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Ginzburg-Landau-Gor’kov theory of magnetic oscillations
in a type-II two-dimensional superconductor

G. M. Bruun, V. Nikos Nicopoulos, and N. F. Johnson
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

~Received 14 August 1996; revised manuscript received 18 February 1997!

We investigate de Haas–van Alphen~dHvA! oscillations in the mixed state of a type-II two-dimensional
superconductor within a self-consistent Gor’kov perturbation scheme. Assuming that the order parameter forms
a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of
the perturbation theory to fourth and eighth order against an exact numerical solution of the corresponding
Bogoliubov–de Gennes equations. The perturbation theory is found to describe well the onset of supercon-
ductivity close to the transition pointHc2. Contrary to earlier calculations by other authors we do not find that
the perturbative scheme predicts any maximum of the dHvA oscillations belowHc2. Instead we obtain a
substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have
examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore, we have investigated the recently debated issue of the possibility of a sign
change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and
we have found good agreement.@S0163-1829~97!03226-8#
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I. INTRODUCTION

In recent years there has been a renewed interest in
interplay between external magnetic fields and supercon
tivity in type-II superconductors. It is well known that d
Haas–van Alphen~dHvA! oscillations are a useful tool fo
probing the Fermi surface in metals in the normal state.
type-II superconductors the magnetic field is allowed to p
tially penetrate the sample in the mixed state. One wo
then expect magnetic oscillations in the mixed state to g
information about the quasiparticle dispersion and the m
netic field dependence of the correlations in the ground st
Magnetic oscillations in the mixed state were observed
the first time in the layered superconductor 2H-NbSe2 over
20 years ago.1 More recently dHvA oscillations were ob
served in the organic superconductork-~ET! 2Cu~NCS! 2,

2

theA15 compounds V3Si ~Ref. 3! and Nb3Sn,
4 the borocar-

bide superconductor YNi2B2C,
5 and the high-temperatur

superconductors YBaCuO~Ref. 6! and BaKBiO.7 These ex-
periments have sparked a variety of theoretical invest
tions, not least in order to understand the interplay betw
oscillations in the quasiparticle spectra and the ground-s
condensation energy. The transition lineHc2 between the
normal state and the mixed state was shown to exhibit w
oscillations as a function of the magnetic field.8,9 For high
magnetic fields, clean samples, and very low temperat
Hc2 has been predicted theoretically to be a strongly os
lating function.10 The mixed state is characterized by t
interplay between Landau level quantization due to the m
netic field and Cooper pair formation characteristic of sup
conductivity. This calls for a theory that takes both effe
into account consistently. The theory developed by Mak11

and Stephen12 gives a simple picture of the vortex lattic
acting as an extra scattering potential on quasipartic
thereby damping the magnetic oscillations. The theory u
semiclassical approximations and, crucially, fails to impo
560163-1829/97/56~2!/809~17!/$10.00
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the physical condition that the vortex lattice is the se
consistent mean field of the Cooper pairs. The problem s
plifies when the electrons are confined to form pairs with
the same Landau level~diagonal approximation! and this
case has been treated by several authors.13,14 Unfortunately
the diagonal approximation ignores the fact that the typi
excitation is a superposition of an electron and a hole
different Landau levels, but with similar energies. This effe
is strongest when the chemical potentialm is either at a
Landau levelnf5m/\vc21/25n (n integer! or exactly be-
tween two Landau levelsnf5n11/2. We then have exac
degeneracy between an electron state in a Landau l
nf1m and a hole in the levelnf2m, whennf5n, and be-
tween an electron in a levelnf1m11/2 and a hole in a leve
nf2m21/2, whennf5n11/2, respectively. A major effec
of the self-consistent pairing field is then to mix these tw
degenerate excitations strongly. Following the results of
diagonal approximation Dukan and Tesˇanović 15 have fo-
cused on the consequences of a gapless portion of the
siparticle spectrum. The calculation, which is appropriate
low-lying excitations in three dimensions, is not applicab
for two-dimensional~2D! systems where the number of ga
less points and their dispersion law vary strongly with t
magnetic field and it does not take into account the osci
tory behavior of the ground-state energy as a function of
magnetic field. This oscillatory behavior of the ground-sta
energy has been considered by Miller and Gyo¨rffy16 in the
D@kBT limit. Normanet al.17 have studied the problem nu
merically and have linked the damping of the magnetic
cillations to the broadening of the Landau levels due to
gap. Recently18 there have been claims based partly
Gor’kov theory and partly on an assumed simplified form
the quasiparticle spectrum that below a certain fi
H inv,Hc2, the magnetic oscillations should exhibit a rap
180° phase shift.

In this paper we develop a scheme for calculating
809 © 1997 The American Physical Society
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810 56G. M. BRUUN, V. NIKOS NICOPOULOS, AND N. F. JOHNSON
Gor’kov expansion terms treating the quantum effects of
magnetic field exactly. In addition we solve numerically t
corresponding Bogoliubov–de Gennes~BdG! equations. Us-
ing the developed formalism we study the magnetic osci
tions in the mixed state of a type-II superconductor. We
working in two dimensions since many organic metals
known to show almost perfect 2D behavior. Exploiting t
symmetry of the magnetic translation group of the vor
lattice we have been able to calculate the expansion co
cients in the Gor’kov theory exactly to any order, making
restriction on the energy of the center of mass of the Coo
pairs. Self-consistency within this approach then transfo
to the much simpler problem of minimizing a polynomial
a finite number of variables. This allows us to develop
analytical theory for the thermodynamic potential and th
for the magnetic oscillations close toHc2 which contains no
approximations apart from the assumption of a small or
parameter. This establishes a rigorous basis for our the
compared with earlier attempts. It turns out to be crucia
determine the order parameter self-consistently since its
cillatory behavior when the magnetic field varies is the ca
of the damping of the dHvA oscillations. We find that th
dHvA oscillations are damped in the mixed state as co
pared to the normal state, in agreement with what is obse
experimentally. This is due to the fact that the contributi
from the superconducting order parameter to the magn
oscillations partly cancels the contribution from the norm
grand potential. The superconducting order parameter it
is an oscillating function of the magnetic field, with loc
maxima occurring whenever we have a Landau level at
chemical potential since electrons can then form Coo
pairs without any cost in kinetic energy. This is the simp
physical picture of the damping emerging from our form
ism and it complements the interpretation given by Mil
and Györffy16 and Normanet al.17 When many Landau lev
els participate in the pairing we have simplified the expr
sions for the expansion parameters. This makes it possib
give fairly simple analytical expressions for the rate
damping af the dHvA oscillations close to the transition li
that may prove useful when fitting experimental data.

A similar approach has been taken by Manivet al.19 Us-
ing the semiclassical and various other approximations, t
calculate the Gor’kov expansion coefficients for a 2D me
to fourth order inD(r ) when the motion of the centers o
mass of the Cooper pairs is restricted to the lowest Lan
level. However, they obtain20 that the magnitude of the mag
netic oscillations exhibit a maximum belowHc2. This is con-
tradicted by our exact calculation of the expansion coe
cients and also by our numerical solution to the Bd
equations.

Recently it has been suggested that the degeneracy o
Landau levels should give rise to nonperturbative terms
the expansion of the grand potential, thereby making the
ditional Gor’kov theory invalid.21We have tested our pertur
bative theory carefully against an exact numerical solution
the BdG equations and we do not find any of the predic
nonperturbative effects. The theory based on the Gor’
expansion agrees very well with the exact solution if we
not too far belowHc2. It is essentially a high-temperatur
expansion in the sense that is an asymptotic series as lon
the change in the quasiparticle levels as compared to
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normal state is not larger than;O(kBT).
22

In a two-dimensional metal the chemical potential is
oscillatory function of the magnetic field when the number
particlesN is fixed. When higher harmonics are importa
~i.e., low temperatures and clean samples! the dHvA signal
in the normal state for fixedN looks qualitatively different
from the case when the chemical potential is fixed. It is
interest to see what consequences this difference has fo
magnetic oscillations in the mixed state. Examination of
dHvA oscillations in the mixed state in the two cases yie
that the superconducting order for fixed number of partic
reduces the oscillations in the chemical potential and that
dHvA oscillations are essentially the same in the two ca
apart from a narrow region close toHc2. Specifically, the
rate of damping of the magnetic oscillations is the sa
when the number of particles is constant and when
chemical potential is constant.

Since the contribution to the magnetic oscillations fro
the condensation energy is in antiphase with the contribu
from the normal grand potential, it has been suggested18 that
this will result in a sign change of the fundamental harmo
of the dHvA oscillations forH<H inv,Hc2. This would hap-
pen if the superconducting contribution were to overwhe
the contribution from the normal grand potential de
enough into the superconducting state. Based on an app
mate evaluation of the Gor’kov expansion parameters
can calculate an expression forH inv .

18 Using our expressions
for the damping, we are able to predict that within the reg
of validity of the perturbative scheme this effect will no
occur. Hence there is no theoretical reason, within pertur
tion theory, to expect inversion of the magnetic oscillatio
This result agrees with the lack of experimental observat
of such an effect. It also agrees with our exact numeri
solutions to the BdG equations which show a complete s
pression of the magnetic oscillations deep enough into
mixed state.23

Although there are currently experimental uncertaint
about the value ofHc2 in the organic superconductors,
comparison with experimental results for the quasi-2D sup
conductor k-~ET! 2Cu~NCS! 2 yields good agreement be
tween theory and experiment.

The outline of our paper is as follows. Section II sets
the formalism for describing the vortex state using both
Bogoliubov–de Gennes equations and perturbation theory
Sec. III we compare the results of the perturbation the
with the exact numerical solution. The damping of the ma
netic oscillations is discussed in Sec. IV. We give a physi
interpretation of the damping. The effect of a finite Zeem
splitting term is discussed and the case of a conserved n
ber of particles as opposed to a conserved chemical pote
is considered. Using approximate expressions for the da
ing parameters we are able to give a simple analytical
pression for the rate of damping of the dHvA oscillatio
close toHc2. The spin dependence and the temperature
pendence of the oscillations can then be extracted. We
examine the validity of the arguments leading to a s
change of the first harmonic of the dHvA oscillations. In Se
VI we compare our analytical theory with experimental r
sults. Finally we summarize our results in Sec. VII.
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II. ELECTRONS IN THE VORTEX STATE

A. General representation and BdG equations

We consider a pure 2D electron gas in thex-y plane with
a perpendicular magnetic fieldH along thez axis. In the
Landau gaugeA5(0,Hx,0), the single-particle eigenstate
can be chosen to be

fN,k~r !5
1

ALy
e2 ikyfNS x2kl2

l D , ~1!

wherefN(x)5(2NN!Ap l )21/2HN(x)e
2x2/2, with HN being

a Hermite polynomial of orderN, and l 25\c/eH is the
magnetic length. The size of the system isLx3Ly . Band
structure effects are assumed to be adequately described
ploying an electron effective massm* . TheB field is taken
to be uniform within the sample, thereby ignoring the part
screening by the supercurrents. This approximation holds
strong type-II superconductors (k@1) such as the organics
where the penetration depth is much larger than the co
ence length.

In the mixed state of a conventional type-II superco
ductor the order parameter forms a vortex lattice. It is the
fore advantageous to use a basis set which incorporates
symmetry. We have chosen to use the following set of fu
tions introduced by Normanet al.:17

fNk~r !5Aax
Lx

(
t
eikxaxteipt

2/4fN,2ky1tax / l
2~r !, ~2!

wherekxP@0,2p/ax@ with Dkx52p/Lx and kyP@0,ax / l
2@

with Dky52p/Ly define the magnetic Brillouin zon
~MBZ!. The symmetry of the order parameter restricts
pairing to be between electrons with quantum numbersk and
2k.13 By adjusting ax we can obtain both a triangula
@ax5 l (A3p/2)1/2# and a square vortex lattic
@ax5 l (p/2)1/2 #. Throughout this paper we choose to wo
with the triangular lattice since we expect the free energy
be minimized by this symmetry~except possibly in the reen
trant regime!.17 We are using mean-field BCS theory with
smooth cutoff in the interaction around the Fermi surfa
applicable for weak-coupling superconductors. The me
field Hamiltonian is

Ĥ5Ĥ01Ĥ1,

Ĥ05E dr cs
†~r !S @p2~e/c!A#2

2m
2m Dcs~r !,

Ĥ15(
k
NM

E dr @D~r !w~N!w~M !

3fMk* ~r !fN2k* ~r !âMk↑
† âN2k↓

† 1c.c.#, ~3!
m-

l
or

r-

-
-
his
-

e

o

,
n-

where the order parameter is defined as

D~r ![V(
k
NM

w~N!w~M !fNk~r !fM2k~r !^aNk↑aM2k↓&

~4!

This differs from the conventional BCS Hamiltonian sin
we have introduced the weight functionw(n). It is necessary
to have a smooth cutoff in the pairing interaction since
otherwise would get nonphysical effects arising from Land
levels abruptly entering or leaving the pairing region. T
weight functionw(n) is chosen to be Gaussian, i.e.,w(N)
}e2(jN/0.5\vD)

2
, where vD is the pairing width and

jN5(N11/2)\vc2m. This approach was introduced b
Norman et al.17 although they used a different weightin
function. It should be noted that the above slightly unco
ventional definition of the order parameter is necessary. O
erwise the self-consistency condition is not equivalent
minimizing the grand potentialV with respect toD(r ) @i.e.,
dV/dD(r )50#. In the vortex lattice case the order parame
can be characterized by a finite number of parame
D j ,

17

D~r !5
Vax

AlL yLx
(
j

D j(
g

eipg
2/2f j ,A2gax

~A2r !. ~5!

The D j ’s are determined self-consistently as explained
Ref. 17. Assuming not only translational but also sixfo
rotational symmetry of uD(r )u gives the restriction14

j50,6,12,. . . , wherej<2Nmax. Nmax is the highest Landau
level participating in the pairing. Using the above transfo
mation the corresponding BdG equations split into a se
equations for eachk and they can be solved numericall
Normanet al.17 have carried out an extensive numerical i
vestigation of the quasiparticle spectrum and the magn
oscillations in the superconducting state. We have develo
a similar numerical scheme to solve the BdG equations
this way we are able to check our analytical results aga
an exact numerical solution.

B. Perturbative expansion of the grand potential

Since we are interested in the region nearHc2 where the
order parameter is small, it is natural to consider the Gor’k
expansion of the grand potential. This can be done eit
through the equation of motion approach originally used
by using the grand partition function for the symmetr
broken self-consistent Hamiltonian:

Z5E D„cs* ~r ,t!cs~r ,t!…expS 2E
0

b

dtE drL~r ,t! D ,
L~r ,t!5cs* ~r ,t!S ]t1

@p2~e/c!A#2

2m
2m Dcs~r ,t!

2FD~r !c̃↓* ~r ,t!c̃↑* ~r ,t!1c.c.2
1

V
uD~r !u2G ,

~6!
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812 56G. M. BRUUN, V. NIKOS NICOPOULOS, AND N. F. JOHNSON
where D„cs* (r ,t)cs(r ,t)… denotes functional integration over Grassman variables. We have de

c̃s(r )5(n,kw(n)fn,k(r )an,b f ks . The (1/V)uD(r )u2 term corrects for the double counting of the interaction energy in
Hartree-Fock approximation. Expanding the grand potentialV5(21/b)lnZ in powers ofD(r ) we obtain to eighth order

VS2VN5V21V41V61V8 , ~7!

where

V25
1

VE dr uD~r !u22
1

bE dr1dr2D~r1!D* ~r2!K2~r1,r2!,

V45
1

2bE dr1•••dr4K4~r1 ,r2 ,r3 ,r4!D~r1!D~r2!D* ~r3!D* ~r4!,

V652
1

3bE dr1•••dr6K6~r1 , . . . ,r6!D~r1!D~r2!D~r3!D* ~r4!D* ~r5!D* ~r6!,

V85
1

4bE dr1•••dr8K8~r1 , . . . ,r8!D~r1!D~r2!D~r3!D~r4!D* ~r5!D* ~r6!D* ~r7!D* ~r8!. ~8!

The kernels are given by

K2~r1 ,r2!5
1

\2(
n

G̃↑
0~r2 ,r1 ,2vn!G̃↓

0~r2 ,r1 ,vn!,

K4~r1 ,r2 ,r3 ,r4!5
1

\4(
n

G̃↓
0~r4 ,r1 ,vn!G̃↑

0~r3 ,r1 ,2vn!G̃↓
0~r3 ,r2 ,vn!G̃↑

0~r4 ,r2 ,2vn!,

K6~r1 , . . . ,r6!5
1

\6(
n

G̃↓
0~r6 ,r1 ,vn!G̃↑

0~r5 ,r1 ,2vn!G̃↓
0~r5 ,r2 ,vn!G̃↑

0~r4 ,r2 ,2vn!G̃↓
0~r4 ,r3 ,vn!G̃↑

0~r6 ,r3 ,2vn!,

K8~r1 , . . . ,r8!5
1

\8(
n

G̃↓
0~r6 ,r1 ,vn!G̃↑

0~r7 ,r1 ,2vn!G̃↓
0~r7 ,r2 ,vn!G̃↑

0~r8 ,r2 ,2vn!G̃↓
0~r5 ,r3 ,vn!

3G̃↑
0~r6 ,r3 ,2vn!G̃↓

0~r8 ,r4 ,vn!G̃↑
0~r5 ,r4 ,2vn!, ~9!

andvn5(2n11)pkBT/\ are the Matsubara frequencies. Manivet al.19 have calculated the expansion up to fourth order
D(r ) using essentially semiclassical approximations. They used a variational form of the order parameter which
symmetry built in initially but restricts the electrons to condense in the lowest center-of-mass Landau level (D jÞ050). As will
be shown below, this restricion introduces no serious error within in the region of interest in the phase diagram. Si
known17 that the triangular lattice is the minimal energy configuration~except for the reentrant regime!, we have exploited this
symmetry to calculate these expansion terms exactly. Because we are using a smooth pairing cutoff in our Hamilto
have, instead of the Green’s function for the normal stateGs

0(r2 ,r1 ,vn), the following function in our kernels:

G̃s
0~r2 ,r1 ,vn!5(

nk

fnk~r2!fnk* ~r1!

ivn2jns /\
w2~n!, ~10!

wherejns5jn1gm*s/2m0\vc . The only difference from the Green’s function for the normal state is that we have incl
the weight functionsw(n) in the sum. Using the symmetry of the vortex lattice the integrals can be solved. We have to
order

V25
Vax

A2lL xLy
(
j

F12
V

4p l 2 (
n1 ,n2

Bj
n1 n22w2~n1!w

2~n2!
tanh~bjn1↓/2!1tanh~bjn2↑/2!

2~jn1↓1jn2↑!
GD j

25(
j

a jD j
2 ~11!

and
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V45
V4ax

4

8Lx
4Ly

4l 4 (
n1 . . .n4

w2~n1!w
2~n2!w

2~n3!w
2~n4! f ~n1 ,n2 ,n3 ,n4!

3 (
j 1 . . . j 4

Bj 1

n1n4Bj 2

n3n2Bj 3

n1n2Bj 4

n3n4Jn11n22 j 3 ,n31n42 j 4

n11n42 j 1 ,n21n32 j 2D j 1
D j 2

D j 3
D j 4

5 (
j 1 . . . j 4

g j 1 . . . j 4
D j1D j 2

D j 3
D j 4

, ~12!

where

f ~n1 ,n2 ,n3 ,n4!5
1

b(
n

@~2 i\vn2jn1↓!~ i\vn2jn2↑!~2 i\vn2jn3↓!~ i\vn2jn4↑!#
21 ~13!

and

J j 3 , j 4

j 1 , j 25
LxLy
4pax

(
j
Bj
j 1 j 2Bj

j 3 j 4(
h1h2

e2 ip~h1
2
2h2

2
!@f j 11 j 22 j~2h1ax!f j 31 j 42 j~2h2ax!

1e2 ip~h12h2!f j 11 j 22 j~2h1ax1ax!f j 31 j 42 j~2h2ax1ax!#. ~14!

The coeffiecientBj
NM is defined as

Bj
N,M[S j ! ~N1M2 j !!N!M !

2N1M D 1/2 (
m5max~0,j2N!

min~ j ,M !
~21!M2m

~ j2m!! ~N1m2 j !! ~M2m!!m!
. ~15!

The sums over states above are restricted to Landau levels lying within the pairing width around the chemical p
Using the standard method of evaluating Matsubara sums by contour integration we obtain

f ~n1 ,n2 ,n3 ,n4!5@~e2bjn1↓11!~jn1↓1jn2↑!~2jn1↓1jn3↓!~jn1↓1jn4↑!#
211@~ebjn2↑11!~jn2↑1jn1↓!~jn2↑1jn3↓!

3~jn2↑2jn4↑!#
211@~e2bjn3↓11!~2jn3↓1jn1↓!~jn3↓1jn2↑!~jn3↓1jn4↑!#

211@~ebjn4↑11!~jn4↑1jn1↓!

3~jn4↑2jn2↑!~jn4↑1jn3↑!#
21. ~16!

The second-order termV2 which determines theHc2 line agrees, apart from the inclusion of the weight function, with
result of MacDonaldet al.24 and Rajagopal and Ryan.25 The sixth and eighth-order termsV6 andV8 can also be calculated
and they are given in Appendix A. We get the form

VS2VN5(
j

a j~T,H !D j
21 (

j 1••• j 4
g j 1••• j 4

~T,H !D j 1
•••D j 4

1 (
j 1••• j 6

k j 1••• j 6
~T,H !D j 1

•••D j 6

1 (
j 1••• j 8

h j 1••• j 8
~T,H !D j 1

•••D j 8
. ~17!
e

re
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Thus we have derived the exact quantum-mechanical
pressions for the expansion coefficients forVS2VN up to
eighth order assuming a vortex lattice. We have not yet
stricted the electrons to form pairs with the lowest possi
center-of-mass energy (j50). The result is a multidimen
sional polynomial inD j . Going to eighth order permits us t
check the convergence properties of the series. We cou
principle calculate the expansion coefficients to any or
but, as usual, the algebra gets more cumbersome with
creasing order, and the minimization condition cannot
solved analytically for such high orders.

C. Self-consistency and minimization ofVS

The self-consistent determination of D(r )
[V^c↑(r )c↓(r )& is equivalent to minimizing the grand po
x-

-
e

in
r
n-
e

tential with respect toD(r ).26 In the above formulation,
which takes into account the spatial symmetry of the or
parameter, this reduces to minimizing our multidimensio
polynomial with respect toD j . Although this is a standard
numerical problem it is necessary to make further appro
mations in order to obtain simple analytical results. The
stability towards superconductivity is determined by the s
of the expansion coefficientsa j . Above Hc2 we have
a j.0 for all j . The transition to the mixed vortex state o
curs when one of thea j ’s becomes negative. The system c
then lower its energy by making the correspondingD j non-
zero. It has been shown that the instability occurs first in
j50 channel.24 So we havea0,0 and a jÞ0.0 for
H&Hc2 and thereforeD0@D jÞ0. We can then make the
approximationD jÞ050, i.e., only consider condensatio
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FIG. 1. The order parameterD0 vs nf calcu-
lated numerically~solid line!, to fourth order in
D0 ~dashed line!, and to eighth order inD0 ~dash-
dotted line!.
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into pairs with lowest Landau level center-of-mass motio
We have checked this approximation by solving the B
equation numerically whenD jÞ050 and when all theD j ’s
are nonzero. In the region of interest there is essentially
difference between the two solutions thus justifying our a
proximation.

The grand potential now has the Landau form

aD0
21gD0

41kD0
61hD0

8 ~18!

(a5a0, g5g0 0 0 0, etc.!, and our self-consistency problem
is reduced to a simple one-dimensional minimization pr
lem which can be easily solved. To fourth order we hav
mexican hat potential when we are in the mixed st
(a,0 andg.0) and the minimum for the grand potential
obtained for nonzeroD0. Requiring ]D0

(VS2VN)uD̃0
50

gives

z31a1~T,H !z21a2~T,H !z1a3~T,H !50, ~19!

where z5D̃0
2 and a153k/4h, a25g/2h, and a35a/4h.

D̃0 is the value ofD0 which minimizesVS2VN . Equation
~19! is a cubic equation and can be solved exactly. To fou
order we obtain

D̃0
252

a~T,H !

2g~T,H !
, VS2VN52

a2~T,H !

4g~T,H !
. ~20!

Equation~19! yields D̃0 and thereforeD(r ) andVS2VN as
a function ofH. The valueD̃0 which minimizesVS2VN
will be a function of H and T through the coefficients
a,g,k,h. Because magnetic quantization has been
counted for exactly, all coefficients and, hence,D̃0 and
VS2VN are oscillating functions ofH for a given tempera-
tureT. The condensation energyVS2VN oscillates 180° out
of phase with the normal stateVN close toHc2. This is the
origin of the damping of the magnetic oscillations ofVS
compared toVN . The physical reason for this effect is rath
simple as will be explained in Sec. IV A.
.
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We now consider the magnetization MS
[(]HVS)m5„]H(VN1@VS2VN#)…m . The grand potential
for a free 2D electron gasVN can be calculated analyticall
for the case when only two Landau levels are partia
occupied.27,28For relatively highT, low H, or smallg factor,
this assumption breaks down, but it is then straightforward
calculateVN numerically. It should be noted that the chem
cal potentialm in general is a function ofH. We have in
most of this article, for simplicity, kept the chemical pote
tial m fixed thereby avoiding having to determinem self-
consistently. The oscillatory effect of the chemical potent
is most important for low temperatures (T&0.2) and very
clean samples such that higher harmonics contribute to
magnetic oscillations. In Sec. IV C we will show that even
this case one can to a good approximation consider
chemical potential constant in the mixed state.

III. COMPARISON BETWEEN NUMERICAL DATA AND
PERTURBATION EXPANSION

Recently it has been claimed that the degeneracy of
Landau levels should give rise to nonperturbative terms
the expression forVS2VN making the Gor’kov theory in-
valid. For finite temperature there should be a no
perturbativeD0

3 term in Eq.~18! resulting in many interesting
thermodynamic effects.21 It is therefore of importance to es
tablish the validity of the perturbation theory developed
the preceding sections so that we can use it to derive res
instead of a cumbersome numerical solution. This is esse
in the case when many Landau levels participate in the p
ing since the computation time is very long in this regime
the numerical solution. In order to estimate the accuracy
our perturbation expansion, we compare it to an exact
merical solution of the corresponding BdG equations.
mentioned earlier, we have set up a code which solves th
equations self-consistently. We have chosen parameters
that vD /vc55, V/\vcl

258.2, andkBT/\vc50.28 when
nf512. In Fig. 1 we show the order parameterD̃0 as a func-
tion of the magnetic field. The chemical potentialm is fixed.
We have plotted the numerical, fourth-order, and eigh
order solutions. There is good agreement between the
merical solution and our perturbation expansion for bo
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FIG. 2. The differenceVS2VN in the grand
potential between the mixed state and the norm
state. The solid line is a numerical calculatio
the dashed line is fourth-order perturbatio
theory, and the dash-dotted line is eighth-ord
perturbation theory.
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fourth and eighth order. The general behavior ofD0 is cor-
rectly predicted by both the fourth- and eighth-order exp
sions. In Fig. 2 we have plotted the condensation ene
VS2VN . We are measuring energies in units of\vc . It is
apparent that the contributionVS2VN has local minima for
nf integer. SinceVN has local maxima fornf integer, the
condensation energy oscillates 180° out of phase with
contribution from the normal-stateVN . We therefore get
partial cancellation of the normal-state oscillations and
damping of the dHvA oscillations. This is seen in Fig.
where we have plotted the magnetizationM[2(]HV)m for
both the normal state and the mixed state. When the su
conducting order starts to increase atnf.10, we get signifi-
cant damping of the dHvA oscillations. Again the agreem
with the numerical data is good as long asnf&12. Eighth-
order theory tends to agree better with numerical data t
does the fourth-order theory, indicating that the perturbat
expression is valid. Once we go too far into the superc
ducting state, the perturbation theory starts to disagree
-
y

e

a

er-

t

n
n
-
th

the numerical results, also as expected. We see from Fi
and Fig. 2 that the magnitude ofD0 and VS2VN is still
fairly well described fornf.12, but both fourth- and eighth
order expansions start to pick up spurious oscillations in
order parameter and in the energy.VS2VN actually starts to
oscillate in phase withVN according to the perturbation
theory. This gives enhancement of the dHvA oscillations
the mixed state as compared to the normal state, as seen
Fig. 3. This is an unphysical effect and is absent in the ex
solution. Since this enhancement is neither confirmed
merically nor experimentally, we conclude that perturbati
theory in the single parameterD0 breaks down at this point
It can be shown22 that the Gor’kov expansion is converge
if the change in the quasiparticle energiesuEk

h2jhu is not
larger thanO(kBT). We have looked at the numerically ca
culated quasiparticle energies as a function ofnf . As ex-
pected and in agreement with Normanet al.17 we observe
that the quasiparticle bands go from being essentially bro
ened Landau levels close to the transition point to losing
e
r,
e

FIG. 3. The magnetization vsnf . The solid
line is a numerical calculation, the dashed lin
fourth order, the dash-dotted line eighth orde
and the dotted line is the magnetization in th
underlying normal state.
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their Landau level structure deeper into the mixed state.
the above specific case we have found that fornf*12 the
quasiparticle energies are changed so much that the a
condition for the validity of the Gor’kov series does not ho
in large regions ofk space, thus explaining the breakdown
perturbation theory. We have compared the numerical s
tion and the perturbation expansion for a number of differ
parameters. Our conclusion is that both fourth- and eigh
order perturbation theories describe well the superconduc
state and the corresponding damping of the magnetic o
lations near the transition point. However, the perturbat
theory eventually breaks down when the quasiparticle lev
are changed too much, in the sense described above.
convergence range of the Gor’kov expansion is determi
by the temperaturekBT.

The numerical results show total suppression of the dH
effect once we are deep enough into the mixed state. In
3 the numerical solution shows thatMs loses its dHvA struc-
ture completely fornf*12. This contradicts the recent pre
dictions of a sign shift of the first harmonic of the dHv
oscillations.18 This prediction is partly based on the assum
tion that the quasiparticle spectrum can be described b
simple splitting of the Landau levels into two levels sym
metrically placed on around each Landau level even w
the actual change in energy is rather lar
(uEk

h2jhu/\vc'60.22). We have found that the low-lyin
quasiparticle levels lose their Landau level structure and
scribe essentially localized bound states when the chang
energies is of the above magnitude. This crossover to lo
ized states makes the argument leading to the sign chan
the first harmonic invalid and it leads to the suppression
the magnetic oscillations.23

IV. DAMPING OF THE MAGNETIC OSCILLATIONS

A. Physical interpretation

To get a physical understanding of the superconduc
damping of the magnetic oscillations, it is helpful to consid
the ground state which gives the dominant contribution to
grand potential for low temperatures. By analogy with t
case of no magnetic field,29 our numerical solution is base
on the following canonical transformation:

ĝk↑
h 5(

N
@uh

Nk* âNk↑1vh
Nk* âN2k↓

† #, ~21!

ĝk↓
h 5(

N
@uh

Nk* âNk↓2vh
Nk* âN2k↑

† #, ~22!

whereuNk
h is the coefficient off( f r )Nk andvNk

h is the coef-
ficient of f* (r )N2k in the Bogoliubov amplitudesu(r ) and
v(r ) for the hth solution, respectively. The correspondin
ground state of our mean-field Hamiltonian is then

uCg&})
hk

ĝk↑
h ĝ2k↓

h uC&, ~23!

where uC& is a state with all single-particle states with e
ergy less thatm2vD empty and all single-particle state
with energy higher thanm1vD occupied . We see that Eq
~23! gives a coherent superposition of states where the p
or
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âNk
† âN82k

† u0& are either occupied or unoccupied. When w
have a Landau level at the chemical potentialm
(nf5 integer! it does not cost any kinetic energy to make
superposition of states with either occupied or unoccup
pairs formed by electrons in that level. The instability t
wards superconductivity is therefore largest when we h
m5(n11/2)\v. Since the grand potential of the norm
state is at a maximum30 whenm5(n11/2)\v, we have that
VS2VN andVN oscillate 180° out of phase. This analysis
true for both constant chemical potential and constant nu
ber of particles. In the latter case one works with the Hel
holtz free energy but the conclusions are the same. M
ematically the maximum in the damping comes from the f
that when the chemical potential is at a Landau level the s
in Eq. ~11! is dominated by the terms with zero denomin
tors, as an application of l’ Hopital’s rule on these term
confirms. Hencea(H) has a local minimum and the supe
conducting order a local maximum. This is the physical p
ture of the damping of the magnetic oscillations that na
rally emerges from our formalism.

Normanet al.17 interpret the damping of the magnetic o
cillations as an effect of the broadening of the Landau lev
~LL’s ! due to superconducting order. An alternate expla
tion has been put forward Miller and Gyo¨rffy,16 that empha-
sizes the role of nondiagonal pairing. There is in fact
intimate link between the two approaches that we now e
cidate by the following simple calculation: We estima
VS2VN ~for simplicity we considerT50) for the two cases
when ~I! the chemical potential is at a Landau level (nf in-
teger, maximum of the free energy! and ~II ! when it is ex-
actly between two LL (nf is half an odd integer, minimum o
the free energy!. In both cases we diagonalize the BdG equ
tions approximately, but insist on using degenerate pertu
tion theory, because the diagonal approximation bre
down. Whennf is an integer, perturbation theory yields fo
the quasiparticle energyEnfk

W5uFnfk
Wu. It can easily be seen

that the contributions of the other LL to the ground-sta
energy cancel pairwise within degenerate perturbation the
~essentially because within degenerate perturbation the
level repulsion is symmetric with respect to the unperturb
degenerate level!. Therefore the reduction in the maximum
of the free energy for case~I! in the mixed state is

VS
I 2VN

I ;2
1

2(kW
uFnfk

Wu

to lowest order in the pairing self-energy.
A similar calculation for case~II !, whennf is half an odd

integer and the free energy is a minimum, gives an ene
shift which is of higher than linear order in the pairing se
energy, because degenerate perturbation theory now lea
complete pairwise canceling for all Landau levels to fi
order in the pairing self-energy. Therefore the minimum
the oscillation is reduced by substantially less than the m
mum, which shows that the damping of the oscillations i
direct consequence of the broadening of the quasipar
levels accompanied by the mixed orbital character of qu
particle excitations.
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FIG. 4. The magnetization when the chemic
potential is constant (h) and when the number o
particles is constant (*) for a very low tempera
ture. The solid and dashed lines are the norm
state magnetization for fixed chemical potent
and fixed number of particles, respectively.
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B. Finite Zeeman splitting

Inclusion of spin in general reduces the magnitude of
cillations ofD0 andVS2VN . This reduction in the ampli-
tude of the oscillations is due to the fact that spin-up a
spin-down electrons now have different energy~unless
g52nm0 /m* , n50,1,2,. . . ). We cannever have the situ
ation whereby pairing occurs without a cost in kinetic e
ergy. The oscillatory effect is therefore damped. The ma
ematical reason for the reduction in oscillations is that
finite spin the numerator in Eq.~11! never becomes zero. S
we expect the magnetic oscillations in the mixed state to
reduced due to spin. The question is whether this reductio
larger or smaller than the corresponding reduction in the n
mal state, thus giving rise to extra damping effects. For te
peratures~or impurity concentrations! such that only the first
harmonic of the dHvA oscillations is important in both th
mixed and the normal state (kBT*0.2\vc) and within the
region of validity of the perturbation expansion ofVS2VN
the result is that the amplitude of the first harmonic of t
dHvA oscillations in the mixed state is reduced by a fac
cos(pgm* /2m0). This is the same reduction as in the norm
state and hence the relative damping due to supercondu
ity is insensitive to spin splitting. This result will be prove
in Sec. V. We have confirmed this result by solving the B
equations numerically with and without a finite Zeem
splitting. The reduction in the amplitude in both the mix
and in the normal state as compared to the amplitude with
spin splitting corresponds very well to a cos(pgm* /2m0) fac-
tor in the region where the mixed state is described well
the perturbation expansion. Deeper into the mixed state
numerical results indicate that the effect of spin is suppres
by the superconducting order. The reduction in the amplit
of the magnetic oscillations due to a finite Zeeman term
less than the cos(pgm* /2m0) factor. This is due to the fac
that when the superconducting order increases, the pa
interaction starts to dominate the Zeeman term and the e
of any finiteg factor is suppressed.

So we conclude that within the region described well
our perturbative expansion a finite Zeeman term does
alter the rate of the damping of the magnetic oscillations
-
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-
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e
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to superconductivity. When only the first harmonic is impo
tant the effect of the Zeeman term is simply a reduction b
factor cos(pgm* /2m0) for the amplitude of the oscillations in
both the mixed and in the normal state. Deeper into
mixed state the superconducting order starts to suppres
effect of the spin splitting and the magnetic oscillations
less affected by a finite Zeeman term. Hence in this reg
the relative size of the magnetic oscillations in the mix
state as compared to the normal state is larger for finite s
splitting and the damping is less efficient as compared to
g50 case.

C. Conserved number of particles

For two-dimensional systems with a fixed number of p
ticles it is well known30 that the magnetic field dependenc
of the chemical potentialm(H) has a strong effect on th
magnetic oscillations in a normal metal when higher h
monics are important. For low temperatures and cle
samples the shape of the oscillations look qualitatively d
ferent when the chemical potential is fixed as compared
when the number of particles is fixed. We have up until n
mainly considered the case of a constant chemical poten
When the number of particles is held fixed we need to c
sider Helmholz free energyF5V1Nm. The chemical po-
tential is determined by the equation

^N̂&5 (
sNkh

@ uuNk
h u2f sk

h 1uvNk
h u2~12 f2sk!#5N ~24!

where f sk
h 5@exp(bEsk

h )11#21. This is a numerically cum-
bersome problem since we need to solve the BdG equat
self-consistently for a given chemical potential, then calc
late ^N̂&, and repeat the calculation for a new value ofm
until Eq. ~24! is obeyed. However, it is essential that w
determine the chemical potential self-consistently. If we n
ively assume that the chemical potential oscillates as in
normal state we would obtain persistent magnetic osci
tions of the free energy even when the Landau level struc
is completely destroyed by superconducting order. In Fig
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FIG. 5. nf as a function of the magnetic field
for fixed chemical potential~dashed line! and
fixed number of particles~solid line!.
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we have plotted the magnetization when the chemical po
tial is constant (h) and when the number of particles
constant (*) for a very low temperature. We have chos
parameters such that vD /vc55, V/\vcl

259.0,
kBT/\vc50.05, andgm* /m051 when nf512. For com-
parison the solid and dotted lines give the magnetization
the normal state fornf*8.2 for conservedm andN, respec-
tively. We see that there is only a significant difference b
tween the two curves close toHc2 (nf'7.7 atHc2) when the
chemical potential behaves differently in the two cas
Deeper into the mixed state the oscillatory behavior of
chemical potential is damped by the superconducting o
and it becomes practically constant. This is illustrated in F
5 where we have plottednf5m(H)/\vc20.5 as a function
of the magnetic field (Hc2'1.5) when the number of par
ticles,N, is constant~solid line! and when the chemical po
tential is constant~dashed line!. We see that the oscillation
in the chemical potential whenN is constant are damped i
the mixed state. Once the superconducting order has dam
the oscillations in the magnetization it has also damped
oscillation inm(H) and the behavior for fixedN is essen-
tially the same as for fixedm. Thus the conclusion is tha
although there is some difference in the dHvA signal close
Hc2 whenN is fixed conserved as opposed to fixedm the
overall rate of damping of the oscillations is the same in
two cases.

V. SIMPLIFIED FORM FOR THE DAMPING

A. First harmonic of the condensation energy

To obtain a simple form for the damping, we must take
closer look at the coefficientsa(H) andg(H) given in Eq.
~11! and Eq.~12!. As mentioned already, the transition to th
mixed state occurs whena(H) changes sign. The Gor’kov
expansion is most relevant for temperatures such that
the lowest harmonics of the dHvA signal are significant. T
allows us to focus only on the zeroth and first harmonics
the relevant quantities. Thus we takea(H) to have the form

a~H !.a1~12Hc2 /H !1a2cos~2pm/\vc!, ~25!
n-

n

in

-

.
e
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ed
e
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e

a
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wherea1.0 anda2.0. The coefficientsa1 anda2 will in
general depend weakly on the magnetic field but we ass
they are constant. This is reasonable since form/\vc@1 the
rate of change ofa1 anda2 is very slow as compared to th
frequencymmc/\e of the oscillations. The essential physic
comes from the sign change ofa(H) and its oscillatory be-
havior, combined with the features ofg(H) described below.
For simplicity we confine ourselves to fourth-order perturb
tion theory. The fourth-order coefficientg(H) has the form

g~H !.g12g2cos~2pm/\vc!, ~26!

whereg1.0 andg2.0. Again bothg1 andg2 depend on the
magnetic field but this dependence is weak as compare
the strong oscillatory behavior coming from the Landau le
structure. Note that we have opposite signs for the first h
monics of a(H) and g(H). In Sec. V B we will extract
estimates ofa2 andg2 from Eq. ~11! and Eq.~12! whereas
the approximate expressions fora1 andg1 will be given in
Appendix B. Using these approximate forms fora(H) and
g(H) we get for the condensation energy

VS2VN52
a2~T,H !

4g~T,H !

.2
@a1~12Hc2 /H !1a2cos~2pm/\vc!#

2

4@g12g2cos~2pm/\vc!#
.

~27!

Assuming thatg2!g1 we get the following approximate
form for the first harmonic ofVS2VN to first order in
g2 /g1:

~VS2VN!1.
1

4F2a1a2g1
~Hc2 /H21!2

g2a1
2

g1
2 ~Hc2 /H21!2

2
3g2a2

2

4g1
2 Gcos~2pm/\vc!, ~28!
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whereV(H)n is the nth harmonic ofV(H). It should be
recalled that the above expression is only valid
a(H),0. When we are deep enough into the supercond
ing state so that we are away from the reentrance region
have a1(Hc2 /H21).a2. This means 3a2

2g2/4g1
2

!a2
2/g1,(a1a2 /g1)(Hc2 /H21) and we can neglect th

small constant term 3a2
2g2 /g1

2. We thus get the following
form for the first harmonic of the grand potential:

VS15VN11~VS2VN!1 , ~29!

where30

VN1
52

eLxLyH

2p\c

\vc

p2 F4p2
kBT

\vc
e22p2 ~kBT/\vc!G

3cos~2pm/\vc!. ~30!

We have written the reduction due to finite temperature
square brackets.
d

r
t-
e

n

B. Calculation of the oscillatory terms

In this section we will derive some approximate expre
sions for the coefficientsa2 andg2. We are interested in how
a2 andg2 depend on the parametersnf , vD , andT. It turns
out that it is fairly straightforward to extract this dependen
for the oscillatory terms. First we note the following approx
mate identity coming from the law of large numbers:

B0
n1 ,n2.

1

A4 pn1
e2~n12n2!2/8n1.

1

A4 pnf
e2~n12n2!2/8nf ,

~31!

where we have assumed thatun12n2u/n1!1 and n1.nf
~i.e., vD /vc [2s!nf). Using this formula, Eq.~11!, and
the Poisson identity we get the following integrals f
a(H):
\vc (
n1 ,n2

B0
n1 n22

tanh~bjn1/2!1tanh~bjn2/2!

jn11jn2
w2~n1!w

2~n2!

5(
l ,m

e2p in f ~m2 l !E dxE dye2p i ~mx2 ly !
e2~x2y!2/4nf

Apnf

tanh~bjx/2!1tanh~bjy/2!

x1y
w2~x!w2~y!5(

l ,m
I l ,me

2p in f ~m2 l !, ~32!
t

es
ap-
he

to

by
-

wherejx5\vcx andw(x)5e2(jx/0.5\vD)
2
5e2x2/s2. To es-

timate I l ,m where (l ,m)Þ(0,0) we write the integral in the
form

I l ,m5
2kBT

\vc
(

n
E dxE dy

3
e2~x2y!2/4nf

Apnf

e22~x21y2!/s212p i ~mx2 ly !

~x2 ivn8!~y1 ivn8!
, ~33!

wherevn85vn /vc . The first harmonic ofa(H) comes from
the terms withu l2mu51. Takingm51 andl50 yields the
integral

E dx
e2p ix22x2/s2

x2 ivn8
E dy

e22y2/s22~x2y!2/4nf

y1 ivn8
. ~34!

We approximate this integral by

E dx
e2p ix

x2 ivn8
E dy

e2~y2x!2/4nf

y1 ivn8
, ~35!

since we have assumed 8nf!s2. The integral can be solve
exactly and we get
I 0,15
4kBTp2

\vcApnF
(
n>0

e22pvn8
„@12F~vn8/Anf !#ev8n2/nf

1et
2
@12F~ t !#e24p2nf

….
4kBT

\vcApnf
p2e22p2kBT/\vc,

~36!

.
4kBT

\vcApnf
p2e22p2kBT/\vc,

where F(x)[2p21/2*0
xe2s2ds is the error function and

t5(v812pnf)/Anf . Here we have used tha
exp(22pvnÞ0)!exp(22pvn50) for 2p2kBT/\vc*1,
exp(24p2nf)!1, andnf

21/2vn50!1. So in this temperature
range the dominant contribution to the first harmonic com
from the lowest Matsubara frequency, which makes our
proximation above self-consistent. The contribution to t
first harmonic from theu l2mu51 term givenl ,mÞ0 can be
calculated in the same way; it is proportional
exp(22p2mkT/\vc) and therefore negligible for
2p2kBT/\vc*1, in agreement with the results obtained
Gruenberg and Gunther.9 After some algebra, the calcula
tions outlined above combined with Eq.~11! lead to the fol-
lowing approximate result:

a2.
V2~ax / l !2p

LxLyl
2Apnf

kBT

~\vc!
2e

22p2kBT/\vc. ~37!

The above result thata2 is proportional to 1/Anf and
kBTe

22p2kBT/\vc and independent ofvD is still correct even
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when s2!8nf , as long as min(s,Anf)@1 and
2p2kBT/\vc*1. Inclusion of spin is equivalent to makin
the substitutionx→x1gm* /4m0 and y→y2gm* /4m0 in
the integrals I l ,m . This results in a reduction facto
cos(pgm* /2m0) in Eq. ~37! if min(Anf ,s)@g.
l
ne

o
o
e
g
s
s
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a

th
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The calculations forg2 are very similar to the ones above
Using Eq.~12! and the Poisson formula we end up with th
following integrals determining the dependence ofg on
nf , T, andvD :
(
l1,l2,l3,l4

kBT

nf
e2p in f ~ l11 l32 l22 l4!dx1•••dx4

e@~x12x4!21~x32x2!21~x12x2
21~x32x4!2#/8n f

~ ivv82x1!~ ivn
81x2!~ ivn

82x3!~ ivn
81x4!

3e22~x1
2
1x2

2
1x32

2
1x4

2
!/s2e2p i ~ l1x11 l3x32 l2x22 l4x4!Jx11x2,x31x4

x11x4,x21x3, ~38!

whereJ j 3, j 4

j 1, j 2 is given in Eq.~14!. Contributions to the first harmonicg2 come from the terms withu l 11 l 32 l 22 l 4u51. As in

the case fora2 we can neglect the terms with more than onel i different from zero when 2p2kBT/\v f c*1. Although we do
not have any simple expression forJx11x2,x314

x11x4,x21x3, we can still extract the dependence onT, vD, andnf . This is because the

integral overx2•••x4 does not vary appreciably withx1 on a scale.vn50
8 . Using the result*dx@exp(2pix1)/(iv82x1)#f(x1)

}f(0)e22pv8 ~v8.0! for any well-behaved functionf (x) which varies slowly forx&v8 and takingl 151, l 25 l 35 l 450 we
get the integral

kBT

nf
dx1

e2p ix1

ivn
82x1

dx2•••dx4
e@x4

2
1~x32x2!21x2

2
1~x32x4!2#/8nf

~ ivn
81x2!~ ivn

82x3!~ ivn
81x4!

e2~x2
2
1x3

2
1x4

2
!/s2Jx2,x31x4

x4,x21x3. ~39!
the
ity

e-

s of

fac-
the
at

ed

the
or-
The factors 1/(iv86xj ) in the integrand make the integra
largely independent of any long-range behavior determi
by s and nf as long asuv8u!min(s,Anf). We therefore
conclude thatg2 is independent ofvD and that it only de-
pends onnf through thenf

21-factor coming from the four
B0
N,M coefficients. We also obtain thatg2 is proportional to

kBTexp(22p2kBT/\vc). The proportionality constant is
found through an exact evaluation ofg given in Eq.~12!. We
obtain

g2.
~V/\vc!

427

nf~LxLy!
3l 2

kBTe
22p2kBT/\vc. ~40!

Again the effect of spin~i.e., nonzerog factor! provide an
additional cos(pgm* /2m0) in Eq. ~40!. It is not surprising
that the oscillatory termsa2 andg2 are independent of the
pairing widthvD since the oscillations are a consequence
the individual Landau levels going through the chemical p
tential. Likewise the 1/Anf and 1/nf dependence reflects th
fact that the probability for two electrons, each with ener
(n11/2)\vc , to form a pair with minimum center-of-mas
energy is proportional to 1/An for high quantum numbers, a
can be seen from Eq.~31!. This proportionality can be ex
plained via simple phase-space considerations. We h
tested the dependence ofa2 andg2 on the different param-
etersnf , vD , andT and we find excellent agreement wi
our approximate forms.

To facilitate comparison with earlier papers we will no
formally treat the order parameterD(r ) as a free paramete
and assume that the oscillatory behavior of Eq.~18! only
comes from the harmonics of the expansion coefficie
a, g, etc. This is of course incorrect since the se
consistent order parameter itself is an oscillatory function
d

f
-

y

ve

ts

f

the field, making the results where the corrections to
harmonics of the dHvA oscillations due to superconductiv
are expressed as a power series inD ~Refs. 11, 12 and 31! of
limited validity. However, to compare with the earlier pr
dictions we ignore for the moment the oscillations inD0 and
treat it formally as a free paramter @i.e.,
(VS2VN)15a2D0

22g2D0
41•••#. Here we focus on theD4

term since there are discrepancies between the prediction
different authors for this term. Since

D2[~LxLy!
21E dr uD~r !u25

V2ax

A2Lx2Ly2l
D0
2 , ~41!

we obtain using Eqs.~40! and ~30! the formal result for the
fourth-order term:

~VS2VN!1uD4 term52g2D0
4'VN1

10

nf
S D

\vc
D 4. ~42!

Stephen12 obtained ;16VN1
/nf(D/\vc)

4 for the same

quantity using a different semiclassical approach. Thenf de-
pendences of the two result agree but the numerical pre
tors are somewhat different. The above arguments for
nf dependence ofg2 can easily be generalized yielding th
the nf dependence of the first harmonic of theD2n term is
nf

2n/2. This nf dependence agrees with the result obtain
by Stephen whereas it disagrees with thenf

23/2 dependence
for theD4 term obtained by Manivet al.31 We cannot over-
emphasize the fact that the above scheme to calculate
damping of the oscillations due to superconductivity is inc
rect, since it ignores the oscillations inD as a function of the
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field. To include those we have to use a self-consistent o
parameter and hence Eq.~28!.

One debated issue is the possibility of reentrance
type-II superconductors.10 The oscillatory behavior ofa due
to the Landau level structure gives rise to the possibility
several solutions toa(H)50 for a given temperature. Thi
should be reflected in a highly oscillatory behavior of t
transition lineHc2(T,H). Such an oscillatory behavior ha
never been observed experimentally. Using the approxim
expressions fora1 anda2 we can estimate the temperatu
below which there is reentrance and such oscillations
Hc2 should occur in a two-dimensional metal. We obtain th
when there is no impurity scattering, no Zeeman splitti
andnf;O(102) one should observe these oscillatory effe
in Hc2 in a 2D metal for temperatures lower tha
kBT/\vc'0.3. However, inclusion of spin reduces the a
plitude of the oscillations ofa by a factor cos(pgm* /2m0)
close to the transition line. Assuming that impurities redu
the oscillations by a factor exp(22p2kBTD /\vc) where
TD is the Dingle temperature we obtain that there will not
any reentrance ifkBTD /\vc'0.2 no matter how low the
temperature is. In the case of the experiments being don
k-~ET! 2Cu~NCS! 2 ~Ref. 2! the experimental parameters a
such that kBTD /\vc'0.27 and ucos(pgm* /2m0)u'0.3.
They will therefore never observe these reentrance effe
The magnetic oscillations in the thermodynamic quantit
will of course still be there sincea andg are still oscillatory.

C. Approximate results for damping

In this section we will draw some conclusions from t
general form of the damping of the dHvA oscillations due
the growth of the superconducting order described by
~28!. The first thing we notice is that in this approximatio
the superconducting damping has a simple polynomial fo
in (Hc2 /H21). The damping is maximum fo
(Hc2 /H21)5a2g1 /a1g2. For (Hc2 /H21).a2g1 /a1g2
the damping decreases when we go deeper into the supe
ducting state and for (Hc2 /H21).2a2g1/a1g2 the mag-
netic oscillations are enhanced by the superconducting or
This explains the observations made in Sec. III. The in-ph
oscillations between the fourth-orderVS2VN andVN are
due to the oscillatory behavior ofg(H). Sinceg(H) oscil-
lates in phase withVN , we will get the enhancement of th
oscillations ofVS compared toVN when the smooth part o
a(H) is sufficiently large. Again we must emphasize th
this is obviously a sign that our perturbative scheme
broken down and does not reflect any physical effect.

To make any quantitative predictions we need to use
approximate expressions forai andgi . Since we only have
very good approximations fora2 andg2 and for the tempera
ture and spin dependence ofa1 andg1, we will concentrate
on properties that can be derived from these results. F
Eq. ~28! and the temperature dependence ofai and gi we
conclude that the first harmonic of the condensation ene
(VS2VN)1 is proportional tokBTexp(22p2kBT/\vc). Since
we also haveVN1}kBTexp(22p2kBT/\vc), this means that
the magnetic oscillations have the same temperature de
dence in the mixed state as in the normal state. This re
agrees with the general theory~see Schoenberg,30 Sec. 2.5
and Sec. 2.3! valid for any part of the grand potential whic
er
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is proportional to cos(m/\vc). It is also confirmed by experi-
mental observations.32 Likewise the effect of spin on
(VS2VN)1 is a reduction in the amplitude by a facto
cos(pgm* /2m0). This is the same reduction factor as for th
oscillations in the normal state.30 We thus have no extra
damping effects due to spin close to the transition line wh
the perturbation theory is valid.

We can now examine whether the arguments based on
Gor’kov expansion leading to a sign change of the first h
monic are valid. Naively one would expect a sign chan
since the contribution from the condensation energy to
magnetic oscillations is in antiphase with the normal-st
oscillations. When the system is deep enough into the mi
state the superconducting oscillations would dominate le
ing to a sign change of the magnetic oscillations. Extrapo
ing the rate of the damping close toHc2 obtained from the
Gor’kov expansion Maniv and Rom18 have estimated the
magnetic fieldH inv,Hc2 at which this sign change shoul
occur. We are now able to show that this argument based
the perturbative expansion of the grand potential is incorr
From Eq.~28! we obtain that the maximum amplitude of th
antiphase oscillations ofVS2VN is given bya2

2/4g2. Using
our approximate expressions fora2 andg2 we get

a2
2

4g2
.
LxLyax

2p

l 427
kBTe

22p2kBT/\vc. ~43!

Comparing this amplitude with the contribution from th
normal-state oscillations given in Eq.~30! we see that our
perturbation scheme roughly predicts a maximum damp
of 50%. It must be emphasized that this does not mean
the damping of the model described by the Hamiltonian
Eq. ~3! has a maximum of 50%. However, using the res
above combined with the results in Sec. III, we can conclu
that neither the argument based on the Gor’kov expans
nor the arguments based on a simplified form for the qu
particle spectrum leading to an inversion of the first h
monic of the dHvA signal are valid.

VI. COMPARISON WITH EXPERIMENT

In this section we present a typical result for the damp
of the magnetic oscillations obtained from our theory wh
many Landau levels participate in the pairing. We have c
sen parameters such that we can compare our result with
experimental observations made by van der Welet al.2 First
we compare our approximate expressions for the damp
from Eq.~28! with the result based on the exact evaluation
a and g from Eq. ~11! and Eq.~12!. We used the set o
parameters such thatkBT/\vc50.25, V/\vc52.315, and
vD /vc575 whennf5175. There is no Zeeman effect an
the chemical potential is conserved. In Fig. 6 we have plot
the magnetization for both the normal state and the mi
state calculated from the perturbative expansion to fou
order as a function ofnf . The perturbation theory predicts
substantial damping of the oscillations over many perio
reaching a maximum fornf.170. At the maximum the first
harmonic is damped approximately 50% in agreement w
the result in the previous section. As we go deeper into
mixed state, the damping decreases according to the pe
bative scheme. Based on the results in Sec. III, we expec
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FIG. 6. The magnetization vsnf in the mixed
state ~solid line! and in the underlying norma
state~dashed line!.
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perturbation theory to describe the damping well
nf&170. Due to the large number of Landau levels involv
in pairing, we have not undertaken the exact numerical
culation for this set of parameters. In Fig. 7 we have plot
Ms calculated from the exact evaluation ofa(H) and
g(H) and calculated from Eq.~28!. We see that the simpli
fied expression reproduces the perturbative predictions w

The above parameters approximate the experiment
formed by van der Welet al.2 on the essentially 2D organi
superconductork-~ET! 2Cu~NCS! 2. To compare with the ex-
perimental data we will formulate our results in terms o
field-dependent quasiparticle scattering ratet defined such
that e2p/vct gives the damping of the first harmonic of th
dHvA oscillations due to superconductivity. From Eq.~29!
we get

t2152
vc

p
ln@11~VS2VN!1 /VN1#
r
d
l-
d

ll.
r-

.2
vca1a2
2pg1VN1

~Hc2 /H21!, ~44!

where we have used Eq.~28!. The approximate equality is
only valid for a2g1 /a1g2!Hc2 /H21. Using the expres-
sions forai , gi , andVN1 we can now compare this expre
sion with the experimental observations. Unfortunately
experimental value ofHc2 is uncertain. The transition from
the normal state to the superconducting state occurs ov
field range of approximately 2T.33 This gives a ‘‘smooth’’
variation of thet21 on entering the mixed state which ou
theory cannot account for. To model this transition region
use the method introduced in Ref. 2 by including a Gauss
spread inHc2. In Fig. 8 we have plotted the experiment
data fort21 ~bars! measured in~THz! as a function of 1/B
measured in T21. The solid line is our theoretical predictio
based on Eq.~44! including a Gaussian spread inHc2. The
agreement between theory and experiment is good. It sh
e
b-
FIG. 7. The magnetization vsnf in the mixed
state. The solid line is the first harmonic of th
perturbative calculation and the dashed line is o
tained from Eq.~28!.
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FIG. 8. t21 as a function of 1/B. The solid
line is the theoretical prediction and the bars a
the experimental data~Ref. 2!.
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be noted that we have no fitting parameters apart fromHc2.
However, without a more reliable measurement ofHc2 a
precise comparison between our theory and the experime
observations cannot be made.

VII. CONCLUSION

In this paper we have examined the dHvA oscillations
the mixed state of a type-II superconductor in the 2D lim
using both a numerical solution of the BdG equations and
analytical theory based on a self-consistent Gor’kov exp
sion. The use of translational and rotational symmetry
simplified the analysis such that we have been able to ca
late the expansion coefficients exactly to any order with
using semiclassical or other approximations. Compari
with the exact numerical solution has showed that pertur
tion theory works well close toHc2, thereby disproving re-
cent claims of nonperturbative effects. We have found t
the condensation energy oscillates in antiphase with the
mal grand potential, thus producing damping of the dH
oscillations in agreement with numerical and experimen
results. The damping is directly connected with the enhan
ment of superconductivity when we have a Landau leve
the chemical potential. We have excluded the possibility o
sign change of the first harmonic of the dHvA oscillations
the mixed state. The effect of spin and a conserved num
of particles as opposed to a conserved chemical potential
examined. Using a simple approximate form of our analy
cal theory valid when many Landau levels participate in pa
ing we have compared our theory with an experiment on
quasi-2D organic superconductork-~ET! 2Cu~NCS! 2. We
have found good agreement. However, due to experime
uncertainty aboutHc2 any quantitative comparison is impo
sible.
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APPENDIX A

Using the symmetry of the vortex lattice and making t
restrictionD jÞ050 we obtain

V652
V6ax

6

24~LxLy!
6D0

6 (
n1 . . .n6

f ~n1 , . . . ,n6!

3B0
n1 n2B0

n3 n4B0
n5 n6B0

n5 n4B0
n3 n2

3B0
n1 n6Jn51n4 ,n31n2 ,n11n6

n11n2 ,n31n4 ,n51n6, ~A1!

where

f ~n1 ,n2 , . . . ,n2l !5
1

b(
n

@~2 i\vn2jn1↓!

3~ i\vn2jn2↑! . . . ~ i\vn2jn2l↑!#
21

~A2!

and

J j l11 , . . . ,j 2l

j 1 , . . . ,j l 5 (
kPMBZ

x j 1
~k!•••x j l

~k!x j l11
* ~k!•••x j 2l

* ~k!,

~A3!

x j~k!5Al(
b

e2ikxaxbe2 ipb2/2f j@A2~kyl1bax / l !#.

~A4!

Likewise the eighth-order term gives forD jÞ050

V85
V8ax

8

64~LxLy!
8D0

8 (
n1 . . .n8

f ~n1 , . . . ,n8!

3B0
n1 n2B0

n3 n4B0
n5 n6B0

n7 n8B0
n7 n6B0

n5 n4B0
n3 n2

3B0
n1 n8Jn71n6 ,n51n4 ,n31n2 ,n11n8

n11n2 ,n31n4 ,n51n6 ,n71n8 . ~A5!

The Matsubara sums and thek sums can be calculated as
the fourth-order case.
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APPENDIX B

In this appendix we will extract the dependence ofa1 and
g1 onnf , T, s, and spin. This is considerably harder than
a2 andg2 because we do not have any oscillatory factor
the integrals that would make the long-range behavior of
remaining integrand insignificant. It turns out that it is st
fairly straightforward to derive the temperature and spin
pendence ofa1 and g1, whereas we have to make som
rather drastic approximations to obtain the dependence
nf ands for g1.

The smooth part~zero harmonic! of a(H) comes from the
terms I l ,l in Eq. ~32!. We first look at the terml5m50.
Making the variable substitution v5(x1y)/sA2,
u5(x2y)/sA2 we get the following integral:

I 0,05
s

A2pnf
E duE dve2~s2/2nf 12!u2$tanh@Ks~v1u!#

1tanh@Ks~v2u!#%
e22v2

v
, ~B1!

whereK5b\vc/2A2@1 determines the temperature depe
dence of the integral. SinceK is only important around the
region v.0 which does not contribute significantly to th
integral, we conclude thatI 0,0 is independent of the tempera
ture to a very good approximation. Since similar calculatio
to the ones in Sec. V B show that for 2p2kBT/\vc*1 we
can neglect the contribution to the zero harmonic from
I l ,l terms wherelÞ0, we conclude thata1 for is independent
of the temperature for temperatures that are not too low.
n

a
t t
t.
e
or
-

r

e

-

on

-

s

e

e

have checked this independence against the exact r
given in Eq.~11! and found very good agreement. To obta
the dependence onnf ands we make the simplification

tanh@Ks~v1u!#1tanh@Ks~v2u!#v21

.H 0 if uvu,uuu,

2

uvu
if uvu.uuu,

~B2!

which is a very good approximation sinceK@1. It is exact
for T50. The integral can be solved and we obtain

I 0,0.
4

A11nf /s
2
lnSA s2

4nf
111A s2

4nf
12D .2lnS s2

nf
D ,

~B3!

where we have assumeds2@4nf . This yields the result

a1.
V2~ax / l !

4pLxLyl
2\vc

. ~B4!

The expression fora1 is independent of any spin effects fo
min(Anf ,s)@g. We have again checked the independen
of a1 on nf , s, and spin against the exact result and we fi
very good agreement.

The dependence ofg1 on nf , s, andT is determined by
the integrals in Eq.~38! for which l 12 l 21 l 32 l 450. Again
it turns out that for 2p2kBT/\vc*1 we can neglect the
contribution tog1 from the terms withl 12 l 21 l 32 l 450 and
max(ul1u,ul2u,ul3u,ul4u).0. Using Eq.~16! we can rewrite the in-
tegral with l 15 l 25 l 35 l 450 as
E dx1•••dx4
\vc

2 F 1

x32x1
S tanh~Kx1/2!

~x11x2!~x11x4!
2

tanh~Kx3/2!

~x31x2!~x31x4!
D1

1

x42x2
S tanh~Kx2/2!

~x11x2!~x21x3!

2
tanh~Kx4/2!

~x41x1!~x41x3!
D Ge[ ~x12x4!21~x32x2!21~x12x2!21~x32x4!2]/8nfe22~x1

2
1x2

2
1x3

2
1x4

2
!/s2Jx11x2 ,x31x4

x11x4 ,x21x3, ~B5!
m
ng
ter-

d

where K5\vc /kBT determines the temperature depe
dence. Again for min(Anf ,s)@g, g1 will be independent of
spin effects. As in the case ofa1, it is fairly straightforward
to see that since 1/K!min(Anf ,s), the integral and therefore
g1 are independent of the temperature to a very good
proximation. We have checked this independence agains
exact result given in Eq.~12! and find very good agreemen

To make any progress in determining the dependenc
g1 on s and nf we need some simple expression f
Jn11n2 ,n31n4

n11n4 ,n21n3. As a rough approximation we make the sim

plification to

Jn11n2 ,n31n4

n11n4 ,n21n3;~dn1 ,n31dn2 ,n4!
LxLy
4pax

2 . ~B6!

This is based on the fact thatx j 1
(k)x j 2

* (k) in general is a

complex number forj 1Þ j 2. When thek sum is performed
-

p-
he

of

the phase factor will change ‘‘randomly’’ and make the su
approximately zero. Physically it corresponds to ignori
cases where electrons in four different Landau levels in
act. Using this simplification, Eq.~31!, and the Poisson for-
mula we get from Eq.~12! the following integral determin-
ing the dependence ofg1 on nf ands:

(
v8

kBT

nf
E dxdx2dx4

3
e2[ ~x2x2!21~x2x4!4]/4nf

~ iv82x!2~ iv81x2!~ iv81x4!
e22~2x21x2

2
1x4

2
!/s2

5(
v8

Iv8, ~B7!

where v85vn /vc . We have again assume
2p2kBT/\vc*1. Assume now that 8nf!s2. We approxi-
mate the integrals by
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Iv8.
kBT

nf
E dx

e2x2/2nf

~ iv82x!2
E dx2

e2x2
2/4nf

iv81x2
E dx4

e2x4
2/4nf

iv81x4
.

~B8!

We will now show that in this approximation the sum of th
integrals is largely independent ofnf and thereforeg1
}1/nf . The integral can be solved and we get

Iv85
kBT

nf
3/2H 2

puv8u

Anf
ev82/2nfF12FS uv8u

A2nf
D G1A2pJ p2

3F12FS uv8u

2Anf
D G 2ev82/2nf , ~B9!

where we again haveF(x)[(2/Ap)*0
xdte2t2. Equation

~B7! can then be written on the form

\vc

2pnf
Dx(

xn
H 2pxne

xn
2/2F12FS xnA2D G1A2pJ p2

3F12FS xn2 D G2exn2/2, ~B10!
M
ay

ng

a

E

.

,
.

B

where xn5VN /vcAnf and Dx52pkBT/\vcAnf . Since
Dx!1, we can approximate this sum by an integral and
therefore conclude thatg1 is independent of the temperatu
in agreement with the result above. Furthermore, we ob
g1}1/nf for nf large and g1 independent ofs. When
s2@8nf does not hold the calculation is the same as abo
We just have to substitute 1/4nf with 1/4nf12/s2 in the
integrals. The 1/nf dependence coming from theB0

j 1 j 2 fac-
tors in Eq.~12! is unaltered and we still get thatg1}1/nf for
min(Anf ,s) large and thatg1 is independent ofs and the
temperature. By calibratingg1 through an exact evaluatio
based on Eq.~12!, we obtain

g1.
V4

~LxLy!
3l 2~\vc!

35.4nf
, ~B11!

whereg1 is defined in Sec. V A. It should be noted that th
dependence ofg1 on nf and s in the above expression i
only approximate and rests on the various simplificatio
made. We have tested the above expression against the
result and we find that the dependence onnf ands fits to an
accuracy of 20%.
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