

be written in a matrix form tions andn; is the impurity concentration. We find by inspec-
tion that Sﬁlnz(ql—qz) in Eq. (13 is a weak function of
@(x,x’)q@(x,y)&zé(y,x’), (11)  quasimomentay, —q, and LL indicesn; andn,. For n;

- +n,=5, to a very good approximatio is indepen-
with the 2X2 matrix G(x,x") defined in Nambu formalism, 2 9 PP S"lnz(q) P

o, the Pauli matrix, ank=(r,7), wherer is the imaginary fjent Of' eitherg or n. The funCt'onSnlnz(Q1’QZ) in Eq. (14)
time. Taking into account the expansi¢h0), this matrix IS obtained as
equation can be rewritten in terms of its “Fourier” compo-
nents as min[ny,n,]
(2k—1)1
Sﬁlnz(%,%):ﬁ Z W fini-kmi-1(dy)
G(ky,kp; @) =G (ky; @) 8(ky—kp) + GO(ky ;@) =0 ;

Xf?—nz—k)(nz—k)(qZ)v (15

where matrix element§,(q) =A,,(q)/A, are calculated in
Eq. (7) for the order parametek(r) from the lowest LL of
X 2 Uy i (RIF* (k3 ko o), BCS pairs(4).

Ks.Ri Using the above averages and the expresdi@nsve can
bring the set of Eq9(12) to the form

X 2 Uigi(R)G(Ks kai@) — F(ky;0)
3

F*(Ky,Kg; @) =F% (ky; 0) 8(k;— ko) + F* (ky; )
[iw_en(kz)_EN(w)]Gn(kzaq;w)

. . 0/ _ .
% 2%, Uil RGa ko) + Bl FL A+ 3A(G0) IF (K, Qi) =1,

_"’)k;,Ri V() [iw+ en(ky) + SN(— ) ]FE (Ky.q o)
XF*(k3,ky;w), 12 +[A:”(q)+2ﬁ:(q’w)]Gn(kZ'q;w):o' (16

with a similar equation for the functiorF(ky,ks;w). The diagonal(norma) self-energy>"N(w) and off-diagonal
Uklkz(Ri) is the matrix element of the impurity potential (anomalou}sself—energyEﬁn(q;w) can be expressed as
U(r—R;) between two eigenstaté8). In a high magnetic

field, we can assume that the scattering potential is weak

compared to the separation between Liggven by A w,). EN(w)zniué

\ ! > Gk, ko),
Under these circumstances electrons scatter into the states

%
LyLyL vl mi .k
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25} =0.0 '
Sh(go)=nUi —2L— 3 Sh(akFnk, ko), S S ?
L,L LZ\/FI m,k, ,k P =9. ;
y 20 __.¢=0.3 ]
(17 — r _..¢=0.9 ]
where the function§&,(k,,k; w) andF(k,,k; ) are found % 1.5F =10/ ]
as a solution of Eqg16) and can be written in the form < ; ST ]
3 1.0F
—iD—em(ky) % [
G (k ,k,w)= - = , '_.//,;/
T @ k) + Bl 0-5%7
Amn(K) 0.0 0.2 0.4 0.6 0.8 1.0
Fan(k, ki 0)= ———"— > (19 A
@2+ en(kp) | Al K| w/
with FIG. 1. Quasiparticle density of statd§(w)/N(0) vs reduced
energyw/A in the Born approximation as a function of parameter
iv=io—3Yw)), me(k)EAmm(k)-i-Eﬁm(k;w). {=T,/A.
(19 w 1 m u(1—v2|f,n(k)|?)

The sums ovek, in Egs.(17) can be readily done so that u=—+ K '
Egs. (19) become se?f—cganzistent equatiozs for the self- A ¢ N(0) nzo 473K, VuZ+|f (k)]
energies: (22
where u=®/A and {=Ty/A. The amplitude A
1 N m = EA(I—_|,T,1“) has to be determined from the self-consistent
B=w+T, > fdk - equation

Va2 +|A,,(k)|?
(

20) A(r)=VTY, E(r,r;m). (23

and
If we take the order parameteék(r) entirely in the lowest
Landau level for the Cooper pair, E®3) can be rewritten
v2(2k—1)!! as

N(0) k=0 (2k)!! fin-tn-10(9)

Knn(q) =Ann(a)+

N¢

~ ~_ Vab F50(@) Ann(0)

*7 B k Ayy k A:VT—y — — ,
[t pe 02 g VaLdyL, & fah @2+ e(k)+ [ B2

=k 4mke, V&2 +[4,,(k) 2 (24)

whereN(0) is the density of states at the Fermi level of thewhereV(H,T) is the BCS pairing interaction that is, in gen-
normal metal in zero field o= wniugN(O) is the scattering eral, renormalized b}/ off-diagonal terms due t% the coupling
rate due to the disordédefined in zero field It is assumed Of €lectrons from LL's separated biyw. or more” One can
thatI"y/Ex<1 within the Born approximation. think of V(H,T) as being chosen to reproduce the true self-
The exact self-consistent solution of E¢g0) and(21) is ~ consistentA(H,T) in a formalism that keeps only the diag-
extremely difficult to obtain due to the coupling of matrix Onal terms. lts 99XD||CIt form is easily computed in the
elementsA nn(q) With A n-1(d) in Eq. (21). Neverthe- é/ﬁwc<_1 regime:. Note that, once disorder _|s included,
less, this problem can be simplified if we notice that theV(H,T) itself has to be recomputed self-consistently. Here
behavior ofA ,,(q) for different LL indices is very similar W€ ignore this complication on the grounds that a modest
around the gapless points in E¢8) and differs considerably sacrifice in quantitative accuracfor A/ w <1) is justified

; - ; in the face of overwhelming numerical difficulty in deter-
only in the regions in the MBZ that are gapped by lafge in . . X
T . ) ; mining fully self-consistent\(H,T) in presence of disorder.
We are primarily interested in the low-energy behavior of the The set of equation&?) and (24) completely describes

de_nsny of states and Iow-tempergture thermodynan_nc P'OR} 6 effect of disorder on the superconducting state within the
erties of a dirty superconductor in a high magnetic field.g "5 o0 vimation and enables us to calculate various

These properties are governed by the qugsi'particle exCit?)'hysical guantities. The superconducting density of states in
tions around nodes id,,(q). Therefore, retaining only the q presence of impurities is defined as
k=0 term in Eq.(21) represents a reasonable approximation

in solving Egs.(20) and(21). Furthermore, we have demon- 1
strated numerically that the sum lo# 0 terms in Eq(21) is Ny(w)=——1Im f dr g(r,riw)
<10% of thek=0 term for small frequencies, while it is &
negligible for higher frequencie®f order A). Within this 1 _
approximationA,,,(q) = Af,,(q) so that Eqs(20) and (21) ST ALl Im nqu Gn(kz, 01 @)iw=wriss
are combined as Y e

(25)
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RS5F _¢=00 ' ] 2.5

I =0.1 ] :

20r _.¢=0.3 7 2.0¢

S . _f <709 3 S i
= > 1.5F
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3 3 1.0}
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FIG. 4. Quasiparticle density of statd§(w)/N(0) vs reduced
energyw/A whenc=0.0, as a function of the impurity concentra-
tion paramete¢=1"/A.

FIG. 2. Quasiparticle density of statd§(w)/N(0) vs reduced
energyw/A whenc=1.0, as a function of the impurity concentra-
tion paramete¢=I"/A.

where G(K,,0;i )], o+is iS given by expressiori18) in +consKw for small . At higher energies, we obsgrve that
which the analytic continuation to real frequencies is perth€ peak in the density of states locatedsd ~ 12 in the
formed. Equatior(22) is an implicit equation from whichu clean system is reduced and broadened by disorder. As the

=u[w/A] is to be calculated. Onoe is known, the density IMPUrity concentration(measured by the parametéy in-
of states(25) can be obtained as creases, the peak eventually disappears. Note, though, that

our calculation might be less accurate at the higher energies

(of the orderA) due to the number of approximations that

are, as explained above, strictly applicable only at the low

energies. Furthermore, the true behavior of the peak can be

investigated only ifA=A(I",T) is found from the self-
(26) consistent equatiof4).

1 e m
Ny()IN(0)= NGO) Im n§=‘,o -

u
X | dg ——.
f | \/|fnn(q)|2_u2

In Fig. 1 we plotN(w)/N(0) for several values of the
parameterz=T'y/A when n.=10. Two kinds of behavior ~ The self-energieE \(q; w) andS A, (g;w) of the super-
are present: For=0.9 the superconducting density of conducting system obeying Eqdl6) are closely related to
states vanishes at the Fermi level akig{w) ~ w? for small ~ the diagonalwith respect to the magnetic translation group
. This is the same behavior as one finds in a pure systenfasis T-matrix elements in a single-site approximation as
just that the coefficient in front of? is increased from its

IV. T-MATRIX APPROXIMATION

clean system value. Whep>0.9, a finite density of states is Shn(K @) = Tk K )R,

created at the Fermi level, although of course it is smaller

than in the normal state. In this regim&y(w)~Ny(0) Eﬁn(k;w):—ni<T12(k,k;w))Ri, (27)
55 . . : whereT!l(k; ,k,: ») are the coefficients in th€-matrix ex-

pansion over the complete set of eigenst&tegk,,k,n):

2.0

- T @)= 20 i (N (1) TH kg ko 0),
1.5 ki ok

Mw)/N(0)

T @)= 2 ¢ (N (T kg kg 0).
1:K2 (28)

The 2X2 T matrix ﬁr,r’;w) obeys the Lippmann-
Schwinger equations

%zr,r';w)=U(r)5(r—r')&z+f dr,U(r)

FIG. 3. Quasiparticle density of statd§(w)/N(0) vs reduced .~ o on .,
energyw/A whenc=0.5, as a function of the impurity concentra- XoG(rr;o)I(r,r'; o), (29
tion paramete¢=T"/A.
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whereG matrix elements are given by Eq4.0) andU(r) is  netic field the scattering potential is much weaker than
the impurity potential2). As in the SCBA, we neglect the 7% w.. After averaging over the impurity position, E(R9)
inter-Landau-level scattering on the basis that in a high magfor the dirty but homogeneous superconductor reduce to

y 11
_ G O w)T ok, Ko
LT q;q;m (02,0 @) The(07 . G K, K @)

b
+Ug——= > Sk Q)F (0., 0) T2 (q,,0:k, K o), (30)
I\LyL V7l a

Zz,q,m

Tk, k;0)=Ug+ U,

and

b
y Ak * 11
_ S*(k,q)F Qo) T 0:k; K@
0 LxLyLz /—I qz,zq,m nm( CI) m(qz q ) mn(qz q;K; )

by
— = Gl =0z, =0 — @) Th(0, 0 Kz K ), 31
0 LXLyLZ\/;| qZZQ’m m( d: q ) mn(qz q:Kz ) ( )
whereG(q,,q; ®) andF,(q,,q;w) are written in the forn(18) andS;,(k,q) is given by formula(15). Around the gapless
points of the excitation spectru(f), the second term in E¢30) is very small compared to the first term. This can be deduced
if one inspects expressioN5) and(31) around the nodes of the excitation spectri@nin the MBZ. Keeping this conclusion
in mind, Egs.(30) and(31) can be solved as

2Nk, k;w)=—U

+U

(by/LyLyLNT)Zg qmGum(dz,0,m)
UG~ [(by /L LyL N7 2 g qmCm(dz,q,m)]?

T ) (32

and
(V2B L Ly LT X (K2 g qmfmm DF (0.0 )
U5—[(by /Lyl LT Zg g mGrm(d,,0,m)]?

where we used the explicit forrfl5) for Sﬁm(k,q) [taking only thek=0 term in Eq.(15); see the discussion in previous
section. With the help of definitiong§19) and(27), the set of equation&2) and(33) can be brought into the form

w 2n["71/‘]"77'3|(FnN(O)]fdcﬂ::I-_‘/ilfnn(qnz]l'l/ Vu2+|fnn(Q)|2

Tan(kiw)=—

(33

u= -+ , 34
A T A N(O) 1 dau I+ [T %
|
where/=T/A and u=a/A. As in the previous section, the superconducting density of

Disorder is characterized with two parameter§:  States in the presence of impurities is found from E2f)
—n, /N(0)7=(n;/n)Eg, which measures the concentration °1C€ the solutiom=u[ w/A ] of Eq. (34) is found. Figures 2,
of impurities n; relative to the electron density, andc 3, and 4 show how the superconducting density of states

=1/7N(0)U,, which measures the strength of the scatterinda\)é(w)/N(o) behaves as a function of the energy parameter

tential. Th l-state i teri tor 142 /A as one crosses from a weak-scattering licsit1.0 (Fig.
potential.- The normal-state inverse scattering rater 2) to a strong-scattering limit=0.0 (Fig. 4). For each value
found by takingf,,(q)=0 in Eq. (34) and lettingw—0.

) ! 5 : of ¢ (measuring the scattering strengtive present how the
This procedure yields 142=I'/(1+c?), the result first ob-  genity of states changes as the impurity concentration: i.e.,
tained by Ref. 17 in the study of the transport properties otpe parameter increases. There are two types of behavior
normal metals in a high magnetic field. The weak-scatterinq)resent in figures. Whefi< c2 the density of states vanishes
limit is approached when? is much larger than the second at the Fermi level WithVy(w) ~ w? for small w, the coeffi-
term in the denominator of expressi(8#), while the strong-  cient in front of w? being increased from the clean system
scattering limit is achieved whewr®=0. In the strong- value. When/~c?, the density of states still vanishes at the
scattering limit, the approximation in which the inter- Fermi level, butVy(w)~ w for small w. Further increase of
Landau-level scattering is neglected eventually becomethe concentratiom; such that;>c? creates a finite density
unphysical, unless the magnetic field is so high that only thef statesA,(0) at the Fermi level. In the strong-scattering
lowest LL is occupied. limit c<1, the superconducting density of states is finite at
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the Fermi level for any nonzero concentration of impurities.states behaves & for small energie€, the same behavior

In this limit, AV5(0)/N(0)~2(y/A), where y=A/Z/2 for  as that found for the pure superconductor in a magnetic
{<1. Furthermore, below/A=/{ in the strong-scattering field> When disorder becomes stronger than some critical
limit, a peak is observed centered at zero energy. This peayd!ue, a finite density of statethut still smaller then the
suggests the formation of quasibound resonant state which formal state valdeis created at the Fermi level. The finite
the analog of a Shiba state formed in the energy gap of uperconduc_:tlng density of states at the Fermi Ie\_/el 5|_gnals
conventionals-wave superconductor, as a result of multiple '€ Proadening of gapless points into gapless regions in the

scattering off a magnetic impurif). As one moves away MBZ. It is interesting to mention that this behavior is similar

from the strong-scattering limit, this zero-energy peak disapzo that of dirty superfluic®He films* and somewhat similar

pears. At higher energies, we find a similar behavior of th to the behavior of the density of states in anisotropic heavy-

: X NG ermion superconductors.
Qensny of states to the one observed in the Born approxima-" o experimental property of a superconductor in which
tion of the previous section: The peak, located «ath

the absence of a quasiparticle gap over some region of the

~1W2 in the clean system, is reduced and broadened as theymj surface will be most obviously felt is the specific heat.
impurity concentratiorimeasured by parameteyincreases. | 3 clean system in a high magnetic field at low tempera-

Also, this peak is slightly shifted to highes/A as £ in-  yresc ~ATS, whereA is the field dependent coefficieht.
creases, suggesting a stronger reduction in the BCS ampli 5 girty but homogeneous superconductor, instead of the
tudeA=A(T,I') than what is found in the Born approxima- 13 |,y one finds linear behavior at low temperatures with

tion. the coefficient reduced by the facter2(y/A) from the
normal-state value. Detailed measurements of heat capacity
V. CONCLUSIONS at very low temperatures and high magnetic fields are not yet

In this paper we have analyzed the influence of a dilutdound in the literature. We propose a classAofl5 super-
static disorder on superconducting properties in a high ma conductors as good candidates in which the linear tempera-
netic field. We considered a dirty but homogeneous superuré law of the heat capacity at high magnetic fields can be
conductor for which the order paramet&¢r) is not influ- discovered. These systems have experimentally accessible

enced by the presence of the impurities and still forms the!PPEr critical fields.anq are clgar gxamples of mgterials for
perfect Abrikosov triangular lattice. We considered theWhICh the LL quantization in high fields plays an important

weak-scattering limit within a self-consistent Born approxi- role. =
mation while the strong-scattering limit was treated within a
T-matrix approximation for superconducting self-energies.

We found that for small impurity concentrations and This work has been supported in part by the NSF Grant
weak-scattering potentials the superconducting density dilo. DMR-9415549.
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