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Scaling picture of magnetism formation in the anomaloud-electron systems:
Interplay of the Kondo effect and spin dynamics
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The formation of a magnetically ordered state in the Kondo lattice is treated within the degesiefate
exchange and Coqgblin-Schrieffer models. The Kondo renormalizations of the effective coupling parameter,
magnetic moment, and spin-excitation frequencies are calculated within perturbation theory. The results of
lowest-order-scaling consideration of the magnetic state in the Kondo lattices are analyzed. The dependence of
the critical values of bare model parameters on the type of magnetic phase and space dimensionality is
investigated. Renormalization of the effective Kondo temperature by interatomic exchange interactions is
calculated. An important role of the character of spin dynan@gsstence of well-defined magnon excitatipns
is demonstrated. The regime of strongly suppressed magnetic moments, which corresponds to magnetic heavy-
fermion system, can occur in a rather narrow parameter region only. At the same time, in the magnetically
ordered phases the renormalized Kondo temperature depends weakly on the bare coupling parameter in some
interval. The critical behavior, which corresponds to the magnetic transition with changing the-bére
coupling parameter, is investigated. In the vicinity of the strong-coupling regime the spectrum of the Bose
excitations becomes softened. Thus, on the borderline of magnetic instability, the Fermi-liquid picture is
violated in some temperature interval due to scattering of electrons by these bosons. This may explain the fact
that a non-Fermi-liquid behavior often occurs in heavy-fermion systems near the onset of magnetic ordering.
[S0163-18207)00437-2

[. INTRODUCTION process in thes—f exchange mod# yields, depending on
the values of bare parameters, both the “usual” states
Anomalous 4 and § compounds, including the Kondo nonmagnetic Kondo lattice or a magnet with weak Kondo
lattice and heavy-fermion systems, were studied extensivelgontribution$ and a peculiar magnetic Kondo-lattice state. In
starting from the middle of the 1980's3 From the very the latter state, small variations of parameters lead to strong
beginning of these investigations it became clear that thehanges of the ground-state moment. Thus a characteristic
effects, connected with a regular arrangement of the Kondfeature of heavy-fermion magnets — high sensitivity of the
centerdrare-earth or actinide iohsplay a crucial role in the ground-state moment to external factors like pressure and
physics of such systems. When passing from one magnetaoping by a small amount of impurities — is naturally ex-
center to the Kondo lattice, two main features appear. Firsiplained. At the same time, only the simplast f model was
provided that the strong-coupling regime takes place, theonsidered in Ref. 13, and the equations obtained were not
Abrikosov-Suhl resonance in the one-sitenatrix leads to investigated in detail. Therefore a number of important fea-
formation of a complicated band structure né&ar with a  tures of the Kondo magnets were not described.
new energy scaléthe Kondo temperatur@y) and sharp Recently, a number of anomalouselectron systems
peaks and pseudogaps in the density of stateBhis pro- (U,Y,_,Pds, UPtz_,Pd,, UCus_,Pd,, CeCu_,Au,,
vides a common explanation for the heavy-fermion behaviory .Th,_,Beys, etc) demonstrating the so-called non-Fermi-
Second, the competition between the Kondo screening qfquid (NFL) behavior have become a subject of great inter-
magnetic moments and intersite magnetic interactions is ofst (see, e.g., the review. It should be noted that such a
e btvn ety st samponion ol AU Sbseed ot onty i aloys, ut 350 n some
total suppression ofyeither magnetic morrr)1ents or the Kond%:tmc-hIomelterIC compounds, e.g. féis ° CeClSiy,
eNiLGe,.”” These systems possess unusual logarithmic or

anomalies. However, more recent experimental data anﬂower-law temperature dependences of electron and mag-

careful tht_aoretical investigations made it 'clear that thenetic properties. It is a common practice to discuss such a
Kondo latticesas a rule demonstrate magnetic ordering or behavior within the one-impurity two-channel Kondo

are glos_e_ to _this. Th_is concept was consis_tently formglate%odeLl?—lg However, the NFL behavior is typical for sys-
and justified in a series of papefs? A very important cir- oy lying on the boundary of magnetic ordering and dem-
cumstance is that interspin coupling between the Kondo Site@nstrating strong spin fluctuatioh&So, many-center effects
results in smearing of singularities in electron and magnetigp (g play an important role in this phenomenon. On the
properties on a scale of the characteristic spin-dynamics ff&;iner hand, for a number anomaloixelectron systems like
guencyw. On the other handpEeIf acquires renormaliza- sm,Se,, Yb,As;, as well as for the only “moderately
tions that result in a decrease @fdue to the Kondo screen- heavy-fermion” d-electron system Y_,Sc,Mn,, the

ing. A simple scaling consideration of this renormalizationheavy-fermion state itself seems to be connected with pecu-
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liarities of intersite couplingse.g., frustrations rather than  Hereafter we retain in Eq3) only one terml,=1 (I=2 for
with the one-impurity Kondo effeé®'*'?Thus the interplay  d electrons and=3 for f electron. Introducing the opera-
of the Kondo effect and intersite spin dynamics results in aors
very rich and complicated picture rather than in the trivial
mutual suppression. Chmo=1'(4m)Y%C1, Y im( Ok, Di), (4)

The aim of the present paper is a systematic study of ) _
formation of the magnetic Kondo-lattice state and of itsWhich satisfy, after averaging over the angles of the vector
properties for various magnetic phases depending on th&e Fermi commutation relations, we redudg; to the form
character of spin dynamics. In Sec. Il we introduce main
theoretical models which include orbital degeneracy and en- _ t
able one to treat the Kondo effect for a lattice in different Hst Ikk%aﬁ Scok? apChmaCimg- ©
cases. In Sec Il we write down the scaling equations for the ) ) o
effective s—f parameter and spin-fluctuation frequencyAssuming the electron and spin excitation spectrum to be
(which plays the role of a cutoff for the Kondo divergencesisotropic, in final expressions for self-energies we can per-
approach for the ordered state is generalized by taking intgse the orthogonality relation
account the renormalization of the residue of the spin

Green'’s function at the magnon pole. The most simple large- j f ; , _ )
N limit in the Cogblin-Schrieffer model where spin dynam- Singdod ¢dYin( 0, ) Yim' (6, )= S

ics is unrenormalized is considered in Sec. V. The scalingl_hus the factors of|]= (21 +1) occur in any order of per

picture for finiteN is discussed in Sec. VI. In Sec. VIl we . n
discuss the critical behavior near the magnetic phase trangirbation theory, and we have to repla’e-[l]I}' in the

tion and discuss the possibility of the Fermi-liquid picture“‘fo””ethd” terms”of perturbation expansion in comparison
violation. The scaling behavior in the- f exchange model With the “standard”s—d model (=0).
with a large orbital degeneracy is investigated in Sec. Vil !tis worthwhile to r_emembelzrzghe main results for the one-
and an explicit description of the non-Fermi-liquid behaviorMPUrity version of this modeﬁ._’ Perturbation theory treat-
is obtained in this limiting case. In Appendix A we analyze ment leads to occurren_ce.of infrared divergences. Provided
the properties of the localized spin subsystem for the modeifat | <0, the characteristic energy scake Kondo tem-
under consideration in the absencesoff interaction. The Peraturg occurs,
Kondo renormalizations in the paramagnetic state with ac-
count of spin dynamics are considered in Appendix B. In
ﬁ]%pglr:ilt):gr? scngt(:uz;r\llg ;ﬂf:é??ot?ﬁelé%l‘i?i\;o_r;egga?s tQ/vhereD is of order of the bandwidtr_p is the ba}re depsity of

. ' . ! lectron states at the Fermi level with one spin projection. At
pling) and spin-wave frequency in the magnetically ordere ~Ty the effectives— f interaction becomes very large and

phases. the system enters the strong-coupling regime. The electron
energy spectrum in this region is determined by the presence
of the Abrikosov-Suhl resonance of the widih . The prop-
To treat the Kondo effect in a lattice we use thed(f) erties of the grognd state and _Character of the low-
exchange Hamiltonian temperature behavior deper_1d_ cr_ucw}lly on the param@&ers
and[1]. At 2S=[1] the Fermi-liquid singlet state occurs. At
" 2S>[1] the localized moment and logarithmic behavior of
szz tkCxoCrot Hit Hsi=Ho+ Hsy, (D) electronic characteristics retain, but the replacement
7 S—S—[1]/2 takes place. At 3<[l] a very interesting
where t, is the band energy. We consider the pure spin‘overcompensated” regime occurs. Recently the particular

Tx=Dexp(1/2p), (6)

II. THEORETICAL MODELS

s—d(f) exchange model with case of this regime witt6=1/2, [I]=2 (the two-channel
Kondo model describing the non-Fermi-liquid behavior, see,
Ho=S> JS.S. Ho=— 1S s t s e.g., Refs. 17,19,2&as pec_ome a subject of great interest.
f % aS-a%: Hst kkzaﬁ ke Se-k TapCieaCic In the case of the periodic model, the presence or absence

(2 of the strong-coupling regime depends also on the character

. . . of intersite spin-spin interactions which are describedHby
whereS and S, are spin operators and their Fourier trans- s factor will be analyzed in detail below.

forms, o are the Pauli matrices. For the sake of conveniently The s—d(f) model does not take into account scattering
constructing the perturbation theory, we explicitly include by orbital degrees of freedof#252:26 Another important
the Heisenberg exchange interaction with the paraméters model, which is used frequently to describe the Kondo ef-

in the Hamiltonian, although in fact this interaction can be]c - ; - ; L -

g ’ X ) ect, is the Cogblin-Schrieffer model. For its periodic version
the indirect R_uderman-KltteI-Kasuya-Yosde_KKY) COU-  with the f—f exchange interaction of the SNJ form we
pling. Expanding thes—d(f) matrix elements in the spheri- have

cal functions yields
S

1 ’ ’
_ MM/ oMM
Ikk’:% LY im0k, D) Yim( O, dicr)- 3 Hf—i% ‘]qM MZ?S XZq Xq )
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MMt Of course, both thes—f exchange model and Cogblin-
He=—1 2 X@ " CrrmCkn - Schrieffer model are some idealizations of the realistic situ-
Kk"MM’ ation. The choice of an adequate model for a given com-
MM’ : . pound depends mainly on the relation between the width of
where X are the Founer .transforms of the Hubbard Sthef level and the spin-orbital coupling parameter. Provided
operators for the localized spin system, that the broadening of the level due to either the hybrid-
, ization or directf —f overlap is larger than its spin-orbital
XM =[iM)(iM | splitting we should consider the latter splitting after the tran-
) ) o sition from the atomiclikef states to crystal states. Usually
S=(N—1)/2is the total angular momentufthis notation is  the orbital momentum is quenched in the Bloch-like stafes,
used for the sake of convenience and has a somewhat diffegnq therefore only the spin momentum should be taken into
ent meaning in comparison with sp@in thes—f mode),  account when considering the interaction with conduction
and the operators electrons. The Cogblin-Schrieffer model was initially pro-
posed to describe cerium and ytterbium systems, especially
=S CSM ¢ ® diluted one$® However, as it is clear now, the situation for
kM™ & ~1/2 g, Im~kmo cerium compounds is more complicated. First, the spin-
orbital coupling for cerium is in fact not too larg@bout
possess, after averaging over the angles, the Fermi properti®@s25 e\} and comparable with the width of the virtuél
due to the orthogonality relations for the Clebsh-Gordan colevel. Second, a number of cerium system, including the pure
efficientsC. As well as for model2), we will assume that «a-cerium, have rather largle-f overlap(the relative role of
this averaging should be performed when calculating thd —f overlap and hybridization is discussed in detail in the
Green’s functions. The Hamiltoniadg; with 1<0 can be review’d). Thus the applicability of these models should be
derived from the degenerate Anderson-lattice model for rareconsidered separately for any specific compound. We shall
earth compoundsL(S coupling; a Hamiltonian of the same demonstrate below that results of the scaling consideration
form occurs in the case gf coupling (actinide systems®  for the Cogblin-Schrieffer model arsl- f exchange models
ForS=1/2,N=2,1=0, models(2) and(7) reduce to the are essentially different.
standards— f model with S=1/2 and coincide. The ground  Model (7) can be generalized to include two magnéitic
state in the one-impurity Cogblin-Schrieffer model is similar configurations with the angular momentandJ’ so that
to that in thes—f model with 25=[I], i.e., a complete
screening of the localized moment and a Fermi-liquid picture __ IM M’ MM’ T
take place. Due to another structure of perturbation theory Har=—12, CorpuimCrpjm X =i Ghem (10

for the Cogblin-Schrieffer model, we have to replace® e restrict ourselves for simplicity to the case jof cou-
in EqQ. (6). Thus the role of the degeneracy factors in both thep”ng bearing in mind uranium compoundddowever, this
models under consideration is different: the expression fo[5miitonian has a complicated tensor structiféand does
Tk does not contain the factor pf]=(21+1) in model(2),  not enable one to calculate an unique energy scale by using
but contains the factor dfl in model(7). Peculiarities of the perturbation expansion. Such an energy scale can be ob-

Cogblin-Schrieffer model are determined by that the transiizined starting from the low-temperature regime and rads
tions between any values of localizéestate projectiorM

are possible, so that the number of excitation branches is 2J+1
Tx=Dexg —1 / Ip

large. We shall see that this may result in essential modifi- -1 (11

cations of magnetic behavior. The ground state and the spec- 2'+1

trum of magnetic excitations in modé¥) are discussed in  [note that the exponent in E6L1) for the casel’ =0 differs
Appendix A. It is interesting that for an antiferromagnet by a unity from the correct result; such a difference is typical
(AFM) the situation depends on the sign of the next-nearestyr the methods which are in fact based on the laxge-
neighborf —f interaction(AFM1 and AFM2 cases expansiof®®. In the caseJ>J’ the situation for model

The interactiorH; in Eq. (7) can be obtained as an indi- (11) is similar to that for thes— f model with 25>[1].
rect RKKY-type interaction which arises in the second order

in Hg¢. Using the standard Heisenberg interactias in Eq.
(2)], where onlyM — M = 1 transitions are allowed, is incon-
venient since other transitions acquire an energy gap. How- Using the perturbation theory results for the renormaliza-
ever, inclusion of this interaction does not lead to a strongions of the effectives— f parameter and spin-fluctuation en-
change of the physical picture. The standard angular momerergy (Appendixes B—Dwe write down the system of scaling
tum operators on a site are expressed in terms oXtlop-  equations in the case of the Kondo lattice for various mag-
erators as netic phases.
We apply the “poor man scaling” approach. The
. 12 oM+ 1M Kondo effect is connected with the contributions of “soft”
S :% (S=M)TA(S+M+1)=X" 7, (9 electron-hole excitations with the enerfy-0, which result
in infrared divergences. We start from the conduction band
which is filled in the energy intervalH{ D,0) (here and here-
gZ= 2 MXMM after the energy is calculated from the Fermi endggy=0).
Y ! It is assumed in the scalingrenormalization-group ap-

Ill. SCALING EQUATIONS
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proach that for describing the phenomena related to the softermi functions in the functio®™ [see Eq(D15)]. Picking
excitations we can carry out the “decimation” procedure, out in Eq.(D15) the contribution from the electron-hole ex-

i.e., excluding high-energy degrees of freedom. Namely, weitations with the energy in the intervaC(C+ 5C) we ob-
may describe the occupied electron states withE3>C by  tajn

essentially the same Hamiltonian as the bare one, but with
the parameters that are renormalized by virtual transitions
from the states in the regio@>E>D. To perform explic-
itly the renormalization we can divide this “hard” region in
thin layers with the width€C and calculate the contribution
from each layer within perturbation theory subsequently re- —Jg+k—k—Jo) 5 (15
placing the bare model parameters with the effective ones. (L=t — 0 1)
To derive the total effect of renormalizations in the effective'To provide the conservation of the number of partic'es at
Hamiltonian parameters we have to integrate the obtainegiectron-hole transitions, the integration region in Ebp)
equations in6C from —D to the flow cutoff paramete€.  should be divided symmetrically for electron and holes,
The fixed point determining the ground state corresponds t@amely, either C/2<t,<C/2+8C/2,t,,=—C/2, or
C=0. —Cl2<t,, <—Cl2+ 8C/[2,t,=C/2. Similar to Eq.(13) we
Thus we have to consider the dependence of the effectivgan pass, with the accuracy 6D, from the averaging over

(renormalizedi s—f exchange parameter on the varialle the surfacet, =+ C/2 to that over the Fermi surface. Then
which occurs at picking out the Kondo singular terms. Theye have

detailed consideration will be performed for a ferromagnet in
the nondegenerats—f model (or, equivalently, in the
Cogblin-Schrieffer model witiN=2). To transform the ex-

Swq(C)=—2I7S > (I —k+3q
kk',C<t—t<C+sC

Swg(C)6C=212SD, 8(t}) S(t) (I i+ Iq

pression forl ¢ [Eq. (C1)] we calculate the contribution of kk!
the intermediate electron states near the Fermi level with 1 1
C<ty4+q<C+ 5C in the sums in Eq(C2). We have —Jg+k—k —Jo) + :
C+wkr_k C_wkr_k
1 1 (16)
8l of(C)=1? ) After passing into the real spacé,=ZgrJgeXp(pR), we
C<tw<C+oC \ it -kt — o —k 12 have to replace

‘]k’fk*)<Jk’7k>tk=tkr=EF
Averaging over the Fermi surfadg=0 we obtain

=p 2D 8(t) 8t ) Ik
k,k’

81e/(C)8C=p 122 5(t) mo(é KR 2
€ k,k’ C Wy g :; ‘]R|<eI >tk:EF| (17)
and perform similar transformations in other terms. We ob-

1
) o

C—wk,_k

We have replaced in E413) the integration over the surface ~ 6wq(C)/6C=2wy(1— aq)|22 5(tk)5(tk/)<
t,»=C by that over the surfacg, =0 since the most impor- Kk
tant (for picking out the singular contributiohgegion is 1 )

Wy —k

|C|~a)_, w_being a characteristic magnon frequency, and + (18

therefore|C|<D. Thus we have to retain the variabzin C-ww—

all the expressions whef@ is compared taw, and neglectit with

in the case of comparison with characteristic band energies.

The integration in Eq(13) can be performed explicitly for =S Jl(elkR r1—comRlS Jol1—cosiR
the simplest “Debye” approximation where the long-wave % ; &l >tk:EF| [ TRl ; Al GR].
dispersion law is assumed to hold in the whole Brillouin (19

_ 2 . . .
zone,wq=D0", and a spherical Fermi surface to derive In the approximation of nearest neighbors at distashcéhe

pl2 C-o quantity « does not depend o For a spherical Fermi sur-
Sloi(C)=—=26ClIn (14) face we have
1) Ctw e
L i SINKg
W|th ‘U:4Dsk;2: aq: a:|<elkR>tk=EF|2:( de ) (20)

To carry out a self-consistent treatment we need the scal-
ing equation for the magnon frequency of the ferromagnetereafter we sew=const. Then we may use in further con-
(FM). The singular correction comes from the product of thesideration of the scaling equations a single renormalization
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parameter, rather than the whole functiongofin the “De-

bye” approximation for the spherical Fermi surface we ob-

tain

C-w
+w.

8 wer(C)=2p4%(1—a)5CIn =

(21)

The “Kondo” correction to magnetization occurs from
the same magnon Green’s functipsee Eq.(D11)], so that
22

we derive
1S C—-
p_ 6ClIn J
C+w|

w
We see that the same functional dependence occurs in E
(14), (21), and(22). This property turns out to take place in
all the cases under consideration.

8 Se(C)= (22)

The treatment of other magnetic phases, as well as otP
more complicated models, is performed in a similar way.

Using Egs.(B5), (C2), (C5) we obtain for mode(2), and for
the paramagnetiqPM), FM, and AFM2 phases in the
Coqgblin-Schrieffer model the renormalizations of effective
coupling in the form

w
5|ef(C)=Np|27]( —9 5CIC, (23

wherew is a characteristic spin-fluctuation enerdys 2 for
the s—f model, »(x) is the scaling function which satisfies

the condition »(0)=1 (this guarantees the correct one-
impurity limit treated in Ref. 3L Taking into account the

results of Appendix B we obtain for the paramagnetic phase

[

=Re| do(Tk—k (@), =1, -,

2

1

X—— . (24
1—(w+i0)%/C?
For the FM and AFM phases we have
Pl @)= N=1) 7| = |+ 7| = 25

w
nTF“f( - ;) :<(1I Wy —k’ /C)71>tk:tk':EFa

w
77AFM( -c :((1— wi_k,/CZ)—1>tk=tkr=EF . (26)

Using the spin-diffusion approximation E(B6) in Eq. (24)
and the approximations}"'=D0?, wi™=c.q (which are
justified, e.g., at smakg), we getw_z 4Dk,2: for a paramag-
net, w=wy_ for the FM and AFM cases,

7PM(x)=x"tarctarx,

7E(x) == x"tn|1£x],

(27)

ETISM FORMATION IN ... 8113

—x"2In|1-x?|, d=3
7]AFM(X): (1_X2)71/20(1_X2)' d:2’

where 6(x) is the step functiond=3 for PM and FM.

One can see that the scaling functidgg) for the ordered
phases contain singularities»at 1. It may be demonstrated
by direct calculations according to Eq®5), (26) that the
presence of such a singularity is a general property which
does not depend on the model assumptions about the form of
electron and magnon spectra. In the general case, the singu-
larity occurs atC:—wqm where q,, corresponds to the
maximum diameter of the Fermi surface.

The functionsz{"(x) and »"™(x) (d=3) change their
sign atx=2 andx= /2, respectively. Fod=2 the function

q757"*F'\"(x) vanishes discontinuously at>1, but a smooth

contribution occurs for more realistic models of magnon
ectrum.

When considering characteristics of the localized-spin
subsystem, the lowest-order Kondo corrections originate
from double integrals over both electron and hole stites
Egs.(B9), (D10), (D6)]. Then we have to introduce two flow
parametersC, and C,, with C.+C,=C (C is the flow pa-
rameter for the electron-hole excitationk the FM case for
the Coqgblin-Schrieffer model we haw&C,,= —(N—1)8C,

due to the requirement of the number-of-particle conserva-
tion in electron-hole transitionghere existsN—1 “chan-
nels” for electrons and one “channel” for holgsFor PM
and AFM2 cases in the Cogblin-Schrieffer model, as well as
for all the cases in the— f model, the electron-hole symme-
try is not violated and we havéC,= — 6C, .

Taking into account EqgB9), (D20), (D26) we obtain

- w
5Sei(C)/S=Vpbl (C)=VNp?l 277( - 9 5CIC,

(28)
whereV=[1] for thes—f model,V=1 for the PM and FM
phases in the Cogblin-Schrieffer model, avig 2/N for the
AFM2 phase. The renormalizations of spin-wave frequencies

are obtained in a similar way from Eq®813), (D14), (D13),
(D20), (D27), and are given by

Swei(C)lw=a5Se{(C)/S=aVNp?l2y

®scic
e |

(29
where, in the nearest-neighbor approximation,
l-a PM
a=4§ 2(1—a) FM (30)
1 AFM.

Introducing the dimensionless coupling constants

9ef(C)=—Nplf(C), g=—Npl

and replacirgin the right-hand sides of E(&3), (29), (28)

J—0e1(C), w— we(C), we obtain the system of scaling
equations

99e1(C)19C=—A, (31)
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. - 1 = Ni—
dlnwes(C)/dC=aVA/N, (32 EE?"(E)=—;RIZJ do> . tk q+w|m<<3;|5:q>>w,

dINSg((C)/aC=VAIN, (33

% 1-n
OCd(}z)Zq ﬁlm((S&“Iqu))w.
(37)
Thus the magnon pole contribution dg; is multiplied byZ,
A=A(C,we(C))=[92(C)/Cl7(— we(C)/C). (34  and the incoherent one by-1Z. The renormalizations @b
andZ are obtained in the same way as in the previous sec-

As regards the AFM1 state in the Coqblin-Schrieﬁertion' We derive in the nearest-neighbor approximation
model (Appendix A), its treatment in a general case is a

1
EH"(E)z—;Rlzf_

with

difficult and cumbersome problem. However, one can see 99e(C)/IC=—A, (38)
from Eq. (D24) that to leading approximation in N/ the — _
scaling equations coincide with those for the FM state with INwe(C)/IC=aVvVAIN, (39
the replacemend,—J'?). —
P PP A(11Z)19C= INSef(C)IIC=VAIN, (40)
IV. IMPROVED VERSION OF SCALING EQUATIONS: wherea=2(1-a), N=2
AN ACCOUNT OF DISSIPATIVE CONTRIBUTIONS o —
TO SPIN DYNAMICS IN THE ORDERED PHASES A=[ge(C)/ CI[Zneoi(— we(C)/C)
As follows from the results of the previous section, pass- + (1= Z) Bingo(— e C)/C)], (41)
ing from the dissipative spin dynamics, which is characteris- _ gm

neor=1n ", and the functionn;,.on IS, generally speaking,
unknown. For further estimations we put belayy.= 7M.
Apparently, this overestimates the role of incoherent contri-
Tbutions (the true spin dynamics in the paramagnetic phase
S

tic for the PM phase, to the dynamics with well-defined spin-
wave excitationgordered FM and AFM phasgsesults in
the occurrence of singularities in the scaling functigix) at

x— 1. It will be shown below that this leads to a decrease of - 14 take into account short-range ojdéfowever, such
the critical .value Of. the-couplmg constag¢. One may sup- ._an approximation enables us to investigate the sensitivity of
pose that in the situation of strongly suppressed saturatiof), .o\ \s physical properties to the inclusion gf

moment @ is close tog.) the character of spin dynamics in coh:

. The account of the incoherent part does not modify
the ordered phases should change drastically. By the analo@(rongly numerical resultésee Sec. VL At the same time,

with weak itinerant magnetéone may expect that foB<S _the physical picture of magnetism changes considerably. Ac-
a considerable part of the localized-spin spectral densitgording to Eq.(40) we have
comes from the branch cut of the spin Green’s function

rather than from the magnon pole. 1 S
In this section we shall demonstrate that this indeed takes 20~ 1+In——-. (42
place provided that our approach is slightly modified. To this S(¢)

end we shall analyze the structure of the spin Green’s funceonsequently, the increase of magnetic moment owing to the
tion with account of the Slngular Kondo corrections in more Kondo Screening leads to a Suppression of magnon contribu-

detail. _ _ tions to the spectral density. Unlike the case of weak itiner-
First we consider the case of a ferromagnet within theant magnets, this suppression is logarithmic in the ground-
s—f model. We have near the magnon pole state magnetization.

In the case of an antiferromagnet the calculations are per-
)S7 formed by taking into account expressiqi¥?), (D3). In the
<<Sq+|3:q>>w= zf +<<S$|S:q>>iar)moh, (35) nearest-neighbor approximatiodd, 4= —J,) we obtain

q

852(Jg—Jy)
+, o |at — \\coh_ 0 Yd/f,_ AFM
where the residue at the pole is determined by (Bd.4): ((Sq +54[S-q+ =™ wz_(wgf)z ( 1 [I]% P00 )
(43
dwg(w) M [the quantity(43) just determines the Kondo renormalization
Vzq—1=- Jo = —[U% Ppoo-  (36)  of electron spectrum, cf. Ref. 13Then the scaling equations

=g for the AFM differ from those for the FM by the replacement

_ . . o _ a—1in Eqs.(38)—(40) only.
Besides that, there exists the singular contribution which

comes from the incoherefiionpolg part of the spin spectral
density. To calculate the renormalizationgofve use, instead
of Eq. (C2), the representation of the electron self-energy in
terms of the spectral densitgee the detailed derivation in It is instructive to consider the limil—c (to avoid mis-
Ref. 9 understanding, it should be noted that this limit with inclu-

V. THE SCALING BEHAVIOR IN THE LARGE- N
COQBLIN-SCHRIEFFER MODEL
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FIG. 1. The dependencegl on £é=In|D/C] in the largeN limit
with A=In(D/w)=5,9=0.15 for a paramagnddashed ling and
different magnetic phasedsolid lines: (1) ferromagnet2) 3D an-
tiferromagnet(3) 2D antiferromagnet.

sion of spin dynamics in the zeroth approximation differs
somewhat from the considerations of Refs. 30 andT2n

the renormalizations of spin dynamics afd; are absent,

and the transition into the nonmagnetic Kondo-lattice statgyajized
cannot be described. However, peculiarities of the deperb(C:

denceg.+(C) for various types of magnetic ordering are de-
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in the PM and FM phases provided that is small, so that,
according to Eq.(20), a— 1. However, in the case of the
ferromagnet we have instead of E¢6)

M o) — o NmT =
G™(C)=In|C/D| - ——(Clw—1)In[1-w/C|

1 _
+ 1 (Clot Din[1+w/C+1, (50)

In the three-dimensiondBD) AFM case 1g.¢(C) has a
minimum with decreasingC|. For a 2D AFM, 1¢.; has a
square-root singularity diC|<w and becomes constant at
|C|>w. As we shall see in the next section, these features
retain at finiteN. For a ferromagnet, the singularity is absent
at N—c since only the contribution ofy; survives. How-
ever, it is present for finit&l due to contribution ofy, . Note
that, contrary to the cafd— oo, for an FM withN=2 spin
dynamics results in a decrease gf{(C) at not too
small C.

The boundary of the strong-coupling regi¢ime renor-
Kondo temperature is determined by
—Tg)=—1/g. Of course,Tx means here only some
characteristic energy scale extrapolated from high tempera-

scribed qualitatively, explicit analytical expressions beingtures, and the detailed description of the ground state re-

obtained. We have

cdc’
1/gef(C)—1/g=G(C)=—f 7

Er
b C' C’ !

whereD is the cutoff energy defined byg.{(—D)=g (see
Sec. lll). Performing the integration we obtain

G™(C)= %'n[(CZﬂLF)/DZH garctar(g) -1,
w
(49

G™M(C)=In|C/D|—(Clo—1)In|1- w/C|+1, (46)

1 _ _
G*™M(C)=In|C/D| - E[((:2/(92—1)|n|1—w2/c:2|— 1],

d=3, (47)
G*™M(C)=6(|C|- w)In %(|c|+\/CZ—F)/D
+6(w—|C|)In(w/2D), d=2. (48)

The dependencesdl;(é=1In|D/C|) are shown in Fig. 1.
The effective coupling constarg.{(C) begins to deviate
strongly from its one-impurity behavior

1/ge{(C)=1/g—In|D/C| (49)

at|C|~w. One can see that at smalk<|C| spin dynamics
result in a decrease af.{(C) for the PM and FM cases, and
in an increase for the AFM case.

It should be noted that Eq44) can be used even for
N=2 provided thatyy is considerably smaller than the critical
valueg, (see the next sectipnBesides that, Eq44) works

quires a more advanced consideration. In the PM and FM
phases spin dynamics suppres$gs On the other hand, in

the AFM case spin dynamics at not too largeesults in an
increase ofTy .

Provided that the strong-coupling regime does not occur,
i.e.,g is smaller than the critical valug,, g.;(C—0) tends

to a finite valueg*. To leading order in IM)/w) we have

1/g.=\=In(D/w). (51)

However, an account of next-order terms results in an appre-
ciable dependence on the type of magnetic ordering and
space dimensionality. For PM, FM, and 2D AFM phases the
critical valueg, is given by 1§.=—G(0). Then we obtain

lig*=1/g—1/g, (52
with
) 1, PM, FM
Y9c=r*1 112 2D AFM. (53

At the same time, in the 3D AFM casg, is determined by
the minimum of the functiorG(C). Thusg* remains finite
atg—g.—0:

1/g* =1/g— 1/g.+ 1/g} , (54)
where

1/g.=\+(1+1n2)/2, (55

1/g* =A=(In2)/2=0.35

A being the depth of the minimum.
For C—0 we have
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7|Cll2w  PM,
G(C)—G(0)=1{ |Clw|njw/C| FM, (56)
—(Clw)3n|w/C| 3D AFM

[however, GF™M(C) — GFM(0)=(C/w)? for function (50) at
N=2]. As follows from Eq.(56), for g—g.+0 we have in
the PM and FM cases to logarithmic accuracy

— 2lw, PM
. —9-0c { 57

T ~
: (2: In[(g_gc)/gc]- FM.

On the other hand, in the AFM phasdg is finite at

g—g.t0:

— |1, 2D AFM
(58

Tr=wX
K= 142, 3D AFM.

VI. SCALING BEHAVIOR FOR FINITE N

Some results obtained in the larbedimit hold in the

finite-N case too, but there occur here a number of new im

ge £

FIG. 2. The scaling trajectorieg.f(£{) in a paramagnet
(g=0.15392>g., upper solid line, andy=0.153 9k g, lower
solid line) and a ferromagnefy(=0.138 68>g., upper dashed line,
and g=0.138 6K g., lower dashed lineaccording to Eq.(62)
with N=2, a=1/2,A=5, §=1/100.

of the functionW becomes positive again. TheR(£) will
diverge at some poing* =In|D/T§|. The divergence is de-
scribed, unlike the largdt limit, by the law

portant features. To consider the general case we write down Qo £)=1I(&* — &), (64)

the first integral of the system Eg81) and (32

Je(C)+ (N/Va)lnwe( C) = const, (59)

which results in

0e(C)=w exp(—(aVIN)[ge(C)—g]).  (60)
As follows from Egs.(32) and(33)

— 1/
wer(C)|

(O]

Ser(C) B
=

(61)

Substituting Eq(60) into Eqg. (31) we obtain
I(Uger)/9é= =V (A +(aVIN)[ger—9]— &), (62
where
V(&=n(e ¥, ¢&=InDIC|, A=In(D/w)>1.

The presence d.¢ in the argument of the functioWr in Eq.

since n(x<1)=1. The behavior(64) takes place starting
from £=¢,.

The dependences.«(£) in the PM case at smaly—g,|
are shown in Fig. 2. The behavigg(£) betweené, and¢,
is nearly linear, but is somewhat smeared sitit(g) differs
considerably from the asymptotic values 0 and 1 in a rather
large interval ofé.

The case of the magnetically ordered phases has a number
of peculiarities. Here the singularity of the functidn(¢) at
£=0 turns out to play a crucial role. In particular, one can
prove thatg.; diverges at somé at arbitrarily smallg (i.e.,
0.=0) unless the singularity cutoff is introduced. Indeed,
when approaching the singularity point with increasifig
the derivativedg./d¢ rapidly increases, and the argument
of the functionV in Eq. (62) inevitably starts to increase at
some point{; . Thus the singularity point cannot be crossed,
and the argument of the functioh is always positive. Since
Y(£'>0)>1, we haved(1l/ges)/9é<—1 at arbitrary &.
Therefore the effective coupling constant diverges at

(62) leads to drastic changes in the scaling behavior in comg= ¢* <1/g.

parison with the largN limit. We describe below the renor-

malization process in various cases.
If g is sufficiently large, the increase gt will lead to

To make the value of finite, one has to cut the singu-
larity of the scaling functions. This may be performed by
introducing small imaginary parts, i.e., replacing in E2j7)

that the argument o¥ will never be small, so that the scal-

ing behavior will be essentially the one-impurity one. At In|1—x|— 2 In[(1—x)2+ &2, (65)
smallerg the function 1g.¢(£) begins to deviate strongly

from the one-impurity behavior @/:(&)=1/g— ¢ starting =120/ e —1p2

from £=¢, where&, is the minimal solution to the equation (177761 =x)~Re(1=x+1)

N+ (aVIN)[gof(£)—g]=¢. 63) ={[(1—x) 2+ M2+ 1—xT2VA[ (1—x) %+ 5212

If the argument remains negative with further increasing Then¥ becomes bounded from above:

1/g.¢(£) will decrease tending to the finite valug®, the

derivatived(1/g.f)/ 9¢ being exponentially small, so that the 3Iné, FM

situation is close to the largs- case (Fig. 1). However, _ _ ~{ns 3D AEM
(aVIN)ge+(£€) can increase more rapidly than so that the Wmax= 7mac= 7(1)= ' (66)
second solution to Eq63), &, will occur, and the argument 362 2D AFM.



56

SCALING PICTURE OF MAGNETISM FORMATION IN ... 8117

Another way to cut the divergence in the 2D AFM case is to
retain strictly the proportionality to the step function,

(1-x)"Y20(1-x)—>Re(1—x+i8)"Y20(1—x), (67

so thatW(£) cannot take small values.

The value of§ should be determined by the magnon
damping atg=|k—k’|=2kg [see Egs(25) and(26)]. This
damping is due to both exchange and relativistic interactions.
The damping owing to exchange scattering by conduction
electrons should be formally neglected within the lowest-
order scaling consideration, since this contains a more high
power ofl. The magnon-magnon interaction in the Heisen-
berg model gives the damping at nonzero temperatures only.

0.

o U2 Ul N U WU

FIG. 3. The scaling trajectorie®.«(£) in a 3D antiferromagnet

However, the relativistiqe.g., dipole interactions give a
damping aff =0 due to zero-point oscillations. Hereafter we
put in numerical calculationg= 1/100.

The behavior of the solutions to E§62) in magnetic
phases fog which is well belowg, is similar to that in the
largeN limit (Sec. V. In particular, the function (&)

has a minimum in the 3D AFM case with the same depth.
The presence of the minimum may result in nonmonotonic
temperature dependences of the physical quantities which a
sensitive to the Kondo screening, e.g., of the effective mag-
netic moment. These dependences are obtained qualitativey’

by the replacementC|—T in Egs.(60) and(61). Of course,

the standard monotonic spin-wave corrections should b&

added to the Kondo contributions.

(solid lines,g=0.132 038 2-g. andg=0.132 038 ¥ g.) and a 2D
antiferromagnet (dashed lines, g=0.126 6714g. and
g=0.126 671 X g.) according to Eq(62) with the same parameter
values as in Fig. 2.

For the cutoff Eq(67) with »(x>1)=0 in the 2D AFM
case(and in similar situationsé* tends to a finite limi? at
—0g.10. Indeed, as follows from the form of the scaling
unction (27), one has up to the divergence poih(¢)>1,
thaté* <1/g<<1/g.. In such a situatiog™ turns out to be
so finite atg—g.— 0, and the character of approachigg
quite different from that in the largd-limit. With increas-
ing g, the position of the YY.+(&) singularity point is shifted

It is important that, except for a very narrow region near'i9ht due to rapid increase de; in the argument of the

g., at approaching. the value ofg* becomes practically
constantg* =g(¢,) =g, . This value is estimated as

(AVIN) (990! 9€) max= (AVIN)QZW 0=1.  (68)

On the other hand, we may estimate from the linear asymp-

totics 10.:(&€)=1/g— ¢ [which holds up
=\+(aVIN)g,]

to é=¢;

1/g;=1/g—§;.

Comparing Eqs(69) and (68) we derive the rough estima-
tion

(69

1g.=N+(aVIN)g;+1/g; =N+ (NP, /aV) 2

+(aVW pad N) Y2, (70

The value of 1g, can be also estimated from the linear as-

ymptotics(64):

1go=¢&* = ¢&».

Owing to the singularity£, is close to&; except for very
small|g—g.|. In the latter case the behavigf ;< £< &)
is practically linear,

(@VIN)Qer(£1<E<&)=E—N

(this behavior is discussed in detail in the next sechiohkis
is explained by that the argument of the functidnin Eq.
(62 should be nearly zero. The behavior &t ¢, is de-
scribed by Eq(64). We may estimate from Eq71)

(71)

(72

& =1/g+1/g,—1/g;. (73

function ¥ in Eq. (62). The shift should stop af;<¢: .

This takes place just @&t—g.—0. Thus 1¢.¢(£) should van-
ish discontinuously ag=g.. The “maximum” value of
get(£), 0o=d? , is estimated from

A+ (aVIN)(ger™—gc) —€1=0. (74
Since forg>g. the decrease @4(¢) at £> ¢, is practically
linear[see Eq(64)], we may estimate

& — (75)

1=1ger™.
If we accept the cutoff Eq(65), a small increase of* and
1/g* will take place in an extremely narrow region negr.
This increase cannot be practically observed.

In the 3D AFM case the statement about the finiteness of
& does not, strictly speaking, hold since there exists a small
region whereW (&) is positive and takes arbitrarily small
positive values, so that the decrease of.1/¢) can be slow.
However, the behavio£* (g) is in fact determined by the
logarithmic singularity of the functionV (&) except for a
very narrow region neag.. The numerical calculations
yield the estimatiorg—g.~ 10 * for the region wheret*
starts to increase. Thus, from the practical point of view, we
may puté to be finite. The corresponding value gff**=g;
is determined by Eq(74) andg;} is smaller thanggy™. At
very smallg—g.~10"* the value ofg* starts to increase.
However, due to the minimum of the functiongli(£),
gs =1/A remains finite atg—g., as well as in the limit
N— oo,

In the case of a ferromagnet the influence of the singular-
ity is somewhat weaker sincg&(¢) does not change its sign
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and takes small positive values up to infinity, so tg&t tral density. The integral of motion of the system of equa-
starts to increase appreciablygt g.~10 3. tions (38) and (39) has the same forrtb9), and we obtain
The dependenceg.:(¢) according to Eq.(62) for the
magnetically ordered phasesgt-g.*+0 are shown in Figs. 1 1 e v
2 and 3. One can see that considerable linear regions occur in —=1+-In—=1+ —[g:(£)—g]. (76)
Z(é) a N gef g
these dependences for the FM and 3D AFM states. wer(§)

Now we discuss the results of the approach of Sec. IV,
which takes into account the incoherent part of the spin specFhe corresponding equation fgg; reads

d(1ger)
9E

_‘Pincoh()\ + (aV/N)[gef_ g] - 5)

\%
_[\I,coh()\"i'(aV/N)[gef_g]_f)_q’incoh()\+(aV/N)[gef_g]_g)]/ 1+N(gef_g)} (77)

The role of the incoherent contribution becomes importanaind in some region ofg—g.| the minimum of 1g.:(&)
only provided thatZ deviates appreciably from unity, i.e., vanishes completely. Therefogg —0 atg—g., unlike the
Oes— 0 is large. This takes place in a rather narrow region ofsituation for Eq.(62).

|g—g.|. The estimation foig; in the case of smalb now The influence of the incoherent contribution #handg*
reads is considerably suppressed by the singularity of the function
V.o €). The region where this contribution starts to play a
ani/N role is determined by the quantity In particular, for the 2D
Y=, (78  AFM case its influence o§* is practically absent since the

~_pmax_
1+Vgy/N =% divergence ofge¢(&) occurs due to the singularity of

. V.o(€). Note that sincg* is finite atg—g., the coherent
so that, as follows from E(70), g. increases. contribution survives up tg, .

The dependenceg,((¢) for a ferromagnet at small  the comparison of the results of various approximations
|g—g.| according to Eq(77) are shown in Fig. 4. One can g presented in Table |. One can see from this table that for
see that the well-linear “ferromagnetic” behavior crossesy =2 the relation of the, values in the ordered phases and
over to a PM-like “quasilinear” behavior with increasifg iy the PM case is reversed in comparison with the limit
cf. Fig. 2. The point of the crossover is estimated fromy o This fact is due to the influence of the scaling func-
Z¥Gn=1, ie, tion singularities. It should be noted that at larger 1/5 the

value ofg, in the ordered phases exceeg§'\", as well as in
(VIN)(E=N)=TT2 (790  the largeN case. In caséii) the value ofg. is intermediate
betweeng!’ andg"™ and closer ta@!” . With increasinga

As demonstrated by numerical calculations, taking acO’ N the difference between{" and g{’ becomes still
count of the incoherent contribution results in smearing ofsmaller.

the nonmonotonous behavior gf(£) in the 3D AFM case, The dependences d/(g) and £*(g) according to Eq.
(77) are shown in Fig. 5of course, these diagrams do not

10

9.¢ TABLE I. The critical valuesy, and¢? for different magnetic
phases in the cas®é== [see Eqs(53), (55), and(58)] andN=2
8 in the approximation of Sec. Il{i) and with account of the inco-
herent contribution (ii). The parameter values are.=5,
6 a=1/2,5=1/100. ForN=2, the “critical value” of & is esti-
mated from the plateau in the dependeéitég) (see the discussion
4 in the tex}.
2 PM FM 3D AFM 2D AFM
A & N—oo g. 0167 0.167 0.171 0.176
x - - 5.35 5
6 8 10 12 14 16 N=2 (i) 9. 0154 0139 0132 0.127
FIG. 4. The scaling trajectorieg.(£) in a ferromagnet with . - 6.13 6.07 6.07
account of the incoherent contribution according to Etf) with N=2 (ii) Jc 0.154 0.141 0.136 0.131
N=2,a=1/2,\=5, §=1/100 for g=0.139 97-g. (upper ling x - 6.23 6.17 6.16

andg=0.139 96<g. (lower line).
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/
1
/
/
Ny

1/g*

0.12 0.14 0.16
(b)

8119

FIG. 5. The dependencesgt/g) for g<g. and£*(g) —\ for g>g. in a paramagnefd), ferromagnetb), 3D antiferromagnetc), and
2D antiferromagnetd) according to Eq(77). The dashed line is the curvegt! A, A =5, a=1/2,N=2. In the magnetically ordered phases

we seté=1/100.

show the above-discussed increase @*1And &* in the
AFM case, which takes place at very smag.|). The

Jef(9=0gc,E—2)=—(N/Va)é. (82

experimentally observable quantities can be obtained fronpowever, the dependencéé (g) turns out to be qualitatively

these data by using the formulas

S* = Se(C=0)=Sexp(— (V/N)[g* —g]),  (80)
©* = we(C=0)=w exp(—(aV/N)[g* —g]),
(g<g.). Forg>g. we have
Tk =Dexp(—&*). (81)

One can see from Fig. 5 that, provided thas far fromg,,
we have the one-impurity behavigt (g)=1/g, and the de-
pendence * (g) is given by Egs(52) and(54), as well as
in the largeN limit.

VII. CRITICAL BEHAVIOR ON THE BOUNDARY
OF THE STRONG-COUPLING REGIME: BREAKDOWN
OF THE FERMI-LIQUID PICTURE

To investigate the “critical” behavior of* atg— g, we
consider the function 4:(g,C) at small|g—g.|,|C|. First
we consider the results of the solution of H§2). With
approachingy., the £ region, where the behavig64) takes

the same as foN— [see Eq(57)],

£ =yIn(g—9go)- (83
Numerical calculations yiel¢=1/2 for the FM atN=2, and
v=1 for the FM withN>2 and PM. These values are the
same as fom—0 [or as according to the large-equation
(44), provided that we take for the FM functids0)]. Thus
one may put forward the hypothesis that the critical expo-
nents are universal, i.e., depend on the type of magnetic or-
dering only, but not orN, V, and «. In the AFM phases
numerical calculations yield the dependena&s) with
y=0.1 (d=3) andy=10"3 (d=2).

At the same time, the behavior af* at g—g.—0
changes in comparison with the larbelimit. It turns out
that for finite N one may establish a scaling relation of rel-
evant variables aj>g. andg<g,., as well as in the stan-
dard theory of critical phenomena. To find this relation, we
consider our problem in the regidg—g.|>& wheree—0
determines a scale of approaching to the critical point. When
crossing the cut region, the argument of functinshould
not shift considerablyFigs. 2 and R Indeed, this argument

place, becomes very narrow and not too important for determust be close to zero; in the ordered phases it is fixed by the

mining £€*. Unlike the exponentialin £¢) behavior in the
largeN limit, we have from Eq(72),

singularity point, and for PM a considerable ‘“smearing”
takes place. Then we may estimate
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N+ (aVIN)[g* —g]=&*, (84)  tron scattering by this “ultrasoft” mod& Unfortunately,
our perturbation approach does not permit us to determine

so that explicitly the temperature dependences of observables since
% _ the coupling constant is not small in this regime. However,
g% =»(N/Va)in(g.—g). (89 the calculations can be performed within the lafgps— f
As demonstrated by numerical calculatidifig. 5(@)], in  Model(see the “?Xt .sect@
the PM phase the increase ofj1/for g not too close tay, Of course, vanishing ab.(C) at|C|=Tg and of T and

is almost linear ing, as well as in the largstlimit, and the  »* atg=g, is the result of using the lowest-order perturba-
behavior(85) takes place only starting from* ~10 which  tion theory at the derivation of the renormalization-group
is, strictly speaking, beyond the applicability of the lowest-equations. In fact, one may expect that in the strong-coupling
order scaling. At the same time, for the FM case the |°ga'regionw_ef(C)~TK 10110ne may assume that the true scal-
rithmic dependence takes place in a considerable interval (?ﬁg behavior, which may be continued into the strong-

1/g*. As discussed in the previous section, for 2D AFM'S ¢o(pling region, differs from the lowest-order scaling behav-
the increase of* and¢* atg—g. can be hardly observed. ior py the replacement

Of course, for 3D AFM’sg} =1/A is in fact finite, and
the behavior(85) takes place at not too largg’. More ex- B(g—go)/g— (T: /@) 2. (93)
actly, we can write down ¢ K

A scaling law, which is more general than E§8), could be

Ug*=11y(N/Va)in(g.—g)]+A. (88)  expected to have the form
However, practically the “saturation” region is extremely L L s
narrow and cannot be achieved because of the smallness wei(C)lw=(Ti/w)p(CITE). (99

of y.
When taking into account the incoherent contribution, alhen one has
crossover to a PM-like regime takes placegatg. in the o L .
dependenceg* (g) and&* (g), so that at very smalg—g,| Sei(C)/S= (wei(C)/ w). (95)
we have the behavior of Eq&33) and (85) with y=1. o o ) . )
Basing on the results of EqE3) and(85), it is natural to A detailed investigation of magnetic properti@s particular,
assume that aj—g., C— —0 one has the scaling behavior Of the formation of small moments, which are characteristic
for heavy-fermion systemseduces to determining an ex-
Je1(9,C) = — (Ny/aV)In(|Clw| Y7+ B(g.—9)/g), plicit form of the functions¢ andd. This problem cannot be
( solved within perturbative approaches.

(B>0 is a constant, the argument of the logarithm should be

positive). Then, according to Eq$60) and (61) V”|'|;HﬁE%Eggﬁzpl{k%wfjvggé?
wei(9,C)/0~[|Clw[*+B(g.~9)/9]", (88) As we have seen in Sec. V, in the larlyelimit the renor-

_ _ malization of magnetic characteristics is weak in comparison
Set(9,C)/S~[|Clw|*+B(g.—9)/g]”®. (89  with that of the electron spectrum. An opposite situation oc-
curs in the case of largd ] where the number of electron
branches is much larger than that of spin-wave modes, so
that the renormalization of spin dynamics plays the crucial

In particular, we have aj— g, the power-law dependences

K0 ~[£(g—g0)]" 9 e
It is instructive to consider the lardelimit in the s—f
S ~(ge=9)"™ ©D  model (N=2) with ]
Thus the *“critical exponents” for the characteristic energy _
scales, namely, fof} atg>g. and w* at g<g, coincide. [1]—e, g—0, [I]g%2=g?=const.

Using Eq.(89) we obtain ag=g,, C—0 Then the effectives—f interaction is unrenormalized,

la Jer=g=const, and the scaling equation takes the form

S.«(C) [ wai(C
ef(C) _ wei) g ©
S ° oy
. . . . {9—=a92‘1’(7\+x—§), (96)
One of the most interesting consequences of our picture is 3

a possibility of a non-Fermi-liquid behavior on the boundary

: : : where
of the strong-coupling region. Indeed, during the renormal-
ization process aC—0 the effective spin-fluctuation fre- —
guency tends to zero, and the corresponding spectral density (&) _“
is concentrated neas=0. In this sense, the situation is close weil &) '
to that in the one-impurity two-channel Kondo problem
where a collective mode with zero frequency occurs, whichVhen taking into account the incoherent contribution we ob-
leads to a breakdown of the Fermi-liquid picture due to electain instead of Eq(96)
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ax ~
,}’_gz gz[zq’coh()\+X_§)+(1_Z)\I,incot{)\+X_f)]-
97)
Z=1/(1+ xla).
By introducing the function
B _ el
v=A+yx—§é=In—, (98)
Weft
Eq. (96) can be readily integrated to obtain
\ dg’
———=¢. 99
J’vl—agz‘lf(é’) ¢ ©9

However, a simple qualitative analysis can be performed im

mediately for both Eqs(96) and (97).
In the PM phase we have

x(§)=ag % (100
up to the point
&= i (101
' 1-ag?
Thus a power-law behavior occurs
we(C)=w(|C|/D)?, B=ag? (102
For é> ¢4,
X(H)=x(£&)=rag’(1-ag?)* (103

is practically constant.

Note that unlike the cade=0, which was discussed in the

previous section, the bare coupling constgrand the expo-
nentB can be sufficiently large. A~ 1, wo((£) decreases
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FIG. 6. The dependence gf=In(w/wy) vs £=In|D/C]| for a 2D
antiferromagnet al ]= with §=10"3, A\=5, g=0.6 according
to Eq. (96) (dashed lingand with account of the incoherent contri-
bution (solid line).

In magnetically ordered phases, the situation §oré;
changes since the singularity #.,(&) plays an important
role. Provided thaag ¥ 13*>1, the argument of the func-
tion ¥, at £> £, becomes almost constant, and we obtain

X(E)=E—\, w(C)=|C|. (107)

The behavior(107) is similar to the dependenc@8) for
finite |, and corresponds t9=g.. In the case of Eq(96),
this behavior takes place up o=. On the other hand, an

account of the incoherent contribution results in that the in-
max__

crease ofy stops atag 2pT—1/7=1+x/a, i.e., at

E2= N+ Xma— A+ a(@Q2V I 1). (108

Thus the value of, is determined by the quantity. The
dependencg/(¢) for a 2D antiferromagnet is shown in Fig.
6. In the presence of the incoherent contribution the region,
where the dependend&07) holds, is rather narrowespe-
cially for not too smalls). However, a more exact consid-

rather rapidly during the renormalization process. Thus &ration of spin dynamic&ather than using the spin-diffusion
“soft-mode” situation occurs, which may lead to a NFL approximation may change considerably the results.

behavior.

In the regime(107) we have the resuit104) with g=1

To investigate modification of the electron spectrum we;nqp— . so that in the AEM caseal=1) one obtains
may calculate the second-order perturbation theory correc-

tions, which are formally small in [lI]. Replacing

xm(T)=const, Cu(T)~In(w/T). (109

w_—m)_ef(C) in the usual second-order result for the electron

self-energy(cf. Ref. 33 and introducing the effective elec-

tron density of states at the Fermi lew}(C) we obtain

Z(C)

D B
Ne C)~—=—"—~ 7= T -
e (|C|) "l

(104

For finite, but largd | ] the picture discussed fails below

Tk=Dexp(—[1]"7+29).
However, the NFL behavior takes place in a wide tempera-
ture regionT <T<w. At T<T the renormalization ofj.¢

(110

To investigate qualitatively temperature dependences wbkecomes important and, as discussed in the end of the previ-
may replace|C|—T. Thus one may expect an essentially ous section, a more complicated scaling behavior may take

NFL behavior of the electronic specific heat,

Ceo(T)~TNet(|C|=T)~TL AIn(D/T), (105
magnetic susceptibility,
Xm(T)~S2(|C| =T/ T~1Ti-Fl2, (106)

transport properties, etc.

place.

As discussed in Sec. \(bee Fig. 4, a NFL behavior takes
place even fot =0 for g=g.. Numerical calculations con-
firm that the NFL region becomes broader with increasing
[17. The linear dependenag.{(£) with a small coefficient
takes place up tg@=5, then this is changed by the linear
“coherent” behavior which is further smeared by the inco-
herent contribution.
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IX. CONCLUSIONS moment determined from the magnetic susceptililaynd

In conclusion, we summarize the main results of our con2(T) may be qualitatively obtained by a simple replacement

sideration, discuss their connection with peculiarities of th Cl—T. . o .
anomalousf-electron systems, and mention some unsolved ForN=2 and small enougi (spin excitation damping
problems. Three regimes are possibld &0 depending on the Kondo screening in the AFM and FM phases is stronger

the relation between the one-impurity Kondo temperafige than in the PM phase. This leads to an increase of the
. . — Rhodes-Wohlfarth rati@i.e., of the ratio of the effective mo-
and bare spin-fluctuation frequency: (i) The strong-

. ! . ment, as determined from the Curie constant, to the satura-
coupling regime withl .{(C—0)—~ where all the conduc-

tion electrons are bound into singlet states and spin d namiction momen}. For example, if the bare coupling constant is
9 pin dy ose to its critical value in the ordered phase and corre-

is suppressed. This regime is expected to occur provided thzg ondingly lower than in the PM phase, the ground-state

w<Ty. (i) The regime of a “Kondo” magnet with an ap- moment is small in comparison with the high-temperature
preciable, but not total compensation of magnetic momentsyne (a behavior, typical for most Kondo magnets, as well as
which corresponds to smajg—g,|. (ii) The regime of eak itinerant electrod magnets The same situation takes
usual” magnets with small logarithmic corrections to the .o for the characteristic spin-fluctuation frequengy. It
ground-state moment anak. (Note that the same situation snould be noted that an increase of spin-fluctuation energies

takes place at.>0.13) _ with temperature is indeed observed in a number of anoma-
The formation of magnetic state takes place at lous f-electron systems, e.g., &n;,.%°
Presence of the factor N/in the AFM2 case or a large
o) Yot value of § (magnon dampingmay result in that the suppres-
w=Dexp —1/g.) =Aw D (111 sion of the effective moment and spin-dynamics frequency

turns out to be weaker than in the PM phase. It looks like the
, , decrease of moment at magnetic disordering with increasing
(ac=\gc, A is of the order of unity. ForN— we have temperature. Such a decrease is typical for strong itinerant
a:=1+0O(1/A) and the strong-coupling region boundary is pagnets, where it is due to the change of electron spectrum
determined by the conditiofix=Aw. For finite N we al-  at disordering'see Refs. 28 and 36In the case under con-
ways havea <1 (see Table)l and, according to Eq111),  sideration this phenomenon has a quite differ@ssentially
To<w. many-particlg nature.

It should be stressed that the Doniach criteripa=0.48 Near the boundary of the strong-coupling regigr-g.)
which was obtained for a very special case in a simplifiedthe relevant variables demonstrate a nontrivial scaling behav-
one-dimensional model, cannot in fact be used for real sygor as functions ofg—g.| and¢. In particular,
tems. Indeed, as demonstrated by numerical calculations for
N=2, g. turn out to be sensitive to parameters of exchange T5(g—0c+0),0*(g—0ge—0)~|g—gs?, (112
interactions, type of magnetic ordering, space dimensional-

ity, degeneracy factors, etc. the exponenty depending on the type of magnetic ordering.

It is a common practice to treat the interplay of spin dy-Thege results may be of interest for the general theory of
namics and the Kondo effect within the two-impurity prob- etailic magnetism. The description of the state with small

lem (see, e.g., Refs. 34However, we have demonstrated ya4netic momentd—g,) turns out to differ considerably
that the most important features of the scaling behavior arg. " inat in the theory of weak itinerant magneti&hit is

connected with peculiarities of the spin spectral density anGheresting that the “critical exponents” in the dependences
are not described by this modgvhere the spectral density is of the moment on the coupling consta@t) andC (92) turn

a 5-like peak corresponding to singlet-triplet transitipns _out to be noninteger. The corresponding dependences

We have used in our calculations the simplest “Debye” —_. = .
approximation for the magnon spectrum, i.e., the Iong-wave‘St(T)_ Setf(|C|._aT) d deSCI‘Ib? rﬁgn analog of the
dispersion law in the whole Brillouin zone. At the same time, emperature-inquced magneusn.

competing interspin interactions, which are owing to the os- As mentioned in the Introduction, high sensitivity of the

cillating behavior of the RKKY exchange and can lead to_magnetic state in heavy-fermion systems to external factors

frustrations, might be important for explaining magneticIS explained by that in Casé'.') _the magnetic moment
structures in the “usual” Kondo lattices. changes strongly at small variations of the bare coupling

The effective Kondo temperatufE; determines a char- constantg. Acpording to our con§iderati0n, the regim.e of
acteristic energy scale of the “heavy-fermion” behavior atsmall magnetic moments OCCurs in a very narrow region of

low temperatures. This can differ considerably from the one—bare parameters only. The renormalized values of magnetic

impurity valueTy, so that in the PM phasgg <Ty, and in moment and spin-fluctuation frequency are determined by

. he quantityg*. Provided thatg is not too close tay., a

the magnetically ordered phases, except for very smal h i L .
. aracteristic interval of the change gf by unity is esti-

g—d., Tx>Tk (see Fig. 5. In the AFM caseTy depends SHe TierV ge gt oy unry | !

mated as’g~ g?<g. In the immediate vicinity ofy, (where

weakly ong and therefore offx, and is determined by in the behaviorg* ~ —In|g—g takes plack this interval be-

a wide interval ofg. comes still more narrowsg~|g—g.|. A more consistent
Although our consideration was performed fo+0, one  treatment of this regime with account of possible renormal-

may expect by analogy with the one-impurity problem thatization of the scalég—g.| itself requires using more com-

the dependenceS(T) [in the PM phaseS(T) is the local plicated(e.g., numericalscaling approaches.
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“Softening” of the spin excitation spectrum in the critical 1
region may result in a non-Fermi-liquid behavior. Although ~ H¢=const+ >, Cgblbg+ 5 Da(b—gbg+ bib" )|,
the NFL state itself cannot be described within the frame- q
work of our perturbative approach, the conclusion about the
NFL behavior near the boundary of magnetig<(g.) and _ _ _ _
nonmagnetic §>g.) phases seems to be important. This Ca=S0q+atdg=2J0): Dg=S(Jq~Jora)-
conclusion is confirmed by the fact that a violation of the Diagonalizing Eq.(A3) we obtain the spin-wave spectrum
Fermi-liquid picture in the anomalouselectron system is
really observed near the onset of magnetic ordeting.is wq:“’QFM(S):(Cé_DS)m: 28(34=39) M Jg+q—I0)
difficult to explain this fact within the frequently used one- (A4)
Impurity two-channel Kondo modé_T.At the same time, our The corresponding transformation to the local coordinate
scenario of the NFL state formation takes into account eséystem for mode(7) has the form
sentially themany-centenature of the system. The width of
the region where the NFL behavior occurs increases with R . ,
increasing the degeneracy facfd] and decreases with in- XMM = E[XiM'M (14 coQR)+ X MM (1-coQR))].
creasing\N. In the formal limit[|]— oo perturbation theory in
g remains applicable, so that explicit expressions for thermoThen we obtain
dynamic and magnetic properties can be obtained. S

On the whole, the physical behavior that occurs as a result AN o AN
of an interplay between the Kondo effect and intersite ex- Hi=2 E (JgZ)XMQA Xaﬂ M+J£11)XM<':\1A Xq e,
change interactions, turns out to be very rich and differs for q MM=-s (A5)
various model versions.

(A3)

S
1 ~ ’ ~ ’
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APPENDIX A: GROUND STATE AND SPECTRUM OF SPIN
EXCITATIONS OF THE LOCALIZED-SPIN SYSTEM (1,2)_3 —
IN MODELS (2) AND (7) 2

In the ground ferromagneticM) state of modek2) to  In the mean-field approximation we have
zeroth approximation in we have(S/)=S, and the spin-
wave spectrum reads

S
<Hf>=M:2_S(ng)n§A+ng>nMn_M) (A7)

_ FM _
@a= @q (3)=280Jg™ o). (AD with ny=(XM"). The usual AFM state turns out to be un-
For model(7), we also assume the magnon character of spirstable for simple lattices provided that only the nearest-
dynamics. Then the spin-wave spectrum can be found byeighbor interaction is taken into accoud{¥=0). Indeed,
linearizing the equation of motion for the “spin-deviation” in this case any state with
operatorX'Yﬁ. There exist 5= N—1 spin-wave modes with
the frequencyw,= wg"'(1/2), which correspond to the tran- S =1 D ny=0
sitionsS—M <S. M>0 M<0

Now we discuss an antiferromagnet which has the spir

structure along the axis with the wave vecto® (Jo=Jmin) has the same energiy)=0. When introducing the next-

neighbor ferromagnetic interactiod{{)<0) the AFM state
. with
(Sf)=ScoRR;, (S)=SsimQR;, (S)=0.

ng=1, Ny-s=0 (A8)
We introduce the local coordinate system S M=S

is stabilized. This state will be referred to as AFM1. The
corresponding “spin-wave” spectrum contaibsbranches.

Z_ &2 L Ysj .
Si=SICoQR — STsInQR;, (A2) The mode, which corresponds to the transit®n — S, has
i i i the frequency»(?) = wh™(S=1/2). OtheN—2 modes have
S/=S/coR;+SsIQR;,  S'=S. a ferromagnetic type and possess the energy
Hereafter we consider for simplicity a two-sublattice AFM oy =wfM(s=1/2,3,—37).

(2Q is equal to a reciprocal-lattice vector, so that

cogQR; =1, sirfQR;=0). Passing to the spin-deviation op- Provided that the next-neighbor interaction is antiferro-
erator we represent the standard Heisenberg Hamiltonian imagnetic too IP>0, this case is referred to as AFM2
the spin-wave region as minimization of Eq.(A7) yields
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2IN=2/(2S+1), N even were performed in Refs. 9 within the simplest nondegenerate
3/(SH+IP), N odd. s—f model. Repeating a similar procedure in a more general

A9 case we obtain for the singular contributiomhich contains
(A9) a logarithmic divergence in the absence of spin dynamics

nM<0=0, nM>0:KE

For oddN we have
3 _ q
No=J21(ShH+IP)=32/(SH)<K.  (AL0) IS )(E)——I3PNJ de Jq(w)—E -

Then, according to Eq9), for N>2 the sublattice magneti- 1 1
zation turns out to be reduced in comparison v@thlready — ) (B3)
in the mean-field approximation: E-tip kg tk-p

1 S+1/2, S half-integer whereN=2 in model(2), the spin dynamics is neglected in

S— : (A11)  the denominator which is not connected with the Fermi func-
2 (S+1)(1—ng), S integer. tion ne=n(t),
Then there exisN?/4 (N even or (N—1)%/4 (N odd “an- s
tiferromagnetic” modes which correspond to the transitions Tl @)= — iN(w) Im<<Sq|S,q)>w (B4)
from M>0 to M’'<0 and have the frequency q T (SZ_qSé>

o'®=wi™(S=K). Besides that, for odtl there exist pe- _ _ , .
cuhar modes with the frequencies®, which describe the is the spectral density of the spin Green’s function for the

transitionsM —0 and are determined by the equations HamiltonianH, , which is normalized to unityN(w) being

the Bose function. The Kondo renormalization of the f
th(w)z[wI(K—Zno)Cq](winOCq)+nO(K—2n0)D§ para(lgw)eterllﬂleelg)ﬁlef is d(_ater_mined by “including”
Im2*’(E) into Im3~/(E), and is given by
=0 (A12)
; ; ; N
(the plus sign corresponds td >0 and the minus sign to Sli= — _|2f doS T(w -q B5)
M <0), so that to lowest order in, o2 ) 2 al @) g= t—q (

inZiKCq, w

oL Qx ;no(cé_ Dﬁ)/Cq- (A13)  (we have to seE=E£=0, k=kg in the expressions fdr).

@ To concretize the form of spin dynamics in the paramagnetic

Thus one of the solutions to E€A12) describes the mode phase we use the spin-diffusion approximation
which is very soft ford{?><SJ,. Since the Kondo singular
contributions, which are cut at this mode, are large, this may 1 Do?
result in a tendency to the destruction of magnetism. A )_ w2 2\2

‘ > +(DPg”)

Really, the considered ground states and excitation spec-
tra are strongly influenced by the crystal fiéld”*In par- (D is the spin-diffusion constanwhich is correct at small
ticular, large gaps and degeneracy lift may occur in theq,» and is reasonable in a general case. Then we derive
above-discussed “additional” modes. This question needs
special consideration.

(B6)

N n
Sl op=— —|2Re2 S l: N (B7)
2 E—ty_q—iDg?
APPENDIX B: RENORMALIZATIONS IN THE
PARAMAGNETIC PHASE To calculate the correction to the effective magnetic mo-

The Kondo-lattice problem in the paramagnetic state dement we treat the static magnetic susceplibility

scribes the process of screening of localized magnetic mo- Ut

ments that are determined from the temperature dependence  y=(S? %)= dA(exp(AH)S’exp(—\H)S?). (B8)
of magnetic susceptibility, and the related anomalies in the 0

electron spectrum and damping.

Expanding to second order Inwe derive(cf. Ref.
To find the renormalization of the effective—f ex- P 9 ( 9

change parameter we consider the electron self-energy. In - 23T S2.=5S+1)1—L B9
the second order ih we have X= Sed3T, - Se=S(S+1-L, B9
* nk(l_nk—q)
(2/(E)=12 P> B1 L=2R|2f do> Jy(w) —————
where where we have introduced the notation
[11S(S+1), model(2) [11, model(2)
= 5 (B2) = (B10)
1-1/N°, model(7). N/2, model (7).

To construct a self-consistent theory of Kondo lattices, weThe spin-fluctuation frequency in the paramagnetic phase is
have to calculate the third-order Kondo correction to the selfdetermined from the second moment of the spin Green’s
energy with account of spin dynamics. Such calculationgunction
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w§=(sz_q "Sz)/(sz_q ,Sé). (B11) Tq calculate the cor(ections tbes in the _Coqblin—
Schrieffer model we consider the Green’s function
To second order ih we derive(cf. Refs. 10 and 13

4 > ({({Crulck —{(Ck—mlChio_m)E). (CH)
D=t DS gy s 12 2 ((ealekou)e—((-wlchio e
p
which determines the “magnetizationlFM case,Q=0) or
Swilwi=(1-aq) 6S2/S2=—(1-aglL, (B13  “staggered magnetization({AFM case of conduction elec-

. . . trons.
where we have taken into account spin dynamics by analogy pror 4 ferromagnet the mean-field electron spectrum reads
vath Eqg. (B9). Passing into real space vyields for the quantltyEkM:tk_mMs_ Calculating the second-order corrections

ag we derive

; 2
> J§<S|:k|;R) [1_00$R]/; 2[1- coxR]. Sler=—2[(N-D)SME)-SFNE)IIN  (CY)
F
(B14)  (remember that in the Cogblin-Schrieffer model the self-

energies should be substitutedSat 1/2).

In the AFM1 state the mean-field electron spectrum for
M=S,—S is given by Eq.(C3 with the replacement
ty—t,— 1. For otherM the spectrum is unrenormalized. The

renormalization ofl in such a situation contains contribu-
APPENDIX C: EFFECTIVE s—f INTERACTION tions of both FM and AFM types:

IN MAGNETICALLY ORDERED PHASES

This quantity differs from the result for a ferromagr&®)
by the replacementJR—dﬁ. However, in the nearest-
neighbor approximation we obtain the same re&2(.

. . — ) _ FM FM f
Here we investigate the renormalization of thef inter- Ol er=—2[(N=2)Z{(E, 0q ng )

action in the FM and AFM phases. First we treat mo@pl AEM AEM (a)

For a ferromagnet the electron spectrum possesses the spin +Ek'k+Q(E’wq —awq ) J/N. (C8)

splitting, E,,=t,— o[l]1S. The second-order correction to In the case AFM2 the electron spectrum is given by @)
| o is determined by the corresponding electron self-energie®ith S—K/2,t,—t,—IK. Besides that, for oddll there ex-

(cf. Ref. 9: ists a branch of spectrum wittl =0, which is weakly renor-
Slom —[SEME)— S FMOE)V (2| c1)  Malized due to smallness if”)|. Then we obtain for even
ef= —[ 247 (E) =2 (E)1/(251]) (Cy N
with
o 8l o= =253 o(E, 0™ — o). (C9
FM _ 2 —q
2y (E)=2RI SEq m For oddN the contribution of the mode E@¢A12) occurs:
—-q7" ¥q
1_nk Sl __2N_12AFM E AFM (a)
EEE"(E)ZZRFSE —7qFM' (C2 ef— N kkro(E g —og”)

q E_tk_q_ wq
—[(K—no)Eil,lr+Q(E)+nozﬁ_+Q(E)]/K’

For an antiferromagnet the electron spectrum contains the

AFM gap, (C10
1 1 1/2 where
Ekzz(tk+tk+Q)i Z(tk_tk+Q)2+([|]|S)2
N N—q(E—t_g)
(C3 ST o(B)=123 —thE “. (C11)
The renormalization of is obtained from the second-order q( ~tk—g)

correction to the anomalous Green'’s function
APPENDIX D: RENORMALIZATIONS

AFM
(Craleh o) e= _ IS 2co(®) OF THE ORDERED MOMENT AND MAGNON
kolk+Qu//E (E-t)(E—tyio)’ FREQUENCY
so that To investigate the magnon spectrum of an antiferromag-
AEM net in model(2), we calculate the retarded Green'’s function
Sler= =2 ro(BE)/ (S1D). (C4  of spin deviation operators in the local coordinate system

The calculation of the off-diagonal self-energy gives . _ £t
(@) =((bgbl))y, Tq(@)=((b"4Ibl)),. (O

N—q(E—1,—
S eto(E)=2RI?SY, ol - X quM ~. (C5  Writing down the equation of motion we derifef. the cal-
a4 (E-ty—g)"—(wq ) culations forl =0 (Ref. 39]




8126 V. YU. IRKHIN AND M. I. KATSNELSON 56

w+Cq_y 8(blby) =110 (D9)
To(w)= 7 (D)
(w—=Cgyy)(@+Cqy_,)+Dg, for a ferromagnet with
— Dgo N(1=nNip_g) N Nk—Nigp—
(0—=Cgu)(@+Cq-,) + D5, K (0+t—ti i pq— @p)?
(D10
where
ExpressiongD8), (D9) determine also the singular correc-
quzs(\]giq’w_'_‘];oﬂtj_2‘]86)_1_[']% [Cpq’ﬁgy tion to the(sublattice magnetization
— 1
—(Cp—Dp) DA+ bt Dol 5SIS=— §§ 8(bibgy=—Tl ]% LEAM. (D1D)
+> [(2o+ 2Jq_p—2Jp—JQ+q—Jq)<bgbp> Collecting all the singulas— f contributions to the pole of
P Eqg. (D2) and taking into account the relation
—2J(b_pbp) 1, (D4) D
% Jp+kq)pqw:2p Jp+k7qq)p00~|2<kaq>tk=tk_q=0|njv
— — tot tot AFM
qu_Dq—w_s(‘]qow_J8+q,w)+[l]% DpP e (D12
which holds to logarithmic accuracy, we derive for the sin-
+2p [(Jg+q—Ig){biby =24 o(b_bp)1. gular correction

The s—f exchange contributions of the first order in %/2 AFMy2_ AFM_ _ 2 2
correspond to the RKKY approximation dwq ) =200y R% [203+ 45 JorqtJg
— _ _ _ AFM
J;o:):\]q+|2[|]z Nk~ Nk—q (D5) 239)(JpFdg+p~Jo+a-p~Jg-p) 100
ot lq (D13)
the second summand in E¢D5) being the w-dependent .. R=[I].
RKKY indirect exchange interaction. The functidn which

In the case of a ferromagnetQ&O0), the term
determines the second-order corrections, is given by gnet QE0)

¢ng+ ®pqe (Which is odd inw) yields a contribution to the

q)éth:a'\)/l:(d);qw_ ¢;qw)/wp, (D6) pole of Eq.(D2) and we have
gz 123 KT Merp—o) T NCE @) (M Nictp-) SwfM(@)=—2RSY, (23,—23q_p+Iq—Jo+ w/2S) DN,
pqe k w+tk—tk+p,q1 (l)p p

(D7) (D14)

(note that¢>;qw= — $pg—w)s @p IS the magnon frequency to . . .
zeroth order in and 1/5 given by Eq.(A4), the terms in ~ dwg = dwg (wg) = —4RSY, (Ip+Ig=Ig-p—J0) P poo-
Eq. (D4), which contain the spin-deviation correlation func- P (D15)
tions, describe the magnon anharmonicity. Expres§iaR)
is valid also for a ferromagnet)=0) provided thaty is not  Expression(D15) can be represented as
too small, cf. Ref. 40; such an approximation is sufficient to
treat the Kondo divergences. Swqlwq=2(1— ag) 5SIS (D16)
We have to take into account singukat f contributions
to the averages in E4D4). These are due to the zero-point with a4 given by Eq.(19).
magnon damping and are obtained by using the spectral rep- For an antiferromagnet in the nearest-neighbor approxi-
resentation for the Green’s functior(®2), (D3) in the  mation Jgq=—Jy) We obtain from Eq(D13)
RKKY approximation? Since I, ~ o (|w|<Eg) the cor- o
responding integral over frequency contains logarithmic dwqlwq=6SIS, (D17)
Kondo-like divergences that are smeared by spin dynamics ] ] o
[note that scattering corrections to the damping, which aré0 that, in contrast with the PM and the FM cases, an explicit

described by the functiofD6), do not contribute the loga- dependence on the parameted is absent. Note that the
rithmic terms. We derive results(D16),(D17) differ from those of Ref. 13 since only

corrections arising from the static correlation functions were
bgbq) AEM - < AFM taken into account in that paper.
o (b by)| ~ 5 L11(®g00" + P00 (D8) The calculations of the magnon spectrum in the Cogpblin-
—daa Schrieffer model for the FM and AFM1 cases are performed
for an antiferromagnet and in a similar way by considering the Green’s functions



56 SCALING PICTURE OF MAGNETISM FORMATION IN ...

TIM (@)= (XM MXMMY),,
T (@) =((Xg" "MXMy, (D18)

for M’'=S. The results differ from Eqs(D2),(D3) by the
replacemenfl]—1 in Eq.(D5) and[I]—N/2 in Eq. (D4).

According to Eq.(9), the magnetization of a ferromagnet

is determined by

S/S=1-Nn_, E (XMSXEM), (D19)

8127

N—2
sl = 03y ) NG,
(D24)

2 N—2
8lwg)?=gg olwg™) A wp™ = o) + 27— Cq

X 5w§M(a)= w&a) , Jp*)\]i)z))
with R=N/2 in Egs.(D14), (D13).

In the AFM2 case we have to put in EqD18)
M<0,M’>0. Then we have

where the average in the right-hand side does not depend on

M for M <S. Then we obtain

(S+1/2?n_, N even
S(S+1)n_+(S+1)éng,

=(S)o—

N odd.
(D25

The sublattice magnetization in the AFM1 case is givenWhere (S)o is given by Eq.(A11), the average

N
55/5———2 Do, Swg=5 S, (D20)
by
S/S=1—(N-2)n_—2n_g (D21)
with
=% (XMSKEM)  (—-s<M<S), (D22)
N = 2 (X s&s s
After cumbersome calculations we derive
N— (f)
58/5———2 (quow —wp’)
—E DN (wh™M— ), (D23

=2 (KR

does not depend av ,M’ for M’ >0, M <0, and én, is the
fluctuation correction tay. Restricting ourselves for sim-
plicity to the case of eveN, which corresponds to a realistic
situation forf ions, we obtain

5S/S=— 2 Do (h™M— 0, (D26)
5 (a)_zé AFM, AFM (a) D27)
wg =99 (wp " —wp). (

Thus the singular corrections to the sublattice magnetization
and magnon frequency do not contain the factoNdh this
case.
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