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Inclusion of Landau damping in a time-dependent effective theory
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The effective propagator for the Goldstone mdgdkase of the order parametés calculated for a neutral
BCS system in the long-wavelength/low-frequency limit, with inclusion of Landau damping terms, for tem-
peratures betweefi=0 andT=0.6T,. The Landau terms are first evaluated numerically, and then accurate
closed-form expressions are found for them. The resulting propagator is shown to be well approximated by the
product of two simple poles at complex energy, corresponding to a damped mode with (amehr
T-dependentdispersion for both the real and imaginary parts. Damping is only significarft$d®.4T.. By
considering the Fourier transform of the inverse of this pole-dominated propagator, an effective local equation
of motion for the phase degree of freedom is obtained, which includes a specific damping term. The damping
may be phenomenologically included in the equivalent time-dependent nonlineadiBgeroequation by
giving the pair mass a small temperature-dependent positive imaginary $2t63-18207)06937-3

I. INTRODUCTION quadratic fluctuations. These are of two types, “regular” and
“Landau,” the former having a well-defined energy-
The effective Lagrangian of Ginzburg and Lan4GL)  momentum expansion about the origin, the latter not. We
successfully describes static superconducting phenomen@arry out the expansion of the regular terms up to second
and was derivedfrom the microscopic BCS thechsoon — order in energyk,/|Ao| and momentunve|k|/|Ao| (where
after its introduction. It has proved much more difficult to Ao is the zero-temperature gapgnd obtain the effective
obtain an effective theory of GL type for time-dependentMomentum-space inverse propagators for the two expected
phenomena. At finite temperature, one reason for this is thB1odes: oneSg, for fluctuations in the phase of the order
existence of Landau damping terms in the effective actionParametethe BAG mode, the other for fluctuations in the
These terms are singular at the origin of energy-momenturﬂ“OdU!US of the order parameter. TheT Iatter is only excited at
space, and consequently they cannot be expanded as a Tayf3lergies higher than the range of validity of our second-order
series about the origin. Equivalently, these terms do not haygXPansion, so we concentrate on the BAG mode. In Sec. Il
a well-defined expansion in terms of spatiotemporal gradiwglstudy the contribution of the !_andau damping terms o
ents of the order parameter, and hence they cannot be repr‘éG , which we denpte t,’FL' We first evaluatd, numeri-
sented directly as a contribution to a local effective Lan-Ca"y' Ther] for the imaginary part &, , we are able to fmd.
grangian. At zero temperature, however, the Landa n approximate, but quite accurate, closed form expression.

: : L or the real part, we fit a simple function to the numerical
damping terms vanish and a local effective tlme-dependenéa,[a These calculations are valid fay/|Ao| andve|k|/A
theory is in principle possible. Even in this case it is only, - " 0 F 0

: o ess than unity and for temperatur€sup to about 0.8,
quite recently that a derivatién of the expected theory—a : . )
time-dependent nonlinear Schrodinger Lagrangian—habeyond which the gap begins to vary appreciably witfn

b : f he mi i th Iso Refs. 6 and ec. IV we include these approximate expressiong-foin
7;een given from the microscopic thedgee also Refs. 6 an the propagatoBg, and show that this approximate propaga-

, tor is very well represented by the product of two simple
~ The most recent study of time-dependent GL theory ajgles at complex energy, corresponding to a damped BAG
finite temperature is that of Stdofvho, however, neglected mode with a linear dispersion relation for the real and imagi-

the Landau damping terms entirely. The aim of the presentary parts. By considering the Fourier transform(ibie in-
paper is to make a detailed quantitative study of these termgs ge of this pole-dominated propagator, we finally obtain

within the framework set up by Stoof, and to examine whatyp, effective local equation of motion for the phase degree of
sort of effective theory can be derived when they are infreedom, which includes specific damping.

cluded.

Our basic strategy is to remain in momentum space for as
long as possible, where the terms we are interested in are
well defined. We work towards obtaining a simple approxi-
mate form for the momentum-space propagator of the Stoof has given explicit expressions for the momentum-
Bogoliubov-Anderson-GoldstondBAG) mode, including space contributions of the “diagonal(see below fluctua-
the effects of Landau damping. Only after this stage do wetions, using a functional approach to the Keldysh formafism.
consider thegresulting effective theory in coordinate space. For our purposes, it is clearer to remain in momentum space

In Sec. Il we briefly describe the effective action formal- throughout, so we shall give here a brief account of an alter-
ism, and present the momentum-space expressions for thmative derivation based on the Matsubara formafi€giving

IIl. MOMENTUM-SPACE ACTION
FOR QUADRATIC FLUCTUATIONS
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the corresponding expressions for the “nondiagonal” termwherez, (k) is the four-dimensional transform &f(x,t), tr

also, for completeness. stands for the trace in the’2 2 Nambu space, and where
We start with the BCS action fas-wave pairing and in

the absence of external fields:

S= J d4x[§ oE

_AO
Po—€(p)

1 Po+e(p)

2
*
_AO

9V (7)
IE-F%-‘FILL

Go(P)= —————
P B

— W],

@D with e(p)=pZ2m—u andE(p) =[|A|>+ €2(p)]V'2.
where7i=1, ¢, describes electrons of mass and spin After performing the trace in Eq(6), one obtains two
o=(1,]), and u is the chemical potentigwhich we shall types of term: those involvingA’(k)A’*(—k) and
take to be a temperature-independent constant, equal to tie (—Kk)A’* (k) which are called “diagonal,” and those in-
Fermi energyk2/2m). Introducing the auxiliary pair fields volving A’(k)A’(—k) and A’*(k)A'*(—k) which are
A(x) andA*(x), and integrating out the electron fields, one “nondiagonal.” It is easy to check that the two diagonal

obtains the effective action

S[A*,A]=—iTr[InG‘1]—$J d*x|AX)%, (2

where
ig V?
— A(x,t
i, 7t tom T A
¢ A*(x,t) id V2+ ©
’ ot 2m M

We now follow Stoo? and expandS[A*,A] about its
minimum S[AJ ,Aq] by writing A(x,t)=Aq+A’(x,t). The
terms quadratic i\’ are given by

IETI'[G()E Goz], (4)

whereGgl is defined to bes ! with A replaced by, and
A* by A}, and where
—A’(x,1)

2O=| oy 0

S(x—x")S(t—t").
)

In momentum space, E) reads

i d'p d%
EJ' (27T)4 (27T)4tr(GO(p)2(k)G0(p—k)z(_k)), (6)

terms are in fact identical, their combined contribution being

if (s;k)“A’(k)A’*(—k)f

4

d*p 1
(2m)* p5—E*(p)

X +
(Po—ka)?—EZ(p—k) POt <Pl

X[po—ko—€e(p—K)]. 8

We proceed with the finite temperature extension of [By.
the calculations for the nondiagonal terms are very similar.

We rotate to Euclidean space yig—ipg andko—ikg,
and replace the integral ovpg by a sum over “fermionic”
frequencies (Bh+1)7/B (B=1/kgT) and that ovekg by a
sum over “bosonic” frequenciesr?r/B. The sum ovem
can be performed by contour integration, and the result con-
tinued back to reak, via ike—ky+ie=kg . As usual, one
must be careful with terms involving exp( Bkg), which
must be set equal to unity before continuing back. After
some further manipulations we obtain, for the finite-
temperature version of E@8),

d*k
j 2AKA* (=K)[Fp r(K)+2Fp ((K)],  (9)
(27)

where thediagonal regularterm Fp,  is

Eo (koK)= Jd3k' [1-N(k’+k/2)—N(k' —k/2)]|u(k’ +k/2)|?|u(k’ —k/2)|?
DRTOY (2m)3 S —E(K'+k/2) —E(k' —k/2)
+f dk’ [1—N(k'+k/2)—N(k'—k/2)]|v(k' +k/2)|?|v(k" —k/2)|? 10
(2m)3 kg +E(k'+k/2)+E(k" —k/2)
and thediagonal Landau dampintermFp, | is
d3k’ [N(Kk’+k/2)—N(k"—k/2)]Ju(k’ +k/2)|?|v (k' —k/2)|?
Fou(ko k= | | 11

(2m)®

HereN(k) is the thermal distribution function

kg —E(k’ +k/2)+E(k’ —k/2)
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N(k)= (12

1
exp(BE(k))+1
andu(k) anduv (k) are the coherence factors obeying
Ju(k)[?=3[1+e(K)/EK)],  |v(k)[*=3[1—e(k)/E(K)].

For the nondiagonal terms we find

(2m)*\ |Aol? |Aq|2 N.R nL(K) T,

where thenondiagonal regulatermFy g is

1

d3k’ [1—N(k'+k/2)—N(k'—k/2)]|Ao|?
FN,R(kOak):EJ

(2m)3 4E(K’' +KI2)E(k' —k/2)[kg —E(K’ +k/2) —E(k'—k/2)]

31, _ ' _ r_ 2
—Ef d3k [1-N(k'+k/2)—N(k'—k/2)]|Ag] (14)

2) (2m)% 4E(K' +KI2)E(k' —k/2)[kg +E(k' +k/2)+E(k’ —k/2)]
and thenondiagonal Landau damping termyF is
d3k’ [N(k’+k/2)—N(k' —k/2)]|A|?
(2m)% 4E(K’ +KkI2)E(k’ —k/2)[ kg —E(k’ +k/2)+E(k’ —k/2)]’

FN,L(kO-k):f (15

The Fg terms have an obvious interpretation as amplitudespproximation for 6= T<0.6T. The regular termEp r and

for the creation of two quasiparticles or two quasiholes, andr\ g then have well-defined Taylor expansions about the ori-
develop imaginary parts only at values |¢f| greater than gin in k space, since their denominators never vanistkgor
2|Ay|. By contrast, theF, terms develop an imaginary part andvg|k| less thanA,. Performing these expansions up to
when the conditionky=E(k’'+k/2)—E(k’'—k/2) is satis- orderké andk? we find

fied. Since we are interested in valueskgfandvg|k| sub-

stantially less thamA|, we may write this condition as Fp.rIMO)=F1(kg,k)+O(k%), (18
e(k") where
o= K-k’ (16)
mE(k’")

o F1(Ko,K)=A(T)(ko/Ag)?+B(T)(velk|/Ag)?~ 3 E(T)
In evaluating this imaginary part we need to perform the (19
integral overk’ in Egs.(11) and(15), so that Eq.(16) ap-

pears to be a rather complicated condition. However, it is aivith

excellent approximation to repla¢k’| by kg, while E(k")

is roughly of orderA,. Finally, we shall see in Sec. Il that 1~
(k') is effectively constrained to lie in a small range A(T)= gﬁx y

(1+y2)3/2_ 2(1+y2)5/21[1_2N(Y)],
le(k")|<|Aol(TITo)M2. (20)

Then condition(16) becomes
B(T)= ) d ! 13
[kol<vglk|(T/T)Y4cos), (17) (M= 18 12)_.%Y (1+y2)32  2(1+y?)52
whered is the angle betweeknandk’. Equation(17) may be
interpreted as a “Cerenkov” conditidhfor the (real radia- +—] N(y), (21)
tion) process quasiparticle: quasiparticle+ thermally ex- (1+y?)™?

cited fluctuation quantum. It is clear that this process will
cause theE, amplitudes to have a cut ik, extending be- and
tween+uv¢|Kk|(T/T,) Y2 approximately, so that foF #0 the
F_ amplitudes will not be analytic at the origin &fspace.
This is what prevents a straightforward expansiok jn and
hence a local effective Langrangian.

In what follows we shall take\, to be real, and also where V(0)=mkc/27? is the density of states at the Fermi
independent of temperature which should be a reasonabkurface, and where

em=5[ aii-anpyana® @
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TABLE |I. The values of the quantitie&(T), B(T), C(T),
D(T), E(T), andJ(T) as defined in the text, at the indicated values jmaginary parts ofA’,A’
of T/T,.

TIT.  A(T) B(T) C(T) D(T) EM JT)
0.2 0.167 —0.0555 -—0.0416 0.0139 1.000 0.0001
0.3 0.166 —0.0554 -—0.0415 0.0138 0.997 0.0013
0.4 0.165 —0.0548 -0.0410 0.0134 0.998 0.0043
0.5 0.162 —0.0535 -—0.0400 0.0128 0.968 0.0070
0.6 0.158 —0.0518 -—0.0385 0.0120 0.941 0.0109
N(y) - (23
y)= .
exp(BA(1+y?) ) +1

In obtaining these expressions, we have rewritten the inte-

grals overk’| as being ovey=¢€'/A,, and used the fact that
the behavior of the distribution functioN is such that the
resulting y integral is dominated by the region
ly|<(T/T,)*2 This immediately implies that isolated factors
of |k’| may be replaced bl . SinceA,<u, we have also
extended the lower limit of integration te c.

For the regular nondiagonal terms we find, similarly,

Fr.r(Ko, K)/A(0)=F,(ko,k)+0O(k?), (24)
where
ko \2 k
Y g
(25
with
[1—2N(y)]
c(m= - 32) .. (1+y2)5/2 (26)
and
o 14
P=%"56) .M (1592 1ayr) "V
(27

Where comparison is possible, these expressions agree with

those given by Stodf. The dimensionless quantities
A, B, C, D, andE are tabulated as a function @f in
Table I, for values ofT/T, from 0.2 to 0.6, and setting
Ag=1.7%gT.. It can be seen that they vary slowly in this
temperature range.

At this stage our effective action takes the form

e

XA (K)A"™* (— k)+(F2+ F

d*k
(2m)*

2FD,L)

seﬁ(A'*,A'>=N(0>f e

NL)
MO)
X[A’(k)A’(—k)+A’*(k)A’*(—k)]}.

(28)
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This can be readily diagonalized in terms of the real and
=A/+iA]:

Ser( A, ,Aj) = NO)f A’Z[Fl+2F2+(2FDL

+2|:N,L)/N(0)]+Ai'2[|:1—2F2+(2FD,L
—2FyN)INMO)]}. (29

Consider first the coefficient af/?, and let us ignore the
Landau damping terms. This coefficient is

§ ko |?
S 1E[A(T>+ZC<T)J(A—)

velk|

) —E(T), (30
Ao

+[B(T)+2D(T)]

which can be interpreted as the inverse propagatomo-
mentum spagefor the mode corresponding to oscillations in
the real part ofA’. The approximate dispersion relation for
this mode is obtained from the equatiSp*=0. SinceE~1
(from Table ) it is clear that this is amassivemode, the
approximate dispersion relation being

= +[(AZ+0.0282k?)/0.085/*2. (32

At k=0 this mode will be excited only at energies equal to
several timeg\,, which lie far beyond the region of validity
of our expansion. Consequently, we cannot trust the detailed
numbers in Eq(31), and in our regime this mode will be
effectively “frozen.” The inclusion of the Landau damping
terms in Eqg.(29) does not alter this conclusion at the tem-
peratures we are considering. We therefore turn our attention
to the A{ mode.

If we write A’=|A’|e'%~|A’|(1+i¢) we can identify
A] with [A’| andA{ with |A’| ¢, for small oscillations in the
phase. TakingA’| to be constant, we can then interpret the
coefficient ofAi’2 in Eq. (29 as the inverse propagator for
the phasdor Bogoliubov-Anderson-Goldstopenode:

F|o|)

(32

k 2
—1__

Se =[A(T)—2C(T)] A,
Fn,L)/MO).

If the Landau terms are neglected, E§2) represents a
masslessnode with propagation velocity
2D(T)—B(T)

1/2
”":(A(T>—2C<T>) oF

We find thatv,—ve/+/3 as expectéd’®at T=0, and that

vp increases slowly withl (see Table ). We must now
examine the contribution of the Landau damping terms in
Eq. (32).

+[B(T)— 2D(T)]<

+2(Fp, —

(33

lIl. THE CONTRIBUTION OF THE LANDAU
DAMPING TERMS TO Sg*

From Egs.(11), (15), and(32), the contribution ofFp |
andFy to Sg'is
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TABLE II. Variation of v, /v with temperature.
T/TC l}p/UF
0.2 0.577
0.3 0.576
0.4 0.575
0.5 0.572
0.6 0.568

_ 2(Fp,L.—Fn,0)
1 _— , ,
(SG )L_ /\/‘(0)
_ 2 J d®k’  [N(k’+k/2)—N(k'—k/2)]
MO)J (2m)3 k§—E(Kk’ +k/2)+E(k' —k/2)

x( lu(k’ +k/2)|?|v (k" —k/2)|?

A
AE(K' +kI2)E(K' —k/2))

In the spirit of our lowk development, we begin by replac-

(34)
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(b)

FIG. 1. (@ H, as a function ofa= (ko /vg|k|) andb=(T/T,).
(b) H; as a function ofa andb.

ing the singular denominator factor by H(T.a)=— ﬂ - d d_N 1
f( !a) 4 Cw ydE, y2(1+y2)
-1
k-k" e(k’
k(_;__ E( ) ' (35) (1+ 2)1/2 +a(1+ 2)1/2‘
m E(k') sl1- S Y Y

: - , 2y y-a(l+y?)*?
which must be treated exactly. The remaining factors in Eq.
(34), however, all have well-defined expansions in powers of (39
the momentum|k|. The numerator term involvingN is
clearly odd in k-k’), and its leading term is of order and
(k-k"). The other numerator factor contains terms which are
both even and odd ink( k'), but we need only collect terms maly (= dN 1 1
in the product which are odd irk(k'), since those which Hi(T,a)=— 8 f_wdydE, (1+yD)2 (y2y|)
are even ink-k’) are found to vanish by particle-hole sym- y yy
metry. Carrying out the expansions, we find that the leading ly|
contribution to 6%), is given by X 6 (1+—2)1/2—|a| . (40)

y

d®k’ (k-k")%€’ dN
(2m)°® E'S  dFE’

’ A
k+_k~k €
0 m g '

(SEI)L*FLE

1 A2
4M0) EJ

X (36)

wheree’ =e(k'),E'=E(k"). The integral over the angles of
k’ can now be performed leaving a final integral ojlef|.
As before, we replace isolated factors |&f | by kg, and
rewrite the integral as being over In this way we obtain the
following expression fofF| :

FL=J(T velk| 2+H T.a)| K0 i 3
L— ( ) AO ( 1a) A_O 1] (7)
where
IT)= Bo = dN 1 (39)
12) - ydE/ (1+y2)2

and whereH(T,a)=H,(T,a)+iH;(T,a) with

Note thatH(T,a) is a function only ofT and the dimension-
less variable= (ko /vg|k|). The functionH; is nonzero only
for —vglk|<ko<vglk|, or —1<a<1, which defines the
extent of the branch cut ifl(T,a) as a function ok, for
fixed |K|.

We have evaluated the dimensionless quantides H; ,
andJ numerically, takingAg= 1.75T, as before so that the
expressions are functions of the dimensionless variables
andb=T/T.. J(T) is tabulated in Table I, whilél, andH;
are shown in Figs. (® and Xb), respectively, fom>0.

Since our aim is to investigate how the inclusionFgf
modifies the Goldstone propagat8g [cf. Eq. (32)], we
would like to find simple closed-form approximations fér
and H;, rather than having to interpolate from a table of
numerical values. The key to such approximations lies in the
behavior of the functiordN/dE’, which—like N itself—is
sharply peaked aroung=0 with a width of ordeb?. This
suggests replacingN/dE’ by a “square-wave” profile cen-
tered ony=0 with a width 2fb)?, wheref is a numerical
factor, of order unity, to be determined by comparison with
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(a) velK|

FIG. 2. (@ H, as a function of andb. (b) H; as a function of
a andb. FIG. 3. Theko—ve|k| plane for(a) T=0.2T and(b) T=0.6T,

showing the lines|ko|=velk| (dash-dok |ko|=vy|k| (dash,

the exactly evaluated integrals. As a second approximatiorKol = f1ve/k| (dob and|ko| = (fT/Tc)"v¢|k| (solid). The effective

we may try replacing +y2 in H, andH; by 1. Cerenkov region- (fT/T¢) Y e |k| <k =< (fT/T)Y%¢|K| is shown
Applying both approximations tbi; allows us to evaluate S"aded.

the integral analytically, and leads to the approximate ex-. . . .
pressior? y y bp linesa= =1 bounding the full Cerenkov region in which the

exactH; of Eq. (40) is nonzero.

~ mAo[ dN 3/1 a Turning now toH,, we found that while it is a good
Hi(T,a)~H(T,a)=— T(d_E) 2377 approximation to replaceN/dE’ by (dN/dE).—, outside
€=0 the integral, replacing powers oftly? by 1 is not satisfac-

X 6((fb)Y2—|a]). (42) tory. However, this is of little importance, since even if both
approximations are made the remaining integral still cannot
We find that forf ~0.8, and with the factor of 3/4 in EG41)  be performed analytically. Making only the first approxima-
to adjust the normalizatiorH;(T,a) provides a good repre- tion (for dN/dE’), we find that the integral can be quite well
sentation oH;(T,a). H; is shown in Fig. 2b) which may be ~ réPresented by a simple function af via
compared with Fig. (). Note that H; vanishes at
=(fb)¥2 and i ted f i tive f H dn
|a|=(fb)"4 and is prevente rom going negative for H,(T,a)~H,(T,a)=A, 9E
|a|>(fb)Y2 by the # function. ThusH; is continuous at

(12 i : : i _
|a]=(fb)*% with a discontinuous derivative there. H_ is shown in Fig. 23), which may be compared with Fig.

One important feature off; deserves immediate com- 1(a).

1.4

— (42
—ol+14a? “2

ment, namely, that it is only nonzero f¢a|<(fb)1’2, or our final explicit form for §_l)L is therefore
[ko|<ve|k|(fT/To)¥2 This is in contrast to the exaéd;, ¢

which is nonzero inside the temperature-independent region velk[\2 — _

|ko|<ve|K| (i.e.,|al<1). The choice of the parametéhas (Sél)L=J(T)( 1| TIHAT.a)+iHi(T.a)](ko/A0)*
to be made so as to effect a compromise between ensuring 0 (43)

that H; is indeed small forla|>(fb)"? (which requires a _ o
“larger” f), while at the same time providing a reasonableWe make the two observations about E4@). First, in the
fit to the|a| < (fb)*2 region(which tends to favor “smaller”  Static limit (ko=0) the f|rst2term survives, and it provides a
's). In practice fi; is indeed very small forflo) 2<|a| <1, correction to the | k|/Ap)? term in Eq.(32). This reflects

and the simple concept of a temperature-dependent effectivk e_fact that wh_erko_zo the Landau terms do have a well-
cutoff for the imaginary part is a very useful one, as we shal efined expansion In powe.rs K[. On the other hand, for
see in the next section. The conclusion that the imaginar@ny nonzerd, theH terms in Eq.(43) have to be included
part is effectively nonzero only faiko| <vg|k|(FT/T¢) Y2 is (if nur_nencally significant—a point we sha]l discuss in the
fully consistent with our qualitative discussion in Secfdl. ~ following section. Furthermore, the numerical value of the
Eq. (17)]. We shall call the region-(fT/T)Yve|k|<k, H terms depends on the way the origin in energy-momentum
<(fT/T) Y ¢|K| the “effective Cerenkov region.” This re- space is approached, via the ratie ko /(ve|K|); this is ex-
gion is shown shaded in Fig. 3, on which are also drawn thgected from the nonanalyticity, at the origin, of thg terms.
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TABLE IIl. Variation of (fT/T.)"?and ofv}; /vg with tempera-
ture.

112 *

T/T, (f—-l—) ®

T UF
0.2 0.400 0.577
0.3 0.490 0.573
0.4 0.566 0.560
0.5 0.632 0.542
0.6 0.693 0.525

Formula (43) may be phenomenologically useful, for ex-

ample, for making a simple estimate of the likely importance

of the Landau terms.

IV. SINGLE, DAMPED, MODE APPROXIMATION TO
THE FULL EFFECTIVE GOLDSTONE PROPAGATOR

Assembling the results of the previous section, we no
write the full Goldstone propagator, in our approximate
form, as

Klvg

Ao

Set

2
) {~=[2D(T)=B(T)~J(T)]

+[A(T)—2C(T)]a%+[H,(T,a)+iH;(T,a)]a%.
(44

As it stands, Eq(44) is still a rather complicated function of
ko and |k|; in particular, if we were to seek some kind of
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(a) 0.10 T T T T T
0.08 F
0.06
0.04
0.02
0

(b) 0.10 e oy
0.08
0.06
0.04
0.02

0.10 T T T T
0.08
0.06

0.10 T T T
0.08
0.06
0.04
0.02

) 1 L
0

(@

0.04
0.02

Ul L I

06 0.8

FIG. 4. |R| [dash, see Eq46)] and || [solid, see Eq(47)]
versusa for (8) T=0.3T;, (b) T=0.4T., (c) T=0.5T;, and(d)
T=0.6T,.

greater than {T/T.)Y? we would effectively have an un-

V\pamped mode—hbut while this is obviously true for small

enoughT, it is not so in general. This is illustrated in Fig. 3;
see also Table Ill. Indeed, we find that f6E0.4T, vy /ve
is less than {T/T.)'2 so that propagation occurs inside the
effective Cerenkov region, and dampifigia H;) must be
included for consistency. In addition, there is the effedtlpf
to consider.

Of course, it might be that the magnitude of tHeterms
in Eq. (44) is actually very small. In Fig. 4 we compal®g|
with |S| where[cf. Eq. (44)]

R=—-(2D-B-J)+(A—2C)a? (46)

effective Lagrangian in coordinate space, by Fourier trans-
forming, the result would be so unwieldy as to be impracti-and

cable. The difficulty lies, of course, in the Landau terms,
even in their simplified fornH. If H were absentSg would

S=(H,+iH) a2 (47)

have a simple pole structure, and the Fourier transform ofye see that the singular Landau tef8) is non-negligible

Set

would be the wave operator, leading to the usual locabnly for T=0.4T,. Below this temperature we do have ef-

effective Lagrangian for the Goldstone mode. Since the mafectively undamped propagation, while above it we have

jor effect of H is to introduce dampingvia ﬁi) it is then

natural to ask whether the effect bif can be approximately
included by representingg in terms of acomplexpole (or

damping, which increases wifh.
The simplest form of damping corresponds to a zero of
Sgl at a complex value ad.. Consider how this may arise in

poles. Then a Fourier transform should be feasible. WeEQ. (44). Fora=f;+ie with f,>0, we see from Eq(41)

therefore studysgl as a function of comple®, which we
shall take to mean complek,, keeping|k| real. We shall

thatH; is positive. Sincdfrom Table ) the quantityA—2C
is positive, we might expect the imaginary part of E44) to

show that such an approximation is indeed a very good onevanish for somea=f,—if,, wheref,<f,. The real part of

We begin by observing that, if tHe terms in Eq(44) are
neglected, Sgl has simple zeros at the real values
a=*vy/vg, where

. [2D(M)=B(T)—J(T)|"?
Y» T TTAM—2C(M v

(49)

which is just the original Goldstone mode speed E38),
modified by the inclusion o8(T). The quantityv; is tabu-
lated in Table Ill. The fact that§ is reducedwith respect to
vp) by the inclusion ofJ(T) is significant, because we must
now ask how}/vr compares with the quantityf /)",
which sets the boundary of the effective Cerenkov region

the real variable) in which H;#0. If v} /v were always

Eq. (44) will continue to vanish ifflwv;/vp.

To search properly for this complex zeroﬁgg’l we need
to extend to complex values af our approximations foH,
and H;, which were valid fora approaching the real axis
from above, visa=a" =kg /vg|k|, with kg =ko+ie andk,
real. We denote complexby a=a,—ia;, and examine first
the casea,>0,a;>0. To reach such values, we must ana-
lytically continue the Landau terni§ [Eq. (36)] froma™ to
a. SinceF, has a cut ima for —(fT/T.)Y2<a<(fT/T)Y3
we must perform the continuation carefully fay in the
range G6<a,<(fT/T)2

The correct continuation can be obtained by returning to
the expression foH(T,a) before the angular integral lead-
ing to Egs.(39) and(40) is performed, namely
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(¢)

FIG. 5. The complex plane, with the contour of integration in
Eq. (49) with 0<a,<y/[(1+Yy?)¥?] and(a) a,=€>0, (b) a,<0,
with contour distortion(c) a;<0, after rearrangement of contour.

HOT +)k§ A"de 1 dN
,a —_— _—— B — e —
A 4 ) y(1+y2)y2dE’

J—

J

(48)

-1 x—(J1+y%ah)ly
kg2
re

All dependences ok, or a on the right-hand side of E¢48)

are trivial to continue, except for the singular tehfa™)
where

(49

I a*)—fl a
(@)= ~1x—(Y1+yZat)ly’

Figure 5a) shows the integration contour of E@9) in thex
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FIG. 6. The loci of RE=0 (solid) and InF=0 (dotted in the
complexa plane atT=0.6T,, whereF =Sz (ve|k|/Ag)2.

we have our original integral along the reabxis (but with

a negative imaginary part fa), together with a contribution
of 27i from the pole.

Now we have seen that damping is negligible for
T<0.4T., and is expected to be significant but still small in
the region 0.7 .<T=<0.6T. where our approximations hold:
S0 we expect;<a,. In that case, it seems reasonable to

expect our previous approximate expressions for the real part

of the integral along the& axis in Fig. 5a) to carry over to
the similar integral in Fig. &), but with a replaced bya.
The imaginary part of the integral in Figuréch will, how-
ever, have the opposite sign from the term in Eq.(50) (for
smalla;). Finally, we must include the contribution from the
residue at the pole in Fig.(®. These considerations lead to
the following approximation to Eq48) for a*—a=a, —ia;
(always fora,>0):

2| |2
( Ag

X 6((fb)H?— ar)],

15 7800
i(T,a)—Za—rhi(T,ar)

{H (T,a)—

(51)

whereh; is the same a$i; of Eq. (41), but without the
function.

Expressior(51) now replaces thel terms in Eq(44), and
we are free to sea?>—a? in the rest of Eq(44) and explore

the possibility of a zero at some value af In Fig. 6 we
show the loci of RES;Y(velk|[/Ag)2]=0 and
Im[Sg Y/ (ve|k|/Ag)2]=0, for T=0.6T.: where these loci
cross we have a complex zero 8. We find that the

plane, with the position of the pole indicated for the caseposition of the zero, as a function ®f can be well fitted by

a,<y/\1+y? and y>0. We may separate the real and

imaginary parts of via

y
Jl'+—'y2—|ar|), 50

from which it is clear thaH, andH; of Egs.(39) and (40)
are obtained by inserting E@50) into Eq. (48). Now con-
sider continuingk, (or a) down into the lower half plane
a,+ie—a,—ia;. Fora,<y/\1+y? we must deform the

l(@®)=1(a)+im(ylly|)o

a=f,(T)—if(T), (52
where
f1(T)=0.580-0.0007 exp5T/T,) (53
and
fz(T):<0'1T26r—o.o71> 0(%—0.4), (54)

contour smoothly away from the advancing pole, as shown

in Fig. 5(b). We may replace Fig.(6) by Fig. 5c), in which

all for 0O<T/T.<0.6.
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At this stage, therefore, we have identified @ T {1 oF
Z.=[ko—ve|k|fi+ivelk|f20(C—ko) B(ko)] as an approxi- e 3 i ot
mate factor ofSg*, whereC=v¢|k|(fT/T)Y2 In view of o o 3
the quadratic behavior iky and|k| of the dominant terms in 10k \ 25 1
Sgt, there must clearly be a second, “conjugate,” factor B I TR e Y Ty B TR R Y Ty
also. Forf,—0, this will have the form ky+vg|k|f,), and * *
it therefore corresponds ta,<0. If a* is continued from & g oF
a,>0 toa, <0, keeping theti e unchanged, it is easy to see 20F L gg ]
that Sg* will not develop a zero, sincel; (or H;) is then 0 40 F
negative[see Eqs(40),(41)]. To find the zero witha, <0, it -20 F 3 23 i
is necessary first to continue & around the branch point 07702 04 0605 10 0703 04 06 B3 1o

a=1 from the upper to the lower side of the cutl<a<1.
This changes$(a™) of Eq.(50) to I(a™). H; is then positive FIG. 7. (& Left box: ReSs (solid) and Reg pqp (dotted at
once more, folm,<0. Keepinga, <0, one then continues in T=0.6T;. (R;ght box: InBg (SiOhd)d)and IMSg, pole ((dOtte?j at
2 s : : : P T=0.6T.. (b) Left box: ReS; (solid) and R&g . (dotted at
a up to the pointa=—|a,|+ia; with a;>0, in a similar T : : PO
fashion to the continuation described in E¢48)—(50). In I;8g° Right box: I (solid) and IMSg, poe (dotted at
this way, we find the second approximate factorSy", e
namely Z_:[k0+UF|k|fl_|U|:|k|f20(é+k0)0(_k0)]
The approximate dispersion relatithky| =vg|k|f; is shown
in Fig. 3.

The upshot of these considerations is that the following So~Sc pole= (a2 — 2 +2if,f5) "2, (58)
pole form forS;* is suggested:

we arrive at the approximation

Figure 7 shows the comparison betwe&n[using Eqs(57)
z.7_, (55 and(44)] and ASG,poIe- We see that the simplified pole ap-

proximation represented @G,po,e is indeed quite satisfac-

tory, keeping track of both the shift in the resonance position

and the broadening of the peak Béncreases. Having estab-

A% 5 lished the usefulness of the simple fo(B8) we turn, finally,

SG~((A_—ZC))[ké—v§k2f§+2iv§k2flf20(c—|k0|)]1, to the question of its Fourier transform, and the effective
(56) Lagrangian.

A-2C

2
0

Sgl~

which can be written as

H 2
neglectingf5. The form of Eq.(56) shows that, as we would V. APPROXIMATE LOCAL EFFECTIVE THEORY

expect from the properties &f;, the imaginary part is non- FOR THE GOLDSTONE MODE
zero only inside the effective Cerenkov region. However, we

must recall from the remark after E@t1) thatH; vanishes at

lko| =C, so that it has no discontinuity at this point. Nor, of
course, does the true functidth; . Expression(56), on the

The preceding calculations amount to saying that the
nonanalyticity of the Landau terms around the originkin
space, which taken at face value prevents an expansion in
: o . owers of energy momenta and hence also a local effective
or:herEhangédoer:]s hlilvf) such Ia dlzc%nt|nw];[y, ar_1d thlsh_sur?ge Ztion, is in fact not numerically significant, at least for the
that Eq. (56) s ou € rep acg . y & function whic . IS range of parameters we have investigated. In essence, the full
smooth at/ko| =C. For smallf, it is an excellent approxi- propagatorSs, which has indeed a complicated analytic
mation(except at the actual point of discontinyitp replace  strycture ink, including a branch cut betweenv|k| and
|ko| in the quantity§(C—|ko|) of Eq. (56) by ve|k|fi, so  wv(|k|, can be very well approximated by a function which is
that the @ function reduces to O((fT/T,)Y—fy(T))  analytic except for two complex poles ky. The inverse
~6(T/T,—0.4), as in Eq(54). This now removes the dis- quantity S;*, which appears in the effective action in mo-
continuity at|ke|=C, and provides a smooth function to be mentum space, is a simple quadratic functiorkgfand [k|.
compared with Eq(44). Incidentally, thed function would  Hence its Fourier transform is trivial and we have, after all,
present complications in the next section when we seek theecovered a simple local effective action.
approximate equation of motion for the Goldstone mode, by Indeed, from Eqs(29), (32), (57), and(58) the approxi-
Fourier transformingg*. These complications are not insu- mate effective action for the phase degree of freedom is pro-
perable(the imaginary part becomes nonlocal in space-tjme portional to
but they are unnecessary, we believe, in the light of the
above arguments.

4
Finally, therefore, definingg by Seff((ﬁ):f

H(K)[KG— (F2—2if 1f,)vEk?]b(—K),
(59

(2m)*

) kZp2(A—2C)
sel=(—F( S’ (57

Ag

which becomes
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2
Set(b) = J dX{[ 00~ (F1-2if1f)vE(Vh(x )] H~[po/2mN(0)]V2$ == V2, (64)
(60)

in coordinate space, which is the effective local theory. It is2S expected for the undamped Goldstone mode. It follows
now simple to include electromagnetic interactions via thethat the only modification we need make to E¢82) and
usual minimal coupling procedure. (63), in order to reproduce E@61), is to replace the param-
The effective equation of motion fos which follows  eterm in the expressions fos andj by
from Eq. (60) is, of course, just
, me=m/[3(f2—2if,f,)], (65)
’é .
F:(f%_z'flfﬂv%vz‘ﬁ' 6D while leaving M(0) unchanged. This means that the mass
parameter in the equivalent Sclioger theory is replaced
As remarked in the Introduction, it has recently beenby one which isT dependent, and which has a small positive
showrf that the effective theory for the Lagrangian of Et). ~ T-dependent imaginary part.
at T=0 can(in the long-wavelength approximatiphe writ- In conclusion, we note that it would clearly be desirable
ten as a nonlinear Schitimger theory. It is then natural to Nnot to have to make the “smad” approximation, as we did
ask how the imaginary term in Eq$60) or (61) can be above Eq(32), but rather to perform a gauge transformation
incorporated into this picture. In terms of a Sofirger SO as to removep from the complete gap functioA from
wave function ¢=pe'®* and a potential V(p) the start, as was done in Ref. 4, and then expand in deriva-
=(p— po)?/2V(0), theequations of motion derived in Ref. 4 tives of ¢. This is presumably particularly important in re-
are gard to questions of vortex dynamics. Unfortunately, the al-
gebraic complexity of the finite-temperature cdsed the

ap . 5 attendant absence of Galilean invarianbave so far pre-
a_t+V'J =0 (62) vented us from making much progress with such a program.
and
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