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Scaling picture of magnetism formation in the anomalousf -electron systems:
Interplay of the Kondo effect and spin dynamics

V. Yu. Irkhin and M. I. Katsnelson*
Institute of Metal Physics, 620219 Ekaterinburg, Russia

~Received 27 December 1996; revised manuscript received 15 May 1997!

The formation of a magnetically ordered state in the Kondo lattice is treated within the degenerates2 f
exchange and Coqblin-Schrieffer models. The Kondo renormalizations of the effective coupling parameter,
magnetic moment, and spin-excitation frequencies are calculated within perturbation theory. The results of
lowest-order-scaling consideration of the magnetic state in the Kondo lattices are analyzed. The dependence of
the critical values of bare model parameters on the type of magnetic phase and space dimensionality is
investigated. Renormalization of the effective Kondo temperature by interatomic exchange interactions is
calculated. An important role of the character of spin dynamics~existence of well-defined magnon excitations!
is demonstrated. The regime of strongly suppressed magnetic moments, which corresponds to magnetic heavy-
fermion system, can occur in a rather narrow parameter region only. At the same time, in the magnetically
ordered phases the renormalized Kondo temperature depends weakly on the bare coupling parameter in some
interval. The critical behavior, which corresponds to the magnetic transition with changing the bares2 f
coupling parameter, is investigated. In the vicinity of the strong-coupling regime the spectrum of the Bose
excitations becomes softened. Thus, on the borderline of magnetic instability, the Fermi-liquid picture is
violated in some temperature interval due to scattering of electrons by these bosons. This may explain the fact
that a non-Fermi-liquid behavior often occurs in heavy-fermion systems near the onset of magnetic ordering.
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I. INTRODUCTION

Anomalous 4f and 5f compounds, including the Kond
lattice and heavy-fermion systems, were studied extensi
starting from the middle of the 1980’s.1–3 From the very
beginning of these investigations it became clear that
effects, connected with a regular arrangement of the Ko
centers~rare-earth or actinide ions!, play a crucial role in the
physics of such systems. When passing from one magn
center to the Kondo lattice, two main features appear. F
provided that the strong-coupling regime takes place,
Abrikosov-Suhl resonance in the one-sitet matrix leads to
formation of a complicated band structure nearEF with a
new energy scale~the Kondo temperatureTK) and sharp
peaks and pseudogaps in the density of states.4,5 This pro-
vides a common explanation for the heavy-fermion behav
Second, the competition between the Kondo screening
magnetic moments and intersite magnetic interactions i
great importance.6,5,4,7 Following the paper by Doniach,8 it
was believed in early works that this competition leads to
total suppression of either magnetic moments or the Ko
anomalies. However, more recent experimental data
careful theoretical investigations made it clear that
Kondo latticesas a ruledemonstrate magnetic ordering
are close to this. This concept was consistently formula
and justified in a series of papers.9–13 A very important cir-
cumstance is that interspin coupling between the Kondo s
results in smearing of singularities in electron and magn
properties on a scale of the characteristic spin-dynamics
quencyv̄. On the other hand,v̄ itself acquires renormaliza
tions that result in a decrease ofv̄ due to the Kondo screen
ing. A simple scaling consideration of this renormalizati
560163-1829/97/56~13!/8109~20!/$10.00
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process in thes2 f exchange model13 yields, depending on
the values of bare parameters, both the ‘‘usual’’ states~a
nonmagnetic Kondo lattice or a magnet with weak Kon
contributions! and a peculiar magnetic Kondo-lattice state.
the latter state, small variations of parameters lead to str
changes of the ground-state moment. Thus a character
feature of heavy-fermion magnets — high sensitivity of t
ground-state moment to external factors like pressure
doping by a small amount of impurities — is naturally e
plained. At the same time, only the simplests2 f model was
considered in Ref. 13, and the equations obtained were
investigated in detail. Therefore a number of important fe
tures of the Kondo magnets were not described.

Recently, a number of anomalousf -electron systems
~U xY 12xPd3, UPt32xPdx , UCu52xPdx , CeCu62xAu x ,
U xTh12xBe13, etc.! demonstrating the so-called non-Ferm
liquid ~NFL! behavior have become a subject of great int
est ~see, e.g., the reviews14!. It should be noted that such
behavior is observed not only in alloys, but also in som
stoichiometric compounds, e.g., Ce7Ni 3,15 CeCu2Si2 ,
CeNi2Ge2.16 These systems possess unusual logarithmic
power-law temperature dependences of electron and m
netic properties. It is a common practice to discuss suc
behavior within the one-impurity two-channel Kond
model.17–19 However, the NFL behavior is typical for sys
tems lying on the boundary of magnetic ordering and de
onstrating strong spin fluctuations.14 So, many-center effects
should play an important role in this phenomenon. On
other hand, for a number anomalousf -electron systems like
Sm3Se4 , Yb4As3 , as well as for the only ‘‘moderately
heavy-fermion’’ d-electron system Y12xScxMn 2, the
heavy-fermion state itself seems to be connected with pe
8109 © 1997 The American Physical Society
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8110 56V. YU. IRKHIN AND M. I. KATSNELSON
liarities of intersite couplings~e.g., frustrations!, rather than
with the one-impurity Kondo effect.20,11,12Thus the interplay
of the Kondo effect and intersite spin dynamics results i
very rich and complicated picture rather than in the triv
mutual suppression.

The aim of the present paper is a systematic study
formation of the magnetic Kondo-lattice state and of
properties for various magnetic phases depending on
character of spin dynamics. In Sec. II we introduce m
theoretical models which include orbital degeneracy and
able one to treat the Kondo effect for a lattice in differe
cases. In Sec III we write down the scaling equations for
effective s2 f parameter and spin-fluctuation frequen
~which plays the role of a cutoff for the Kondo divergenc
in concentratedf -electron systems!. In Sec. IV the scaling
approach for the ordered state is generalized by taking
account the renormalization of the residue of the s
Green’s function at the magnon pole. The most simple lar
N limit in the Coqblin-Schrieffer model where spin dynam
ics is unrenormalized is considered in Sec. V. The sca
picture for finiteN is discussed in Sec. VI. In Sec. VII w
discuss the critical behavior near the magnetic phase tra
tion and discuss the possibility of the Fermi-liquid pictu
violation. The scaling behavior in thes2 f exchange mode
with a large orbital degeneracy is investigated in Sec. V
and an explicit description of the non-Fermi-liquid behav
is obtained in this limiting case. In Appendix A we analy
the properties of the localized spin subsystem for the mo
under consideration in the absence ofs2 f interaction. The
Kondo renormalizations in the paramagnetic state with
count of spin dynamics are considered in Appendix B.
Appendixes C and D we calculate the Kondo corrections
the electron spectrum~and thereby to the effectives2 f cou-
pling! and spin-wave frequency in the magnetically orde
phases.

II. THEORETICAL MODELS

To treat the Kondo effect in a lattice we use thes2d( f )
exchange Hamiltonian

H5(
ks

tkcks
† cks1H f1Hs f5H01Hs f , ~1!

where tk is the band energy. We consider the pure s
s2d( f ) exchange model with

H f5(
q

JqS2qSq , Hs f52 (
kk8ab

I kk8Sk2k8sabcka
† ck8b ,

~2!

whereSi and Sq are spin operators and their Fourier tran
forms,s are the Pauli matrices. For the sake of convenien
constructing the perturbation theory, we explicitly inclu
the Heisenberg exchange interaction with the parameterJq
in the Hamiltonian, although in fact this interaction can
the indirect Ruderman-Kittel-Kasuya-Yosida~RKKY ! cou-
pling. Expanding thes2d( f ) matrix elements in the spher
cal functions yields

I kk85(
lm

I lYlm* ~uk ,fk!Ylm~uk8,fk8!. ~3!
a
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Hereafter we retain in Eq.~3! only one termI l[I ( l 52 for
d electrons andl 53 for f electrons!. Introducing the opera-
tors

ckms5 i l~4p!1/2cksYlm~uk ,fk!, ~4!

which satisfy, after averaging over the angles of the vectok,
the Fermi commutation relations, we reduceHs f to the form

Hs f52I (
kk8mab

Sk2k8sabckma
† ck8mb . ~5!

Assuming the electron and spin excitation spectrum to
isotropic, in final expressions for self-energies we can p
form averaging over the angles of all the wave vectors a
use the orthogonality relation

E E sinududfdYlm* ~u,f!Ylm8~u,f!5dmm8.

Thus the factors of@ l #5(2l 11) occur in any order of per-
turbation theory, and we have to replaceI n→@ l #I l

n in the
‘‘connected’’ terms of perturbation expansion in comparis
with the ‘‘standard’’s2d model (l 50).

It is worthwhile to remember the main results for the on
impurity version of this model.21,22Perturbation theory treat
ment leads to occurrence of infrared divergences. Provi
that I ,0, the characteristic energy scale~the Kondo tem-
perature! occurs,

TK5Dexp~1/2Ir!, ~6!

whereD is of order of the bandwidth,r is the bare density of
electron states at the Fermi level with one spin projection.
T;TK the effectives2 f interaction becomes very large an
the system enters the strong-coupling regime. The elec
energy spectrum in this region is determined by the prese
of the Abrikosov-Suhl resonance of the widthTK . The prop-
erties of the ground state and character of the lo
temperature behavior depend crucially on the parameteS
and@ l #. At 2S5@ l # the Fermi-liquid singlet state occurs. A
2S.@ l # the localized moment and logarithmic behavior
electronic characteristics retain, but the replacem
S→S2@ l #/2 takes place. At 2S,@ l # a very interesting
‘‘overcompensated’’ regime occurs. Recently the particu
case of this regime withS51/2, @ l #52 ~the two-channel
Kondo model describing the non-Fermi-liquid behavior, s
e.g., Refs. 17,19,18! has become a subject of great interes

In the case of the periodic model, the presence or abse
of the strong-coupling regime depends also on the chara
of intersite spin-spin interactions which are described byH f .
This factor will be analyzed in detail below.

The s2d( f ) model does not take into account scatteri
by orbital degrees of freedom.24,25,21,26 Another important
model, which is used frequently to describe the Kondo
fect, is the Coqblin-Schrieffer model. For its periodic versi
with the f 2 f exchange interaction of the SU(N) form we
have

H f5
1

2(q
Jq (

M ,M852S

S

X2q
MM8Xq

M8M , ~7!
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56 8111SCALING PICTURE OF MAGNETISM FORMATION IN . . .
Hs f52I (
kk8MM8

Xk82k
MM8ck8M8

† ckM ,

where Xq
MM8 are the Fourier transforms of the Hubbard

operators for the localized spin system,

Xi
MM85u iM &^ iM 8u

S5(N21)/2 is the total angular momentum~this notation is
used for the sake of convenience and has a somewhat d
ent meaning in comparison with spinS in the s2 f model!,
and the operators

ckM5(
ms

C1/2 s,lm
SM ckms ~8!

possess, after averaging over the angles, the Fermi prope
due to the orthogonality relations for the Clebsh-Gordan
efficientsC. As well as for model~2!, we will assume that
this averaging should be performed when calculating
Green’s functions. The HamiltonianHs f with I ,0 can be
derived from the degenerate Anderson-lattice model for ra
earth compounds (LS coupling!; a Hamiltonian of the same
form occurs in the case ofj j coupling ~actinide systems!.26

For S51/2, N52, l 50, models~2! and~7! reduce to the
standards2 f model withS51/2 and coincide. The groun
state in the one-impurity Coqblin-Schrieffer model is simi
to that in thes2 f model with 2S5@ l #, i.e., a complete
screening of the localized moment and a Fermi-liquid pict
take place. Due to another structure of perturbation the
for the Coqblin-Schrieffer model, we have to replace 2→N
in Eq. ~6!. Thus the role of the degeneracy factors in both
models under consideration is different: the expression
TK does not contain the factor of@ l #5(2l 11) in model~2!,
but contains the factor ofN in model~7!. Peculiarities of the
Coqblin-Schrieffer model are determined by that the tran
tions between any values of localizedf -state projectionM
are possible, so that the number of excitation branche
large. We shall see that this may result in essential mod
cations of magnetic behavior. The ground state and the s
trum of magnetic excitations in model~7! are discussed in
Appendix A. It is interesting that for an antiferromagn
~AFM! the situation depends on the sign of the next-near
neighborf 2 f interaction~AFM1 and AFM2 cases!.

The interactionH f in Eq. ~7! can be obtained as an ind
rect RKKY-type interaction which arises in the second ord
in Hs f . Using the standard Heisenberg interaction@as in Eq.
~2!#, where onlyM→M61 transitions are allowed, is incon
venient since other transitions acquire an energy gap. H
ever, inclusion of this interaction does not lead to a stro
change of the physical picture. The standard angular mom
tum operators on a site are expressed in terms of theX op-
erators as

Si
15(

M
~S2M !1/2~S1M11!1/2Xi

M11,M , ~9!

Si
z5(

M
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Of course, both thes2 f exchange model and Coqblin
Schrieffer model are some idealizations of the realistic s
ation. The choice of an adequate model for a given co
pound depends mainly on the relation between the width
the f level and the spin-orbital coupling parameter. Provid
that the broadening of thef level due to either the hybrid
ization or directf 2 f overlap is larger than its spin-orbita
splitting we should consider the latter splitting after the tra
sition from the atomiclikef states to crystal states. Usual
the orbital momentum is quenched in the Bloch-like state27

and therefore only the spin momentum should be taken
account when considering the interaction with conduct
electrons. The Coqblin-Schrieffer model was initially pr
posed to describe cerium and ytterbium systems, espec
diluted ones.23 However, as it is clear now, the situation fo
cerium compounds is more complicated. First, the sp
orbital coupling for cerium is in fact not too large~about
0.25 eV! and comparable with the width of the virtualf
level. Second, a number of cerium system, including the p
a-cerium, have rather largef 2 f overlap~the relative role of
f 2 f overlap and hybridization is discussed in detail in t
review28!. Thus the applicability of these models should
considered separately for any specific compound. We s
demonstrate below that results of the scaling considera
for the Coqblin-Schrieffer model ands2 f exchange models
are essentially different.

Model ~7! can be generalized to include two magneticf
configurations with the angular momentaJ andJ8 so that

Hs f52I( CJ8m, jm
JM CJ8m, jm8

JM8 Xk82k
MM8ck8m8

† ckm ~10!

~we restrict ourselves for simplicity to the case ofj j cou-
pling bearing in mind uranium compounds!. However, this
Hamiltonian has a complicated tensor structure21,26 and does
not enable one to calculate an unique energy scale by u
perturbation expansion. Such an energy scale can be
tained starting from the low-temperature regime and read26

TK5DexpF21Y IrS 2J11

2J811
21D G ~11!

@note that the exponent in Eq.~11! for the caseJ850 differs
by a unity from the correct result; such a difference is typi
for the methods which are in fact based on the largeN
expansion29,30#. In the caseJ.J8 the situation for model
~11! is similar to that for thes2 f model with 2S.@ l #.

III. SCALING EQUATIONS

Using the perturbation theory results for the renormali
tions of the effectives2 f parameter and spin-fluctuation en
ergy~Appendixes B–D! we write down the system of scalin
equations in the case of the Kondo lattice for various m
netic phases.

We apply the ‘‘poor man scaling’’ approach.31 The
Kondo effect is connected with the contributions of ‘‘soft
electron-hole excitations with the energyE→0, which result
in infrared divergences. We start from the conduction ba
which is filled in the energy interval (2D,0) ~here and here-
after the energy is calculated from the Fermi energyEF50).
It is assumed in the scaling~renormalization-group! ap-
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8112 56V. YU. IRKHIN AND M. I. KATSNELSON
proach that for describing the phenomena related to the
excitations we can carry out the ‘‘decimation’’ procedur
i.e., excluding high-energy degrees of freedom. Namely,
may describe the occupied electron states with 0.E.C by
essentially the same Hamiltonian as the bare one, but
the parameters that are renormalized by virtual transiti
from the states in the regionC.E.D. To perform explic-
itly the renormalization we can divide this ‘‘hard’’ region i
thin layers with the widthsdC and calculate the contributio
from each layer within perturbation theory subsequently
placing the bare model parameters with the effective on
To derive the total effect of renormalizations in the effectiv
Hamiltonian parameters we have to integrate the obtai
equations indC from 2D to the flow cutoff parameterC.
The fixed point determining the ground state correspond
C50.

Thus we have to consider the dependence of the effec
~renormalized! s2 f exchange parameter on the variableC
which occurs at picking out the Kondo singular terms. T
detailed consideration will be performed for a ferromagne
the nondegenerates2 f model ~or, equivalently, in the
Coqblin-Schrieffer model withN52). To transform the ex-
pression forI e f @Eq. ~C1!# we calculate the contribution o
the intermediate electron states near the Fermi level w
C,tk1q,C1dC in the sums in Eq.~C2!. We have

dI e f~C!5I 2 (
C,tk8,C1dC

S 1

tk81vk82k

1
1

tk82vk82k
D .

~12!

Averaging over the Fermi surfacetk50 we obtain

dI e f~C!/dC5r21I 2(
k,k8

d~ tk!d~ tk8!S 1

C1vk82k

1
1

C2vk82k
D . ~13!

We have replaced in Eq.~13! the integration over the surfac
tk85C by that over the surfacetk850 since the most impor
tant ~for picking out the singular contributions! region is
uCu;v̄, v̄ being a characteristic magnon frequency, a
thereforeuCu!D. Thus we have to retain the variableC in
all the expressions whereC is compared tov̄, and neglect it
in the case of comparison with characteristic band energ
The integration in Eq.~13! can be performed explicitly for
the simplest ‘‘Debye’’ approximation where the long-wa
dispersion law is assumed to hold in the whole Brillou
zone,vq5Dsq

2, and a spherical Fermi surface to derive

dI e f~C!5
rI 2

v̄
dClnUC2v̄

C1v̄
U ~14!

with v̄54DskF
2 .

To carry out a self-consistent treatment we need the s
ing equation for the magnon frequency of the ferromag
~FM!. The singular correction comes from the product of t
oft
,
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Fermi functions in the functionFFM @see Eq.~D15!#. Picking
out in Eq.~D15! the contribution from the electron-hole ex
citations with the energy in the interval (C,C1dC) we ob-
tain

dvq~C!522I 2S (
k,k8,C,tk2tk8,C1dC

~Jk82k1Jq

2Jq1k2k82J0!
1

~ tk2tk82vk82k!2
~15!

To provide the conservation of the number of particles
electron-hole transitions, the integration region in Eq.~15!
should be divided symmetrically for electron and hole
namely, either C/2,tk,C/21dC/2, tk852C/2, or
2C/2,tk8,2C/21dC/2, tk5C/2. Similar to Eq.~13! we
can pass, with the accuracy ofC/D, from the averaging over
the surfacetk56C/2 to that over the Fermi surface. The
we have

dvq~C!/dC52I 2S(
k,k8

d~ tk!d~ tk8!~Jk82k1Jq

2Jq1k2k82J0!S 1

C1vk82k

1
1

C2vk82k
D .

~16!

After passing into the real space,Jp5(RJRexp(ipR), we
have to replace

Jk82k→^Jk82k& tk5tk85EF

[r22(
k,k8

d~ tk!d~ tk8!Jk82k

5(
R

JRu^eikR& tk5EF
u2 ~17!

and perform similar transformations in other terms. We o
tain

dvq~C!/dC52vq~12aq!I 2(
k,k8

d~ tk!d~ tk8!S 1

C1vk82k

1
1

C2vk82k
D ~18!

with

aq5(
R

JRu^eikR& tk5EF
u2@12cosqR#/(

R
JR@12cosqR#.

~19!

In the approximation of nearest neighbors at distanced, the
quantitya does not depend onq. For a spherical Fermi sur
face we have

aq5a5u^eikR& tk5EF
u25S sinkFd

kFd D 2

. ~20!

Hereafter we seta5const. Then we may use in further con
sideration of the scaling equations a single renormaliza
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56 8113SCALING PICTURE OF MAGNETISM FORMATION IN . . .
parameter, rather than the whole function ofq. In the ‘‘De-
bye’’ approximation for the spherical Fermi surface we o
tain

d v̄e f~C!52r2I 2~12a!dClnUC2v̄

C1v̄
U . ~21!

The ‘‘Kondo’’ correction to magnetization occurs from
the same magnon Green’s function@see Eq.~D11!#, so that
we derive

d S̄e f~C!5
r2I 2S

v̄
dClnUC2v̄

C1v̄
U . ~22!

We see that the same functional dependence occurs in
~14!, ~21!, and~22!. This property turns out to take place
all the cases under consideration.

The treatment of other magnetic phases, as well as
more complicated models, is performed in a similar w
Using Eqs.~B5!, ~C2!, ~C5! we obtain for model~2!, and for
the paramagnetic~PM!, FM, and AFM2 phases in the
Coqblin-Schrieffer model the renormalizations of effecti
coupling in the form

dI e f~C!5NrI 2hS 2
v̄

C
D dC/C, ~23!

wherev̄ is a characteristic spin-fluctuation energy,N52 for
the s2 f model,h(x) is the scaling function which satisfie
the condition h(0)51 ~this guarantees the correct on
impurity limit treated in Ref. 31!. Taking into account the
results of Appendix B we obtain for the paramagnetic ph

hPMS v̄

C
D 5ReE

2`

`

dv^Jk2k8~v!& tk5tk85EF

3
1

12~v1 i0!2/C2
. ~24!

For the FM and AFM phases we have

hFMS v̄

C
D[

1

N
F ~N21!h↑S v̄

C
D 1h↓S v̄

C
D G , ~25!

h↑,↓
FMS 2

v̄

C
D 5^~17vk2k8 /C!21& tk5tk85EF

,

hAFMS 2
v̄

C
D 5^~12vk2k8

2 /C2!21& tk5tk85EF
. ~26!

Using the spin-diffusion approximation Eq.~B6! in Eq. ~24!
and the approximationsvq

FM5Dsq
2, vq

AFM5csq ~which are

justified, e.g., at smallkF), we getv̄54DkF
2 for a paramag-

net,v5v2kF
for the FM and AFM cases,

hPM~x!5x21arctanx,

h↑,↓
FM~x!56x21lnu16xu, ~27!
-

qs.

of
.

e

hAFM~x!5H 2x22lnu12x2u, d53

~12x2!21/2u~12x2!, d52,

whereu(x) is the step function,d53 for PM and FM.
One can see that the scaling functions~27! for the ordered

phases contain singularities atx51. It may be demonstrated
by direct calculations according to Eqs.~25!, ~26! that the
presence of such a singularity is a general property wh
does not depend on the model assumptions about the for
electron and magnon spectra. In the general case, the s
larity occurs atC52vqm

where qm corresponds to the
maximum diameter of the Fermi surface.

The functionsh↓
FM(x) andhAFM(x) (d53) change their

sign atx52 andx5A2, respectively. Ford52 the function
hAFM(x) vanishes discontinuously atx.1, but a smooth
contribution occurs for more realistic models of magn
spectrum.

When considering characteristics of the localized-s
subsystem, the lowest-order Kondo corrections origin
from double integrals over both electron and hole states@see
Eqs.~B9!, ~D10!, ~D6!#. Then we have to introduce two flow
parametersCe and Ch with Ce1Ch5C (C is the flow pa-
rameter for the electron-hole excitations!. In the FM case for
the Coqblin-Schrieffer model we havedCh52(N21)dCe
due to the requirement of the number-of-particle conser
tion in electron-hole transitions~there existsN21 ‘‘chan-
nels’’ for electrons and one ‘‘channel’’ for holes!. For PM
and AFM2 cases in the Coqblin-Schrieffer model, as well
for all the cases in thes2 f model, the electron-hole symme
try is not violated and we havedCe52dCh .

Taking into account Eqs.~B9!, ~D20!, ~D26! we obtain

d S̄e f~C!/S5VrdI e f~C!5VNr2I 2hS 2
v̄

C
D dC/C,

~28!

whereV5@ l # for the s2 f model,V51 for the PM and FM
phases in the Coqblin-Schrieffer model, andV52/N for the
AFM2 phase. The renormalizations of spin-wave frequenc
are obtained in a similar way from Eqs.~B13!, ~D14!, ~D13!,
~D20!, ~D27!, and are given by

dv̄e f~C!/v̄5ad S̄e f~C!/S5aVNr2I 2hS 2
v̄

C
D dC/C,

~29!

where, in the nearest-neighbor approximation,

a5H 12a PM

2~12a! FM

1 AFM.

~30!

Introducing the dimensionless coupling constants

ge f~C!52NrI e f~C!, g52NrI

and replacing in the right-hand sides of Eqs.~23!, ~29!, ~28!

g→ge f(C), v̄→v̄e f(C), we obtain the system of scalin
equations

]ge f~C!/]C52L, ~31!
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] lnv̄e f~C!/]C5aVL/N, ~32!

] lnS̄e f~C!/]C5VL/N, ~33!

with

L5L„C,v̄e f~C!…5@ge f
2 ~C!/C#h„2v̄e f~C!/C…. ~34!

As regards the AFM1 state in the Coqblin-Schrieff
model ~Appendix A!, its treatment in a general case is
difficult and cumbersome problem. However, one can
from Eq. ~D24! that to leading approximation in 1/N the
scaling equations coincide with those for the FM state w
the replacementJp→Jp

(2) .

IV. IMPROVED VERSION OF SCALING EQUATIONS:
AN ACCOUNT OF DISSIPATIVE CONTRIBUTIONS
TO SPIN DYNAMICS IN THE ORDERED PHASES

As follows from the results of the previous section, pa
ing from the dissipative spin dynamics, which is characte
tic for the PM phase, to the dynamics with well-defined sp
wave excitations~ordered FM and AFM phases! results in
the occurrence of singularities in the scaling functionh(x) at
x→1. It will be shown below that this leads to a decrease
the critical value of the coupling constantgc . One may sup-
pose that in the situation of strongly suppressed satura
moment (g is close togc) the character of spin dynamics i
the ordered phases should change drastically. By the ana
with weak itinerant magnets32 one may expect that forS̄!S
a considerable part of the localized-spin spectral den
comes from the branch cut of the spin Green’s funct
rather than from the magnon pole.

In this section we shall demonstrate that this indeed ta
place provided that our approach is slightly modified. To t
end we shall analyze the structure of the spin Green’s fu
tion with account of the singular Kondo corrections in mo
detail.

First we consider the case of a ferromagnet within
s2 f model. We have near the magnon pole

^^Sq
1uS2q

2 &&v5
2 S̄Zq

v2vq
e f

1^^Sq
1uS2q

2 &&v
incoh, ~35!

where the residue at the pole is determined by Eq.~D14!:

1/Zq2152S ]vq~v!

]v D
v5vq

.2@ l #(
p

Fp00
FM . ~36!

Besides that, there exists the singular contribution wh
comes from the incoherent~nonpole! part of the spin spectra
density. To calculate the renormalization ofg we use, instead
of Eq. ~C2!, the representation of the electron self-energy
terms of the spectral density~see the detailed derivation i
Ref. 9!
e

h

-
-
-

f

n

gy

ty
n

s
s
c-

e

h

n

Sk↑
FM~E!52

1

p
RI2E

2`

`

dv(
q

nk2q

E2tk2q1v
Im^^Sq

1uS2q
2 &&v,

Sk↓
FM~E!52

1

p
RI2E

2`

`

dv(
q

12nk2q

E2tk2q2v
Im^^Sq

1uS2q
2 &&v .

~37!

Thus the magnon pole contribution toge f is multiplied byZ,
and the incoherent one by 12Z. The renormalizations ofv̄e f
andZ are obtained in the same way as in the previous s
tion. We derive in the nearest-neighbor approximation

]ge f~C!/]C52L, ~38!

] lnv̄e f~C!/]C5aVL/N, ~39!

]~1/Z!/]C5] lnS̄e f~C!/]C5VL/N, ~40!

wherea52(12a), N52

L5@ge f
2 ~C!/C#@Zhcoh„2v̄e f~C!/C…

1~12Z!h incoh„2v̄e f~C!/C…#, ~41!

hcoh5hFM, and the functionh incoh is, generally speaking
unknown. For further estimations we put belowh incoh5hPM.
Apparently, this overestimates the role of incoherent con
butions ~the true spin dynamics in the paramagnetic ph
should take into account short-range order!. However, such
an approximation enables us to investigate the sensitivity
various physical properties to the inclusion ofh incoh.

The account of the incoherent part does not mod
strongly numerical results~see Sec. VI!. At the same time,
the physical picture of magnetism changes considerably.
cording to Eq.~40! we have

1

Z~j!
511 ln

S

S̄~j!
. ~42!

Consequently, the increase of magnetic moment owing to
Kondo screening leads to a suppression of magnon contr
tions to the spectral density. Unlike the case of weak itin
ant magnets, this suppression is logarithmic in the grou
state magnetization.

In the case of an antiferromagnet the calculations are
formed by taking into account expressions~D2!, ~D3!. In the
nearest-neighbor approximation (JQ1q52Jq) we obtain

^^Sq
11Sq

2uS2q
1 1S2q

2 &&v
coh.

8S2~J02Jq!

v22~vq
e f!2 S 12@ l #(

p
Fp00

AFMD
~43!

@the quantity~43! just determines the Kondo renormalizatio
of electron spectrum, cf. Ref. 13#. Then the scaling equation
for the AFM differ from those for the FM by the replaceme
a→1 in Eqs.~38!–~40! only.

V. THE SCALING BEHAVIOR IN THE LARGE- N
COQBLIN-SCHRIEFFER MODEL

It is instructive to consider the limitN→` ~to avoid mis-
understanding, it should be noted that this limit with incl



rs

at
e
e-
ng

d

r
al

e

t
res
nt

e
era-
re-

FM

ur,

pre-
and
the

56 8115SCALING PICTURE OF MAGNETISM FORMATION IN . . .
sion of spin dynamics in the zeroth approximation diffe
somewhat from the considerations of Refs. 30 and 29!.Then
the renormalizations of spin dynamics andS̄e f are absent,
and the transition into the nonmagnetic Kondo-lattice st
cannot be described. However, peculiarities of the dep
dencege f(C) for various types of magnetic ordering are d
scribed qualitatively, explicit analytical expressions bei
obtained. We have

1/ge f~C!21/g5G~C!52E
2D

C dC8

C8
hS 2

v̄

C8
D , ~44!

whereD is the cutoff energy defined byge f(2D)5g ~see
Sec. III!. Performing the integration we obtain

GPM~C!5
1

2
ln@~C21v̄2!/D2#1

C

v̄
arctanS v̄

C
D 21,

~45!

GFM~C!5 lnuC/Du2~C/v̄21!lnu12v̄/Cu11, ~46!

GAFM~C!5 lnuC/Du2
1

2
@~C2/v̄221!lnu12v̄2/C2u21#,

d53, ~47!

GAFM~C!5u~ uCu2v̄ !lnS 1

2
~ uCu1AC22v̄2!/D D

1u~v̄2uCu!ln~v̄/2D !, d52. ~48!

The dependences 1/ge f(j5 lnuD/Cu) are shown in Fig. 1.
The effective coupling constantge f(C) begins to deviate
strongly from its one-impurity behavior

1/ge f~C!51/g2 lnuD/Cu ~49!

at uCu;v̄. One can see that at smallv̄!uCu spin dynamics
result in a decrease ofge f(C) for the PM and FM cases, an
in an increase for the AFM case.

It should be noted that Eq.~44! can be used even fo
N52 provided thatg is considerably smaller than the critic
valuegc ~see the next section!. Besides that, Eq.~44! works

FIG. 1. The dependence 1/ge f on j5 lnuD/Cu in the large-N limit

with l5 ln(D/v̄)55, g50.15 for a paramagnet~dashed line! and
different magnetic phases~solid lines!: ~1! ferromagnet~2! 3D an-
tiferromagnet~3! 2D antiferromagnet.
e
n-

in the PM and FM phases provided thatkF is small, so that,
according to Eq.~20!, a→1. However, in the case of th
ferromagnet we have instead of Eq.~46!

GFM~C!5 lnuC/Du2
N21

N
~C/v̄21!lnu12v̄/Cu

1
1

N
~C/v̄11!lnu11v̄/Cu11. ~50!

In the three-dimensional~3D! AFM case 1/ge f(C) has a
minimum with decreasinguCu. For a 2D AFM, 1/ge f has a
square-root singularity atuCu,v̄ and becomes constant a
uCu.v̄. As we shall see in the next section, these featu
retain at finiteN. For a ferromagnet, the singularity is abse
at N→` since only the contribution ofh↑ survives. How-
ever, it is present for finiteN due to contribution ofh↓ . Note
that, contrary to the caseN→`, for an FM withN52 spin
dynamics results in a decrease ofge f(C) at not too
small C.

The boundary of the strong-coupling region~the renor-
malized Kondo temperature! is determined by
G(C52TK* )521/g. Of course,TK* means here only som
characteristic energy scale extrapolated from high temp
tures, and the detailed description of the ground state
quires a more advanced consideration. In the PM and
phases spin dynamics suppressesTK* . On the other hand, in

the AFM case spin dynamics at not too largev̄ results in an
increase ofTK* .

Provided that the strong-coupling regime does not occ
i.e., g is smaller than the critical valuegc , ge f(C→0) tends
to a finite valueg* . To leading order in ln(D/v̄) we have

1/gc5l[ ln~D/v̄ !. ~51!

However, an account of next-order terms results in an ap
ciable dependence on the type of magnetic ordering
space dimensionality. For PM, FM, and 2D AFM phases
critical valuegc is given by 1/gc52G(0). Then we obtain

1/g* 51/g21/gc ~52!

with

1/gc5l1H 1, PM, FM

ln2, 2D AFM.
~53!

At the same time, in the 3D AFM casegc is determined by
the minimum of the functionG(C). Thusg* remains finite
at g→gc20:

1/g* 51/g21/gc11/gc* , ~54!

where

1/gc5l1~11 ln2!/2, ~55!

1/gc* 5D5~ ln2!/2.0.35

D being the depth of the minimum.
For C→0 we have
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G~C!2G~0!.H puCu/2v̄ PM,

uC/v̄u lnuv̄/Cu FM,

2~C/v̄ !2lnuv̄/Cu 3D AFM

~56!

@however,GFM(C)2GFM(0).(C/v̄)2 for function ~50! at
N52#. As follows from Eq.~56!, for g→gc10 we have in
the PM and FM cases to logarithmic accuracy

TK* .v̄
g2gc

gc
2

3H 2/p, PM

ln@~g2gc!/gc#, FM.
~57!

On the other hand, in the AFM phasesTK* is finite at
g→gc10:

TK*
c5v̄3H 1, 2D AFM

1/A2, 3D AFM.
~58!

VI. SCALING BEHAVIOR FOR FINITE N

Some results obtained in the large-N limit hold in the
finite-N case too, but there occur here a number of new
portant features. To consider the general case we write d
the first integral of the system Eqs.~31! and ~32!

ge f~C!1~N/Va!lnv̄e f~C!5const, ~59!

which results in

v̄e f~C!5v̄ exp„2~aV/N!@ge f~C!2g#…. ~60!

As follows from Eqs.~32! and ~33!

S̄e f~C!

S
5S v̄e f~C!

v̄
D 1/a

. ~61!

Substituting Eq.~60! into Eq. ~31! we obtain

]~1/ge f!/]j52C~l1~aV/N!@ge f2g#2j!, ~62!

where

C~j!5h~e2j!, j5 lnuD/Cu, l5 ln~D/v̄ !@1.

The presence ofge f in the argument of the functionC in Eq.
~62! leads to drastic changes in the scaling behavior in co
parison with the large-N limit. We describe below the renor
malization process in various cases.

If g is sufficiently large, the increase ofge f will lead to
that the argument ofC will never be small, so that the sca
ing behavior will be essentially the one-impurity one.
smaller g the function 1/ge f(j) begins to deviate strongly
from the one-impurity behavior 1/ge f(j)51/g2j starting
from j.j1 wherej1 is the minimal solution to the equatio

l1~aV/N!@ge f~j!2g#5j. ~63!

If the argument remains negative with further increasingj,
1/ge f(j) will decrease tending to the finite valueg* , the
derivative](1/ge f)/]j being exponentially small, so that th
situation is close to the large-N case ~Fig. 1!. However,
(aV/N)ge f(j) can increase more rapidly thanj, so that the
second solution to Eq.~63!, j2 will occur, and the argumen
-
n

-

of the functionC becomes positive again. Thenge f(j) will
diverge at some pointj* 5 lnuD/TK* u. The divergence is de
scribed, unlike the large-N limit, by the law

ge f~j!.1/~j* 2j!, ~64!

since h(x!1)51. The behavior~64! takes place starting
from j.j2 .

The dependencesge f(j) in the PM case at smallug2gcu
are shown in Fig. 2. The behaviorge f(j) betweenj1 andj2
is nearly linear, but is somewhat smeared sinceC(j) differs
considerably from the asymptotic values 0 and 1 in a rat
large interval ofj.

The case of the magnetically ordered phases has a num
of peculiarities. Here the singularity of the functionC(j) at
j50 turns out to play a crucial role. In particular, one c
prove thatge f diverges at somej at arbitrarily smallg ~i.e.,
gc50) unless the singularity cutoff is introduced. Indee
when approaching the singularity point with increasingj,
the derivative]ge f /]j rapidly increases, and the argume
of the functionC in Eq. ~62! inevitably starts to increase a
some pointj1 . Thus the singularity point cannot be crosse
and the argument of the functionC is always positive. Since
C(j8.0).1, we have](1/ge f)/]j,21 at arbitrary j.
Therefore the effective coupling constant diverges
j5j* ,1/g.

To make the value ofgc finite, one has to cut the singu
larity of the scaling functions. This may be performed
introducing small imaginary parts, i.e., replacing in Eq.~27!

lnu12xu→ 1
2 ln@~12x!21d2#, ~65!

~12x!21/2u~12x!→Re~12x1 id!21/2

5$@~12x!21d2#1/2112x#/2%1/2/@~12x!21d2#1/2.

ThenC becomes bounded from above:

Cmax5hmax.h~1!.H 1
2 lnd, FM

lnd, 3D AFM

1
2 d21/2, 2D AFM.

~66!

FIG. 2. The scaling trajectoriesge f(j) in a paramagnet
(g50.153 92.gc , upper solid line, andg50.153 91,gc lower
solid line! and a ferromagnet (g50.138 68.gc , upper dashed line
and g50.138 67,gc , lower dashed line! according to Eq.~62!
with N52, a51/2,l55, d51/100.
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Another way to cut the divergence in the 2D AFM case is
retain strictly the proportionality to the step function,

~12x!21/2u~12x!→Re~12x1 id!21/2u~12x!, ~67!

so thatC(j) cannot take small values.
The value ofd should be determined by the magno

damping atq5uk2k8u.2kF @see Eqs.~25! and ~26!#. This
damping is due to both exchange and relativistic interactio
The damping owing to exchange scattering by conduc
electrons should be formally neglected within the lowe
order scaling consideration, since this contains a more h
power of I . The magnon-magnon interaction in the Heise
berg model gives the damping at nonzero temperatures o
However, the relativistic~e.g., dipole! interactions give a
damping atT50 due to zero-point oscillations. Hereafter w
put in numerical calculationsd51/100.

The behavior of the solutions to Eq.~62! in magnetic
phases forg which is well belowgc is similar to that in the
large-N limit ~Sec. V!. In particular, the function 1/ge f(j)
has a minimum in the 3D AFM case with the same dep
The presence of the minimum may result in nonmonoto
temperature dependences of the physical quantities which
sensitive to the Kondo screening, e.g., of the effective m
netic moment. These dependences are obtained qualitat
by the replacementuCu→T in Eqs.~60! and~61!. Of course,
the standard monotonic spin-wave corrections should
added to the Kondo contributions.

It is important that, except for a very narrow region ne
gc , at approachinggc the value ofg* becomes practically
constant,g* .g(j1)5g1 . This value is estimated as

~aV/N!~]ge f /]j!max5~aV/N!g1
2Cmax51. ~68!

On the other hand, we may estimate from the linear asy
totics 1/ge f(j).1/g2j @which holds up to j.j1
.l1(aV/N)g1#

1/g1.1/g2j1 . ~69!

Comparing Eqs.~69! and ~68! we derive the rough estima
tion

1/gc5l1~aV/N!g111/g15l1~NCmax/aV!21/2

1~aVCmax/N!1/2. ~70!

The value of 1/g2 can be also estimated from the linear a
ymptotics~64!:

1/g2.j* 2j2 . ~71!

Owing to the singularity,j2 is close toj1 except for very
small ug2gcu. In the latter case the behaviorg(j1,j,j2)
is practically linear,

~aV/N!ge f~j1,j,j2!.j2l ~72!

~this behavior is discussed in detail in the next sections!. This
is explained by that the argument of the functionC in Eq.
~62! should be nearly zero. The behavior atj.j2 is de-
scribed by Eq.~64!. We may estimate from Eq.~71!

j* .1/g11/g221/g1 . ~73!
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For the cutoff Eq.~67! with h(x.1)50 in the 2D AFM
case~and in similar situations! j* tends to a finite limitjc* at
g→gc10. Indeed, as follows from the form of the scalin
function ~27!, one has up to the divergence pointC(j).1,
so thatj* ,1/g,1/gc . In such a situationg* turns out to be
also finite atg→gc20, and the character of approachinggc
is quite different from that in the large-N limit. With increas-
ing g, the position of the 1/ge f(j) singularity point is shifted
right due to rapid increase ofge f in the argument of the
function C in Eq. ~62!. The shift should stop atj1,jc* .
This takes place just atg→gc20. Thus 1/ge f(j) should van-
ish discontinuously atg5gc . The ‘‘maximum’’ value of
ge f(j), ge f

max5gc* , is estimated from

l1~aV/N!~ge f
max2gc!2j150. ~74!

Since forg.gc the decrease 1/ge f(j) at j.j1 is practically
linear @see Eq.~64!#, we may estimate

jc* 2j1.1/ge f
max. ~75!

If we accept the cutoff Eq.~65!, a small increase ofj* and
1/g* will take place in an extremely narrow region neargc .
This increase cannot be practically observed.

In the 3D AFM case the statement about the finiteness
jc* does not, strictly speaking, hold since there exists a sm
region whereC(j) is positive and takes arbitrarily sma
positive values, so that the decrease of 1/ge f(j) can be slow.
However, the behaviorj* (g) is in fact determined by the
logarithmic singularity of the functionC(j) except for a
very narrow region neargc . The numerical calculations
yield the estimationg2gc;1024 for the region wherej*
starts to increase. Thus, from the practical point of view,
may putjc* to be finite. The corresponding value ofgc

max5g1

is determined by Eq.~74! and g1* is smaller thange f
max. At

very smallg2gc;1024 the value ofg* starts to increase
However, due to the minimum of the function 1/ge f(j),
gc* 51/D remains finite atg→gc , as well as in the limit
N→`.

In the case of a ferromagnet the influence of the singu
ity is somewhat weaker sinceC(j) does not change its sig

FIG. 3. The scaling trajectoriesge f(j) in a 3D antiferromagnet
~solid lines,g50.132 038 2.gc andg50.132 038 1,gc) and a 2D
antiferromagnet ~dashed lines, g50.126 671 4.gc and
g50.126 671 3,gc) according to Eq.~62! with the same paramete
values as in Fig. 2.
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and takes small positive values up to infinity, so thatj*
starts to increase appreciably atg2gc;1023.

The dependencesge f(j) according to Eq.~62! for the
magnetically ordered phases atg→gc60 are shown in Figs.
2 and 3. One can see that considerable linear regions occ
these dependences for the FM and 3D AFM states.

Now we discuss the results of the approach of Sec.
which takes into account the incoherent part of the spin sp
an
.,
o

l
n
e

m

ac
o

in

,
c-

tral density. The integral of motion of the system of equ
tions ~38! and ~39! has the same form~59!, and we obtain

1

Z~j!
511

1

a
ln

v̄

v̄e f~j!
511

V

N
@ge f~j!2g#. ~76!

The corresponding equation forge f reads
]~1/ge f!

]j
52C incoh„l1~aV/N!@ge f2g#2j…

2†Ccoh„l1~aV/N!@ge f2g#2j…2C incoh„l1~aV/N!@ge f2g#2j…‡Y F11
V

N
~ge f2g!G . ~77!
ion
a

e
f

ns
for

nd
it

c-

ot
The role of the incoherent contribution becomes import
only provided thatZ deviates appreciably from unity, i.e
ge f2g is large. This takes place in a rather narrow region
ug2gcu. The estimation forg1 in the case of smalld now
reads

aVg1
2/N

11Vg1 /N
Ccoh

max51, ~78!

so that, as follows from Eq.~70!, gc increases.
The dependencesge f(j) for a ferromagnet at smal

ug2gcu according to Eq.~77! are shown in Fig. 4. One ca
see that the well-linear ‘‘ferromagnetic’’ behavior cross
over to a PM-like ‘‘quasilinear’’ behavior with increasingj,
cf. Fig. 2. The point of the crossover is estimated fro
ZCcoh

max.1, i.e.,

~V/N!~j2l!.Ccoh
max. ~79!

As demonstrated by numerical calculations, taking
count of the incoherent contribution results in smearing
the nonmonotonous behavior ofge f(j) in the 3D AFM case,

FIG. 4. The scaling trajectoriesge f(j) in a ferromagnet with
account of the incoherent contribution according to Eq.~77! with
N52, a51/2,l55, d51/100 for g50.139 97.gc ~upper line!
andg50.139 96,gc ~lower line!.
t

f

s

-
f

and in some region ofug2gcu the minimum of 1/ge f(j)
vanishes completely. Thereforeg*→0 at g→gc , unlike the
situation for Eq.~62!.

The influence of the incoherent contribution onj* andg*
is considerably suppressed by the singularity of the funct
Ccoh(j). The region where this contribution starts to play
role is determined by the quantityd. In particular, for the 2D
AFM case its influence onj* is practically absent since th
divergence of ge f(j) occurs due to the singularity o
Ccoh(j). Note that sinceg* is finite atg→gc , the coherent
contribution survives up togc .

The comparison of the results of various approximatio
is presented in Table I. One can see from this table that
N52 the relation of thegc values in the ordered phases a
in the PM case is reversed in comparison with the lim
N→`. This fact is due to the influence of the scaling fun
tion singularities. It should be noted that at largerd;1/5 the
value ofgc in the ordered phases exceedsgc

PM, as well as in
the large-N case. In case~ii ! the value ofgc is intermediate
betweengc

( i ) andgc
PM and closer togc

( i ) . With increasinga
or N the difference betweengc

( i i ) and gc
( i ) becomes still

smaller.
The dependences 1/g* (g) and j* (g) according to Eq.

~77! are shown in Fig. 5~of course, these diagrams do n

TABLE I. The critical valuesgc andjc* for different magnetic
phases in the casesN5` @see Eqs.~53!, ~55!, and~58!# andN52
in the approximation of Sec. III~i! and with account of the inco-
herent contribution ~ii !. The parameter values arel55,
a51/2,d51/100. ForN52, the ‘‘critical value’’ of jc* is esti-
mated from the plateau in the dependencej* (g) ~see the discussion
in the text!.

PM FM 3D AFM 2D AFM

N→` gc 0.167 0.167 0.171 0.176
jc* – – 5.35 5

N52 ~i! gc 0.154 0.139 0.132 0.127
jc* – 6.13 6.07 6.07

N52 ~ii ! gc 0.154 0.141 0.136 0.131
jc* – 6.23 6.17 6.16
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FIG. 5. The dependences 1/g* (g) for g,gc andj* (g)2l for g.gc in a paramagnet~a!, ferromagnet~b!, 3D antiferromagnet~c!, and
2D antiferromagnet~d! according to Eq.~77!. The dashed line is the curve 1/g2l, l55, a51/2,N52. In the magnetically ordered phase
we setd51/100.
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show the above-discussed increase of 1/g* and j* in the
AFM case, which takes place at very smallug2gcu). The
experimentally observable quantities can be obtained f
these data by using the formulas

S* 5 S̄e f~C50!5Sexp„2~V/N!@g* 2g#…, ~80!

v̄* 5v̄e f~C50!5v̄ exp„2~aV/N!@g* 2g#…,

(g,gc). For g.gc we have

TK* 5Dexp~2j* !. ~81!

One can see from Fig. 5 that, provided thatg is far fromgc ,
we have the one-impurity behaviorj* (g).1/g, and the de-
pendence 1/g* (g) is given by Eqs.~52! and~54!, as well as
in the large-N limit.

VII. CRITICAL BEHAVIOR ON THE BOUNDARY
OF THE STRONG-COUPLING REGIME: BREAKDOWN

OF THE FERMI-LIQUID PICTURE

To investigate the ‘‘critical’’ behavior ofj* at g→gc we
consider the function 1/ge f(g,C) at smallug2gcu,uCu. First
we consider the results of the solution of Eq.~62!. With
approachinggc , thej region, where the behavior~64! takes
place, becomes very narrow and not too important for de
mining j* . Unlike the exponential~in j) behavior in the
large-N limit, we have from Eq.~72!,
m

r-

ge f~g5gc ,j→`!.2~N/Va!j. ~82!

However, the dependencej* (g) turns out to be qualitatively
the same as forN→` @see Eq.~57!#,

j* .g ln~g2gc!. ~83!

Numerical calculations yieldg51/2 for the FM atN52, and
g51 for the FM with N.2 and PM. These values are th
same as fora→0 @or as according to the large-N equation
~44!, provided that we take for the FM function~50!#. Thus
one may put forward the hypothesis that the critical exp
nents are universal, i.e., depend on the type of magnetic
dering only, but not onN, V, and a. In the AFM phases
numerical calculations yield the dependences~83! with
g.0.1 (d53) andg.1023 (d52).

At the same time, the behavior ofg* at g→gc20
changes in comparison with the large-N limit. It turns out
that for finiteN one may establish a scaling relation of re
evant variables atg.gc andg,gc , as well as in the stan
dard theory of critical phenomena. To find this relation, w
consider our problem in the regionug2gcu.« where«→0
determines a scale of approaching to the critical point. Wh
crossing the cut region, the argument of functionC should
not shift considerably~Figs. 2 and 3!. Indeed, this argumen
must be close to zero; in the ordered phases it is fixed by
singularity point, and for PM a considerable ‘‘smearing
takes place. Then we may estimate
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l1~aV/N!@g* 2g#.j* , ~84!

so that

g* .g~N/Va!ln~gc2g!. ~85!

As demonstrated by numerical calculations@Fig. 5~a!#, in
the PM phase the increase of 1/g* for g not too close togc
is almost linear ing, as well as in the large-N limit, and the
behavior~85! takes place only starting fromg* ;10 which
is, strictly speaking, beyond the applicability of the lowe
order scaling. At the same time, for the FM case the lo
rithmic dependence takes place in a considerable interva
1/g* . As discussed in the previous section, for 2D AFM
the increase ofg* andj* at g→gc can be hardly observed

Of course, for 3D AFM’sgc* 51/D is in fact finite, and
the behavior~85! takes place at not too largeg* . More ex-
actly, we can write down

1/g* .1/@g~N/Va!ln~gc2g!#1D. ~86!

However, practically the ‘‘saturation’’ region is extreme
narrow and cannot be achieved because of the small
of g.

When taking into account the incoherent contribution
crossover to a PM-like regime takes place atg→gc in the
dependencesg* (g) andj* (g), so that at very smallug2gcu
we have the behavior of Eqs.~83! and ~85! with g51.

Basing on the results of Eqs.~83! and~85!, it is natural to
assume that atg→gc , C→20 one has the scaling behavio

ge f~g,C!52~Ng/aV!ln„uC/v̄u1/g1B~gc2g!/g…,
~87!

(B.0 is a constant, the argument of the logarithm should
positive!. Then, according to Eqs.~60! and ~61!

v̄e f~g,C!/v̄;@ uC/v̄u1/g1B~gc2g!/g#g, ~88!

S̄e f~g,C!/S;@ uC/v̄u1/g1B~gc2g!/g#g/a. ~89!

In particular, we have atg→gc the power-law dependence

TK* ,v̄* ;@6~g2gc!#
g, ~90!

S* ;~gc2g!g/a. ~91!

Thus the ‘‘critical exponents’’ for the characteristic ener
scales, namely, forTK* at g.gc and v̄* at g,gc coincide.
Using Eq.~89! we obtain atg5gc , C→0

S̄e f~C!

S
5S v̄e f~C!

v̄
D 1/a

;uCug/a. ~92!

One of the most interesting consequences of our pictur
a possibility of a non-Fermi-liquid behavior on the bounda
of the strong-coupling region. Indeed, during the renorm
ization process atC→0 the effective spin-fluctuation fre
quency tends to zero, and the corresponding spectral de
is concentrated nearv50. In this sense, the situation is clos
to that in the one-impurity two-channel Kondo proble
where a collective mode with zero frequency occurs, wh
leads to a breakdown of the Fermi-liquid picture due to el
-
-
of

ss

a

e

is

l-

ity

h
-

tron scattering by this ‘‘ultrasoft’’ mode.19 Unfortunately,
our perturbation approach does not permit us to determ
explicitly the temperature dependences of observables s
the coupling constant is not small in this regime. Howev
the calculations can be performed within the large-@ l # s2 f
model ~see the next section!.

Of course, vanishing ofv̄e f(C) at uCu5TK* and ofTK* and

v̄* at g5gc is the result of using the lowest-order perturb
tion theory at the derivation of the renormalization-gro
equations. In fact, one may expect that in the strong-coup
regionv̄e f(C);TK .10,11 One may assume that the true sc
ing behavior, which may be continued into the stron
coupling region, differs from the lowest-order scaling beha
ior by the replacement

B~g2gc!/g→~TK* /v̄ !1/g. ~93!

A scaling law, which is more general than Eq.~88!, could be
expected to have the form

v̄e f~C!/v̄5~TK* /v̄ !f~C/TK* !. ~94!

Then one has

S̄e f~C!/S5c„v̄e f~C!/v̄…. ~95!

A detailed investigation of magnetic properties~in particular,
of the formation of small moments, which are characteris
for heavy-fermion systems! reduces to determining an ex
plicit form of the functionsf andc. This problem cannot be
solved within perturbative approaches.

VIII. THE NON-FERMI-LIQUID BEHAVIOR
IN THE DEGENERATE s2f MODEL

As we have seen in Sec. V, in the large-N limit the renor-
malization of magnetic characteristics is weak in comparis
with that of the electron spectrum. An opposite situation o
curs in the case of large@ l # where the number of electro
branches is much larger than that of spin-wave modes
that the renormalization of spin dynamics plays the cruc
role.

It is instructive to consider the large-l limit in the s2 f
model (N52) with

@ l #→`, g→0, @ l #g2/25 g̃ 25const.

Then the effectives2 f interaction is unrenormalized
g̃e f5 g̃5const, and the scaling equation takes the form

]x

]j
5a g̃ 2C~l1x2j!, ~96!

where

x~j!5 ln
v̄

v̄e f~j!
.

When taking into account the incoherent contribution we o
tain instead of Eq.~96!
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]x

]j
5a g̃2@ZCcoh~l1x2j!1~12Z!C incoh~l1x2j!#,

~97!

Z51/~11x/a!.

By introducing the function

n5l1x2j5 ln
uCu

v̄e f

, ~98!

Eq. ~96! can be readily integrated to obtain

E
n

l dj8

12a g̃ 2C~j8!
5j. ~99!

However, a simple qualitative analysis can be performed
mediately for both Eqs.~96! and ~97!.

In the PM phase we have

x~j!.a g̃ 2j ~100!

up to the point

j15
l

12a g̃ 2
. ~101!

Thus a power-law behavior occurs

v̄e f~C!.v̄~ uCu/D !b, b5a g̃ 2. ~102!

For j.j1 ,

x~j!.x~j1!5la g̃2~12a g̃ 2!21 ~103!

is practically constant.
Note that unlike the casel 50, which was discussed in th

previous section, the bare coupling constantg̃ and the expo-
nentb can be sufficiently large. Atg̃;1, v̄e f(j) decreases
rather rapidly during the renormalization process. Thu
‘‘soft-mode’’ situation occurs, which may lead to a NF
behavior.

To investigate modification of the electron spectrum
may calculate the second-order perturbation theory cor
tions, which are formally small in 1/@ l #. Replacing
v̄→v̄e f(C) in the usual second-order result for the electr
self-energy~cf. Ref. 33! and introducing the effective elec
tron density of states at the Fermi levelNe f(C) we obtain

Ne f~C!;
Z~C!

v̄e f~C!
;S D

uCu D
b

ln
D

uCu
. ~104!

To investigate qualitatively temperature dependences
may replaceuCu→T. Thus one may expect an essentia
NFL behavior of the electronic specific heat,

Ce~T!;TNe f~ uCu→T!;T12bln~D/T!, ~105!

magnetic susceptibility,

xm~T!;Se f
2 ~ uCu→T!/T;1/T12b/a, ~106!

transport properties, etc.
-

a

c-

e

In magnetically ordered phases, the situation forj.j1
changes since the singularity ofCcoh(j) plays an important
role. Provided thata g̃ 2Ccoh

max.1, the argument of the func
tion Ccoh at j.j1 becomes almost constant, and we obta

x~j!.j2l, v̄e f~C!.uCu. ~107!

The behavior~107! is similar to the dependence~88! for
finite l , and corresponds tog5gc . In the case of Eq.~96!,
this behavior takes place up toj5`. On the other hand, an
account of the incoherent contribution results in that the
crease ofx stops ata g̃ 2Ccoh

max51/Z511x/a, i.e., at

j25l1xmax5l1a~a g̃2Ccoh
max21!. ~108!

Thus the value ofj2 is determined by the quantityd. The
dependencex(j) for a 2D antiferromagnet is shown in Fig
6. In the presence of the incoherent contribution the reg
where the dependence~107! holds, is rather narrow~espe-
cially for not too smalld). However, a more exact consid
eration of spin dynamics~rather than using the spin-diffusio
approximation! may change considerably the results.

In the regime~107! we have the result~104! with b51
andD→v̄, so that in the AFM case (a51) one obtains

xm~T!5const, Ce~T!; ln~v̄/T!. ~109!

For finite, but large@ l # the picture discussed fails below

TK5Dexp~2@ l #1/2/A2 g̃ !. ~110!

However, the NFL behavior takes place in a wide tempe
ture regionTK!T<v̄. At T,TK the renormalization ofge f
becomes important and, as discussed in the end of the p
ous section, a more complicated scaling behavior may t
place.

As discussed in Sec. VI~see Fig. 4!, a NFL behavior takes
place even forl 50 for g.gc . Numerical calculations con
firm that the NFL region becomes broader with increas
@ l #. The linear dependencege f(j) with a small coefficient
takes place up toj.5, then this is changed by the linea
‘‘coherent’’ behavior which is further smeared by the inc
herent contribution.

FIG. 6. The dependence ofx5 ln(v̄/v̄ef) vs j5 lnuD/Cu for a 2D

antiferromagnet at@ l #5` with d51023, l55, g̃50.6 according
to Eq. ~96! ~dashed line! and with account of the incoherent contr
bution ~solid line!.
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IX. CONCLUSIONS

In conclusion, we summarize the main results of our c
sideration, discuss their connection with peculiarities of
anomalousf -electron systems, and mention some unsolv
problems. Three regimes are possible atI ,0 depending on
the relation between the one-impurity Kondo temperatureTK

and bare spin-fluctuation frequencyv̄: ~i! The strong-
coupling regime withI e f(C→0)→` where all the conduc-
tion electrons are bound into singlet states and spin dynam
is suppressed. This regime is expected to occur provided
v̄!TK . ~ii ! The regime of a ‘‘Kondo’’ magnet with an ap
preciable, but not total compensation of magnetic mome
which corresponds to smallug2gcu. ~iii ! The regime of
‘‘usual’’ magnets with small logarithmic corrections to th
ground-state moment andv̄e f . ~Note that the same situatio
takes place atI .0.13!

The formation of magnetic state takes place at

TK
c [Dexp~21/gc!5Av̄S v̄

D
D 1/ac21

~111!

(ac[lgc , A is of the order of unity!. For N→` we have
ac511O(1/l) and the strong-coupling region boundary
determined by the conditionTK5Av̄. For finite N we al-
ways haveac,1 ~see Table I! and, according to Eq.~111!,
TK

c !v̄.
It should be stressed that the Doniach criteriongc.0.4,8

which was obtained for a very special case in a simplifi
one-dimensional model, cannot in fact be used for real s
tems. Indeed, as demonstrated by numerical calculations
N52, gc turn out to be sensitive to parameters of exchan
interactions, type of magnetic ordering, space dimensio
ity, degeneracy factors, etc.

It is a common practice to treat the interplay of spin d
namics and the Kondo effect within the two-impurity pro
lem ~see, e.g., Refs. 34!. However, we have demonstrate
that the most important features of the scaling behavior
connected with peculiarities of the spin spectral density
are not described by this model~where the spectral density i
a d-like peak corresponding to singlet-triplet transitions!.

We have used in our calculations the simplest ‘‘Deby
approximation for the magnon spectrum, i.e., the long-w
dispersion law in the whole Brillouin zone. At the same tim
competing interspin interactions, which are owing to the
cillating behavior of the RKKY exchange and can lead
frustrations, might be important for explaining magne
structures in the ‘‘usual’’ Kondo lattices.

The effective Kondo temperatureTK* determines a char
acteristic energy scale of the ‘‘heavy-fermion’’ behavior
low temperatures. This can differ considerably from the o
impurity valueTK , so that in the PM phaseTK* ,TK , and in
the magnetically ordered phases, except for very sm
g2gc , TK* .TK ~see Fig. 5!. In the AFM caseTK* depends

weakly ong and therefore onTK , and is determined byv̄ in
a wide interval ofg.

Although our consideration was performed forT50, one
may expect by analogy with the one-impurity problem th
the dependencesS̄(T) @in the PM phase,S̄(T) is the local
-
e
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moment determined from the magnetic susceptibility# and
v̄(T) may be qualitatively obtained by a simple replacem
uCu→T.

For N52 and small enoughd ~spin excitation damping!,
the Kondo screening in the AFM and FM phases is stron
than in the PM phase. This leads to an increase of
Rhodes-Wohlfarth ratio~i.e., of the ratio of the effective mo
ment, as determined from the Curie constant, to the sat
tion moment!. For example, if the bare coupling constant
close to its critical value in the ordered phase and co
spondingly lower than in the PM phase, the ground-st
moment is small in comparison with the high-temperatu
one~a behavior, typical for most Kondo magnets, as well
weak itinerant electrond magnets!. The same situation take
place for the characteristic spin-fluctuation frequencyv̄e f . It
should be noted that an increase of spin-fluctuation ener
with temperature is indeed observed in a number of ano
lous f -electron systems, e.g., U2Zn17.35

Presence of the factor 1/N in the AFM2 case or a large
value ofd ~magnon damping! may result in that the suppres
sion of the effective moment and spin-dynamics frequen
turns out to be weaker than in the PM phase. It looks like
decrease of moment at magnetic disordering with increas
temperature. Such a decrease is typical for strong itine
magnets, where it is due to the change of electron spect
at disordering~see Refs. 28 and 36!. In the case under con
sideration this phenomenon has a quite different~essentially
many-particle! nature.

Near the boundary of the strong-coupling region (g→gc)
the relevant variables demonstrate a nontrivial scaling beh
ior as functions ofug2gcu andj. In particular,

TK* ~g→gc10!,v̄* ~g→gc20!;ug2gcug, ~112!

the exponentg depending on the type of magnetic orderin
These results may be of interest for the general theory
metallic magnetism. The description of the state with sm
magnetic moment (g→gc) turns out to differ considerably
from that in the theory of weak itinerant magnetism.32 It is
interesting that the ‘‘critical exponents’’ in the dependenc
of the moment on the coupling constant~91! andC ~92! turn
out to be noninteger. The corresponding dependen
S̄(T)5 S̄e f(uCu→T) describe an analog of th
‘‘temperature-induced magnetism.’’32

As mentioned in the Introduction, high sensitivity of th
magnetic state in heavy-fermion systems to external fac
is explained by that in case~ii ! the magnetic momen
changes strongly at small variations of the bare coupl
constantg. According to our consideration, the regime
small magnetic moments occurs in a very narrow region
bare parameters only. The renormalized values of magn
moment and spin-fluctuation frequency are determined
the quantityg* . Provided thatg is not too close togc , a
characteristic interval of the change ofg* by unity is esti-
mated asdg;g2!g. In the immediate vicinity ofgc ~where
the behaviorg* ;2 lnug2gcu takes place! this interval be-
comes still more narrow:dg;ug2gcu. A more consistent
treatment of this regime with account of possible renorm
ization of the scaleug2gcu itself requires using more com
plicated~e.g., numerical! scaling approaches.
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‘‘Softening’’ of the spin excitation spectrum in the critica
region may result in a non-Fermi-liquid behavior. Althoug
the NFL state itself cannot be described within the fram
work of our perturbative approach, the conclusion about
NFL behavior near the boundary of magnetic (g,gc) and
nonmagnetic (g.gc) phases seems to be important. Th
conclusion is confirmed by the fact that a violation of t
Fermi-liquid picture in the anomalousf -electron system is
really observed near the onset of magnetic ordering.14 It is
difficult to explain this fact within the frequently used on
impurity two-channel Kondo model.17 At the same time, our
scenario of the NFL state formation takes into account
sentially themany-centernature of the system. The width o
the region where the NFL behavior occurs increases w
increasing the degeneracy factor@ l # and decreases with in
creasingN. In the formal limit@ l #→` perturbation theory in
g remains applicable, so that explicit expressions for therm
dynamic and magnetic properties can be obtained.

On the whole, the physical behavior that occurs as a re
of an interplay between the Kondo effect and intersite
change interactions, turns out to be very rich and differs
various model versions.
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APPENDIX A: GROUND STATE AND SPECTRUM OF SPIN
EXCITATIONS OF THE LOCALIZED-SPIN SYSTEM

IN MODELS „2… AND „7…

In the ground ferromagnetic~FM! state of model~2! to
zeroth approximation inI we have^Si

z&5S, and the spin-
wave spectrum reads

vq5vq
FM~S!52S~Jq2J0!. ~A1!

For model~7!, we also assume the magnon character of s
dynamics. Then the spin-wave spectrum can be found
linearizing the equation of motion for the ‘‘spin-deviation
operatorX2q

MS . There exist 2S5N21 spin-wave modes with
the frequencyvq5vq

FM(1/2), which correspond to the tran
sitionsS→M,S.

Now we discuss an antiferromagnet which has the sp
structure along thex axis with the wave vectorQ (JQ5Jmin)

^Si
z&5ScosQRi , ^Si

y&5SsinQRi , ^Si
x&50.

We introduce the local coordinate system

Si
z5Ŝi

zcosQRi2Ŝi
ysinQRi , ~A2!

Si
y5Ŝi

ycosQRi1Ŝi
zsinQRi , Si

x5Ŝi
x .

Hereafter we consider for simplicity a two-sublattice AF
~2Q is equal to a reciprocal-lattice vector, so th
cos2QRi51, sin2QRi50). Passing to the spin-deviation op
erator we represent the standard Heisenberg Hamiltonia
the spin-wave region as
-
e

s-

h

-

lt
-
r

-

in
y

al

t

in

H f5const1(
q

FCqbq
†bq1

1

2
Dq~b2qbq1bq

†b2q
† !G ,

~A3!

Cq5S~JQ1q1Jq22JQ!, Dq5S~Jq2JQ1q!.

Diagonalizing Eq.~A3! we obtain the spin-wave spectrum

vq5vq
AFM~S!5~Cq

22Dq
2!1/252S~Jq2JQ!1/2~JQ1q2JQ!1/2.

~A4!

The corresponding transformation to the local coordin
system for model~7! has the form

Xi
MM85

1

2
@X̂i

M ,M8~11cosQRi !1X̂i
2M ,2M8~12cosQRi !#.

Then we obtain

H f5(
q

(
M ,M852S

S

~Jq
~2!X̂2q

MM8X̂q
M8M1Jq

~1!X̂2q
MM8X̂q

2M82M !,

~A5!

Hs f52
1

2
I(

kq
(

M ,M852S

S

@~X̂q
M ,M81X̂q

2M ,2M8!

1~X̂q1Q
M ,M82X̂q1Q

2M ,2M8!#ckM8
† ck2qM ~A6!

with

Jq
~1,2!5

1

2
~Jq7Jq1Q!.

In the mean-field approximation we have

^H f&5 (
M52S

S

~J0
~2!nM

2 1J0
~1!nMn2M ! ~A7!

with nM5^X̂i
MM&. The usual AFM state turns out to be un

stable for simple lattices provided that only the neare
neighbor interaction is taken into account (Jq

(2)[0). Indeed,
in this case any state with

(
M.0

nM51, (
M,0

nM50

has the same energŷH f&50. When introducing the next
neighbor ferromagnetic interaction (J0

(2),0) the AFM state
with

nS51, nM,S50 ~A8!

is stabilized. This state will be referred to as AFM1. T
corresponding ‘‘spin-wave’’ spectrum containsN branches.
The mode, which corresponds to the transitionS→2S, has
the frequencyvq

(a)5vq
AFM(S51/2). OtherN22 modes have

a ferromagnetic type and possess the energy

vq
~ f !5vq

FM~S51/2,Jq→Jq
~2!!.

Provided that the next-neighbor interaction is antifer
magnetic too (J0

(2).0, this case is referred to as AFM2!,
minimization of Eq.~A7! yields
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nM,050, nM.05K[H 2/N52/~2S11!, N even

J0 /~SJ01J0
~2!!, N odd.

~A9!

For oddN we have

n05J0
~2!/~SJ01J0

~2!!.J0
~2!/~SJ0!!K. ~A10!

Then, according to Eq.~9!, for N.2 the sublattice magneti
zation turns out to be reduced in comparison withS already
in the mean-field approximation:

S̄5
1

2
3H S11/2, S half-integer

~S11!~12n0!, S integer.
~A11!

Then there existN2/4 (N even! or (N21)2/4 (N odd! ‘‘an-
tiferromagnetic’’ modes which correspond to the transitio
from M.0 to M 8,0 and have the frequenc
vq

(a)5vq
AFM(S5K). Besides that, for oddN there exist pe-

culiar modes with the frequenciesvq
V , which describe the

transitionsM→0 and are determined by the equations

Vq
6~v![@v7~K22n0!Cq#~v6n0Cq!1n0~K22n0!Dq

2

50 ~A12!

~the plus sign corresponds toM.0 and the minus sign to
M,0), so that to lowest order inn0

vq1
V6.6KCq , vq2

V6.7n0~Cq
22Dq

2!/Cq . ~A13!

Thus one of the solutions to Eq.~A12! describes the mode
which is very soft forJ0

(2)!SJ0 . Since the Kondo singula
contributions, which are cut at this mode, are large, this m
result in a tendency to the destruction of magnetism.

Really, the considered ground states and excitation s
tra are strongly influenced by the crystal field.21,37,38In par-
ticular, large gaps and degeneracy lift may occur in
above-discussed ‘‘additional’’ modes. This question ne
special consideration.

APPENDIX B: RENORMALIZATIONS IN THE
PARAMAGNETIC PHASE

The Kondo-lattice problem in the paramagnetic state
scribes the process of screening of localized magnetic
ments that are determined from the temperature depend
of magnetic susceptibility, and the related anomalies in
electron spectrum and damping.

To find the renormalization of the effectives2 f ex-
change parameter we consider the electron self-energy
the second order inI we have

Sk
~2!~E!5I 2P(

q

1

E2tk2q
, ~B1!

where

P5H @ l #S~S11!, model~2!

121/N2, model~7!.
~B2!

To construct a self-consistent theory of Kondo lattices,
have to calculate the third-order Kondo correction to the s
energy with account of spin dynamics. Such calculatio
s

y

c-

e
s

-
o-
ce
e

In

e
f-
s

were performed in Refs. 9 within the simplest nondegene
s2 f model. Repeating a similar procedure in a more gene
case we obtain for the singular contribution~which contains
a logarithmic divergence in the absence of spin dynamic!

Sk
~3!~E!52I 3PNE

2`

`

dv(
q,p
Jq~v!

nk2q

E2tk2q2v

3S 1

E2tk2p
2

1

tk2q2tk2p
D , ~B3!

whereN52 in model~2!, the spin dynamics is neglected i
the denominator which is not connected with the Fermi fu
tion nk5n(tk),

Jq~v!52
1

p
N~v!

Im^^Sq
zuS2q

z &&v

^S2q
z Sq

z&
~B4!

is the spectral density of the spin Green’s function for t
HamiltonianH f , which is normalized to unity,N(v) being
the Bose function. The Kondo renormalization of thes2 f
parameterI→I e f5I 1dI e f is determined by ‘‘including’’
ImSk

(3)(E) into ImSk
(2)(E), and is given by

dI e f52
N

2
I 2E

2`

`

dv(
q
Jq~v!

nk2q

E2tk2q2v
~B5!

~we have to setE5EF50, k5kF in the expressions forI e f).
To concretize the form of spin dynamics in the paramagn
phase we use the spin-diffusion approximation

Jq~v!5
1

p

Dq2

v21~Dq2!2
~B6!

(D is the spin-diffusion constant! which is correct at small
q,v and is reasonable in a general case. Then we derive

dI e f52
N

2
I 2Re(

q

nk2q

E2tk2q2 iDq2
. ~B7!

To calculate the correction to the effective magnetic m
ment we treat the static magnetic susceptibility

x5~Sz,Sz![E
0

1/T

dl^exp~lH !Szexp~2lH !Sz&. ~B8!

Expanding to second order inI we derive~cf. Ref. 9!

x5 S̄e f
2 /3T, S̄e f

2 5S~S11!@12L#, ~B9!

L52RI2E
2`

`

dv(
kq
Jq~v!

nk~12nk2q!

~ tk2tk2q2v!2

where we have introduced the notation

R5H @ l #, model~2!

N/2, model ~7!.
~B10!

The spin-fluctuation frequency in the paramagnetic phas
determined from the second moment of the spin Gree
function



log
ity

-

s
o
gie

th

r

ads
ns

lf-

for

e
-

ag-
n

56 8125SCALING PICTURE OF MAGNETISM FORMATION IN . . .
vq
25~Ṡ2q

z ,Ṡq
z!/~S2q

z ,Sq
z!. ~B11!

To second order inI we derive~cf. Refs. 10 and 13!

~vq
2!05

4

3
S~S11!(

p
~Jq2p2Jp!2, ~B12!

dvq
2/vq

25~12ãq!d S̄e f
2 / S̄e f

2 52~12ãq!L, ~B13!

where we have taken into account spin dynamics by ana
with Eq. ~B9!. Passing into real space yields for the quant
ãq

ãq5(
R

JR
2 S sinkFR

kFR D 2

@12cosqR#/(
R

JR
2 @12cosqR#.

~B14!

This quantity differs from the result for a ferromagnet~19!
by the replacementJR→JR

2 . However, in the nearest
neighbor approximation we obtain the same result~20!.

APPENDIX C: EFFECTIVE s2f INTERACTION
IN MAGNETICALLY ORDERED PHASES

Here we investigate the renormalization of thes2 f inter-
action in the FM and AFM phases. First we treat model~2!.
For a ferromagnet the electron spectrum possesses the
splitting, Eks5tk2s@ l #IS. The second-order correction t
I e f is determined by the corresponding electron self-ener
~cf. Ref. 9!:

dI e f52@Sk↑
FM~E!2Sk↓

FM~E!#/~2S@ l # ! ~C1!

with

Sk↑
FM~E!52RI2S(

q

nk2q

E2tk2q1vq
FM

,

Sk↓
FM~E!52RI2S(

q

12nk2q

E2tk2q2vq
FM

. ~C2!

For an antiferromagnet the electron spectrum contains
AFM gap,

Ek5
1

2
~ tk1tk1Q!6F1

4
~ tk2tk1Q!21~@ l #IS!2G1/2

.

~C3!

The renormalization ofI is obtained from the second-orde
correction to the anomalous Green’s function

^^cksuck1Qs
† &&E52s

@ l #IS2Sk,k1Q
AFM ~E!

~E2tk!~E2tk1Q!
,

so that

dI e f52Sk,k1Q
AFM ~E!/~S@ l # !. ~C4!

The calculation of the off-diagonal self-energy gives

Sk,k1Q
AFM ~E!52RI2S(

q

nk2q~E2tk2q!

~E2tk2q!22~vq
AFM!2

. ~C5!
y

pin

s

e

To calculate the corrections toI e f in the Coqblin-
Schrieffer model we consider the Green’s function

(
M.0

~^^ckMuck1QM
† &&E2^^ck,2Muck1Q,2M

† &&E!, ~C6!

which determines the ‘‘magnetization’’~FM case,Q50) or
‘‘staggered magnetization’’~AFM case! of conduction elec-
trons.

For a ferromagnet the mean-field electron spectrum re
EkM5tk2IdMS . Calculating the second-order correctio
we derive

dI e f522@~N21!Sk↑
FM~E!2Sk↓

FM~E!#/N ~C7!

~remember that in the Coqblin-Schrieffer model the se
energies should be substituted atS51/2).

In the AFM1 state the mean-field electron spectrum
M5S,2S is given by Eq. ~C3! with the replacement
tk→tk2I . For otherM the spectrum is unrenormalized. Th
renormalization ofI in such a situation contains contribu
tions of both FM and AFM types:

dI e f522@~N22!Sk↑
FM~E,vq

FM→vq
~ f !!

1Sk,k1Q
AFM ~E,vq

AFM→vq
~a!!#/N. ~C8!

In the case AFM2 the electron spectrum is given by Eq.~C3!
with S→K/2, tk→tk2IK . Besides that, for oddN there ex-
ists a branch of spectrum withM50, which is weakly renor-
malized due to smallness ofuJ0

(2)u. Then we obtain for even
N

dI e f522Sk,k1Q
AFM ~E,vq

AFM→vq
~a!!. ~C9!

For oddN the contribution of the mode Eq.~A12! occurs:

dI e f522
N21

N
Sk,k1Q

AFM ~E,vq
AFM→vq

~a!!

2@~K2n0!Sk,k1Q
V1 ~E!1n0Sk,k1Q

V2 ~E!#/K,

~C10!

where

Sk,k1Q
V6 ~E!5I 2(

q

nk2q~E2tk2q!

Vq
6~E2tk2q!

. ~C11!

APPENDIX D: RENORMALIZATIONS
OF THE ORDERED MOMENT AND MAGNON

FREQUENCY

To investigate the magnon spectrum of an antiferrom
net in model~2!, we calculate the retarded Green’s functio
of spin deviation operators in the local coordinate system

Gq~v!5^^bqubq
†&&v , Ḡ q~v!5^^b2q

† ubq
†&&v . ~D1!

Writing down the equation of motion we derive@cf. the cal-
culations forl 50 ~Ref. 39!#
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Gq~v!5
v1Cq2v

~v2Cqv!~v1Cq2v!1Dqv
2

, ~D2!

Ḡq~v!5
Dqv

~v2Cqv!~v1Cq2v!1Dqv
2

, ~D3!

where

Cqv5S~JQ1q,v
tot 1Jqv

tot 22JQ0
tot !1@ l #(

p
@CpFpqv

AFM

2~Cp2Dp!Fp00
AFM1fpqv

1 1fpqv
2 #

1(
p

@~2JQ12Jq2p22Jp2JQ1q2Jq!^bp
†bp&

22Jp^b2pbp&#, ~D4!

Dqv5Dq2v5S~Jqv
tot 2JQ1q,v

tot !1@ l #(
p

DpFpqv
AFM

1(
p

@~JQ1q2Jq!^bp
†bp&22Jq2p^b2pbp&#.

The s2 f exchange contributions of the first order in 1/2S
correspond to the RKKY approximation

Jqv
tot 5Jq1I 2@ l #(

k

nk2nk2q

v1tk2tk2q
~D5!

the second summand in Eq.~D5! being thev-dependent
RKKY indirect exchange interaction. The functionF, which
determines the second-order corrections, is given by

Fpqv
AFM5~fpqv

1 2fpqv
2 !/vp , ~D6!

fpqv
6 5I 2(

k

nk~12nk1p2q!1N~6vp!~nk2nk1p2q!

v1tk2tk1p2q7vp

~D7!

~note thatfpqv
1 52fpq2v

2 ), vp is the magnon frequency t
zeroth order inI and 1/2S given by Eq.~A4!, the terms in
Eq. ~D4!, which contain the spin-deviation correlation fun
tions, describe the magnon anharmonicity. Expression~D2!
is valid also for a ferromagnet (Q50) provided thatq is not
too small, cf. Ref. 40; such an approximation is sufficient
treat the Kondo divergences.

We have to take into account singulars2 f contributions
to the averages in Eq.~D4!. These are due to the zero-poi
magnon damping and are obtained by using the spectral
resentation for the Green’s functions~D2!, ~D3! in the
RKKY approximation.9 Since ImJqv

tot ;v (uvu!EF) the cor-
responding integral over frequency contains logarithm
Kondo-like divergences that are smeared by spin dynam
@note that scattering corrections to the damping, which
described by the function~D6!, do not contribute the loga
rithmic terms!. We derive

dH ^bq
†bq&

^b2qbq&
J 5

S

2
@ l #~Fq00

AFM6Fq1Q00
AFM ! ~D8!

for an antiferromagnet and
p-

c
cs
re

d^bq
†bq&5S@ l #Fq00

FM ~D9!

for a ferromagnet with

Fpqv
FM 5I 2(

k

nk~12nk1p2q!1N~vp!~nk2nk1p2q!

~v1tk2tk1p2q2vp!2
.

~D10!

Expressions~D8!, ~D9! determine also the singular corre
tion to the~sublattice! magnetization

d S̄/S52
1

S(q
d^bq

†bq&52@ l #(
q

Fq00
FM,AFM . ~D11!

Collecting all the singulars2 f contributions to the pole of
Eq. ~D2! and taking into account the relation

(
p

Jp1kFpqv.(
p

Jp1k2qFp00;I 2^Jk2q& tk5tk2q50ln
D

v̄
,

~D12!

which holds to logarithmic accuracy, we derive for the s
gular correction

d~vq
AFM!2[2vqdvq

AFM52R(
p

@2vq
214S2~JQ1q1Jq

22JQ!~Jp1JQ1p2JQ1q2p2Jq2p!#Fp00
AFM

~D13!

with R5@ l #.
In the case of a ferromagnet (Q50), the term

fpqv
1 1fpqv

2 ~which is odd inv) yields a contribution to the
pole of Eq.~D2! and we have

dvq
FM~v!522RS(

p
~2Jp22Jq2p1Jq2J01v/2S!Fp00

FM ,

~D14!

dvq
FM5dvq

FM~vq!524RS(
p

~Jp1Jq2Jq2p2J0!Fp00
FM .

~D15!

Expression~D15! can be represented as

dvq /vq52~12aq!d S̄/S ~D16!

with aq given by Eq.~19!.
For an antiferromagnet in the nearest-neighbor appro

mation (JQ1q52Jq) we obtain from Eq.~D13!

dvq /vq5d S̄/S, ~D17!

so that, in contrast with the PM and the FM cases, an exp
dependence on the parameterkFd is absent. Note that the
results~D16!,~D17! differ from those of Ref. 13 since only
corrections arising from the static correlation functions we
taken into account in that paper.

The calculations of the magnon spectrum in the Coqb
Schrieffer model for the FM and AFM1 cases are perform
in a similar way by considering the Green’s functions
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Gq
MM8~v!5^^X̂q

M8MuX̂2q
MM8&&v ,

Ḡ q
MM8~v!5^^X̂q

2M8,2MuX̂2q
MM8&&v ~D18!

for M 85S. The results differ from Eqs.~D2!,~D3! by the
replacement@ l #→1 in Eq. ~D5! and @ l #→N/2 in Eq. ~D4!.

According to Eq.~9!, the magnetization of a ferromagne
is determined by

S̄/S512Nn2 , n25(
q

^X2q
MSXq

SM&, ~D19!

where the average in the right-hand side does not depen
M for M,S. Then we obtain

d S̄/S52
N

2(
q

Fq00
FM , dvq5

N

2
dvq

FM . ~D20!

The sublattice magnetization in the AFM1 case is giv
by

S̄/S512~N22!n222n2S ~D21!

with

n25(
q

^X̂2q
MSX̂q

SM& ~2S,M,S!, ~D22!

n2S5(
q

^X̂2q
2SSX̂q

S,2S&

After cumbersome calculations we derive

d S̄/S52
N22

2 (
q

Fq00
FM~vp

FM→vp
~ f !!

2(
q

Fq00
AFM~vp

AFM→vp
~a!!, ~D23!
on

n

dvq
~ f !5

N22

N
dvq

FM~Jp→Jp
~2!!1d~vq

AFM!2/~NCq!,

~D24!

d~vq
~a!!25

2

N
d~vq

AFM!2~vp
AFM→vp

~a!!12
N22

N
Cq

3dvq
FM~v5vq

~a! , Jp→Jp
~2!!

with R5N/2 in Eqs.~D14!, ~D13!.
In the AFM2 case we have to put in Eq.~D18!

M,0, M 8.0. Then we have

S̄5~ S̄!02H ~S11/2!2n2 , N even

S~S11!n21~S11!dn0 , N odd.
~D25!

where (S̄)0 is given by Eq.~A11!, the average

n25(
q

^X̂2q
M ,M8X̂q

M8,M&

does not depend onM ,M 8 for M 8.0, M,0, and dn0 is the
fluctuation correction ton0 . Restricting ourselves for sim-
plicity to the case of evenN, which corresponds to a realistic
situation for f ions, we obtain

d S̄/S52(
q

Fq00
AFM~vp

AFM→vp
~a!!, ~D26!

dvq
~a!5

2

N
dvq

AFM~vp
AFM→vp

~a!!. ~D27!

Thus the singular corrections to the sublattice magnetizat
and magnon frequency do not contain the factor ofN in this
case.
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