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Model calculations for the current-voltage characteristics of moving two-dimensional pancake
vortex lattices in a finite stack of magnetically coupled superconducting thin films

with transport current in the top layer

Thomas Pe, Maamar Benkraouda, and John R. Clem
Ames Laboratory, U.S. Department of Energy and Department of Physics and Astronomy, Iowa State University, Ames, Iowa

~Received 14 April 1997!

We consider two-dimensional~2D! pancake vortices in a stack ofN Josephson-decoupled superconducting
films in an applied magnetic induction perpendicular to the layers and transport current applied to the top layer.
We assume that the pancake vortices in every layer form lattices that have the same structure and are not
rotated relative to each other, though we do not require them to be in perfect registry with one another.
Current-voltage characteristics are calculated, corresponding to voltage-measuring circuits attached to the top
and bottom layers. The effects of both zero and nonzero uniform pinning are investigated. For small currents,
the pancake lattices either remain pinned or move with the same fixed velocity. But when the surface current
density in the top layer exceeds a certain value, the calculated top and bottom voltages become different from
each other. We then investigate the dependence of this decoupling surface current density on the applied
magnetic induction, the pinning strength, and the number of layers.@S0163-1829~97!00438-4#
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I. INTRODUCTION

The layered structure of the high-Tc cuprates has raise
interesting questions as to the nature and properties of
vortices observed in these materials in the mixed phase.
tailed studies1–5 starting from the well-known model o
Lawrence and Doniach6–9 have suggested that vortices
these layered superconductors may be thought of in term
intralayer two-dimensional~2D! pancake vortices connecte
by interlayer Josephson strings. A simpler but very use
approach has also been considered in the literature,1,2,10,4,11

whereby the weak interlayer Josephson coupling is negle
and the layered superconductor is treated as a stack of
allel thin films with pancake vortices in different layers i
teracting solely via magnetic coupling. This model has be
applied to a wide variety of subjects, such as studies
vortex-lattice melting at low fields,12,13 attractive long-range
vortex-vortex interaction,14 vortex interaction with defects,15

and surface effects.16

In a recent paper,17 we presented a detailed study of th
magnetic coupling between 2D pancake vortices in a stac
N superconducting thin films, where the full discreteness
the layered structure was taken into account but no ther
fluctuation effects were incorporated. Our present aim is
extend that approach to the study of the dynamics of panc
vortices in a finite stack of Josephson-decoupled layers w
a magnetic field applied perpendicular to the layers and w
transport current injected in only one of the two outerm
layers.

When there is no Josephson coupling between the su
conducting layers, transport current injected into, say, the
layer remains confined to that layer, and only the top p
cake vortices feel a Lorentz force associated with the app
current. The Lorentz force will tend to move the top panca
vortices, and this motion will then be opposed by the forc
associated with viscous drag, pinning, and the magnetic c
pling between the top pancake vortices and those in
560163-1829/97/56~13!/8289~9!/$10.00
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lower superconducting layers. Likewise, a pancake in any
the lower layers will move if the net magnetic interactio
force acting on it balances, if not exceeds, the opposing
tralayer viscous drag and pinning forces.

In type-II superconductors, vortex motion leads to the a
pearance of a flux-flow voltage.18 For the high-Tc materials,
this voltage arising from the motion of vortices along theab
plane can be directly measured by attaching properly con
ured voltage-measuring circuits to the outermost layers
theory for two magnetically coupled superconducting lay
of finite thickness had been developed19 and the correspond
ing current-voltage characteristics had been calculate20

These model calculations were made under the simplify
assumption that pinning in the layers was uniform; nevert
less, they were found to be in excellent agreement with
results of early flux-transformer experiments.21,22 This close
agreement has motivated us to consider in our present ca
lations not only the case of zero pinning, but also that
nonzero uniform pinning inN>2 magnetically coupled thin
films. Numerous experiments on the correlation of vort
motion in the high-Tc superconductors have already be
done.23–29 Within the limitations of our proposed model, w
shall attempt in this paper to understand certain aspect
2D pancake vortex dynamics in a stack of Josephs
decoupled layers that are relevant to current experime
investigations.

II. FORCE-BALANCED EQUATIONS

We consider a stack ofN Josephson-decoupled superco
ducting thin films with interlayer spacings and assume tha
the thicknessd of each superconducting film is much le
than each film’s bulk penetration depthls . The effective
penetration depth for the decay of fields induced by curre
flowing parallel to the layers is defined30 via l i

25(s/d)ls
2 .

The 2D screening lengthL can then be written4 as either
2l i

2/s or 2ls
2/d, with some papers in the literature omittin

the factor of 2.
8289 © 1997 The American Physical Society
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We neglect the effects of thermal fluctuations and assu
that, if we apply a magnetic inductionB perpendicular to the
layers, perfect 2D triangular lattices of pancake vortices fo
in the superconducting layers, as sketched in Fig. 1. Lea
denote the nearest-neighbor distance between pancake
each layer. At equilibrium with the applied field, the 2D
pancake lattices are all in perfect registry. We choose thz
axis to coincide with a vertical stack of 2D pancake vortice
such that the bottom layer is atz50 while the top layer lies
at z5(N21)s. Moreover, we choose thex axis to lie along
a nearest-neighbor direction of the pancake lattices. The
real lattice vectors in each layer can be written as20

l5a@ x̂~ l 11 l 2/2!1 ŷ) l 2/2 #, ~1!

wherex̂ andŷ are the unit vectors alongx andy, andl 1 and
l 2 take on all integer values. The corresponding recipro
lattice vectors are20

g5~2p/a!@ x̂g11 ŷ~2g22g1!/)#, ~2!

with g1 andg2 spanning all integers.
Now, suppose that we apply a constant surface curr

densityŷKy
top to the top layer at timet50 and neglect vortex

pinning. Because of the combined action ofKy
top and the

interlayer magnetic coupling, the 2D pancake lattices in t
different layers will move in thex direction, away from their
equilibrium positions.~Refer to Fig. 1 for the case of five
superconducting layers.! Let xi(t) denote the displacemen
from equilibrium of the pancake lattice in layeri at time t.
When t50, xi(0)50 in all layers, 0< i<N21.

The balance of forces for a vortex in the 2D panca
lattice in layeri for t.0 is given by the following equation:

FIG. 1. A stack of five Josephson-decoupled superconduct
layers with a surface current densityKy

top flowing in the top layer
and a magnetic fieldB applied perpendicular to the layers. Eac
layer contains a perfect triangular 2D pancake vortex lattice w
nearest-neighbor distancea. The pancakes drawn in solid lines cor
respond to whenKy

top50, so that the lattices are in perfect registry
Under the influence ofKy

top and the interlayer magnetic coupling
between pancakes, the lattices move away from their equilibri
positions. Such a situation is illustrated by the pancake lattic
drawn in dashed lines.
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h ẋi5(
j Þ i

Fcx~xj2xi , j ,i !1
fo

c
Ky

topd i ,N21 , ~3!

whereh is the viscous drag coefficient,ẋi is the time deriva-
tive of xi , fo is the flux quantumhc/2e, and d i ,N21 is a
Kroneckerd. We assume overdamped vortex dynamics,
that we can neglect the term in the equation of motion
volving the 2D pancake vortex inertial mass. The summat
symbol ( j Þ i means thati is excluded from a sum overj
from 0 to N21. Fcx is the x component of the magneti
coupling force exerted by the 2D pancake lattice in layej
on any pancake belonging to the lattice in layeri .

We can writeFcx in the following form:17

Fcx~xj2xi , j ,i !5
2

)p
S fo

LaD 2

(
gÞ0

gx

g
C~g, j ,i !

3sin@gx~xj2xi !#; ~4!

g and gx denote the magnitude and thex component ofg,
respectively, and

C~q, j ,i !5
sinh qs Z~q,i , j !

g~q!2h~q,N212 j !2h~q, j !
. ~5!

The functiong in the above expression is given by

g~q!52@~1/qL!sinh qs1coshqs#. ~6!

We define a functionf :

f ~q!5~112/qL!sinh qs1coshqs. ~7!

As in Ref. 17, the functionsh andZ that appear in Eq.~5!
can be constructed usingf andg:

h~q,n>0!5H e2qs, n50

1/f ~q!, n51

1/@g~q!2h~q,n21!#, n.1,

~8!

Z~q,n,m!

55 )
p50

m2n21

h~q,m2p!, 0<n<m21

1, n5m

)
p50

n2m21

h~q,N212m2p!, m11<n<N21.

~9!

In the presence of uniform pinning of the pancake vo
ces in all the superconducting layers, Eq.~3! is replaced by

h ẋi5(
j Þ i

Fcx~xj2xi , j ,i !1
fo

c
Ky

topd i ,N211Fp i .

~10!

Let Kc denote the magnitude of the critical depinning sh
current density in any of the superconducting layers. Wh
ever the sum of the first two terms on the right-hand side
Eq. ~10! is greater than the maximum magnitude of t
pinning force on a pancake vortexfoKc /c we have
Fp i52foKc /c, and when this sum is less than2foKc /c,
we haveFp i51foKc /c. However, when the magnitude o
the sum of the first two terms on the right-hand side is l
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56 8291MODEL CALCULATIONS FOR THE CURRENT-VOLTAGE . . .
than foKc /c, the pinning forceFp i exactly balances the
other two terms, such that both sides of Eq.~10! are zero,
and the vortices in layeri are immobilized.

The resulting set ofN force-balanced equations~i.e., one
equation for each layer! can be integrated numerically so a
to yield the displacements from equilibrium of all theN pan-
cake lattices att.0. From these solutions, one can then c
culate the corresponding lattice velocities. We discuss in
next section the relation between these velocities and
time-averaged voltages measured in dc flux transformer
periments.

III. FLUX-FLOW VOLTAGE

Suppose we attach two voltage-measuring circuits to
stack of superconducting thin films described above, wit
transport current densityKy

top flowing in the top layer, and a
magnetic field applied parallel to the films. Each of the
circuits consists of low-resistance leads connecting the sp
men to the terminals of a sensitive high-impedance voltm
ter. Let the contactsa1 and b1 of one of these circuits be
situated on the top layer, with corresponding voltmeter t
minals a2 and b2 . As for the other circuit, let its contac
pointsc1 andd1 be on the bottom layer, connected to vo
meter terminalsc2 andd2 . ~See Fig. 2.! For simplicity, we
assume that the line segmentsa1b1 andc1d1 are parallel to
they axis. The equations relating the motion of vortices w
the voltages that are measured by such circuits have b
treated extensively in Ref. 18.

Let us define time-averaged voltages per unit distance
tween contacts,Vtop and Vbot corresponding to the top an
bottom voltage-measuring circuits. Two flux-flow regim
are possible, depending on the value ofKy

top. For smallKy
top

values and sufficiently low pinning, the 2D pancake lattic
remain magnetically coupled to each other, so that

FIG. 2. Two voltage-measuring circuits in a layered superc
ductor, modeled as a stack of Josephson-decoupled supercond
layers. Each circuit consists of a high-impedance voltmeter c
nected by low-resistance leads to contact points on the sample
leads of one circuit connect voltmeter terminalsa2 andb2 to points
a1 andb1 on the top layer. The other circuit has contactsc1 andd1

on the bottom layer connected to terminalsc2 andd2 . For simplic-
ity, the line segmentsa1b1 andc1d1 are chosen to be parallel to th
y axis. The measured time-averaged voltages per unit length a
the top and bottom layers areVtop andVbot , respectively.
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steady-state velocities of the pancake lattices are the s
and constant in time. In this regime,

Vtop5Vbot5
fovxo

cA
, ~11!

wherevxo is the terminal velocity component of the 2D la
tices andA is the area of a lattice unit cell.

Once uKy
topu exceeds a certain decoupling surface curr

density of magnitudeKd , however, the vortices in the to
layer periodically slip relative to the vortices in the oth
layers. Consequently, the steady-state dynamics of the
pancake lattices can no longer be described by a single
stant velocity. Instead, one finds that the velocities of all
2D lattices are periodic in time, with a common periodT.
This follows from our having assumed that each 2D panc
lattice moves as a whole, with the nearest-neighbor dista
a unchanged in time. Moreover, we see from Eq.~4! that the
coupling force between any two pancake lattices in the st
is periodic in the relative displacement between the lattic
with a period equal toa. One can show that in this regime

Vtop5
fo

cA

@xN21~ t1T!2xN21~ t !#

T
, ~12!

Vbot5
fo

cA

@x0~ t1T!2x0~ t !#

T
. ~13!

We therefore can computeVtop andVbot for different val-
ues ofKy

top andKc from the numerical solutions to the force
balanced equations discussed in the previous section. H
ever, an accurate determination of the value of
decoupling surface current densityKd is still in order. An
effective method for solving for this decoupling current de
sity is discussed in the next section.

IV. DECOUPLING SURFACE CURRENT DENSITY

We begin by taking the simple case whenKc50. Prior to
switching on the flow of transport currentKy

top in the top
layer, the 2D pancake vortex lattices in the different lay
are assumed to be in perfect registry. When a sufficien
small value ofKy

top is turned on att50, these 2D pancake
lattices remain magnetically coupled, so that all of the
eventually move with a constant velocity componentvxo
Þ0.

We assume that att50, all pancake lattice displacemen
xi are zero. It is convenient to choose a coordinate fra
where the displacementsxi are transformed into new dis
placementsXi , such that

xi~ t !5Xi~ t !1vxo t, ~14!

for 0< i<N21. We then refer back to Eq.~3!. In terms of
the displacementsXi , the force-balanced equations for th
pancake lattices below the top layer have the form

h Ẋi52hvxo1(
j Þ i

Fcx~Xj2Xi , j ,i !, ~15!

where 0< i<N22. As for the top pancake lattice, we hav
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h ẊN2152hvxo1 (
j ÞN21

Fcx~Xj2XN21 , j ,N21!

1
fo

c
Ky

top. ~16!

A number of conditions must then be imposed on Eqs.~15!
and~16!. First of all, we note that for any layeri , Ẋi→0 as
t→` becauseẋi goes tovxo . This tells us that( i 50

N21Xi must
become constant in time. Second,( i 50

N21( j Þ iFcx(Xj

2Xi , j ,i ) must be zero by Newton’s third law. By applyin
these conditions directly to Eqs.~15! and~16!, we obtain the
following useful relation:

h vxo5
1

N

fo

c
Ky

top, ~17!

which holds so long asKy
top is not sufficient to magnetically

decouple the 2D pancake vortices in the different laye
What Eq.~17! tells us is that the magnetic interactions cre
a balance of forces such that when all vortices move wit
common velocity componentvxo in the absence of pinning
the Lorentz forcefoKy

top/c on any pancake vortex in the to
layer divides equally among theN superconducting layers in
order to balance the viscous drag force2h vxo on a vortex
in any layer.

Let us suppose thatXN21 is fixed at some value for al
time, and that the remaining displacementsX0 ,...,XN22 are
allowed to evolve in time from some appropriate starti
values to the values corresponding to a force-balanced
figuration of vortices. Ifto denotes the starting time, we ca
for instance, chooseXi(to)52XN21(to)/(N21) for all i in
the range 0< i<N22, having assumed that( i 50

N21Ẋi(t)50
when t>to .

Taking the above approach, it follows from Eqs.~15!,
~16!, and~17! that

h Ẋi5(
j Þ i

Fcx~Xj2Xi , j ,i !1
1

N21

3 (
j ÞN21

Fcx~Xj2XN21 , j ,N21! ~18!

for 0< i<N22, and

Ky
top52

c

fo

N

N21 (
j ÞN21

Fcx~Xj2XN21 , j ,N21!.

~19!

The N21 equations of the form given by Eq.~18! can be
integrated numerically to arrive at solutions forX0 ,...,XN22
that correspond to a given value ofXN21 . These solutions
can then be inserted into the sum over magnetic coup
forces on the right-hand side of Eq.~19! in order to deter-
mine the value ofKy

top. In this sense, we can say that ea
value ofXN21 corresponds to exactly one value ofKy

top.
As it turns out, the range ofuKy

topu values associated with
all possibleXN21 has an upper boundKd . This means that if
we apply a surface current densityKy

top in the top layer that
exceedsKd , then the magnetic coupling forces exerted o
pancake vortex in the top layer by any arrangem
s.
e
a

n-

g

a
t

X0 ,...,XN22 of pancake lattices in the lower layers that s
isfy Eq. ~18! will be insufficient to balance the Lorentz forc
termfoKy

top/c. The pancake vortex lattice in the top layer
thus magnetically decoupled from the other pancake latt
whenKy

top.Kd ; for this reason, we designateKd as the de-
coupling surface current density. With the aid of Eq.~19!, we
can write

Kd5
c

fo

N

N21 (
j ÞN21

Fcx~ uXj82XN218 u, j ,N21!, ~20!

where the displacementsX08 ,...,XN218 satisfy the N21
force-balanced equations of the form given by Eq.~18! as
well as maximize the magnitude of the net magnetic c
pling force on any 2D pancake vortex in the top layer.

Suppose we now include the effects of uniform pinni
on the 2D pancake vortices in every superconducting la
With Eq. ~10! taking the place of Eq.~3! at the start of the
above discussion, we see that the force-balanced equatio
the pancake lattice in layeriÞN21 has the form

h Ẋi52h vxo1(
j Þ i

Fcx~Xj2Xi , j ,i !1Fp i , ~21!

whereas the equation for the top layer is

h ẊN2152h vxo1 (
j ÞN21

Fcx~Xj2XN21 , j ,N21!

1
fo

c
Ky

top1Fp N21 . ~22!

Let the conditions imposed on Eqs.~15! and ~16! be also
applied to Eqs.~21! and ~22!. Furthermore, let us add th
extra condition that whenvxoÞ0, the pinning force on a
pancake vortex in any layer must equal7foKc /c, with the
convention that the upper sign corresponds toKy

top.0, and
the lower one toKy

top,0. Thus, when all vortices move with
the same constant nonzero velocity in the presence of
form pinning, we have

h vxo6
fo

c
Kc5

1

N

fo

c
Ky

top, ~23!

which indicates that the Lorentz force on any pancake vor
in the top layer divides equally among theN superconduct-
ing layers in order to balance the sum of the viscous drag
pinning forces on a vortex in any layer.

As before, we can adopt the approach of fixingXN21 for
all time and allowingX0 ,...,XN22 to evolve in time from
some appropriate starting values to those of a force-balan
configuration of vortices. Treating Eqs.~21!, ~22!, and ~23!
in the same manner as we did with Eqs.~15!, ~16!, and~17!,
we obtain once again Eqs.~18! and~19!, suffering no modi-
fications even though uniform pinning has now been
cluded. This should not surprise us once we realize that
form pinning becomes irrelevant when the pancake vorti
have been brought to a final state where all of them
depinned and move at constant nonzero velocity. Hen
whether or not we have uniform pinning present, we arrive
exactly the same value ofKd that is needed to destroy con
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56 8293MODEL CALCULATIONS FOR THE CURRENT-VOLTAGE . . .
stant nonzero motion in a system of pancake vortices
magnetically decoupling the top pancakes from the rest.

Equation~23! also tells us that when all pancake vortic
move with the same nonzero velocity,uKy

topu is always
greater thanKc by an amountNch uvxou/fo . In other
words, a uniformly moving system of pancake vortices
possible only if NKc,uKy

topu,Kd . Vortex motion is sup-
pressed ast→` when the value ofuKy

topu falls between zero
and some activation value. This activation value equalsNKc

whenNKc,Kd , and isKd if Kd,NKc . ForKd,uKy
topu, the

pancake vortices in the top layer are obviously decoup
from the vortices in the other layers by virtue of the defi
tion of the decoupling surface current densityKd .

Let us consider the limiting case whenẋi→0 ast→` for
every layeri and for alluKy

topu values ranging from zero up t
Kd . We refer once again to Eq.~10!. The force-balanced
equations for the pancake vortex lattices below the top la
are of the form

h ẋi5(
j Þ i

Fcx~xj2xi , j ,i !1Fp i , ~24!

with 0< i<N22. The equation for the top pancake latti
( i 5N21) is

h ẋN215 (
j ÞN21

Fcx~xj2xN21 , j ,N21!1
fo

c
Ky

top

1Fp N21 . ~25!

Let us now fix the value ofxN21 in time and allow the
remaining displacements to evolve. We can therefore
Eqs.~24! to solve numerically forx0 ,...,xN22 corresponding
to the assumed time-independent value ofxN21 . Having cal-
culated in this way for the displacements, we can apply th
to Eq.~25! and note thatẋN21 is zero for values ofKy

top such
that

2
fo

c
Kc, (

j ÞN21
Fcx~xj2xN21 , j ,N21!1

fo

c
Ky

top

,1
fo

c
Kc . ~26!

Using the above condition, we can write

Kd5Kc1
c

fo
(

j ÞN21
Fcx~ uxj82xN218 u, j ,N21!, ~27!

such thatx08 ,...,xN228 satisfy the force-balanced equatio
that derive from Eq.~25! and maximize the magnitude of th
net magnetic coupling force exerted on any pancake vo
in the top layer by all vortices in the other layers.

V. NUMERICAL CALCULATIONS

Let us choose values for the interlayer spacings and the
penetration depthL i that are typical of the high-Tc super-
conductor Bi2Sr2CaCu2Ox . Specifically, we sets and l i to
1.531027 cm and 2.531025 cm, respectively. These value
give L'8.431023 cm, so thatcfo /L2'30 mA/cm. The
latter quantity is a convenient unit for the different surfa
y

s

d

er

se

m

x

current densities under consideration.
In Fig. 3, we show the characteristic time dependence

the top and bottom 2D pancake vortex lattice velocitiesẋtop
andẋbot in a stack ofN55 superconducting layers when th
applied surface current densityKy

top in the top layer exceeds
the decoupling surface current densityKd . The magnetic
induction B directed perpendicular to the layers i
assumed to be 1.031021 T, whereas Ky

top is set to
9.031022cfo /L2. Although the full value ofKy

top is instan-
taneously introduced in the numerical calculations at the i
tial time t50, bothẋtop andẋbot are practically periodic after
an elapsed time interval of the order of the steady-state
riod.

Plots are given for values of the critical surface curre
density Kc of a single layer equal to 0 and
5.031023cfo /L2. Numerical calculations show that eve
thoughKc is not zero in the latter case, the correspondi
value ofKd is equal to that obtained in the former case th
involves no pinning. This value, which we denote asKdo , is

FIG. 3. Velocitiesẋtop and ẋbot of the top and bottom pancake
vortex lattices as a function of timet for values of the critical
surface current densityKc of a single layer equal to 0 and
5.031023cfo /L2. The numberN of superconducting layers is 5
and the value of the magnetic inductionB applied perpendicular to
the layers is 1.031021 T. For the high-Tc superconductor
Bi2Sr2CaCu2Ox, we can assume a penetration depthl i of
2.531025 cm, and an interlayer spacings of 1.531027 cm. The
applied surface current densityKy

top in the top layer is an input
parameter set to 9.031022cfo /L2. Note that even for the nonzero
Kc value considered,Kd5Kdo , whereKd denotes the decoupling
surface current density andKdo is the value ofKd in the absence of
pinning~with a computed value of 7.531022cfo /L2 for the above
parameter values!. This is because the nonzero value ofNKc in this
case remains less thanKdo . Also note thatKd,Ky

top for the two
cases ofKc considered. This is consistent with the nonconsta
velocities obtained for the top and bottom pancake lattices. In th
calculations,Ky

top is introduced instantaneously att50. Neverthe-
less,ẋtop and ẋbot assume cyclic profiles within a few periods afte
the said current is introduced.
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FIG. 4. ~a! Time-averaged voltages per unit length,Vtop andVbot , corresponding to the top and bottom voltage-measuring circuits in
2, shown as a function of the applied surface current densityKy

top at the top layer. We have assumedN55 superconducting layers and
magnetic inductionB51.031021 T applied perpendicular to the layers. The interlayer spacings is assumed to be 1.531027 cm, and the
penetration depthl i is taken as 2.531025 cm. Plots are given for values of the critical surface current densityKc of a single layer equal to
0, 5.031023, 1.031022, 1.531022, and 2.031022cfo /L2. In each case, the decoupling surface current densityKd can be identified as
the value ofKy

top above whichVtop andVbot split into two distinct branches. The curves corresponding to the first fourKc values enumerated
above have 0<NKc<Kdo , whereKdo is the decoupling surface current density in the absence of pinning. As in Fig. 3,Kdo is calculated to
be 7.531022cfo /L2. For the curves that correspond to the remaining value ofKc , we haveKdo,Kd,NKc , with Kd computed at
8.031022cfo /L2. The points marked by the symbolss andL at Ky

top59.031022cfo /L2 give the values ofVtop andVbot for the two
cases,Kc50 and 5.031023cfo /L2, considered in Fig. 3. ~b! Time-averaged voltages per unit length,Vtop andVbot , corresponding to the
top and bottom voltage-measuring circuits in Fig. 2, shown as a function of the applied surface current densityKy

top at the top layer. An
applied magnetic inductionB51.031021 T is directed perpendicular toN550 superconducting layers. The interlayer spacings is
1.531027 cm, whereas the penetration depthl i is 2.531025 cm. Curves are shown with values of the critical surface current densityKc

of a single layer equal to 0, 2.631023, 3.231023, 3.8431023, and 2.031022cfo /L2. The decoupling surface current densityKd is the
value ofKy

top above whichVtop andVbot split into two distinct branches. For the curves withKc equal to the first four values enumerate
above, we have 0<NKc<Kdo , whereKdo is the decoupling surface current density in the absence of pinning. The calculated valueKdo

in this figure is 1.9231021cfo /L2. The curves havingKc equal to the remaining value fall within the regionKdo,Kd,NKc , with Kd

equal to 2.0731021cfo /L2.
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approximately 7.4831022cfo /L2. As discussed in the las
section, the reason for this is that, althoughKc is zero in one
and nonzero in the other, the values ofNKc for both cases
fall below the value ofKdo .

The nonconstant, essentially periodic behavior ofẋtop and
ẋbot in time agrees with the conclusions drawn in the pre
ous section forNKc,Kd,uKy

topu. It is also clear from this
figure thatẋtop ~i.e., the pancake lattice velocity in the lay
where all of the transport current flows! has a larger time-
averaged value and a greater variance compared toẋbot . The
more complicated profile of the latter whe
Kc55.031023cfo /L2 is also worth noting. Aside from
those regions where the bottom pancake lattice is imm
lized by pinning, we also observe time intervals wherein
direction of lattice motion is reversed. This reversal, wh
can also be observed in the bottom curve correspondin
Kc50, is entirely due to the assumption of perfect spa
periodicity for the pancake lattices at all times and to
attractive nature of the interaction between two such latti
belonging to different layers.
-

i-
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Figures 4~a! and 4~b! illustrate theKc dependence of the
time-averaged voltages per unit length,Vtop and Vbot , cor-
responding to the top and bottom voltage-measuring circ
shown in Fig. 2. Figure 4~a! assumesN55 superconducting
layers, whereas there areN550 layers considered in Fig
4~b!. The applied magnetic inductionB is set to 1.031021 T
in these two figures. Both of them also consider the spe
case when Kc50, along with the following nonzero
values of Kc : 5.031023, 1.031022, 1.531022, and
2.031022cfo /L2 for Fig. 4~a!, and 2.631023, 3.231023,
3.8431023, and 2.031022cfo /L2 for Fig. 4~b!. As the
plots clearly illustrate,Vtop and Vbot are coincident when
Ky

top is small, but break up into two distinct branches wh
Ky

top exceeds a certain value which is, by definition,Kd .
In both Fig. 4~a! and Fig. 4~b!, we see that 0<NKc<Kdo

for those curves corresponding to the four lowest values c
sidered forKc , so that the value ofKd remains equal to the
pinning-free valueKdo . However, the largest value ofKc
considered in either figure hasKdo,NKc ; in this case,Kd is
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greater thanKdo and the time-averaged velocity of eve
pancake in the bottom layer is essentially zero for all val
of Ky

top . In contrast to this, we note that so long
NKc,Kdo , the top and bottom pancakes move with t
same average velocity, resulting in the same measured
age in both the top and bottom circuits. This measured v
age is zero if Ky

top,NKc,Kdo , and is nonzero for
NKc,Ky

top,Kdo . Finally, we see that whatever the relatio
ship holds between the values ofNKc and Kdo , the mea-
sured voltage increases in the top circuit and tends to zer
the bottom circuit asKy

top is increased above the decouplin
valueKd .

Figure 5 gives theB dependence ofKd for Kc50 and
Kc52.031022cfo /L2 in a stack of 50 superconductin
layers. The curves show a monotonic decrease in the valu
the decoupling surface current density with increasingB. For
large values of the magnetic induction, this dependence g
as 1/AB to good approximation. This behavior is qualit
tively the same as the field dependence ofKd discussed in
Ref. 17 for a stack of pinning-free superconducting lay
with equal but oppositely directed transport currents flow
in the top and bottom layers. In addition, we note that
two curves in this figure merge in the vicinity of zero ma
netic induction, indicating thatKd does not seem to depen
on the value ofKc in the weak-field limit.

Characteristic curves showing the dependence ofKd on
Kc for 50 layers and for 1.031021 T and 1.0 T fields are
given in Fig. 6. In these curves, we observe thatKd remains
equal to the pinning-free valueKdo for nonzero values ofKc

FIG. 5. The decoupling surface current densityKd as a function
of the applied magnetic inductionB directed perpendicular to
N550 superconducting layers. The penetration depthl i and the
interlayer spacings are 2.531025 cm and 1.531027 cm, respec-
tively. The lower solid curve in this figure gives theB dependence
of the pinning-free decoupling surface current densityKdo . The
upper dotted curve is forKc52.031022cfo /L2, corresponding to
the largestKc value considered in Fig. 4~b!.
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less than or equal toKdo /N. We also observe that beyon
this value and onto the largeKc limit, the dependence ofKd
on the critical surface current density is practically line
This is easily understood as follows. We recall that the m
nitude of the magnetic coupling force exerted by the p
cakes in the top layer on a pancake in any of the lower lay
has a finite maximum value. If the pinning forcefoKc /c is
sufficiently large compared to this maximum, then the pa
cake in the lower layer is decoupled from the motion
pancakes in the top layer, undergoing little or no displa
ment from their equilibrium positions. In this case, therefo
the value of the sum over magnetic coupling forces on
right-hand side of Eq.~27! becomes independent ofKc , and
the Kc dependence ofKd reduces to a simple linear depe
dence, having a slope equal to unity. This approach to lin
behavior in the largeKc limit is clearly illustrated in Fig. 6.

Lastly, Fig. 7 shows the dependence ofKd on the quantity
Ns for values ofKc equal to 0 and 5.031023cfo /L2, and
for values ofB equal to 1.031021 and 1.0 T. As we have
done in Fig. 5, we refer back to Ref. 17 and observe that

FIG. 6. The decoupling surface current densityKd plotted as a
function of the critical surface current densityKc of a single layer.
Plots are shown corresponding to values 1.031021 T and 1.0 T for
the applied magnetic inductionB perpendicular to a stack of 50
superconducting layers. The interlayer spacings is 1.531027 cm
whereas the penetration depthl i is 2.531025 cm. Kdo is the de-
coupling surface current density in the absence of pinning. T
value of Kdo is computed at 1.9231021 and 5.7931022cfo /L2

for B equal to 1.031021 T and 1.0 T, respectively. Fo
Kc<Kdo /N, we haveKd5Kdo ~the horizontal dashed lines in th
figure!. But whenKc.Kdo /N, Kd increases almost linearly with
Kc . This linear behavior~shown in dotted lines! corresponding to
the largeKc limit has the formKd5Kc1Ko , whereKo is propor-
tional to the coupling force on the top pancake lattice due to all
other pancake lattices rigidly fixed to their initial~i.e., zero trans-
port current! positions. The computed values ofKo are
1.8731021cfo /L2 for the smaller field and 5.5631022cfo /L2

for the larger field.
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general features of the dependence ofKd on Ns in that paper
are the same as in Fig. 7. In particular, the value ofKd
approaches a saturation value as the number of layers
sidered is increased. ForKc50, this saturation value is at
tained whenNs is of the order of the pancake vortex lattic
spacinga. For a qualitative explanation of this feature, w
refer the reader to the arguments presented in Ref. 17, w
are also applicable to the present situation. As for the cur
where Kc is nonzero, we observe thatKd also reaches its
saturation value whenNs is O(a), but this approach is at

FIG. 7. The decoupling surface current densityKd plotted as a
function of Ns. The values considered for the critical surface c
rent densityKc are 0 and 5.031023cfo /L2. For each of these
values, plots are shown corresponding to 1.031021 T and 1.0 T for
the applied magnetic inductionB perpendicular to the supercon
ducting layers. As is in the preceding plots, the interlayer spacins
is 1.531027 cm and the penetration depthl i is 2.531025 cm.
Notice that for fixedB, the value ofKd in the largeNs limit is
approached more gradually forKcÞ0 than forKc50.
ca

v.

-
to
n-

ch
es

tained more gradually with increasingNs than in the ap-
proach where no pinning is present.

VI. SUMMARY

In this paper, we extended the approach that we had
veloped in Ref. 17 to the study of the dynamics of 2D pa
cake vortex lattices in a stack ofN Josephson-decouple
layers with transport current flowing in the top layer. Bo
zero and nonzero uniform pinning in the superconducing l
ers were considered, but thermal fluctuations were not wit
the compass of our present investigations. The discuss
and calculations involving nonzero uniform pinning we
largely motivated by the success of previous studies19,20 in-
corporating this feature in explaining very accurately the
sults of early flux transformer experiments done with tw
superconducting layers.21,22

Using our model, we considered voltage measuring
cuits connected to the top and bottom layers and then ca
lated the corresponding theoretical current-voltage charac
istics. The resulting plots showed that the pancakes in the
layer magnetically decouple from the pancakes in the ot
layers once a certain valueKd of the surface current densit
in the top layer is reached and exceeded. The dependen
this decoupling surface current density on the quantitiesB,
Kc , andNs were investigated. We showed that by increas
B, the value ofKd decreases monotonically, and that th
dependence goes approximately as 1/AB for large values of
B. We then demonstrated that in the largeKc limit, Kd in-
creases linearly withKc . Finally, we saw that the decouplin
surface current density initially increases and then reach
saturation value asNs is increased. This saturation value
attained forKc50 and fora,l i whenNs is of the order of
or greater thana, but this approach to saturation is mode
ated by the presence of nonzero uniform pinning.
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