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Bethe-Peierls approximation for the triangular Ising antiferromagnet in a field
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We perform a Bethe-Peierls approximation to calculate the phase diagram of a nearest-neighbor triangular
Ising antiferromagnet in a uniform field. The conjectured ground state is taken into account by the consider-
ation of three interpenetrating sublattices. We find a set of self-consistent equations of state and an associated
thermodynamic potential. Besides a disordered paramagnetic solution, at higher temperatures and fields, there
are also low-temperature antiferromagnetic solutions. We show that the associated free energy is always
smaller for the paramagnetic solution, which indicates that the antiferromagnetic ordering is just a local
minimum of the thermodynamic potential. Similar results can still be obtained from a reaction-field approxi-
mation.[S0163-18207)01034-5

[. INTRODUCTION publication, however, Kabakaglu and co-workers used a
proposed Monte Carlo mean-field metfidtb reanalyze the
The Ising antiferromagnet on a triangular lattice is afield-temperature phase diagram of the triangular Ising anti-
highly frustrated spin system with a large residual entropyferromagnet. It is interesting to point out some conclusions
and no phase transition at finite temperatdreithough  of this investigation:i) there is no phase transition in zero
there are no exact solutions in a field, there is an old conjecfield; (ii) the resulting phase diagram is in fair agreement
ture about the existence of a threefold degenerate orderetiith the reported results of the literatur6ii) even if the
state? At sufficiently low temperaturesT)), and in the pres- calculations begin with different values of the spin magneti-
ence of an external fieldH>0), the system is expected to
split into three equivalent sublattice#\,(B, and C), with
spin magnetizationsny,=m;#0, and mg=mc=m,# m,,
with my>m;. In this 3% 3 structure of the degenerate
ground state, the spins are aligned against the field on one of
the sublattices and along the field on the other two sublat-
tices(see Fig. 1
The general picture of a threefold degenerate ordered state
has been supported by Monte Carlo simulatibasd by a
variety of real-space renormalization-gréupnd scaling
arguments. More recently, however, the mapping of the
ground state onto aolid-on-solidmodef has given support
to suggestions of a much more complex field-temperature
phase diagramin the past, the transition had been predicted (@)
to belong to the universality classes of th& model, for
smaller fields, and of the three-state Potts model, for suffi-
ciently strong fields. In addition, in the upper critical field the
ground state can be mapped onto the hard-hexagons
problem?®
It is not surprising that the conventional mean-field ap-
proach leads to incorrect results for this highly frustrated
antiferromagnet. If we consider a mean-field Ising Hamil-
tonian on a triangular lattice, in which the spins of a sublat-
tice interact antiferromagnetically with all the spins of the
two remaining sublattices, there is(gspurious continuous
phase transition even in the absence of an external field.
Direct applications of the Bethe-Pei€tlsr the Kikuchi®
self-consistent approximations, which are usually suitable for ()
spin systems on lattices of low dimensionality, lead to
equally wrong results in zero field. Actually, the Bethe ap-  FiG. 1. (a) The three interpenetrating sublattices, @, andC)
proximations reported in the literatdralways refer to just of the triangular lattice(b) Spin configuration in one of the three-
two sublattices and thus do not distinguish betweélo@se-  fold degenerate ground states represented by/8 /3 structure
packed simple cubic and #close-packeyplanar triangular  (giving rise to an antiferromagnetic ordering with spin magnetiza-
lattice, which have the same coordination. In a very recention 1/3).
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zation for a large number of sublattices, the self-consistentluster with a central spir§y= =1, surrounded by nearest
solutions in the ordered region are defined on three distinateighbors,S==*1,i=1,2,... g—1,, with energy given
sublattices only(iv) the free energy displays(aonphysical by the Hamiltonian

discontinuity between the paramagnetic and the ordered

phasegwhich is claimed to indicate a first-order transition a q

It is also interesting to remark that, at least for the simple H=-3%>, S—HS— > 7S, 1
Ising ferromagnet on a square lattice, the method described =t =1

in Ref..12 _giv%s similar results as a standard Bethe-Peierlgnere 3<0 is an (antiferromagnetic exchange parameter,
approximatiort: _ _ _and H>0 is the external magnetic field. The spins at the
The general interest on the behavior of frustrated spifyordering sites are in the effective fielfi;}, that should be

models, as well as the Coqd“Siqns of the calculations Ofjetermined by the consistence equations of the approxima-
Kabakgoglu and co-workers? provided the motivation for tion.

revisiting the problem of the field-temperature phase diagram a5 shown in Fig. 1, the triangular lattice can be divided
of the nearest-neighbor Ising antiferromagnet on the triangUng three equivalent sublattices, identified by the letirs
Iar_ lattice. If the transitions disp_lay aXY character as B, andC. For a lattice with coordination, and taking into
pointed out by some authofshey will hardly be detected by a¢count three sublattices, the canonical partition function as-

a (self-consistentBethe-Peierls calculation. If they are first- ¢, ciated with a cluster centered on sublatiices given by
order transitions, as claimed by Kah@gu and

co-workerst! there should be coexistingethe-Peierlsso-
lutions with the same free energy. We then decided to per- Z,= >, exp— BH)=expBH)[4costiS7ga
S

form a more elaborate Bethe-Peierls approximation, taking S0 1S

into account the existence of three phstmct sublat'uce_s as in- + BJ)cosh Brcat BI)]¥2+exp( — BH )

dicated by the simulations, to obtain a set of equations of

state which should come from the minimization of an asso- X[4cosli Bnga— BI)cosH Bnca— BIN]Y?,  (2)

ciated functional form of the free energy. Consistent treat- ] o
ments of this sort, which have been performed for a twoWhereB=1/(kgT), H, is the external magnetic field in sub-
sublattices Ising antiferromagnétbut which have not been lattice A (to allow the integration of the equations of state,
performed for the three-sublattices model investigated byve introduce distinct external fields in each sublajtiend
Kabakdoglu and co-workers, are essential to analyze the stazsa (7ca) is the effective field in sublattic® (C). The
bility of the ordered phases and the nature of the phase trafdagnetizations per site for each one of the three sublattices
sitions. are given by

The layout of this paper is as follows. In Sec. Il we for-
mulate the problem and present the solution in the Bethe- B _ _
Peierls approximation with three distinct sublattices, As we ™A~ Ma(78a; 7ca:Ha) =(So) = E(EInZA)

mentioned above, the division into three sublattices is crucial 7BATCA
to make contact with the conjectured antiferromagnetic or- q
dering at low temperatures. We show, however, that the free  =tanh BHx+ Stanh '[tani B7ga)tani(BI)]

energy associated with the ordered state is always larger than

the corresponding free energy associated with the paramag- q .

netic solution. This result is particularly striking, as it indi- +5tanh [tanf'(ﬂﬂCA)tanf(,BJ)]], 3
cates that this Bethe approximation gives rise to an ordered

state that is a mere local minimum of the free energy, with- 5
out any possibility of a true phase transitiomhich has in- = =(S). :_(_ )
deed been mentioned by Campbell and Schidk the con- Ma=Ma( 7. 7ca HA)=(S); <8 Bq InZa
text of a triangular lattice gas modeln Sec. IIl, we present

the so-called reaction-field approximation, which can be ob- 1

tained by expanding the equations of state of the Bethe ap- — 5 (1+ma)tant(Brgat BI)

proximation up to terms of orde¥® (and which gives rise to

the well-known Thouless-Anderson-Palmer equafidria

the case of an Ising spin-glass mgdéh this approximation,

the associated free-energy functional can be easily obtained
by a straightforward integration of the equations of state@nd
providing a further confirmation of our findings. Some con-
clusions are presented in Sec. IV. In the Appendix we give 2( 49

some details of the calculations for the ground state in thd"c = Mcl ”BA’”CA’HA):<S‘<>‘<€C:E(%|”ZA)
Bethe-Peierls approximation. 78 Ha

1
+ 5 (1-mytanttByea—BJ), @

1
:§(1+ ma)tani(Bncat+ BJ)
II. BETHE APPROXIMATION

The Bethe-Peierls approximation for the Ising antiferro-

1
Srele - . d 4 +=(1- - BJ).
magnet consists in obtaining the spin magnetizations of a 5 (1=maani(Bneca=pBJ) ®
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We now write the remaining set of equations for the clus-

ters centered on sublatticBsandC. It is then convenient to
use the notation

mM:tan)'{,BHMJr gtanhfl(vxw) + gtanhfl(vxm) ,
(6)

wherev =tanh(8J)=—tanh@J|), the labelsu,v,\ are per-
mutations of the symbol#\,B,C, and the new variables,
X,,=tanh@7,,), are obtained from the consistence condi-
tions,

m,(78a,7ca,Ha) =M, (78, 7cE.Hp)
(7)

To be more explicit, we have the set of equations of state,

=m,(7ac,78c.He)-

ma=tanh BHA+ gtanhfl(uXBA)ﬁL gtanhfl(vxCA) ,
' - (®
el A1 A 1
mg=tanh BHg+ ztanh (vXag) + Etanh (vXcg) |
' )
and
q 1 q 4
mc=tan ,BHC+§tanh (vaC)+§tanh (vXge) |,
(10)
where
_ q 1 q. -1
Xag=tanh BHA+ E_l tanh (vaA)+§tanh (vXca) |y
11
_ 4 _1
XAc—tan IBHA+ 5_1 tanh (UXCA)
9. 1
+§tanh (vXga) |, (12
q 1 q 4
XBA:tan BHB+ 5_1 tanh (UXAB)+§tanh (UXCB) f
(13
4 1
XBC:tan BHB+ E_l tanh (UXCB)
. 1
+§tanh (UXAB) y (14)
_ q -1
Xca=tanh BHc+ 5_1 tanh™ “(vXac)
R
~|—§tanh (vXge) | (15

and
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q _1
Xcp=tanh BHc+ 5—1 tanh “(vXgc)
S
+§tanh (vXac) |- (16)

Given the temperatur@ and the external field$l,, Hg,
andHc, these equations may have more than one solution.
We then have to explore all the possible solutions of this
nonlinear system. However, as we are looking for an antifer-
romagnetic ordering in which

m]_:mA, mzsz:mciml,

17

the analysis can be considerably simplified. In this case, if
we assumed,;=H, andH,=Hg=H, we can write

X1=Xagp=Xac, X2=Xgc=Xce, X3=Xpa=Xca,

(18

where the last variablesg, satisfies the relation
X3(Xq,X,) =tanH tanh 1x,+tanh (vx,) —tanh (vx;)]

(1+0)%—v(1+vX3)X,

: (19
1+UX§_U(1+U)X1X2

which is obtained by eliminatinggHg from Egs.(13) and
(14). We can thus rewrite the equations of state in terms of
X1 andx,,
my (X, ,X,) =tanHtanh 1x; +tanh Yo xs(x;,%p) ]}
~(1+0)[v(L-xDxa+ (1= 0) (1 +0X5)%q]
(1—v2x3)(1+vxd)

(20

(1+U)X2

1+ vx%
(21)

My (X1 ,X,) =tanf tanh 1x,+tanh L(vx,)]=

BH1(X1,%z) =tanh *x; — (q—1)tanh v Xs(X1,Xo)],

(22)
— —1 a =1
BH,(Xq,X5) =tanh xz—ztanh (vXyq)
q 1
- 5_1 tanh *(vX,). (23

Along the lines of the calculations for the Ising antiferro-
magnet on a bipartite latticd we are now prepared to obtain
an expression for a thermodynamic potential. It is not diffi-
cult to integrate the parametric forms of the equations of
state to write the free energy,

Bg=—In 2+ gln(l—v2)+ %|n[(1—x§)(1—x§)2]

1/q
+§ E—l

)[In(l—vzxf —In(1—v23
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FIG. 2. Sublattice magnetizations per spin in the Bethe-Peierls FIG. 4. Regions of existence of the ordered solutions of the
approximation at dimensionless temperatire0.1. The letters equations of state obtained from various approximations. The full
identify the various solutionsP is the paramagnetic solutiow, line corresponds to the Bethe approximation with three sublattices.
andA,, are two distinct antiferromagnetic solutions. We also show the results from the reaction-field approximation

(dashed ling the work of Kabakioglu et al. (Ref. 11 (dotted ling,
and from a Bethe approximation with two sublatti¢ksg-dashed

2 1 2 i
+3In(1+vx3)]— 6(q—1)|n[(1+v2x1)(1+vxz) line).

phase diagram this boundary comes from the conditions for

1
—v(1+v)(1+X)X]— g(q—l)m[(l—vle) the existence of nontrivial solutions of the linear system

X (1+vX3)+v(1+v)(1—Xq)X,]. (24)
oH, JdH,
For the triangular lattice=6), there is a region of the Xy Xy X1 —X§ 0
phase diagram, in terms of the temperatureksT/(6]J]), JH. IH wox| \o/ (25
and the fieldh=H/(6|J]), for H;=H,=H, in which there WZ WZ 2 72
1 2

are two antiferromagnetic solutions, with# x,. In Figs. 2
and 3, we show the solutions of the equations of state and the
associated free energies for a typical value of the tempera-
ture. As we can see from these figures, the two solution
corresponding to an antiferromagnetic ordering are alway
associated with a larger free energy as compared with th
free energy of the paramagnetic solutiox, € x,=x and
m;=my=m).

To calculate the boundary of existence of these ordere
solutions, we expand the functions defined by E88) and
(23) around the critical value$xg}. Therefore, in the—h

=)

Fig. 4, we show the region of existence of the ordered
olutions. It is interesting to mention the existence of a finite
wer critical field at zero temperaturel (T=0)=23|J|/2,

which is not predicted by the early Monte Carlo simulations.

As shown by the asymptotic expressions given in the Appen-

gix, this result of the Bethe-Peierls approximation can be

confirmed by a careful expansion of the equations of state
and of the free energy in thE—0 limit.

~-1.5 . Ill. REACTION-FIELD APPROXIMATION
ordered state The reaction-field approximation corresponds to an ex-
pansion of the Bethe-Peierls equations of state about
25| ] t=KkgT/(6]J|)—, up tot~? terms. From the previous ex-
pressions for the spin magnetizations of the three types of
g\ clusters, it is not difficult to find the reaction-field forms,
paramagnetic phase
-3.5
ma=tand BH+ 3BJ(Mmg+m¢) — 6,3232m,
+3p2°m(mg +mg) ], (26)
—4.5 - -
0.0 0.5 1.0
h=H/(6\]1) mg=tanH BHg+ 3BJ(My+mc) —68232mg

FIG. 3. Free energies associated with the solutions of the Bethe-
Peierls approximation at the temperatare0.1. The value of the
free energy is always larger for the ordered solutiG@ascompared
with the paramagnetic state and

+3B232mg(mi+m2)], 27
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mc=tani BHc+ 38J(mp+mg) — 6,323°m¢

+3B232me(mi+m3)]. (29)

1
ng—g(mAHA‘i‘mBHB‘l‘mch), (29)

Now it is straightforward to integrate these equations of state

to write the thermodynamic potential

where

1 1 1
3f= EJ tanh *madm,+ ,Ej tanh *mgdmg + ,Ef tanh *mcdme — 3J(mamg + mame+ mgme) + 3B8J2(ma + m3+ m2)

3
— EBJZ(mf\méJr mama+mamz) +3f(T),

(30

and f, comes from the high-temperature limit of the free where t=kgT/(6|J|), and h=H/(6|J|), for H;=H,=H.

energy. Given the temperature and the fields, ( Hg, and

There is again a region of ordered antiferromagnetic solu-

Hc), we can perform a detailed analysis of the minima of thetions in the field-temperature phase diagrésee Figs. 4, 5,

functional g in terms of the spin magnetizations, , mg,
and mq. In the case of interestna=m;, mg=mc=m,,
with Ha=Hg=Hc=H, we have the equations of state

m, =tanH BH+68Jm,—6823°m;(1-m3)],
(31

and

m,=tanh BH+38J(m;+m,)
—3p8232my(2—mi—m3)], (32
which are associated with the thermodynamic potential

1
mg=2m1m2+ m3—2h(m;+2m,) +t In(1—m?)
+2t In(1—m3) + 2tmtanh *m, + 4tm,tanh*m,
+ im2(1—m2)+ im2(4—m2)—6t In2— x
6t * 21 ? 2 4t’
(33

1.0 t

0.5 +

{m} 0.0

h=H/(6|J|)

and §. Again, these ordered solutions are associated with
larger values of the free energy as compared with the free
energy of the disordered paramagnetic solution.

IV. CONCLUSIONS

We have performed a Bethe-Peierls self-consistent calcu-
lation to investigate the field-temperature phase diagram of a
nearest-neighbor Ising antiferromagnet on a triangular lat-
tice. To represent the presumed ground state of the system,
we have considered the existence of three distinct sublattices,
with different sublattice magnetizations. We obtain the equa-
tions of state together with an associated thermodynamic po-
tential. Besides the disordered paramagnetic solution, we
show the existence of ordered antiferromagnetic solutions at
sufficiently low temperature@nd for a certain range of field
values. These ordered solutions, however, are local minima
of the free energy, well above the minimum of the free en-
ergy associated with the paramagnetic solution. The same
conclusions can be reached from a reaction-field approxima-
tion associated with an expansion of the Bethe-Peierls solu-
tions up to terms of ordel? (and which is amenable to much
easier manipulations

-1.0

g

0.0 0.5 1.0
h=H/(6\J1)

FIG. 6. Free energies associated with the solutions of the
reaction-field approximation at=0.1 andt=0.15. The value of the

FIG. 5. Sublattice magnetizations per spin in the reaction-fieldree energy is always larger for the ordered solutiGascompared

approximation at=0.1 andt=0.15.

with the paramagnetic state
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In Fig. 4 we present the results for the Bethe-Peierls and (i) m=0, and g=23J,
the reaction-field approximations. We also include the results
from an application of the scheme of Kahakgu and for 0<H/(6/J])<1, and
co-workers:! as well as the phase diagram obtained from a
Bethe-Peierls approximation for an antiferromagnetic Ising (i) M—1—2 exg—2pH~-124J), and g=—H-3J,
model on a bipartite lattice of the same coordinatiQr:6  for H/(6|J])>1.
(which gives a finite critical temperature in zero fielth the The antiferromagnetic solutioh associated with the free
Bethe approximation with three sublattices there is a lowegnergy
critical field, which vanishes in the reaction-field approxima-
tion.

The antiferromagnetic regions in the phase diagram of g=—sH+J,
Kabakgdoglu and co-workers are in qualitative correspon-
dence with the regions of local minima of the Bethe-Peierlds given by
and reaction-field approximations. As we do have expres-
sions for a thermodynamic potential, which comes from the (i) m——1+2 exd—108H—128J),
integration of the equations of state, we have been able to
avoid nonphysical assertiorfas a jump of the free energy m,—1—2 exg—2BH),
through the transitionand to show that, within the self-
consistent approximations, there is no room for a thermodytor 1/4<HI(8]3])<1/3,
namically stable ordered region in the phase diagram. The .
present calculations might raise some questions. The results (i) m——1+2 exg2pH+128J),
may be an artifact of the cluster approximations, which are
usually inadequate to deal with a Kosterlitz-Thouless transi- m,—1—2 exg—2BH),
_tion, as predicted for this a_ntiferromagnet b_y_ some, . 1/3<H/(6|J])<2/3, and
investigators. In any case, the existence of local minima of
the free energy should pose many problems for a reliable
numerical simulation of this system. It should be interesting
to look again at the simulations, in particular to check the

(i) my——1+2 exg2B8H+128J),

existence of a lower critical field. m,—1-2 exp4BH +248J),
for 2/3<H/(6]J[)<1.
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APPENDIX: ASYMPTOTIC EXPRESSIONS OF THE 2
BETHE-PEIERLS SOLUTIONS AT ZERO TEMPERATURE mp—1-2 ex;<§,BH +4BJ)’

At the T—0 limit, we can perform asymptotic expansions for 1/4<H/(6|J]|)<1, with the same free energy as solution
of the equations of state and the free energy in the Bethd- g=—H/3+J.
Peierls approximation to show the existence of a finite lower For 3/2<H/|J|<6, we see that there are two antiferro-
critical field, H,(T=0)=3|J|/2, which has not been pre- magnetic solutions, associated with a limiting free energy,
dicted by the early Monte Carlo simulations. g=—H/3+J, that is always larger than the free energy of
The paramagnetic solution is given by the paramagnetic state.
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