
PHYSICAL REVIEW B 1 OCTOBER 1997-IVOLUME 56, NUMBER 13
Inclusion of Landau damping in a time-dependent effective theory
for a weak-coupling superconductor at finite temperature

I. J. R. Aitchison and D. J. Lee
Department of Physics, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 1 May 1997!

The effective propagator for the Goldstone mode~phase of the order parameter! is calculated for a neutral
BCS system in the long-wavelength/low-frequency limit, with inclusion of Landau damping terms, for tem-
peratures betweenT50 andT50.6Tc . The Landau terms are first evaluated numerically, and then accurate
closed-form expressions are found for them. The resulting propagator is shown to be well approximated by the
product of two simple poles at complex energy, corresponding to a damped mode with linear~and
T-dependent! dispersion for both the real and imaginary parts. Damping is only significant forT>0.4Tc . By
considering the Fourier transform of the inverse of this pole-dominated propagator, an effective local equation
of motion for the phase degree of freedom is obtained, which includes a specific damping term. The damping
may be phenomenologically included in the equivalent time-dependent nonlinear Schro¨dinger equation by
giving the pair mass a small temperature-dependent positive imaginary part.@S0163-1829~97!06937-3#
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I. INTRODUCTION

The effective Lagrangian of Ginzburg and Landau1 ~GL!
successfully describes static superconducting phenom
and was derived2 from the microscopic BCS theory3 soon
after its introduction. It has proved much more difficult
obtain an effective theory of GL type for time-depende
phenomena. At finite temperature, one reason for this is
existence of Landau damping terms in the effective acti
These terms are singular at the origin of energy-momen
space, and consequently they cannot be expanded as a T
series about the origin. Equivalently, these terms do not h
a well-defined expansion in terms of spatiotemporal gra
ents of the order parameter, and hence they cannot be re
sented directly as a contribution to a local effective La
grangian. At zero temperature, however, the Land
damping terms vanish and a local effective time-depend
theory is in principle possible. Even in this case it is on
quite recently that a derivation4,5 of the expected theory—a
time-dependent nonlinear Schrodinger Lagrangian—
been given from the microscopic theory~see also Refs. 6 an
7!.

The most recent study of time-dependent GL theory
finite temperature is that of Stoof8 who, however, neglected
the Landau damping terms entirely. The aim of the pres
paper is to make a detailed quantitative study of these te
within the framework set up by Stoof, and to examine wh
sort of effective theory can be derived when they are
cluded.

Our basic strategy is to remain in momentum space fo
long as possible, where the terms we are interested in
well defined. We work towards obtaining a simple appro
mate form for the momentum-space propagator of
Bogoliubov-Anderson-Goldstone~BAG! mode, including
the effects of Landau damping. Only after this stage do
consider the~resulting! effective theory in coordinate spac

In Sec. II we briefly describe the effective action forma
ism, and present the momentum-space expressions fo
560163-1829/97/56~13!/8303~10!/$10.00
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quadratic fluctuations. These are of two types, ‘‘regular’’ a
‘‘Landau,’’ the former having a well-defined energy
momentum expansion about the origin, the latter not.
carry out the expansion of the regular terms up to sec
order in energyk0 /uD0u and momentumvFuku/uD0u ~where
D0 is the zero-temperature gap! and obtain the effective
momentum-space inverse propagators for the two expe
modes: one,SG

21 , for fluctuations in the phase of the orde
parameter~the BAG mode!, the other for fluctuations in the
modulus of the order parameter. The latter is only excited
energies higher than the range of validity of our second-or
expansion, so we concentrate on the BAG mode. In Sec
we study the contribution of the Landau damping terms
SG

21 , which we denote byFL . We first evaluateFL numeri-
cally. Then for the imaginary part ofFL , we are able to find
an approximate, but quite accurate, closed form express
For the real part, we fit a simple function to the numeric
data. These calculations are valid fork0 /uD0u andvFuku/D0
less than unity and for temperaturesT up to about 0.6Tc ,
beyond which the gap begins to vary appreciably withT. In
Sec. IV we include these approximate expressions forFL in
the propagatorSG , and show that this approximate propag
tor is very well represented by the product of two simp
poles at complex energy, corresponding to a damped B
mode with a linear dispersion relation for the real and ima
nary parts. By considering the Fourier transform of~the in-
verse of! this pole-dominated propagator, we finally obta
an effective local equation of motion for the phase degree
freedom, which includes specific damping.

II. MOMENTUM-SPACE ACTION
FOR QUADRATIC FLUCTUATIONS

Stoof8 has given explicit expressions for the momentu
space contributions of the ‘‘diagonal’’~see below! fluctua-
tions, using a functional approach to the Keldysh formalism9

For our purposes, it is clearer to remain in momentum sp
throughout, so we shall give here a brief account of an al
native derivation based on the Matsubara formalism,10 giving
8303 © 1997 The American Physical Society
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8304 56I. J. R. AITCHISON AND D. J. LEE
the corresponding expressions for the ‘‘nondiagonal’’ te
also, for completeness.

We start with the BCS action fors-wave pairing and in
the absence of external fields:

S5E d4xH(
s

cs* S i
]

]t
1

¹2

2m
1m Dcs1gc↑* c↓* c↓c↑J ,

~1!

where \51, cs describes electrons of massm and spin
s5(↑,↓), andm is the chemical potential~which we shall
take to be a temperature-independent constant, equal to
Fermi energykF

2/2m). Introducing the auxiliary pair fields
D(x) andD* (x), and integrating out the electron fields, o
obtains the effective action

S@D* ,D#52 iTr@ lnG21#2
1

gE d4xuD~x!u2, ~2!

where

G215S i ]

]t
1

¹2

2m
1m D~x,t !

D* ~x,t !
i ]

]t
2

¹2

2m
1m

D . ~3!

We now follow Stoof8 and expandS@D* ,D# about its
minimum S@D0* ,D0# by writing D(x,t)5D01D8(x,t). The
terms quadratic inD8 are given by

i

2
Tr@G0SG0S#, ~4!

whereG0
21 is defined to beG21 with D replaced byD0 and

D* by D0* , and where

S~x,t !5S 0 2D8~x,t !

2D8* ~x,t ! 0 D d~x2x8!d~ t2t8!.

~5!

In momentum space, Eq.~4! reads

i

2E d4p

~2p!4

d4k

~2p!4
tr„G0~p!S~k!G0~p2k!S~2k!…, ~6!
the

whereS(k) is the four-dimensional transform ofS(x,t), tr
stands for the trace in the 23 2 Nambu space, and where

G0~p!5
1

p0
22E2~p!

S p01e~p! 2D0

2D0* p02e~p!
D ~7!

with e(p)5p2/2m2m andE(p)5@ uDu21e2(p)#1/2.
After performing the trace in Eq.~6!, one obtains two

types of term: those involvingD8(k)D8* (2k) and
D8(2k)D8* (k) which are called ‘‘diagonal,’’ and those in
volving D8(k)D8(2k) and D8* (k)D8* (2k) which are
‘‘nondiagonal.’’ It is easy to check that the two diagon
terms are in fact identical, their combined contribution bei

i E d4k

~2p!4
D8~k!D8* ~2k!E d4p

~2p!4

1

p0
22E2~p!

3
1

~p02k0!22E2~p2k!
@p01e~p!#

3@p02k02e~p2k!#. ~8!

We proceed with the finite temperature extension of Eq.~8!;
the calculations for the nondiagonal terms are very simila

We rotate to Euclidean space viap0→ ipE andk0→ ikE ,
and replace the integral overpE by a sum over ‘‘fermionic’’
frequencies (2m11)p/b (b51/kBT) and that overkE by a
sum over ‘‘bosonic’’ frequencies 2np/b. The sum overm
can be performed by contour integration, and the result c
tinued back to realk0 via ikE→k01 i e[k0

1 . As usual, one
must be careful with terms involving exp(6 ibkE), which
must be set equal to unity before continuing back. Af
some further manipulations we obtain, for the finit
temperature version of Eq.~8!,

E d4k

~2p!4
D~k!D* ~2k!@FD,R~k!12FD,L~k!#, ~9!

where thediagonal regularterm FD,R is
FD,R~k0 ,k!52E d3k8

~2p!3

@12N~k81k/2!2N~k82k/2!#uu~k81k/2!u2uu~k82k/2!u2

k0
12E~k81k/2!2E~k82k/2!

1E d3k8

~2p!3

@12N~k81k/2!2N~k82k/2!#uv~k81k/2!u2uv~k82k/2!u2

k0
11E~k81k/2!1E~k82k/2!

~10!

and thediagonal Landau dampingterm FD,L is

FD,L~k0 ,k!5E d3k8

~2p!3

@N~k81k/2!2N~k82k/2!#uu~k81k/2!u2uv~k82k/2!u2

k0
12E~k81k/2!1E~k82k/2!

. ~11!

HereN(k) is the thermal distribution function
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N~k!5
1

exp„bE~k!…11
~12!

andu(k) andv(k) are the coherence factors obeying

uu~k!u25 1
2 @11e~k!/E~k!#, uv~k!u25 1

2 @12e~k!/E~k!#.

For the nondiagonal terms we find

E d4k

~2p!4S D0*
2D8~k!D8~2k!

uD0u2
1

D0
2

uD0u2
D8* ~k!D8* ~2k!D @FN,R~k!1FN,L~k!#, ~13!

where thenondiagonal regularterm FN,R is

FN,R~k0 ,k!5
1

2E d3k8

~2p!3

@12N~k81k/2!2N~k82k/2!#uD0u2

4E~k81k/2!E~k82k/2!@k0
12E~k81k/2!2E~k82k/2!#

2
1

2E d3k8

~2p!3

@12N~k81k/2!2N~k82k/2!#uD0u2

4E~k81k/2!E~k82k/2!@k0
11E~k81k/2!1E~k82k/2!#

~14!

and thenondiagonal Landau damping term FN,L is

FN,L~k0 ,k!5E d3k8

~2p!3

@N~k81k/2!2N~k82k/2!#uD0u2

4E~k81k/2!E~k82k/2!@k0
12E~k81k/2!1E~k82k/2!#

. ~15!
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The FR terms have an obvious interpretation as amplitu
for the creation of two quasiparticles or two quasiholes, a
develop imaginary parts only at values ofuk0u greater than
2uD0u. By contrast, theFL terms develop an imaginary pa
when the conditionk05E(k81k/2)2E(k82k/2) is satis-
fied. Since we are interested in values ofk0 andvFuku sub-
stantially less thanuD0u, we may write this condition as

k0'
e~k8!

mE~k8!
k•k8. ~16!

In evaluating this imaginary part we need to perform t
integral overk8 in Eqs. ~11! and ~15!, so that Eq.~16! ap-
pears to be a rather complicated condition. However, it is
excellent approximation to replaceuk8u by kF , while E(k8)
is roughly of orderD0. Finally, we shall see in Sec. III tha
e(k8) is effectively constrained to lie in a small range

ue~k8!u<uD0u~T/Tc!
1/2.

Then condition~16! becomes

uk0u<vFuku~T/Tc!
1/2ucosuu, ~17!

whereu is the angle betweenk andk8. Equation~17! may be
interpreted as a ‘‘Cerenkov’’ condition11 for the ~real radia-
tion! process quasiparticle↔ quasiparticle1 thermally ex-
cited fluctuation quantum. It is clear that this process w
cause theFL amplitudes to have a cut ink0 extending be-
tween6vFuku(T/Tc)

1/2, approximately, so that forTÞ0 the
FL amplitudes will not be analytic at the origin ofk space.
This is what prevents a straightforward expansion inkm , and
hence a local effective Langrangian.

In what follows we shall takeD0 to be real, and also
independent of temperature which should be a reason
s
d

n

l

le

approximation for 0<T<0.6Tc . The regular termsFD,R and
FN,R then have well-defined Taylor expansions about the
gin in k space, since their denominators never vanish fork0
and vFuku less thanD0. Performing these expansions up
orderk0

2 andk2 we find

FD,R /N~0!5F1~k0 ,k!1O~k4!, ~18!

where

F1~k0 ,k!5A~T!~k0 /D0!21B~T!~vFuku/D0!22 1
2 E~T!

~19!

with

A~T!5
1

8E2`

`

dyF 1

~11y2!3/2
2

1

2~11y2!5/2G @122N~y!#,

~20!

B~T!52
1

18
2

1

12E2`

`

dyF 1

~11y2!3/2
2

13

2~11y2!5/2

1
5

~11y2!7/2GN~y!, ~21!

and

E~T!5
1

2E2`

`

dy@122N~y!#/~11y2!3/2, ~22!

whereN(0)5mkF/2p2 is the density of states at the Ferm
surface, and where
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N~y!5
1

exp„bD0~11y2!1/2
…11

. ~23!

In obtaining these expressions, we have rewritten the i
grals overuk8u as being overy5e8/D0, and used the fact tha
the behavior of the distribution functionN is such that the
resulting y integral is dominated by the regio
uyu<(T/Tc)

1/2. This immediately implies that isolated facto
of uk8u may be replaced bykF . SinceD0!m, we have also
extended the lower limit of integration to2`.

For the regular nondiagonal terms we find, similarly,

FN,R~k0 ,k!/N~0!5F2~k0 ,k!1O~k4!, ~24!

where

F2~k0 ,k!5FC~T!S k0

D0
D 2

1D~T!S vFuku
D0

D 2

2
E~T!

4 G
~25!

with

C~T!52
1

32E2`

`

dy
@122N~y!#

~11y2!5/2
~26!

and

D~T!5
1

72
1

1

96E2`

`

dyS 14

~11y2!5/2
2

20

~11y2!7/2D N~y!.

~27!

Where comparison is possible, these expressions agree
those given by Stoof.8 The dimensionless quantitie
A, B, C, D, and E are tabulated as a function ofT in
Table I, for values ofT/Tc from 0.2 to 0.6, and setting
D051.75kBTc . It can be seen that they vary slowly in th
temperature range.

At this stage our effective action takes the form

Seff~D8* ,D8!5N~0!E d4k

~2p!4F S F11
2FD,L

N~0! D
3D8~k!D8* ~2k!1S F21

FN,L

N~0! D
3@D8~k!D8~2k!1D8* ~k!D8* ~2k!#G .

~28!

TABLE I. The values of the quantitiesA(T), B(T), C(T),
D(T), E(T), andJ(T) as defined in the text, at the indicated valu
of T/Tc .

T/Tc A(T) B(T) C(T) D(T) E(T) J(T)

0.2 0.167 20.0555 20.0416 0.0139 1.000 0.0001
0.3 0.166 20.0554 20.0415 0.0138 0.997 0.0013
0.4 0.165 20.0548 20.0410 0.0134 0.998 0.0043
0.5 0.162 20.0535 20.0400 0.0128 0.968 0.0070
0.6 0.158 20.0518 20.0385 0.0120 0.941 0.0109
e-

ith

This can be readily diagonalized in terms of the real a
imaginary parts ofD8,D85D r81 iD i8 :

Seff~D r ,D i !5N~0!E d4k

~2p!4
$D r8

2@F112F21~2FD,L

12FN,L!/N~0!#1D i8
2@F122F21~2FD,L

22FN,L!/N~0!#%. ~29!

Consider first the coefficient ofD r8
2 , and let us ignore the

Landau damping terms. This coefficient is

Sr
21[@A~T!12C~T!#S k0

D0
D 2

1@B~T!12D~T!#S vFuku
D0

D 2

2E~T!, ~30!

which can be interpreted as the inverse propagator~in mo-
mentum space! for the mode corresponding to oscillations
the real part ofD8. The approximate dispersion relation fo
this mode is obtained from the equationSr

2150. SinceE'1
~from Table I! it is clear that this is amassivemode, the
approximate dispersion relation being

k056@~D0
210.028vF

2k2!/0.085#1/2. ~31!

At k50 this mode will be excited only at energies equal
several timesD0, which lie far beyond the region of validity
of our expansion. Consequently, we cannot trust the deta
numbers in Eq.~31!, and in our regime this mode will be
effectively ‘‘frozen.’’ The inclusion of the Landau dampin
terms in Eq.~29! does not alter this conclusion at the tem
peratures we are considering. We therefore turn our atten
to theD i8 mode.

If we write D85uD8ueif'uD8u(11 if) we can identify
D r8 with uD8u andD i8 with uD8uf, for small oscillations in the
phase. TakinguD8u to be constant, we can then interpret t
coefficient ofD i8

2 in Eq. ~29! as the inverse propagator fo
the phase~or Bogoliubov-Anderson-Goldstone! mode:

SG
21'@A~T!22C~T!#S k0

D0
D 2

1@B~T!22D~T!#S vFuku
D0

D 2

12~FD,L2FN,L!/N~0!. ~32!

If the Landau terms are neglected, Eq.~32! represents a
masslessmode with propagation velocity

vp5S 2D~T!2B~T!

A~T!22C~T! D
1/2

vF . ~33!

We find thatvp→vF /A3 as expected12,13 at T50, and that
vp increases slowly withT ~see Table II!. We must now
examine the contribution of the Landau damping terms
Eq. ~32!.

III. THE CONTRIBUTION OF THE LANDAU
DAMPING TERMS TO SG

21

From Eqs.~11!, ~15!, and ~32!, the contribution ofFD,L

andFN,L to SG
21 is
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56 8307INCLUSION OF LANDAU DAMPING IN A TIME - . . .
~SG
21!L[

2~FD,L2FN,L!

N~0!

5
2

N~0!
E d3k8

~2p!3

@N~k81k/2!2N~k82k/2!#

k0
12E~k81k/2!1E~k82k/2!

3S uu~k81k/2!u2uv~k82k/2!u2

2
D0

2

4E~k81k/2!E~k82k/2!
D . ~34!

In the spirit of our low-k development, we begin by replac
ing the singular denominator factor by

S k0
12

k•k8

m

e~k8!

E~k8!
D 21

, ~35!

which must be treated exactly. The remaining factors in
~34!, however, all have well-defined expansions in powers
the momentumuku. The numerator term involvingN is
clearly odd in (k•k8), and its leading term is of orde
(k•k8). The other numerator factor contains terms which
both even and odd in (k•k8), but we need only collect term
in the product which are odd in (k•k8), since those which
are even in (k•k8) are found to vanish by particle-hole sym
metry. Carrying out the expansions, we find that the lead
contribution to (SG

21)L is given by

~SG
21!L'FL[

1

4N~0!

D0
2

m3E d3k8

~2p!3

~k•k8!3e8

E85

dN

dE8

3S k0
12

k•k8

m

e8

E8
D 21

, ~36!

wheree85e(k8),E85E(k8). The integral over the angles o
k8 can now be performed leaving a final integral overuk8u.
As before, we replace isolated factors ofuk8u by kF , and
rewrite the integral as being overy. In this way we obtain the
following expression forFL :

FL5J~T!S vFuku
D0

D 2

1H~T,a!S k0

D0
D 2

, ~37!

where

J~T!52
D0

12E2`

`

dy
dN

dE8

1

~11y2!2
~38!

and whereH(T,a)5Hr(T,a)1 iH i(T,a) with

TABLE II. Variation of vp /vF with temperature.

T/Tc vp /vF

0.2 0.577
0.3 0.576
0.4 0.575
0.5 0.572
0.6 0.568
.
f

e

g

Hr~T,a!52
D0

4 E
2`

`

dy
dN

dE8

1

y2~11y2!

3F12
~11y2!1/2

2y
alnUy1a~11y2!1/2

y2a~11y2!1/2UG
~39!

and

Hi~T,a!52
paD0

8 E
2`

`

dy
dN

dE8

1

~11y2!1/2

1

~y2uyu!

3uS uyu

~11y2!1/2
2uau D . ~40!

Note thatH(T,a) is a function only ofT and the dimension-
less variablea5(k0 /vFuku). The functionHi is nonzero only
for 2vFuku,k0,vFuku, or 21,a,1, which defines the
extent of the branch cut inH(T,a) as a function ofk0, for
fixed uku.

We have evaluated the dimensionless quantitiesHr , Hi ,
andJ numerically, takingD05 1.75Tc as before so that the
expressions are functions of the dimensionless variablea
andb5T/Tc . J(T) is tabulated in Table I, whileHr andHi
are shown in Figs. 1~a! and 1~b!, respectively, fora.0.

Since our aim is to investigate how the inclusion ofFL
modifies the Goldstone propagatorSG @cf. Eq. ~32!#, we
would like to find simple closed-form approximations forHr
and Hi , rather than having to interpolate from a table
numerical values. The key to such approximations lies in
behavior of the functiondN/dE8, which—like N itself—is
sharply peaked aroundy50 with a width of orderb1/2. This
suggests replacingdN/dE8 by a ‘‘square-wave’’ profile cen-
tered ony50 with a width 2(f b)1/2, wheref is a numerical
factor, of order unity, to be determined by comparison w

FIG. 1. ~a! Hr as a function ofa5(k0 /vFuku) andb5(T/Tc).
~b! Hi as a function ofa andb.
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8308 56I. J. R. AITCHISON AND D. J. LEE
the exactly evaluated integrals. As a second approximat
we may try replacing 11y2 in Hr andHi by 1.

Applying both approximations toHi allows us to evaluate
the integral analytically, and leads to the approximate
pression

Hi~T,a!'H̃ i~T,a!52
pD0

8 S dN

dED
e50

3

4S 1

a
2

a

f bD
3u„~ f b!1/22uau…. ~41!

We find that forf '0.8, and with the factor of 3/4 in Eq.~41!

to adjust the normalization,H̃ i(T,a) provides a good repre
sentation ofHi(T,a). H̃ i is shown in Fig. 2~b! which may be
compared with Fig. 1~b!. Note that H̃ i vanishes at
uau5( f b)1/2, and is prevented from going negative f
uau.( f b)1/2 by the u function. ThusH̃ i is continuous at
uau5( f b)1/2, with a discontinuous derivative there.

One important feature ofH̃ i deserves immediate com
ment, namely, that it is only nonzero foruau,( f b)1/2, or
uk0u,vFuku( f T/Tc)

1/2. This is in contrast to the exactHi ,
which is nonzero inside the temperature-independent re
uk0u,vFuku ~i.e., uau,1). The choice of the parameterf has
to be made so as to effect a compromise between ensu
that H̃ i is indeed small foruau.( f b)1/2 ~which requires a
‘‘larger’’ f ), while at the same time providing a reasonab
fit to the uau,( f b)1/2 region~which tends to favor ‘‘smaller’’
f ’s!. In practice,H̃ i is indeed very small for (f b)1/2,uau,1,
and the simple concept of a temperature-dependent effe
cutoff for the imaginary part is a very useful one, as we sh
see in the next section. The conclusion that the imagin
part is effectively nonzero only foruk0u,vFuku( f T/Tc)

1/2 is
fully consistent with our qualitative discussion in Sec. II@cf.
Eq. ~17!#. We shall call the region2( f T/Tc)

1/2vFuku,k0
,( f T/Tc)

1/2vFuku the ‘‘effective Cerenkov region.’’ This re-
gion is shown shaded in Fig. 3, on which are also drawn

FIG. 2. ~a! H̃r as a function ofa andb. ~b! H̃ i as a function of
a andb.
n,

-

n

ng

ive
ll
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e

linesa561 bounding the full Cerenkov region in which th
exactHi of Eq. ~40! is nonzero.

Turning now toHr , we found that while it is a good
approximation to replacedN/dE8 by (dN/dE)e50 outside
the integral, replacing powers of 11y2 by 1 is not satisfac-
tory. However, this is of little importance, since even if bo
approximations are made the remaining integral still can
be performed analytically. Making only the first approxim
tion ~for dN/dE8), we find that the integral can be quite we
represented by a simple function ofa, via

Hr~T,a!'H̃r~T,a!5D0S dN

dED
e50

1.4

1114a2
. ~42!

H̃r is shown in Fig. 2~a!, which may be compared with Fig
1~a!.

Our final explicit form for (SG
21)L is therefore

~SG
21!L5J~T!S vFuku

D0
D 2

1@H̃r~T,a!1 iH̃ i~T,a!#~k0 /D0!2.

~43!

We make the two observations about Eq.~43!. First, in the
static limit (k050) the first term survives, and it provides
correction to the (vFuku/D0)2 term in Eq.~32!. This reflects
the fact that whenk050 the Landau terms do have a we
defined expansion in powers ofuku. On the other hand, for
any nonzerok0, the H̃ terms in Eq.~43! have to be included
~if numerically significant—a point we shall discuss in th
following section!. Furthermore, the numerical value of th
H̃ terms depends on the way the origin in energy-momen
space is approached, via the ratioa5k0 /(vFuku); this is ex-
pected from the nonanalyticity, at the origin, of theFL terms.

FIG. 3. Thek02vFuku plane for~a! T50.2Tc and~b! T50.6Tc ,
showing the lines uk0u5vFuku ~dash-dot!, uk0u5vp* uku ~dash!,
uk0u5 f 1vFuku ~dot! anduk0u5( f T/Tc)

1/2vFuku ~solid!. The effective
Cerenkov region2( f T/Tc)

1/2vFuku<k0<( f T/Tc)
1/2vFuku is shown

shaded.
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Formula ~43! may be phenomenologically useful, for e
ample, for making a simple estimate of the likely importan
of the Landau terms.

IV. SINGLE, DAMPED, MODE APPROXIMATION TO
THE FULL EFFECTIVE GOLDSTONE PROPAGATOR

Assembling the results of the previous section, we n
write the full Goldstone propagator, in our approxima
form, as

SG
215S ukuvF

D0
D 2

$2@2D~T!2B~T!2J~T!#

1@A~T!22C~T!#a21@H̃r~T,a!1 iH̃ i~T,a!#a2%.

~44!

As it stands, Eq.~44! is still a rather complicated function o
k0 and uku; in particular, if we were to seek some kind o
effective Lagrangian in coordinate space, by Fourier tra
forming, the result would be so unwieldy as to be imprac
cable. The difficulty lies, of course, in the Landau term
even in their simplified formH̃. If H̃ were absent,SG would
have a simple pole structure, and the Fourier transform
SG

21 would be the wave operator, leading to the usual lo
effective Lagrangian for the Goldstone mode. Since the m
jor effect of H̃ is to introduce damping~via H̃ i) it is then
natural to ask whether the effect ofH̃ can be approximately
included by representingSG in terms of acomplexpole ~or
poles!. Then a Fourier transform should be feasible. W
therefore studySG

21 as a function of complexa, which we
shall take to mean complexk0, keepinguku real. We shall
show that such an approximation is indeed a very good o

We begin by observing that, if theH̃ terms in Eq.~44! are
neglected, SG

21 has simple zeros at the real valu
a56vp* /vF , where

vp* 5S 2D~T!2B~T!2J~T!

A~T!22C~T! D 1/2

vF , ~45!

which is just the original Goldstone mode speed Eq.~33!,
modified by the inclusion ofJ(T). The quantityvp* is tabu-
lated in Table III. The fact thatvp* is reduced~with respect to
vp) by the inclusion ofJ(T) is significant, because we mu
now ask howvp* /vF compares with the quantity (f T/Tc)

1/2,
which sets the boundary of the effective Cerenkov region~in
the real variablea) in which H̃ iÞ0. If vp* /vF were always

TABLE III. Variation of ( f T/Tc)
1/2 and ofvp* /vF with tempera-

ture.

T/Tc S fT

Tc
D1/2 vp*

vF

0.2 0.400 0.577
0.3 0.490 0.573
0.4 0.566 0.560
0.5 0.632 0.542
0.6 0.693 0.525
e

s-
-
,

of
l

a-

e.

greater than (f T/Tc)
1/2 we would effectively have an un-

damped mode—but while this is obviously true for sma
enoughT, it is not so in general. This is illustrated in Fig. 3
see also Table III. Indeed, we find that forT>0.4Tc , vp* /vF

is less than (f T/Tc)
1/2, so that propagation occurs inside th

effective Cerenkov region, and damping~via H̃ i) must be
included for consistency. In addition, there is the effect ofH̃r
to consider.

Of course, it might be that the magnitude of theH̃ terms
in Eq. ~44! is actually very small. In Fig. 4 we compareuRu
with uSu where@cf. Eq. ~44!#

R52~2D2B2J!1~A22C!a2 ~46!

and

S5~H̃r1 iH̃ i !a
2. ~47!

We see that the singular Landau termuSu is non-negligible
only for T>0.4Tc . Below this temperature we do have e
fectively undamped propagation, while above it we ha
damping, which increases withT.

The simplest form of damping corresponds to a zero
SG

21 at a complex value ofa. Consider how this may arise in
Eq. ~44!. For a5 f 11 i e with f 1.0, we see from Eq.~41!
that H̃ i is positive. Since~from Table I! the quantityA22C
is positive, we might expect the imaginary part of Eq.~44! to
vanish for somea5 f 12 i f 2, where f 2! f 1. The real part of
Eq. ~44! will continue to vanish iff 1'vp* /vF .

To search properly for this complex zero ofSG
21 we need

to extend to complex values ofa our approximations forHr
and Hi , which were valid fora approaching the real axis
from above, viaa5a15k0

1/vFuku, with k0
15k01 i e andk0

real. We denote complexa by â5ar2 iai , and examine first
the casear.0,ai.0. To reach such values, we must an
lytically continue the Landau termsFL @Eq. ~36!# from a1 to
â. SinceFL has a cut inâ for 2( f T/Tc)

1/2,â,( f T/Tc)
1/2,

we must perform the continuation carefully forar in the
range 0,ar,( f T/Tc)

1/2.
The correct continuation can be obtained by returning

the expression forH(T,a) before the angular integral lead
ing to Eqs.~39! and ~40! is performed, namely

FIG. 4. uRu @dash, see Eq.~46!# and uSu @solid, see Eq.~47!#
versusa for ~a! T50.3Tc , ~b! T50.4Tc , ~c! T50.5Tc , and ~d!
T50.6Tc .
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H~T,a1!
k0

2

D0
2

5H 2
D0

4 E
2`

`

dy
1

~11y2!y2

dN

dE8

3F11
A11y2

2y
a1E

21

1 dx

x2~A11y2a1!/y
G J

3
k0

12

D0
2

. ~48!

All dependences onk0 or a on the right-hand side of Eq.~48!
are trivial to continue, except for the singular termI (a1)
where

I ~a1!5E
21

1 dx

x2~A11y2a1!/y
. ~49!

Figure 5~a! shows the integration contour of Eq.~49! in thex
plane, with the position of the pole indicated for the ca
ar,y/A11y2 and y.0. We may separate the real an
imaginary parts ofI via

I ~a1!5I r~ar !1 ip~y/uyu!uS uyu

A11y2
2uar u D , ~50!

from which it is clear thatHr andHi of Eqs.~39! and ~40!
are obtained by inserting Eq.~50! into Eq. ~48!. Now con-
sider continuingk0 ~or a) down into the lower half plane
ar1 i e→ar2 iai . For ar,y/A11y2 we must deform thex
contour smoothly away from the advancing pole, as sho
in Fig. 5~b!. We may replace Fig. 5~b! by Fig. 5~c!, in which

FIG. 5. The complexx plane, with the contour of integration in
Eq. ~49! with 0,ar,y/@(11y2)1/2# and ~a! ai5e.0, ~b! ai,0,
with contour distortion~c! ai,0, after rearrangement of contour.
e

n

we have our original integral along the realx axis ~but with
a negative imaginary part forâ), together with a contribution
of 2p i from the pole.

Now we have seen that damping is negligible f
T<0.4Tc , and is expected to be significant but still small
the region 0.4Tc<T<0.6Tc where our approximations hold
so we expectai!ar . In that case, it seems reasonable
expect our previous approximate expressions for the real
of the integral along thex axis in Fig. 5~a! to carry over to
the similar integral in Fig. 5~c!, but with a replaced byâ.
The imaginary part of the integral in Figure 5~c! will, how-
ever, have the opposite sign from theip term in Eq.~50! ~for
smallai). Finally, we must include the contribution from th
residue at the pole in Fig. 5~c!. These considerations lead t
the following approximation to Eq.~48! for a1→â5ar2 iai
~always forar.0):

S v2uku2

D0
2 D â2H H̃r~T,â!2 i F h̃ i~T,â!22

â

ar
h̃ i~T,ar !G

3u„~ f b!1/22ar…J , ~51!

where h̃ i is the same asH̃ i of Eq. ~41!, but without theu
function.

Expression~51! now replaces theH̃ terms in Eq.~44!, and
we are free to seta2→â2 in the rest of Eq.~44! and explore
the possibility of a zero at some value ofâ. In Fig. 6 we
show the loci of Re@SG

21/(vFuku/D0)2#50 and
Im@SG

21/(vFuku/D0)2#50, for T50.6Tc : where these loci
cross we have a complex zero ofSG

21 . We find that the
position of the zero, as a function ofT, can be well fitted by

â5 f 1~T!2 i f 2~T!, ~52!

where

f 1~T!50.58020.0007 exp~5T/Tc! ~53!

and

f 2~T!5S 0.176T

Tc
20.071D uS T

Tc
20.4D , ~54!

all for 0,T/Tc<0.6.

FIG. 6. The loci of ReF50 ~solid! and ImF50 ~dotted! in the

complexâ plane atT50.6Tc , whereF5SG
21(vFuku/D0)2.
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At this stage, therefore, we have identifie
Z15@k02vFuku f 11 ivFuku f 2u(Č2k0)u(k0)# as an approxi-
mate factor ofSG

21 , whereČ5vFuku( f T/Tc)
1/2. In view of

the quadratic behavior ink0 anduku of the dominant terms in
SG

21 , there must clearly be a second, ‘‘conjugate,’’ fact
also. Forf 2→0, this will have the form (k01vFuku f 1), and
it therefore corresponds toar,0. If a1 is continued from
ar.0 to ar,0, keeping the1 i e unchanged, it is easy to se
that SG

21 will not develop a zero, sinceHi ~or H̃ i) is then
negative@see Eqs.~40!,~41!#. To find the zero withar,0, it
is necessary first to continue inâ around the branch poin
â51 from the upper to the lower side of the cut21,â,1.
This changesI (a1) of Eq. ~50! to I (a2). Hi is then positive
once more, forar,0. Keepingar,0, one then continues in
â up to the pointâ52uar u1 iai with ai.0, in a similar
fashion to the continuation described in Eqs.~48!–~50!. In
this way, we find the second approximate factor ofSG

21 ,

namely Z25@k01vFuku f 12 ivFuku f 2u(Č1k0)u(2k0)#.
The approximate dispersion relationuk0u5vFuku f 1 is shown
in Fig. 3.

The upshot of these considerations is that the follow
pole form forSG

21 is suggested:

SG
21'S A22C

D0
2 D Z1Z2 , ~55!

which can be written as

SG'S D0
2

~A22C!
D @k0

22vF
2k2f 1

212ivF
2k2f 1f 2u~Č2uk0u!#21,

~56!

neglectingf 2
2. The form of Eq.~56! shows that, as we would

expect from the properties ofH̃ i , the imaginary part is non
zero only inside the effective Cerenkov region. However,
must recall from the remark after Eq.~41! thatH̃ i vanishes at
uk0u5Č, so that it has no discontinuity at this point. Nor,
course, does the true functionHi . Expression~56!, on the
other hand, does have such a discontinuity, and this sugg
that Eq. ~56! should be replaced by a function which
smooth atuk0u5Č. For small f 2 it is an excellent approxi-
mation~except at the actual point of discontinuity! to replace
uk0u in the quantityu(Č2uk0u) of Eq. ~56! by vFuku f 1, so
that the u function reduces to u„( f T/Tc)

1/22 f 1(T)…
'u(T/Tc20.4), as in Eq.~54!. This now removes the dis
continuity atuk0u5Č, and provides a smooth function to b
compared with Eq.~44!. Incidentally, theu function would
present complications in the next section when we seek
approximate equation of motion for the Goldstone mode,
Fourier transformingSG

21 . These complications are not insu
perable~the imaginary part becomes nonlocal in space-tim!,
but they are unnecessary, we believe, in the light of
above arguments.

Finally, therefore, definingŜG by

ŜG
215S k2vF

2~A22C!

D0
2 D SG

21 , ~57!
r

g

e

sts

e
y

e

we arrive at the approximation

ŜG'ŜG,pole5~a22 f 1
212i f 1f 2!21. ~58!

Figure 7 shows the comparison betweenŜG @using Eqs.~57!

and ~44!# and ŜG,pole. We see that the simplified pole ap
proximation represented byŜG,pole is indeed quite satisfac
tory, keeping track of both the shift in the resonance posit
and the broadening of the peak asT increases. Having estab
lished the usefulness of the simple form~58! we turn, finally,
to the question of its Fourier transform, and the effect
Lagrangian.

V. APPROXIMATE LOCAL EFFECTIVE THEORY
FOR THE GOLDSTONE MODE

The preceding calculations amount to saying that
nonanalyticity of the Landau terms around the origin ink
space, which taken at face value prevents an expansio
powers of energy momenta and hence also a local effec
action, is in fact not numerically significant, at least for t
range of parameters we have investigated. In essence, th
propagatorSG , which has indeed a complicated analyt
structure ink0 including a branch cut between2vFuku and
v f uku, can be very well approximated by a function which
analytic except for two complex poles ink0. The inverse
quantity SG

21 , which appears in the effective action in mo
mentum space, is a simple quadratic function ofk0 and uku.
Hence its Fourier transform is trivial and we have, after a
recovered a simple local effective action.

Indeed, from Eqs.~29!, ~32!, ~57!, and ~58! the approxi-
mate effective action for the phase degree of freedom is p
portional to

Seff~f!5E d4k

~2p!4
f~k!@k0

22~ f 1
222i f 1f 2!vF

2k2#f~2k!,

~59!

which becomes

FIG. 7. ~a! Left box: ReSG ~solid! and ReSG,pole ~dotted! at
T50.6Tc . Right box: ImSG ~solid! and ImSG,pole ~dotted! at
T50.6Tc . ~b! Left box: ReSG ~solid! and ReSG,pole ~dotted! at
T50.5Tc . Right box: ImSG ~solid! and ImSG,pole ~dotted! at
T50.5Tc .
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Seff~f!5E d4x$@ḟ~x,t !22~ f 1
222i f 1f 2!vF

2~¹f~x,t !#2%

~60!

in coordinate space, which is the effective local theory. I
now simple to include electromagnetic interactions via
usual minimal coupling procedure.

The effective equation of motion forf which follows
from Eq. ~60! is, of course, just

]2f

]t2
5~ f 1

222i f 1f 2!vF
2¹2f. ~61!

As remarked in the Introduction, it has recently be
shown4 that the effective theory for the Lagrangian of Eq.~1!
at T50 can~in the long-wavelength approximation! be writ-
ten as a nonlinear Schro¨dinger theory. It is then natural to
ask how the imaginary term in Eqs.~60! or ~61! can be
incorporated into this picture. In terms of a Schro¨dinger
wave function c5reif and a potential V(r)
5(r2r0)2/2N(0), theequations of motion derived in Ref.
are

]r

]t
1¹• j50 ~62!

and

r5r02N~0!@ḟ1~¹f!2/4m# ~63!

to leading order in derivatives, and wherej5r¹f/2m. Sub-
stituting Eq.~63! into Eq. ~62!, we find
s

s
e

f̈'@r0/2mN~0!#¹2f5
vF

2

3
¹2f, ~64!

as expected for the undamped Goldstone mode. It follo
that the only modification we need make to Eqs.~62! and
~63!, in order to reproduce Eq.~61!, is to replace the param
eterm in the expressions forr and j by

mc5m/@3~ f 1
222i f 1f 2!#, ~65!

while leavingN(0) unchanged. This means that the ma
parameter in the equivalent Schro¨dinger theory is replaced
by one which isT dependent, and which has a small positi
T-dependent imaginary part.

In conclusion, we note that it would clearly be desirab
not to have to make the ‘‘smallf ’’ approximation, as we did
above Eq.~32!, but rather to perform a gauge transformati
so as to removef from the complete gap functionD from
the start, as was done in Ref. 4, and then expand in der
tives of f. This is presumably particularly important in re
gard to questions of vortex dynamics. Unfortunately, the
gebraic complexity of the finite-temperature case~and the
attendant absence of Galilean invariance! have so far pre-
vented us from making much progress with such a progr
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