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Superconductivity of a metallic stripe embedded in an antiferromagnet
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We study a simple model for the metallic stripes found in yaNd, ,Sr,CuQ, a two chain Hubbard ladder
embedded in ataticantiferromagnetic environment. We consider two cases; a “topological stripe,” for which
the phase of the Ng order parameter shifts by across the ladder, and a “nontopological stripe,” for which
there is no phase shift across the ladder. We perform one-loop renormalization-group calculations to determine
the low-energy properties. We compare the results with those of the isolated ladder and show that for small
doping superconductivity is enhanced in the topological stripe, and suppressed in the nontopological one. In
the topological stripe, the superconducting order parameter is a mixture of a spin-singlet component with zero
momentum and a spin-triplet component with momentanWe argue that this mixture is generic, and is due
to the presence of an additional term in the quantum Ginzburg-Landau action. Some consequences of this
mixing are discussedS0163-1827)07037-9

Recent neutron experiments have demonstrated that fanentums. We argue that this mixture is generic, and is due
La, g ,Nd, ,Sr,CuQ,, doped holes segregate into an array ofto the presence of a new terfiq. (16)] in the quantum
“stripes” embedded in an antiferromagnetic backgrodind. Ginzburg-Landau action.

Moreover, it was found that fax=0.12, 0.15, 0.20 the sys-

tems exhibit simultaneous stripe and superconducting érder. THE MODEL

According to Tranquadat al, a consistent interpretation of
the observed spin and charge incommensurability is that thf
stripes are the antiphase domain walls of the magnetic orde >
A number of theoretical works have addressed issues varyiny
from the origin of the stripe ordérfo the effects of stripe
order on superconductiviy®

In this paper we examine a simple model ofsagle
stripe. The model consists of a Hubbard laddehere the H=Hy+V,
holes residg embedded in one of the two types sfatic
antiferromagnetic environmenftsin case(a), the magnetic
order on the two sides of the ladder forces ghase shiftin ~ Ho=—t> {[¢{", 15Cig+ i 1501+ /i g+ H.C
the Neel order parametdiFig. 1(a)]. We shall subsequently '
refer to this type of stripe as being topological. In céisg —ulctci,+dtdi, ]+ Ma(—1)[c ci,+ nd di, 1},
the Neel order parameter stays in-phase across the stripe
[Fig. 1(b)]. We refer to this case as being nontopological. U

The low-energy properties of the model are determined by V= 52 [Ci5CioCi— oCim gt dipdiodi” ,di— 1. (1)
performing one-loop renormalization-groufrG) calcula- '
tions. Comparing our results with the results of similar cal-|n the abovej runs through the lattice sites;=+1 labels
culations for an isolated ladder allows us to infer the effectshe electron sping and d annihilate electrons on the two
of a magnetic environment on the low-energy properties othains of the laddery is the chemical potential) is the
the two-chain Hubbard ladder. We emphasize that in ouHubbard interactionM is the internal staggered magnetic
view the present work sheds light on how superconductivityfield induced by the background moments, apd+1(—1)
survivesstripe ordering, but not how stripe orderitrgggers ~ when the stripe is topologic&hontopological.
superconductivity. WhenM =0 Eq.(1) describes an isolated Hubbard ladder.

Our main results are summarized as follows. When thel'he following is a brief summary of the theoretical results
Hubbard ladder is lightly doped, we find that superconducfor this systen. At half filling, the ladder is a Mott insulator
tivity is enhancedrelative to the isolated Hubbard ladilér ~ with both a spin and charge gap. Superconductivity develops
the topological stripe, and tetally suppresseth the nonto-  when it is lightly doped. In the superconducting phase, the
pological one. The superconducting order parameter in therder parameter is the out-of-phase linear combination of the
former is a linear combination of a spin-singlet componentusual spin-singlet order parameters in the symmetric and an-
with zero momentum, and a spin-triplet component with mo-tisymmetric bands.

The model we shall study describes a metallic “river”
tripe embedded in an insulating antiferromagnetic back-
round. The stripe will be modeled by a “Hubbard ladder-
(Fig. 1). The coupling between the electrons in the stripe
and the magnetic moment of the background is the usual
antiferromagnetic spin-spin interaction. The Hamiltonian is
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FIG. 1. The topologica(a), and nontopologicalb) stripes. The 35 . . . .

arrows represent the magnetic moments of the environment. Anti-
ferromagnetic coupling exists between an arrow and electrons or
the site next to it. To determine whether a stripe is topological, one
needs to interpolate the magnetic order across the ladder.

When M #0 the first Brillouin zone is halved, and the
free-particle bands of the isolated ladder hybridize. The re- . T o
sulting bandstructures are shown in Fig. 2. At half filling
there are four Fermi point&vhich pairwisely coincidgfor
n=+1 [Fig. 2@]. In contrast, an energy gap=M opens
up for n=—1 [Fig. 2(b)]. Doping moves the chemical po-
tential so that for bothy=+1 there are four distinct Fermi )
points (kgo* Skg). Here Skg is the shift in Fermi momen- R I
tum due to doping, anllg, satisfies M/t)?+4co(ke)=1

for =1, andkgo= = #/3 for = —1, respectively(In the b) - 04 02 N 02 04
above and hereafter we will set the lattice constant to Unity.
The dispersion of the energy band that intersectat, e.g., FIG. 2. The band structure of the topologi¢a) and nontopo-

Keo+ Skg is such thatdE, /dk<0 at the Fermi level. We logical (b) stripe. u, is the chemical potential at half fillingy, is

shall definekggr_=Kkro+ kg, and refer to the portion of the chemical potential after doping.

energy band in its vicinity as theR-) branch.(Here R

designates the right group of Fermi points, andeflects the  the Hubbard interaction onto the truncated Hilbert space. The

fact thatd E,/dk<<0.) A similar notation will be given to the  result is a family of vertex functions which describe the scat-

Fermi momenta and energy band branches associated witBring matrix elements between states near Fermi energy. In

the other three Fermi points. order to simplify the calculation, we shall assume that the
Let - and ¢ . be the electron annihilation operators vertex function has+ <« — symmetry. This requires that

associated with theR*) and (L =) branches, respectively. (')—|dE(')/d k| is the same for each energy bah‘a&l) In the

In terms of them the lattice annihilation operatpy is given  rest of the paper we shall concentrate on small doping where

by this symmetry is approximately valid.
i . i _ For generic doping, i.e., when there is no umklapp scat-
. — alKpR=X _ ik X _ k | )y ’ - -
Ciy = €TFR TR o(Xi) +€TFRR. (X)) tering, there are five independent vertex functions given by
+elRFLXigy (%) RN (). 2
. . . . . —
In the abovex; is the coordinate of théth lattice site. TRRRR(01020304) =945(80,0.00,0,~ O0y0,00,0,)
4
THE RG SOLUTION +0220102(00,0,00,0,
Since we are primarily interested in the low-energy prop- = 00,0,00,04)

erties, we shall limit ourselves to a small window of the

energy band near each Fermi point. To be more precise, we ) 1

assume that we can truncate the Hilbert space so that asidel RRRrA(T1020304) = (95600,0, 000, ~ U150 0, Oryry)
from the free Fermi sea, it only includes trsaibsetof 5

particle-hole excitations where the particle/hole states fall in- +0102(93205,0490,0,

side the small windows. Furthermore, within each window 1

we shall ignore the curvature of the band. Next we project ~ 9420010, 90,05):
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All other vertices that can be generated from the abidige
by letting R— L and/or+ < — have the same value. These
vertex functions are characterized by 18 coupling constants
gls andg!, . In the above we have chosen the notation so that
i andj reflect the changes in the upper (or —) and lower
(R or L) indices during scattering. The convention is that
1=backscattering, 2 interbranch forward scattering,=3
umklapp scattering, and=} intrabranch forward scattering.
Moreover,s anda in the subscript o) characterize the spin
dependence of the scattering matrix eleménts.

2
- 92a501<r4 50’203) .

The goal of the RG calculation below is to progressively

eliminate high-energy electronic excitations, and study it

mode elimination is implementqeerturbatively To be more
precise, we integrate out thogg ,(k)'s (i=L/R,j=+/-)

whereE,— dE<uvg|k|<E, within one-loop approximation.
(Here E. is a microscopic energy cut offSince the calcu-
lation is perturbative in naturghe validity of the results
relies on the smallness of the g'Straightforward calcula-

tions show that among the 18 coupling constants only 12

renormalize. The resulting recursion relations are given by

do2e 1 . 0 s o
T E( — 04945 9429421 91975 T 972974
dgj
dl - = iSgia_ géllsgtlla )

dg;
_ls = gzllsgzzla_ gzzlagzlla_ gzllsgzlls+ gisg%s_*' giag%s_ g%sg%s )

1
Ja4a

dl

d

_~1l A2 2 41 1 41 2 41 2 4,1
=02a91a" 942925~ 9229221 9159221 912924
1 41
—02a92a >

dof,

dl = gzzlsgis"' gzzlagia_ g%sgis_ g%ag%a_ gisggs_ giagga )

do?,

dl

22,2 2 1.1 1.1 .22 2 2
0259121 922915~ 925912~ 924915~ 915922~ 912925 »
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dgss
_~2 A1 2 L1 1.2 1.2 1.1 2 1
dl _945923+g4a925+g4sgls+g4sgla_2945925_915915
2 1 1 .2 1 .2
0129127 925925 922924 »
1
nga 2

T = g4sg%a+ gzzlag%a"_ gzllagis_F gzllagia_ Zgzllag%a
- giagis_ g%sgia_ g%sgga_ g%aggs )

doy
o1 =~ okolst 010~ 0%k~ 0hgla— 0kaca,

1

dg;

dl f=— g%ag%a"' g%agga_ gisg%a_ g%ag%s_ gisgga )
dg% 1
WS = E( - gisgis_ giagia_ g%sg%s_ géag%a_ g%sg%s

- giag ia) J

dgja
i

4

2 2 1.1 1.1
0159127~ 925922 915914 -

In the abovel=(1/7vg)In(E./E), whereE is the running
energy cutoff. In order to apply these recursion relations we
need to determine the initial values @%. It turns out that

the latter strongly depend on the topological type of the
stripe. Let us concentrate on the case of small doping where

effects on the remaining lower-energy ones. In this work th}FR*%kFR* andke,  ~Ke, .

For the topological stripesf=1) we have
Ghs=91s=93=U,
— Ga=01a=02.=4a%b%V,
G4a=Y2a=97a=0,
0%.=92s=Uis= (1—4a’b?)U. 5
For the nontopological striper= —1) we have instead
Jhs=91s=93=U,

2912151: gzlla: Zgia: g%a: gia: 29%31: 4a*b?U )

07s= 03s=04s= (1—2a%b?)U. (6)
In Egs.(5) and(6)
a=r/\1+r% b=11+r?
M/t
= (7

JMIDZ+AZ-A

In Eq. (7) A=2coskgg) for =1, andA=1—2coskg) for
n=—1, respectively’®

Given Egs.(5) and(6), we numerically iterate Eq4) to
determine the renormalizeg’s. The result is trustworthy
when ) U/t<<1 and(ii) all renormalizedg’s are <<1.
Under (i) and (i) we find that in all cases there exist more
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than oneg that grow upon renormalization. To deduce the
implication of these growing couplings, we compute physi-
cal susceptibilities.

For U=0, the following 12 susceptibilities capture all
logarithmically divergent ones up tB«L and/or + < —
exchanges:

Xa(w):f dxdté”(T[0.(x,1)0;(0,0]), (8

where

Ocant(X) = ¥ 1 () R 1 (X) + e | () P (X),
Ocang)(X) =[ ¥+ () thr— 100 = Py () b ()12,
Osanar (X) =[ W1 ) R | () + Py () thr—1(X)]/2,
Ot (X) =[ e 1 () e |0 = ey (X) o1 (01142,
Orst|(X) = [t 1 (X) e () + Pl () (0112,

Orea, (X) =k 1 (X) bl (X),

Ocand X) = 1 )P —1(X) + ol ()P (%),
Oseanz () =[Pk 1 ) g1 () = e 09— | ()12,
Osguzr (X) = [ ()t - |00+ ey () 9o —1(X)112,
Oso(X) =[ ¢ 1 OO Y] _ () =gl (O] _ (01142,
O () =[Pk 1 () — () + b (09 (01142,

Ors21 (X) = Y1 ()9 _1(X). (9)
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Xsdwz| = 95~ 201a+ G5a
Xsawz1 = U35~ O%a
Xs2= 055~ 015 G50t Oia,

Xts2| =015~ U5s~ U7t O%a

Xts21 =075~ U35+ OTa— G52 (12)

By substituting the renormalizeg’s into Egs.(10) and
(11) we can calculatey,(w) asw—0. In the following we
shall restrictM/t<1. We find that, like the isolated ladder,
Xs¢ IS the most divergent susceptibility fop=1. For
n=—1, we find thaty.qw1 @ndxsqwi. are the most divergent
while xs¢ is nondivergent.

By settingg!, =0 we reproduce the results for the isolated
ladder’ After a comparison, we find that foy=1 supercon-
ductivity is enhancedby the nonzeragl, . In other words,
superconductivity is enhanced in the topological stripe.

Before proceeding to the symmetry of the superconduct-
ing order parameter, we comment on the two conditions un-
der which the above results are obtained, namilyt<<1
and small doping(i) The dependence od/t: for =1 we
find that superconductivity is replaced by spin-density wave
(SDW1L) whenM/t exceeds~0.4. On the other hand, for
7=—1, Xcaw1 @Nd xsqw1. F€mMain as the most divergent sus-
ceptibilities for all values ofM/t. (ii) The dependence on
doping: for large doping, the symmetry &f< — is lost. In
that case the number of independent vertex function greatly
increases. We have not done the RG calculation for the gen-
eral case. What we say is that for a fixild= 0 the effect of
environment diminishes upon doping. Thus at large doping
the results should resemble that of the isolated ladder. For
the latter it is found that superconductivity survives for dop-
ing up to~50%.

In the above cdw, sdw label the charge- and spin-density

wave susceptibilities, whiles andts label the superconduct-
ing ones. To the lowest order gis, the results are

5

In the above the amplitudeés are given byA qu1=Acqwz= 2
andA,=1 for all othera’s, and the exponents, are given

by

27"

Ec

E Xgl2mvE
) w

)(a(fu):Aa)(o(w)(;C Xo

Xedw1™ g¢215+ gzzta_ 294115 )
Xsdwi| = g£215+ gzzla_ 2941161 )
Xsdwil = gzzls_ 91213 )
Xss1= — gzzls_ gzjis+ gzzla'l' gia ,
Xis1|= — 94215+ gélls+ gzzla_ gzlla )
Xts11 =~ O4sT O4s— 9iat Ola

_~2 1 2
Xedw2™ 925 2913+ 92a»

SYMMETRY OF THE SUPERCONDUCTING ORDER
PARAMETER

As xso diverges the following operators tend to develop
expectation values:

by (X) =i 0¥ | (X) =ty (P (%),

by (X)= ¢k ()¢ ()= OW! ().

A straightforward mean-field analy$isindicates that the
out-of-phase combination df;” andb; , i.e.,

(12

B*Ef dx[by (x)—b; ()], (13
acquires nonzero expectation. Of course, after including
phase fluctuation, we expe¢B* (x)B(x’)) to have only
quasi-off-diagonal long-range order evenTat 0.

b, andb, might appear to be singlet Cooper pair annihi-
lation operators. In fact this is not so. Indeed, due to the term
proportional toM in Eq. (1), spin-up and spin-down elec-
trons experience different one-body potentials. Conse-
quently, iz, ; andyg, | differ by more than a spin flip. As a
result, the Cooper pair created By’ has both singlet and
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triplet characters. To see that more clearly, we express
s o(K) and . (k) in terms of the band operators at

M=0:
Yy (K)=ac) (kery +K)+obc) (kery +k—),
e (K)=acl (keg_ +k—m)—obcl (keg_ +K),
U+ p(K)=acs,(Kep o+ +kt+ ) — obeg, (Ke 4 +K),

l,btio.(k) = aC;T(kFL, + k) + ch;a(kFL* +k+ 7T)
(14

In the abovec., andc_ create an electron in the symmetric
and antisymmetric band, respectively. Substituting the above

results into Eq(12) we obtain

+ dk, o+ +
by :Jz{a [Car(P(K))Cq (—P(K)—(T=1)]

—b? ¢y (p(k)+m)cs (—p(k)—m) = (T )]
+ab[c,; (p(K)+ m)cy (—p(k)+ (T )]
—ab[c;(p(k))cq, (—p(k)—m)+ (T 1)1},

iy dk 2r At .
b2 :fﬁ{a [csi(@(k) +m)cg (—a(k)—m)—(T<1)]

—b?cg(q(k))eg (—q(k) = (T 1)]
—ab[cg, (q(k)cg (—a(k)—m)+(T<])]
+ab[cg (q(k)+ m)cg (—a(k)+ (T )1}

In the abovep(k)=kgg, +k and q(k)=kegr_+k. In Eq.
(15) the terms proportional t@? and b? have S=0 and
momentuns=0, while those proportional t@ab have S=1
and momentuns 7 .

(19

A GINZBURG-LANDAU THEORY FOR THE MIXED
SYMMETRY

f ddx¢+(x)=2k B(K)[ccly —cecly ],
f I YR ISR AN

f ddX(tﬂi)z:Zk X(k)[C;+QTCik¢+C:+QlctkT]a
(17)
where

¢(K)=(—k),
x(K)=—x(—k=Q).

The fact thatN transform as the identity under the action of
the point group about a lattice site constrains the symmetry
of ¢(k) andyx(k). In two dimensions, where the point group
is Abelian, ¢(k) and x(k) must transform identically:

(18

x (K)o gp(K). (19
Putting Eqs(18) and(19) together we obtain
d(k)=—d(k+Q). (20

This can be satisfied, e.g., by either tge_ 2 pairing, where
o(k)xcosk,) —cosk,), or for anisotropics wave: ¢(k)
xcos(K,) + cosk,).

Depending which one amor@, 1 ,/} acquires expecta-
tion value, S,,x causes mixing between the remaining two.
For example, if{N)#0, S, mixes ¢ and ¢;. This is pre-
cisely what was pointed out by Schrieffer, Wen, and ZHang
and is a result of our calculations. As another example, if
()#0, thenN hybridizes withi, . As a consequence, after
integrating outy, , the Greens function dfi is modified so
that

Gﬁn(a'w): Gnn(q:w) _ .
1= N?[4*Gny(0,0)Gy(q, )

(21)

The result obtained above for the mixed-component ordetn the aboves,,, andGy; are the Greens functions associated
parameter can be understood on the basis of more genemglth N and ¢, respectively. A resonance appears when
symmetry considerations. For a system having low-energy

antiferromagnetic and superconducting modes, the following

term is allowed in the effective action:

smix=>\f dtdIxN(X, t)[ gr(x,t) * (x,t) +c.c]. (16)

In Eq. (16), N is the Nel order parameterys is a zero-
momentum spin-singlet Cooper pair field, aqu is a mo-
mentum Q= (m,...,w), spin-triplet Cooper-pair field. In

1=\2|§|?Rd (0, ®)Gyi(q, ). (22)

Recently Demler and Zhafgpostulated thaG,, exhibits an
isolated pole, and that the solution of Eg2) near this pole

is the observed resonance in the neutron scattering of several
high-T, oxides!® We emphasize thati) the hybridization
betweenN and ¢, predicted by Eq(16) is generic. It does

not rely on an enlarged symmetry group for the order
parameter$? (i) The resonance iﬁ;ffn can also appear near
the resonance i®,,,. In that case the mode is predominately

addition to satisfying the translational symmetry, the fact thatmagnetic in origin. This would explain the facts that the

the triplet Cooper field has a center-of-mass momenfuis

observed cross section and the Cu-Cu bilayer modulation of

crucial for Eq.(16) to be allowed by the point-group sym- the resonant mode are very close to those of antiferromag-

metry. Let us assume that

netic spin waves in the undoped antiferromadfiétii) The
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coupling described by Eq16) exists in the normal phase as one stripe to another is crucial for the understanding of, e.g.,
well. As before, this coupling modifieS,,,,. SinceG..is no  the experimentall . versusdq relation (here &q is the in-

longer of the form|¢/|25(w) 5(a) aboveT,, it can cause the commensurability in the neutron pealresumably tunnel-

broadening of the resonan¥0f course in the latter circum- N9 1S most efficient when two stripes “collide” with each
other. If one assumes that the average distdateng the

Etraor;(éi,n?nlga'lsmartmle excitations will also contribute to thlsstripe betwee_n the collision poi_nts is proportional to the
average spacing between the stripe, then the Josephson cou-

pling, henceT., will scale linearly withdq as experimen-
tally observed’18

According to Tranquadat al, superconducting and stripe N @ recent paper, Emery, Kivelson, and Zaéraitr!put_e
order coexist for Lag [Ndy4Sr,CuO, with  the supe_rcqnductlwt'),/ in high+, comp_ounds to the “spin-
x=0.12, 0.15, 0.20. It is tempting to relate a single stripe indaP Proximity effect.” In that mechanism, due to the tunnel-
such a system to the model we considered above. There afd ,Of a pair of electrons frorp smglg f.“eta”'c chairlo the
two immediate worries in drawing such a connection, Thefnvironment and back, a spin gap is induced on the former.

first is that a real stripe is not necessarily made up of a pair of? that case, because of the spin-charge decoupling in the

chains. The second is that a real stripe will not be absolutelyain: the charge sliding mode is left as the only low-energy

straight, degree of freedom. In Ref. 4 this is identified as supercon-

We do not think the width of the stripgs long as it is ductivity. The picture that emerges from_ our stud_y differs
reasonably smallwill qualitatively change our conclusions. SO”?eWhat fro_m the ahove. The biggest d|fferenc_e_ Is that the
The basis for that belief is that it is known for theleg environment is not the cause of superconductivity. To be

Hubbard ladders thaway from half filingthe value ofn ~ MOre specific, in our model) The magnetic environment is
does not affect the fact that the system is superconducting fgjot spin gappedWe note that e_xpermlen'_[ally ,Ehe quasistatic
small doping'® spin peak has been observed in the “striped” compounds in

Now we come to the shape of stripes. When the stripeé'a1-6*.XNd0-4srXCL?O4'2) (i) The. stripe is_ supgrconducting
meander, the potential seen by the electrons is no Iongé'arVen if the coupling to t.he environment 'S.SW'tChed off. We
invariant under the translation by two lattice spacing parallthOUldd_dhOWﬁver’ mention th;t the_ Cog_pllr:lg to the enviro-
to the stripe. The irregularity presents itself as both scalapr:ent_ |h_en arllce SL;]percon ucg(\jnty. 'gahy’ we pm?tl out
and magnetic impurities. They both have a pair-breaking efinat In this work we have not addressed the issue of long-

fect on the superconductivity as should be the case for §Nge Coulomb interaction on the superconductivity in

*“d-wave” order parameter. Nonetheless, the basic fact thaytlPes-

local Neel ordgr mixes singlet with triplet remains true. ACKNOWLEDGMENTS
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