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Superconductivity of a metallic stripe embedded in an antiferromagnet
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~Received 9 May 1997!

We study a simple model for the metallic stripes found in La1.62xNd0.4SrxCuO4 a two chain Hubbard ladder
embedded in astaticantiferromagnetic environment. We consider two cases; a ‘‘topological stripe,’’ for which
the phase of the Ne´el order parameter shifts byp across the ladder, and a ‘‘nontopological stripe,’’ for which
there is no phase shift across the ladder. We perform one-loop renormalization-group calculations to determine
the low-energy properties. We compare the results with those of the isolated ladder and show that for small
doping superconductivity is enhanced in the topological stripe, and suppressed in the nontopological one. In
the topological stripe, the superconducting order parameter is a mixture of a spin-singlet component with zero
momentum and a spin-triplet component with momentump. We argue that this mixture is generic, and is due
to the presence of an additional term in the quantum Ginzburg-Landau action. Some consequences of this
mixing are discussed.@S0163-1829~97!07037-9#
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Recent neutron experiments have demonstrated tha
La1.62xNd0.4SrxCuO4, doped holes segregate into an array
‘‘stripes’’ embedded in an antiferromagnetic backgroun1

Moreover, it was found that forx50.12, 0.15, 0.20 the sys
tems exhibit simultaneous stripe and superconducting ord2

According to Tranquadaet al., a consistent interpretation o
the observed spin and charge incommensurability is that
stripes are the antiphase domain walls of the magnetic or
A number of theoretical works have addressed issues var
from the origin of the stripe order,3 to the effects of stripe
order on superconductivity.4,5

In this paper we examine a simple model of asingle
stripe. The model consists of a Hubbard ladder~where the
holes reside! embedded in one of the two types ofstatic
antiferromagnetic environments.6 In case~a!, the magnetic
order on the two sides of the ladder forces ap phase shift in
the Néel order parameter@Fig. 1~a!#. We shall subsequently
refer to this type of stripe as being topological. In case~b!,
the Néel order parameter stays in-phase across the s
@Fig. 1~b!#. We refer to this case as being nontopological

The low-energy properties of the model are determined
performing one-loop renormalization-group~RG! calcula-
tions. Comparing our results with the results of similar c
culations for an isolated ladder allows us to infer the effe
of a magnetic environment on the low-energy properties
the two-chain Hubbard ladder. We emphasize that in
view the present work sheds light on how superconductiv
survivesstripe ordering, but not how stripe orderingtriggers
superconductivity.

Our main results are summarized as follows. When
Hubbard ladder is lightly doped, we find that supercond
tivity is enhanced~relative to the isolated Hubbard ladder! in
the topological stripe, and istotally suppressedin the nonto-
pological one. The superconducting order parameter in
former is a linear combination of a spin-singlet compon
with zero momentum, and a spin-triplet component with m
560163-1829/97/56~13!/8367~7!/$10.00
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mentump. We argue that this mixture is generic, and is d
to the presence of a new term@Eq. ~16!# in the quantum
Ginzburg-Landau action.

THE MODEL

The model we shall study describes a metallic ‘‘rive
~stripe! embedded in an insulating antiferromagnetic ba
ground. The stripe will be modeled by a ‘‘Hubbard ladde
’’ ~Fig. 1!. The coupling between the electrons in the stri
and the magnetic moment of the background is the us
antiferromagnetic spin-spin interaction. The Hamiltonian

H5H01V,

H052t(
is

$@ci 11s
1 cis1di 11s

1 dis1cis
1 dis1H.c.#

2m@cis
1 cis1dis

1 dis#1Ms~21! i@cis
1 cis1hdis

1 dis#%,

V5
U

2(
is

@cis
1 cisci 2s

1 ci 2s1dis
1 disdi 2s

1 di 2s#. ~1!

In the above,i runs through the lattice sites,s561 labels
the electron spin,c and d annihilate electrons on the tw
chains of the ladder,m is the chemical potential,U is the
Hubbard interaction,M is the internal staggered magnet
field induced by the background moments, andh511(21)
when the stripe is topological~nontopological!.

WhenM50 Eq.~1! describes an isolated Hubbard ladde
The following is a brief summary of the theoretical resu
for this system.7 At half filling, the ladder is a Mott insulator
with both a spin and charge gap. Superconductivity devel
when it is lightly doped. In the superconducting phase,
order parameter is the out-of-phase linear combination of
usual spin-singlet order parameters in the symmetric and
tisymmetric bands.
8367 © 1997 The American Physical Society
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When MÞ0 the first Brillouin zone is halved, and th
free-particle bands of the isolated ladder hybridize. The
sulting bandstructures are shown in Fig. 2. At half fillin
there are four Fermi points~which pairwisely coincide! for
h511 @Fig. 2~a!#. In contrast, an energy gapD5M opens
up for h521 @Fig. 2~b!#. Doping moves the chemical po
tential so that for bothh561 there are four distinct Ferm
points (kF06dkF). HeredkF is the shift in Fermi momen-
tum due to doping, andkF0 satisfies (M /t)214cos2(kF0)51
for h51, andkF056p/3 for h521, respectively.~In the
above and hereafter we will set the lattice constant to uni!
The dispersion of the energy band that intersectsm at, e.g.,
kF01dkF is such thatdEk /dk,0 at the Fermi level. We
shall definekFR2[kF01dkF , and refer to the portion o
energy band in its vicinity as the (R2) branch. ~Here R
designates the right group of Fermi points, and2 reflects the
fact thatdEk /dk,0.! A similar notation will be given to the
Fermi momenta and energy band branches associated
the other three Fermi points.

Let cR6 and cL6 be the electron annihilation operato
associated with the (R6) and (L6) branches, respectively
In terms of them the lattice annihilation operatorcis is given
by

cis5eikFR2xicR2s~xi !1eikFR1xicR1s~xi !

1eikFL2xicL2s~xi !1eikFL1xicL1s~xi !. ~2!

In the abovexi is the coordinate of thei th lattice site.

THE RG SOLUTION

Since we are primarily interested in the low-energy pro
erties, we shall limit ourselves to a small window of th
energy band near each Fermi point. To be more precise
assume that we can truncate the Hilbert space so that a
from the free Fermi sea, it only includes thesubsetof
particle-hole excitations where the particle/hole states fall
side the small windows. Furthermore, within each wind
we shall ignore the curvature of the band. Next we proj

FIG. 1. The topological~a!, and nontopological~b! stripes. The
arrows represent the magnetic moments of the environment. A
ferromagnetic coupling exists between an arrow and electron
the site next to it. To determine whether a stripe is topological,
needs to interpolate the magnetic order across the ladder.
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the Hubbard interaction onto the truncated Hilbert space.
result is a family of vertex functions which describe the sc
tering matrix elements between states near Fermi energy
order to simplify the calculation, we shall assume that
vertex function has1↔2 symmetry. This requires tha
vF

( i )[udEk
( i )/dku is the same for each energy bandEk

( i ) . In the
rest of the paper we shall concentrate on small doping wh
this symmetry is approximately valid.

For generic doping, i.e., when there is no umklapp sc
tering, there are five independent vertex functions given

GR
1

R
1

R
1

R
1~s1s2s3s4!5g4s

4 ~ds1s3
ds2s4

2ds1s4
ds2s3

!

1g4a
4 s1s2~ds1s3

ds2s4

2ds1s4
ds2s3

!,

GR
2

R
1

R
2

R
1~s1s2s3s4!5~g4s

2 ds1s3
ds2s4

2g4s
1 ds1s4

ds2s3
!

1s1s2~g4a
2 ds1s3

ds2s4

2g4a
1 ds1s4

ds2s3
!,

ti-
on
e

FIG. 2. The band structure of the topological~a! and nontopo-
logical ~b! stripe.m0 is the chemical potential at half filling;m1 is
the chemical potential after doping.
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GL
1

R
1

R
1

L
1~s1s2s3s4!5~g1s

4 ds1s3
ds2s4

2g2s
4 ds1s4

ds2s3
!

1s1s2~g1a
4 ds1s3

ds2s4

2g2a
4 ds1s4

ds2s3
!,

GL
2

R
1

R
2

L
1~s1s2s3s4!5~g1s

2 ds1s3
ds2s4

2g2s
1 ds1s4

ds2s3
!

1s1s2~g1a
2 ds1s3

ds2s4

2g2a
1 ds1s4

ds2s3
!,

GL
1

R
2

R
2

L
1~s1s2s3s4!5~g1s

1 ds1s3
ds2s4

2g2s
2 ds1s4

ds2s3
!

1s1s2~g1a
1 ds1s3

ds2s4

2g2a
2 ds1s4

ds2s3
!. ~3!

All other vertices that can be generated from the aboveG ’s
by letting R↔L and/or1↔2 have the same value. Thes
vertex functions are characterized by 18 coupling consta
gis

j andgia
j . In the above we have chosen the notation so t

i and j reflect the changes in the upper (1 or 2) and lower
(R or L) indices during scattering. The convention is th
15backscattering, 25 interbranch forward scattering, 35
umklapp scattering, and 45 intrabranch forward scattering
Moreover,s anda in the subscript ofg characterize the spin
dependence of the scattering matrix elements.8

The goal of the RG calculation below is to progressive
eliminate high-energy electronic excitations, and study
effects on the remaining lower-energy ones. In this work
mode elimination is implementedperturbatively. To be more
precise, we integrate out thosec i j s(k)’s ( i 5L/R, j 51/2)
whereEc2dE,vFuku,Ec within one-loop approximation.9

~Here Ec is a microscopic energy cut off.! Since the calcu-
lation is perturbative in nature,the validity of the results
relies on the smallness of the g’s. Straightforward calcula-
tions show that among the 18 coupling constants only
renormalize. The resulting recursion relations are given b

dg4s
2

dl
5

1

2
~2g4s

1 g4s
1 2g4a

1 g4a
1 1g1s

2 g1s
2 1g1a

2 g1a
2 !,

dg4a
2

dl
5g1s

2 g1a
2 2g4s

1 g4a
1 ,

dg4s
1

dl
5g4s

1 g4a
2 2g4a

2 g4a
1 2g4s

1 g4s
1 1g1s

2 g2s
1 1g1a

2 g2s
1 2g2s

1 g2s
1 ,

dg4a
1

dl
5g4a

1 g4a
2 2g4a

2 g4s
1 2g4a

1 g4a
1 1g1s

2 g2a
1 1g1a

2 g2a
1

2g2a
1 g2a

1 ,

dg1s
2

dl
5g4s

2 g1s
2 1g4a

2 g1a
2 2g2s

1 g1s
1 2g2a

1 g1a
1 2g1s

2 g2s
2 2g1a

2 g2a
2 ,

dg1a
2

dl
5g4s

2 g1a
2 1g4a

2 g1s
2 2g2s

1 g1a
1 2g2a

1 g1s
1 2g1s

2 g2a
2 2g1a

2 g2s
2 ,
ts
at

t

s
e

2

dg2s
1

dl
5g4s

2 g2s
1 1g4a

2 g2s
1 1g4s

1 g1s
2 1g4s

1 g1a
2 22g4s

1 g2s
1 2g1s

2 g1s
1

2g1a
2 g1a

1 2g2s
1 g2s

2 2g2a
1 g2a

2 ,

dg2a
1

dl
5g4s

2 g2a
1 1g4a

2 g2a
1 1g4a

1 g1s
2 1g4a

1 g1a
2 22g4a

1 g2a
1

2g1a
2 g1s

1 2g1s
2 g1a

1 2g2s
1 g2a

2 2g2a
1 g2s

2 ,

dg1s
1

dl
52g1s

1 g1s
1 1g1s

1 g2a
2 2g1s

2 g2s
1 2g1a

2 g2a
1 2g1a

1 g2a
2 ,

dg1a
1

dl
52g1a

1 g1a
1 1g1a

1 g2a
2 2g1s

2 g2a
1 2g1a

2 g2s
1 2g1s

1 g2a
2 ,

dg2s
2

dl
5

1

2
~2g1s

2 g1s
2 2g1a

2 g1a
2 2g2s

1 g2s
1 2g2a

1 g2a
1 2g1s

1 g1s
1

2g1a
1 g1a

1 !,

dg2a
2

dl
52g1s

2 g1a
2 2g2s

1 g2a
1 2g1s

1 g1a
1 . ~4!

In the abovel[(1/pvF)ln(Ec /E), where E is the running
energy cutoff. In order to apply these recursion relations
need to determine the initial values ofg’s. It turns out that
the latter strongly depend on the topological type of t
stripe. Let us concentrate on the case of small doping wh
kFR1'kFR2 andkFL1'kFL2 .

For the topological stripe (h51) we have

g4s
2 5g1s

1 5g2s
2 5U,

2g4a
2 5g1a

1 5g2a
2 54a2b2U,

g4a
1 5g2a

1 5g1a
2 50,

g1s
2 5g2s

1 5g4s
1 5~124a2b2!U. ~5!

For the nontopological stripe (h521) we have instead

g4s
2 5g1s

2 5g2s
2 5U,

2g4a
2 5g4a

1 52g1a
2 5g2a

1 5g1a
1 52g2a

2 54a2b2U,

g1s
1 5g2s

1 5g4s
1 5~122a2b2!U. ~6!

In Eqs.~5! and ~6!

a5r /A11r 2, b51/A11r 2,

r 5
M /t

A~M /t !21D22D
. ~7!

In Eq. ~7! D52cos(kF0) for h51, andD5122cos(kF0) for
h521, respectively.10

Given Eqs.~5! and ~6!, we numerically iterate Eq.~4! to
determine the renormalizedg’s. The result is trustworthy
when i! U/t,,1 and ~ii ! all renormalizedg’s are ,,1.
Under ~i! and ~ii ! we find that in all cases there exist mo
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than oneg that grow upon renormalization. To deduce t
implication of these growing couplings, we compute phy
cal susceptibilities.

For U50, the following 12 susceptibilities capture a
logarithmically divergent ones up toR↔L and/or 1↔2
exchanges:

xa~v!5E dxdteivt^T@Oa~x,t !Oa
1~0,0!#&, ~8!

where

Ocdw1~x!5cR1↑
† ~x!cR2↑~x!1cR1↓

† ~x!cR2↓~x!,

Osdw1i~x!5@cR1↑
† ~x!cR2↑~x!2cR1↓

† ~x!cR2↓~x!#/2,

Osdw1'~x!5@cR1↑
† ~x!cR2↓~x!1cR1↓

† ~x!cR2↑~x!#/2,

Oss1~x!5@cR1↑
† ~x!cR2↓

† ~x!2cR1↓
† ~x!cR2↑

† ~x!#/A2,

Ots1i~x!5@cR1↑
† ~x!cR2↓

† ~x!1cR1↓
† ~x!cR2↑

† ~x!#/A2,

Ots1'~x!5cR1↑
† ~x!cR2↑

† ~x!,

Ocdw2~x!5cR1↑
† ~x!cL2↑~x!1cR1↓

† ~x!cL2↓~x!,

Osdw2i~x!5@cR1↑
† ~x!cL2↑~x!2cR1↓

† ~x!cL2↓~x!#/2,

Osdw2'~x!5@cR1↑
† ~x!cL2↓~x!1cR1↓

† ~x!cL2↑~x!#/2,

Oss2~x!5@cR1↑
† ~x!cL2↓

† ~x!2cR1↓
† ~x!cL2↑

† ~x!#/A2,

Ots2i~x!5@cR1↑
† ~x!cL2↓

† ~x!1cR1↓
† ~x!cL2↑

† ~x!#/A2,

Ots2'~x!5cR1↑
† ~x!cL2↑

† ~x!. ~9!

In the above cdw, sdw label the charge- and spin-den
wave susceptibilities, whilessandts label the superconduct
ing ones. To the lowest order ing’s, the results are

xa~v!5Aax0~v!S Ec

v D xa/2pvF

, x05
1

2p
lnS Ec

v D .

~10!

In the above the amplitudesA are given byAcdw15Acdw252
andAa51 for all othera ’s, and the exponentsxa are given
by

xcdw15g4s
2 1g4a

2 22g4s
1 ,

xsdw1i5g4s
2 1g4a

2 22g4a
1 ,

xsdw1'5g4s
2 2g4a

2 ,

xss152g4s
2 2g4s

1 1g4a
2 1g4a

1 ,

xts1i52g4s
2 1g4s

1 1g4a
2 2g4a

1 ,

xts1'52g4s
2 1g4s

1 2g4a
2 1g4a

1 ,

xcdw25g2s
2 22g1s

1 1g2a
2 ,
-

ty

xsdw2i5g2s
2 22g1a

1 1g2a
2 ,

xsdw2'5g2s
2 2g2a

2 ,

xss252g2s
2 2g1s

1 1g2a
2 1g1a

1 ,

xts2i5g1s
1 2g2s

2 2g1a
1 1g2a

2 ,

xts2'5g1s
1 2g2s

2 1g1a
1 2g2a

2 . ~11!

By substituting the renormalizedg’s into Eqs. ~10! and
~11! we can calculatexa(v) asv→0. In the following we
shall restrictM /t!1. We find that, like the isolated ladde
xss2 is the most divergent susceptibility forh51. For
h521, we find thatxcdw1 andxsdw1' are the most divergen
while xss2 is nondivergent.

By settinggia
j 50 we reproduce the results for the isolat

ladder.7 After a comparison, we find that forh51 supercon-
ductivity is enhancedby the nonzerogia

j . In other words,
superconductivity is enhanced in the topological stripe.

Before proceeding to the symmetry of the supercondu
ing order parameter, we comment on the two conditions
der which the above results are obtained, namely,M /t!1
and small doping.~i! The dependence onM /t: for h51 we
find that superconductivity is replaced by spin-density wa
~SDW1') whenM /t exceeds'0.4. On the other hand, fo
h521, xcdw1 andxsdw1' remain as the most divergent su
ceptibilities for all values ofM /t. ~ii ! The dependence on
doping: for large doping, the symmetry of1↔2 is lost. In
that case the number of independent vertex function gre
increases. We have not done the RG calculation for the g
eral case. What we say is that for a fixedMÞ0 the effect of
environment diminishes upon doping. Thus at large dop
the results should resemble that of the isolated ladder.
the latter it is found that superconductivity survives for do
ing up to'50%.

SYMMETRY OF THE SUPERCONDUCTING ORDER
PARAMETER

As xss2 diverges the following operators tend to devel
expectation values:

b1
1~x!5cR1↑

† ~x!cL2↓
† ~x!2cR1↓

† ~x!cL2↑
† ~x!,

b2
1~x!5cR2↑

† ~x!cL1↓
† ~x!2cR2↓

† ~x!cL1↑
† ~x!. ~12!

A straightforward mean-field analysis11 indicates that the
out-of-phase combination ofb1

1 andb2
1 , i.e.,

B1[E dx@b1
1~x!2b2

1~x!#, ~13!

acquires nonzero expectation. Of course, after includ
phase fluctuation, we expect^B1(x)B(x8)& to have only
quasi-off-diagonal long-range order even atT50.

b1 andb2 might appear to be singlet Cooper pair annih
lation operators. In fact this is not so. Indeed, due to the te
proportional toM in Eq. ~1!, spin-up and spin-down elec
trons experience different one-body potentials. Con
quently,cR1↑

1 andcR1↓
1 differ by more than a spin flip. As a

result, the Cooper pair created byB1 has both singlet and
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triplet characters. To see that more clearly, we expr
cR6s

1 (k) and cL6s
1 (k) in terms of the band operators

M50:

cR1s
1 ~k!5acas

1 ~kFR11k!1sbcas
1 ~kFR11k2p!,

cR2s
1 ~k!5acss

1 ~kFR21k2p!2sbcss
1 ~kFR21k!,

cL1s
1 ~k!5acss

1 ~kFL11k1p!2sbcss
1 ~kFL11k!,

cL2s
1 ~k!5acas

1 ~kFL21k!1sbcas
1 ~kFL21k1p!.

~14!

In the abovecss
1 andcas

1 create an electron in the symmetr
and antisymmetric band, respectively. Substituting the ab
results into Eq.~12! we obtain

b1
15E dk

2p
$a2@ca↑

1
„p~k!…ca↓

1
„2p~k!…2~↑↔↓ !#

2b2@ca↑
1

„p~k!1p…ca↓
1

„2p~k!2p…2~↑↔↓ !#

1ab@ca↑
1

„p~k!1p…ca↓
1

„2p~k!…1~↑↔↓ !#

2ab@ca↑
1

„p~k!…ca↓
1

„2p~k!2p…1~↑↔↓ !#%,

b2
15E dk

2p
$a2@cs↑

1
„q~k!1p…cs↓

1
„2q~k!2p…2~↑↔↓ !#

2b2@cs↑
1 ~q~k!!cs↓

1
„2q~k!…2~↑↔↓ !#

2ab@cs↑
1

„q~k!…cs↓
1

„2q~k!2p…1~↑↔↓ !#

1ab@cs↑
1

„q~k!1p…cs↓
1

„2q~k!…1~↑↔↓ !#%. ~15!

In the abovep(k)[kFR11k and q(k)[kFR21k. In Eq.
~15! the terms proportional toa2 and b2 have S50 and
momentum50, while those proportional toab have S51
and momentum5p .

A GINZBURG-LANDAU THEORY FOR THE MIXED
SYMMETRY

The result obtained above for the mixed-component or
parameter can be understood on the basis of more ge
symmetry considerations. For a system having low-ene
antiferromagnetic and superconducting modes, the follow
term is allowed in the effective action:

Smix5lE dtddxNW ~x,t !@cW t~x,t !c* ~x,t !1c.c.#. ~16!

In Eq. ~16!, NW is the Néel order parameter,c is a zero-
momentum spin-singlet Cooper pair field, andcW t is a mo-
mentum Q5(p, . . . ,p), spin-triplet Cooper-pair field. In
addition to satisfying the translational symmetry, the fact t
the triplet Cooper field has a center-of-mass momentumQ is
crucial for Eq.~16! to be allowed by the point-group sym
metry. Let us assume that
s

e

r
ral
y
g

t

E ddxc1~x!5(
k

f~k!@ck↑
1 c2k↓

1 2ck↓
1 c2k↑

1 #,

E ddx~c t
1!x5(

k
x~k!@ck1Q↑

1 c2k↑
1 1ck1Q↓

1 c2k↓
1 #,

E ddx~c t
1!y5(

k
x~k!@ck1Q↑

1 c2k↑
1 2ck1Q↓

1 c2k↓
1 #/ i ,

E ddx~c t
1!z5(

k
x~k!@ck1Q↑

1 c2k↓
1 1ck1Q↓

1 c2k↑
1 #,

~17!

where

f~k!5f~2k!,

x~k!52x~2k2Q!. ~18!

The fact thatNW transform as the identity under the action
the point group about a lattice site constrains the symm
of f(k) andx(k). In two dimensions, where the point grou
is Abelian,f(k) andx(k) must transform identically:

x~k!}f~k!. ~19!

Putting Eqs.~18! and ~19! together we obtain

f~k!52f~k1Q!. ~20!

This can be satisfied, e.g., by either fordx22y2 pairing, where
f(k)}cos(kx)2cos(ky), or for anisotropics wave: f(k)
}cos(kx)1cos(ky).

Depending which one among$NW ,cW t ,c% acquires expecta
tion value,Smix causes mixing between the remaining tw
For example, if̂ NW &Þ0, Smix mixesc andcW t . This is pre-
cisely what was pointed out by Schrieffer, Wen, and Zhan12

and is a result of our calculations. As another example

^c&Þ0, thenNW hybridizes withcW t . As a consequence, afte
integrating outcW t , the Greens function ofNW is modified so
that

Gnn
R ~qW ,v!5

Gnn~qW ,v!

12l2ucu2Gnn~qW ,v!Gtt~qW ,v!
. ~21!

In the aboveGnn andGtt are the Greens functions associat
with NW andcW t respectively. A resonance appears when

15l2ucu2Re@Gnn~qW ,v!Gtt~qW ,v!#. ~22!

Recently Demler and Zhang13 postulated thatGtt exhibits an
isolated pole, and that the solution of Eq.~22! near this pole
is the observed resonance in the neutron scattering of se
high-Tc oxides.15 We emphasize that~i! the hybridization
betweenNW and cW t predicted by Eq.~16! is generic. It does
not rely on an enlarged symmetry group for the ord
parameters.13 ~ii ! The resonance inGnn

R can also appear nea
the resonance inGnn . In that case the mode is predominate
magnetic in origin. This would explain the facts that th
observed cross section and the Cu-Cu bilayer modulatio
the resonant mode are very close to those of antiferrom
netic spin waves in the undoped antiferromagnet.14 ~iii ! The



s

-
hi

e

in

h
ir
te

.

f

pe
g
lle
la
e
r

th

ou
th
o

m

.g.,

h

e
cou-

el-

er.
the

rgy
on-
rs
the
be

s
tic

in
g
e

ro-
ut
ng-
in

s-
rt-

8372 56YU. A. KROTOV, D.-H. LEE, AND A. V. BALATSKY
coupling described by Eq.~16! exists in the normal phase a
well. As before, this coupling modifiesGnn . SinceGss is no
longer of the formucu2d(v)d(qW ) aboveTc , it can cause the
broadening of the resonance.14 Of course in the latter circum
stance, quasiparticle excitations will also contribute to t
broadening.

V. SOME CONCLUDING REMARKS

According to Tranquadaet al., superconducting and strip
order coexist for La1.62xNd0.4SrxCuO4 with
x50.12, 0.15, 0.20. It is tempting to relate a single stripe
such a system to the model we considered above. There
two immediate worries in drawing such a connection. T
first is that a real stripe is not necessarily made up of a pa
chains. The second is that a real stripe will not be absolu
straight.

We do not think the width of the stripe~as long as it is
reasonably small! will qualitatively change our conclusions
The basis for that belief is that it is known for then-leg
Hubbard ladders thataway from half fillingthe value ofn
does not affect the fact that the system is superconducting
small doping.16

Now we come to the shape of stripes. When the stri
meander, the potential seen by the electrons is no lon
invariant under the translation by two lattice spacing para
to the stripe. The irregularity presents itself as both sca
and magnetic impurities. They both have a pair-breaking
fect on the superconductivity as should be the case fo
‘‘ d-wave’’ order parameter. Nonetheless, the basic fact
local Néel order mixes singlet with triplet remains true.

No comparison with real systems can be made with
understanding the effects of coupling between stripes. In
absence of such a coupling, superconducting long-range
der is not possible. Knowing how Cooper pairs tunnel fro
hy
s

are
e
of
ly

or

s
er
l
r

f-
a

at

t
e
r-

one stripe to another is crucial for the understanding of, e
the experimentalTc versusdq relation ~heredq is the in-
commensurability in the neutron peak!. Presumably tunnel-
ing is most efficient when two stripes ‘‘collide’’ with eac
other. If one assumes that the average distance~along the
stripe! between the collision points is proportional to th
average spacing between the stripe, then the Josephson
pling, henceTc , will scale linearly withdq as experimen-
tally observed.17,18

In a recent paper, Emery, Kivelson, and Zachar4 attribute
the superconductivity in high-Tc compounds to the ‘‘spin-
gap proximity effect.’’ In that mechanism, due to the tunn
ing of a pair of electrons froma single metallic chainto the
environment and back, a spin gap is induced on the form
In that case, because of the spin-charge decoupling in
chain, the charge sliding mode is left as the only low-ene
degree of freedom. In Ref. 4 this is identified as superc
ductivity. The picture that emerges from our study diffe
somewhat from the above. The biggest difference is that
environment is not the cause of superconductivity. To
more specific, in our model~i! The magnetic environment i
not spin gapped.~We note that experimentally the quasista
spin peak has been observed in the ‘‘striped’’ compounds
La1.62xNd0.4SrxCuO4.2! ~ii ! The stripe is superconductin
even if the coupling to the environment is switched off. W
should, however, mention that the coupling to the envi
ment did enhance superconductivity. Finally, we point o
that in this work we have not addressed the issue of lo
range Coulomb interaction on the superconductivity
stripes.
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