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Bethe-Peierls approximation for the triangular Ising antiferromagnet in a field

M. N. Tamashiro* and S. R. Salinas†

Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66318, 05315-970, Sa˜o Paulo, SP, Brazil
~Received 19 December 1996!

We perform a Bethe-Peierls approximation to calculate the phase diagram of a nearest-neighbor triangular
Ising antiferromagnet in a uniform field. The conjectured ground state is taken into account by the consider-
ation of three interpenetrating sublattices. We find a set of self-consistent equations of state and an associated
thermodynamic potential. Besides a disordered paramagnetic solution, at higher temperatures and fields, there
are also low-temperature antiferromagnetic solutions. We show that the associated free energy is always
smaller for the paramagnetic solution, which indicates that the antiferromagnetic ordering is just a local
minimum of the thermodynamic potential. Similar results can still be obtained from a reaction-field approxi-
mation.@S0163-1829~97!01034-5#
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I. INTRODUCTION

The Ising antiferromagnet on a triangular lattice is
highly frustrated spin system with a large residual entro
and no phase transition at finite temperatures.1 Although
there are no exact solutions in a field, there is an old con
ture about the existence of a threefold degenerate ord
state.2 At sufficiently low temperatures (T), and in the pres-
ence of an external field (H.0), the system is expected t
split into three equivalent sublattices (A, B, and C), with
spin magnetizationsmA5m1Þ0, and mB5mC5m2Þm1,
with m2.m1. In this A33A3 structure of the degenera
ground state, the spins are aligned against the field on on
the sublattices and along the field on the other two sub
tices ~see Fig. 1!.

The general picture of a threefold degenerate ordered s
has been supported by Monte Carlo simulations,3 and by a
variety of real-space renormalization-group4 and scaling
arguments.5 More recently, however, the mapping of th
ground state onto asolid-on-solidmodel6 has given suppor
to suggestions of a much more complex field-tempera
phase diagram.7 In the past, the transition had been predict
to belong to the universality classes of theXY model, for
smaller fields, and of the three-state Potts model, for su
ciently strong fields. In addition, in the upper critical field th
ground state can be mapped onto the hard-hexag
problem.8

It is not surprising that the conventional mean-field a
proach leads to incorrect results for this highly frustra
antiferromagnet. If we consider a mean-field Ising Ham
tonian on a triangular lattice, in which the spins of a subl
tice interact antiferromagnetically with all the spins of t
two remaining sublattices, there is a~spurious! continuous
phase transition even in the absence of an external fi
Direct applications of the Bethe-Peierls9 or the Kikuchi10

self-consistent approximations, which are usually suitable
spin systems on lattices of low dimensionality, lead
equally wrong results in zero field. Actually, the Bethe a
proximations reported in the literature9 always refer to just
two sublattices and thus do not distinguish between a~loose-
packed! simple cubic and a~close-packed! planar triangular
lattice, which have the same coordination. In a very rec
560163-1829/97/56~13!/8241~7!/$10.00
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publication, however, Kabakc¸ioḡlu and co-workers11 used a
proposed Monte Carlo mean-field method12 to reanalyze the
field-temperature phase diagram of the triangular Ising a
ferromagnet. It is interesting to point out some conclusio
of this investigation:~i! there is no phase transition in zer
field; ~ii ! the resulting phase diagram is in fair agreeme
with the reported results of the literature;~iii ! even if the
calculations begin with different values of the spin magne

FIG. 1. ~a! The three interpenetrating sublattices (A, B, andC)
of the triangular lattice;~b! Spin configuration in one of the three
fold degenerate ground states represented by theA33A3 structure
~giving rise to an antiferromagnetic ordering with spin magneti
tion 1/3).
8241 © 1997 The American Physical Society
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8242 56M. N. TAMASHIRO AND S. R. SALINAS
zation for a large number of sublattices, the self-consis
solutions in the ordered region are defined on three dist
sublattices only;~iv! the free energy displays a~nonphysical!
discontinuity between the paramagnetic and the orde
phases~which is claimed to indicate a first-order transition!.
It is also interesting to remark that, at least for the sim
Ising ferromagnet on a square lattice, the method descr
in Ref. 12 gives similar results as a standard Bethe-Pe
approximation.13

The general interest on the behavior of frustrated s
models, as well as the conclusions of the calculations
Kabakçioḡlu and co-workers,11 provided the motivation for
revisiting the problem of the field-temperature phase diag
of the nearest-neighbor Ising antiferromagnet on the trian
lar lattice. If the transitions display anXY character as
pointed out by some authors,7 they will hardly be detected by
a ~self-consistent! Bethe-Peierls calculation. If they are firs
order transitions, as claimed by Kabakc¸ioḡlu and
co-workers,11 there should be coexisting~Bethe-Peierls! so-
lutions with the same free energy. We then decided to p
form a more elaborate Bethe-Peierls approximation, tak
into account the existence of three distinct sublattices as
dicated by the simulations, to obtain a set of equations
state which should come from the minimization of an as
ciated functional form of the free energy. Consistent tre
ments of this sort, which have been performed for a tw
sublattices Ising antiferromagnet,14 but which have not been
performed for the three-sublattices model investigated
Kabakçioḡlu and co-workers, are essential to analyze the
bility of the ordered phases and the nature of the phase t
sitions.

The layout of this paper is as follows. In Sec. II we fo
mulate the problem and present the solution in the Be
Peierls approximation with three distinct sublattices. As
mentioned above, the division into three sublattices is cru
to make contact with the conjectured antiferromagnetic
dering at low temperatures. We show, however, that the
energy associated with the ordered state is always larger
the corresponding free energy associated with the param
netic solution. This result is particularly striking, as it ind
cates that this Bethe approximation gives rise to an orde
state that is a mere local minimum of the free energy, w
out any possibility of a true phase transition~which has in-
deed been mentioned by Campbell and Schick15 in the con-
text of a triangular lattice gas model!. In Sec. III, we present
the so-called reaction-field approximation, which can be
tained by expanding the equations of state of the Bethe
proximation up to terms of orderJ2 ~and which gives rise to
the well-known Thouless-Anderson-Palmer equations16 in
the case of an Ising spin-glass model!. In this approximation,
the associated free-energy functional can be easily obta
by a straightforward integration of the equations of sta
providing a further confirmation of our findings. Some co
clusions are presented in Sec. IV. In the Appendix we g
some details of the calculations for the ground state in
Bethe-Peierls approximation.

II. BETHE APPROXIMATION

The Bethe-Peierls approximation for the Ising antifer
magnet consists in obtaining the spin magnetizations o
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cluster with a central spin,S0561, surrounded byq nearest
neighbors,Si561, i 51,2, . . . ,q21,q, with energy given
by the Hamiltonian

H52JS0(
i 51

q

Si2HS02(
i 51

q

h iSi , ~1!

where J,0 is an ~antiferromagnetic! exchange parameter
and H.0 is the external magnetic field. The spins at t
bordering sites are in the effective fields$h i%, that should be
determined by the consistence equations of the approxi
tion.

As shown in Fig. 1, the triangular lattice can be divid
into three equivalent sublattices, identified by the lettersA,
B, andC. For a lattice with coordinationq, and taking into
account three sublattices, the canonical partition function
sociated with a cluster centered on sublatticeA is given by

ZA5 (
S0 ,•••,Sq

exp~2bH!5exp~bHA!@4cosh~bhBA

1bJ!cosh~bhCA1bJ!#q/21exp~2bHA!

3@4cosh~bhBA2bJ!cosh~bhCA2bJ!#q/2, ~2!

whereb51/(kBT), HA is the external magnetic field in sub
lattice A ~to allow the integration of the equations of stat
we introduce distinct external fields in each sublattice!, and
hBA (hCA) is the effective field in sublatticeB (C). The
magnetizations per site for each one of the three sublatt
are given by

mA5mA~hBA ,hCA ,HA!5^S0&5
1

bS ]

]HA
lnZAD

hBA ,hCA

5tanhH bHA1
q

2
tanh21@ tanh~bhBA!tanh~bJ!#

1
q

2
tanh21@ tanh~bhCA!tanh~bJ!#J , ~3!

mB5mB~hBA ,hCA ,HA!5^Sj& j PB5
2

bqS ]

]hBA
lnZAD

HA ,hCA

5
1

2
~11mA!tanh~bhBA1bJ!

1
1

2
~12mA!tanh~bhBA2bJ!, ~4!

and

mC5mC~hBA ,hCA ,HA!5^Sk&kPC5
2

bqS ]

]hCA
lnZAD

hBA ,HA

5
1

2
~11mA!tanh~bhCA1bJ!

1
1

2
~12mA!tanh~bhCA2bJ!. ~5!
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We now write the remaining set of equations for the clu
ters centered on sublatticesB andC. It is then convenient to
use the notation

mm5tanhFbHm1
q

2
tanh21~vxnm!1

q

2
tanh21~vxlm!G ,

~6!

wherev5tanh(bJ)52tanh(buJu), the labelsm,n,l are per-
mutations of the symbolsA,B,C, and the new variables
xmn5tanh(bhmn), are obtained from the consistence con
tions,

mm~hBA ,hCA ,HA!5mm~hAB ,hCB ,HB!

5mm~hAC ,hBC ,HC!. ~7!

To be more explicit, we have the set of equations of stat

mA5tanhFbHA1
q

2
tanh21~vxBA!1

q

2
tanh21~vxCA!G ,

~8!

mB5tanhFbHB1
q

2
tanh21~vxAB!1

q

2
tanh21~vxCB!G ,

~9!

and

mC5tanhFbHC1
q

2
tanh21~vxAC!1

q

2
tanh21~vxBC!G ,

~10!

where

xAB5tanhFbHA1S q

2
21D tanh21~vxBA!1

q

2
tanh21~vxCA!G ,

~11!

xAC5tanhFbHA1S q

2
21D tanh21~vxCA!

1
q

2
tanh21~vxBA!G , ~12!

xBA5tanhFbHB1S q

2
21D tanh21~vxAB!1

q

2
tanh21~vxCB!G ,

~13!

xBC5tanhFbHB1S q

2
21D tanh21~vxCB!

1
q

2
tanh21~vxAB!G , ~14!

xCA5tanhFbHC1S q

2
21D tanh21~vxAC!

1
q

2
tanh21~vxBC!G , ~15!

and
-

-

xCB5tanhFbHC1S q

2
21D tanh21~vxBC!

1
q

2
tanh21~vxAC!G . ~16!

Given the temperatureT and the external fields,HA , HB ,
andHC , these equations may have more than one solut
We then have to explore all the possible solutions of t
nonlinear system. However, as we are looking for an anti
romagnetic ordering in which

m15mA , m25mB5mCÞm1 , ~17!

the analysis can be considerably simplified. In this case
we assumeH15HA andH25HB5HC , we can write

x1[xAB5xAC , x2[xBC5xCB , x3[xBA5xCA ,
~18!

where the last variable,x3, satisfies the relation

x3~x1 ,x2!5tanh@ tanh21x21tanh21~vx2!2tanh21~vx1!#

5
~11v !x22v~11vx2

2!x1

11vx2
22v~11v !x1x2

, ~19!

which is obtained by eliminatingbHB from Eqs. ~13! and
~14!. We can thus rewrite the equations of state in terms
x1 andx2,

m1~x1 ,x2!5tanh$tanh21x11tanh21@vx3~x1 ,x2!#%

5
~11v !@v~12x1

2!x21~12v !~11vx2
2!x1#

~12v2x1
2!~11vx2

2!
,

~20!

m2~x1 ,x2!5tanh@ tanh21x21tanh21~vx2!#5
~11v !x2

11vx2
2 ,

~21!

bH1~x1 ,x2!5tanh21x12~q21!tanh21@vx3~x1 ,x2!#,

~22!

bH2~x1 ,x2!5tanh21x22
q

2
tanh21~vx1!

2S q

2
21D tanh21~vx2!. ~23!

Along the lines of the calculations for the Ising antiferr
magnet on a bipartite lattice,14 we are now prepared to obtai
an expression for a thermodynamic potential. It is not di
cult to integrate the parametric forms of the equations
state to write the free energy,

bg52 ln 21
q

4
ln~12v2!1

1

6
ln@~12x1

2!~12x2
2!2#

1
1

3S q

2
21D @ ln~12v2x1

2!2 ln~12v2x2
2!
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13ln~11vx2
2!#2

1

6
~q21!ln@~11v2x1!~11vx2

2!

2v~11v !~11x1!x2#2
1

6
~q21!ln@~12v2x1!

3~11vx2
2!1v~11v !~12x1!x2#. ~24!

For the triangular lattice (q56), there is a region of the
phase diagram, in terms of the temperature,t5kBT/(6uJu),
and the field,h5H/(6uJu), for H15H25H, in which there
are two antiferromagnetic solutions, withx1Þx2. In Figs. 2
and 3, we show the solutions of the equations of state and
associated free energies for a typical value of the temp
ture. As we can see from these figures, the two soluti
corresponding to an antiferromagnetic ordering are alw
associated with a larger free energy as compared with
free energy of the paramagnetic solution (x15x25x and
m15m25m).

To calculate the boundary of existence of these orde
solutions, we expand the functions defined by Eqs.~22! and
~23! around the critical values$xk

c%. Therefore, in thet2h

FIG. 2. Sublattice magnetizations per spin in the Bethe-Pei
approximation at dimensionless temperaturet50.1. The letters
identify the various solutions:P is the paramagnetic solution;AI

andAII are two distinct antiferromagnetic solutions.

FIG. 3. Free energies associated with the solutions of the Be
Peierls approximation at the temperaturet50.1. The value of the
free energy is always larger for the ordered solutions~as compared
with the paramagnetic state!.
he
a-
s
s
e

d

phase diagram this boundary comes from the conditions
the existence of nontrivial solutions of the linear system

S ]H1

]x1

]H1

]x2

]H2

]x1

]H2

]x2

D
$xk%5$xk

c%

S x12x1
c

x22x2
cD 5S 0

0D . ~25!

In Fig. 4, we show the region of existence of the order
solutions. It is interesting to mention the existence of a fin
lower critical field at zero temperature,Hc(T50)53uJu/2,
which is not predicted by the early Monte Carlo simulation
As shown by the asymptotic expressions given in the App
dix, this result of the Bethe-Peierls approximation can
confirmed by a careful expansion of the equations of s
and of the free energy in theT→0 limit.

III. REACTION-FIELD APPROXIMATION

The reaction-field approximation corresponds to an
pansion of the Bethe-Peierls equations of state ab
t5kBT/(6uJu)→`, up to t22 terms. From the previous ex
pressions for the spin magnetizations of the three types
clusters, it is not difficult to find the reaction-field forms,

mA5tanh@bHA13bJ~mB1mC!26b2J2mA

13b2J2mA~mB
21mC

2 !#, ~26!

mB5tanh@bHB13bJ~mA1mC!26b2J2mB

13b2J2mB~mA
21mC

2 !#, ~27!

and

ls

e-

FIG. 4. Regions of existence of the ordered solutions of
equations of state obtained from various approximations. The
line corresponds to the Bethe approximation with three sublatti
We also show the results from the reaction-field approximat
~dashed line!, the work of Kabakc¸ioḡlu et al. ~Ref. 11! ~dotted line!,
and from a Bethe approximation with two sublattices~long-dashed
line!.
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mC5tanh@bHC13bJ~mA1mB!26b2J2mC

13b2J2mC~mA
21mB

2 !#. ~28!

Now it is straightforward to integrate these equations of s
to write the thermodynamic potential
e

th

el
te

g5 f 2
1

3
~mAHA1mBHB1mCHC!, ~29!

where
3 f 5
1

bE tanh21mAdmA1
1

bE tanh21mBdmB1
1

bE tanh21mCdmC23J~mAmB1mAmC1mBmC!13bJ2~mA
21mB

21mC
2 !

2
3

2
bJ2~mA

2mB
21mA

2mC
2 1mB

2mC
2 !13 f 0~T!, ~30!
lu-

ith
free

lcu-
of a
lat-
tem,
ces,
ua-
po-
we

s at

ma
n-
me

ma-
olu-
h

the
and f 0 comes from the high-temperature limit of the fre
energy. Given the temperature and the fields (HA , HB , and
HC), we can perform a detailed analysis of the minima of
functional g in terms of the spin magnetizations,mA , mB ,
and mC . In the case of interest,mA5m1, mB5mC5m2,
with HA5HB5HC5H, we have the equations of state

m15tanh@bH16bJm226b2J2m1~12m2
2!#,

~31!

and

m25tanh@bH13bJ~m11m2!

23b2J2m2~22m1
22m2

2!#, ~32!

which are associated with the thermodynamic potential

1

uJu
g52m1m21m2

222h~m112m2!1t ln~12m1
2!

12t ln~12m2
2!12tm1tanh21m114tm2tanh21m2

1
1

6t
m1

2~12m2
2!1

1

12t
m2

2~42m2
2!26t ln 22

1

4t
,

~33!

FIG. 5. Sublattice magnetizations per spin in the reaction-fi
approximation att50.1 andt50.15.
e

where t5kBT/(6uJu), and h5H/(6uJu), for H15H25H.
There is again a region of ordered antiferromagnetic so
tions in the field-temperature phase diagram~see Figs. 4, 5,
and 6!. Again, these ordered solutions are associated w
larger values of the free energy as compared with the
energy of the disordered paramagnetic solution.

IV. CONCLUSIONS

We have performed a Bethe-Peierls self-consistent ca
lation to investigate the field-temperature phase diagram
nearest-neighbor Ising antiferromagnet on a triangular
tice. To represent the presumed ground state of the sys
we have considered the existence of three distinct sublatti
with different sublattice magnetizations. We obtain the eq
tions of state together with an associated thermodynamic
tential. Besides the disordered paramagnetic solution,
show the existence of ordered antiferromagnetic solution
sufficiently low temperatures~and for a certain range of field
values!. These ordered solutions, however, are local mini
of the free energy, well above the minimum of the free e
ergy associated with the paramagnetic solution. The sa
conclusions can be reached from a reaction-field approxi
tion associated with an expansion of the Bethe-Peierls s
tions up to terms of orderJ2 ~and which is amenable to muc
easier manipulations!.

d

FIG. 6. Free energies associated with the solutions of
reaction-field approximation att50.1 andt50.15. The value of the
free energy is always larger for the ordered solutions~as compared
with the paramagnetic state!.



n
l

n

e
a

o
n-
rl
e
h

d
h
u
r
s
e

of
b
n
h

e
n

s
h
e

-

n

-
gy,
of

8246 56M. N. TAMASHIRO AND S. R. SALINAS
In Fig. 4 we present the results for the Bethe-Peierls a
the reaction-field approximations. We also include the resu
from an application of the scheme of Kabakc¸ioḡlu and
co-workers,11 as well as the phase diagram obtained from
Bethe-Peierls approximation for an antiferromagnetic Isi
model on a bipartite lattice of the same coordination,q56
~which gives a finite critical temperature in zero field!. In the
Bethe approximation with three sublattices there is a low
critical field, which vanishes in the reaction-field approxim
tion.

The antiferromagnetic regions in the phase diagram
Kabakçioḡlu and co-workers are in qualitative correspo
dence with the regions of local minima of the Bethe-Peie
and reaction-field approximations. As we do have expr
sions for a thermodynamic potential, which comes from t
integration of the equations of state, we have been able
avoid nonphysical assertions~as a jump of the free energy
through the transition! and to show that, within the self-
consistent approximations, there is no room for a thermo
namically stable ordered region in the phase diagram. T
present calculations might raise some questions. The res
may be an artifact of the cluster approximations, which a
usually inadequate to deal with a Kosterlitz-Thouless tran
tion, as predicted for this antiferromagnet by som
investigators.7 In any case, the existence of local minima
the free energy should pose many problems for a relia
numerical simulation of this system. It should be interesti
to look again at the simulations, in particular to check t
existence of a lower critical field.
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APPENDIX: ASYMPTOTIC EXPRESSIONS OF THE
BETHE-PEIERLS SOLUTIONS AT ZERO TEMPERATURE

At the T→0 limit, we can perform asymptotic expansion
of the equations of state and the free energy in the Bet
Peierls approximation to show the existence of a finite low
critical field, Hc(T50)53uJu/2, which has not been pre
dicted by the early Monte Carlo simulations.

The paramagnetic solution is given by
d
ts

a
g

r
-

f

s
s-
e
to

y-
e
lts
e
i-

le
g
e

s
d

e-
r

~ i! m50, and g53J,

for 0,H/(6uJu),1, and

~ ii ! m→122 exp~22bH212bJ!, and g52H23J,

for H/(6uJu).1.
The antiferromagnetic solutionI , associated with the free

energy

g52
1

3
H1J,

is given by

~ i! m1→2112 exp~210bH212bJ!,

m2→122 exp~22bH !,

for 1/4,H/(6uJu),1/3,

~ ii ! m1→2112 exp~2bH112bJ!,

m2→122 exp~22bH !,

for 1/3,H/(6uJu),2/3, and

~ iii ! m1→2112 exp~2bH112bJ!,

m2→122 exp~4bH124bJ!,

for 2/3,H/(6uJu),1.
The antiferromagnetic solutionII is given by

m1→2112 expS 2

3
bH14bJD ,

m2→122 expS 2

3
bH14bJD ,

for 1/4,H/(6uJu),1, with the same free energy as solutio
I , g52H/31J.

For 3/2,H/uJu,6, we see that there are two antiferro
magnetic solutions, associated with a limiting free ener
g52H/31J, that is always larger than the free energy
the paramagnetic state.
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