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We investigate de Haas—van Alphé&iHvA) oscillations in the mixed state of a type-Il two-dimensional
superconductor within a self-consistent Gor’kov perturbation scheme. Assuming that the order parameter forms
a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of
the perturbation theory to fourth and eighth order against an exact numerical solution of the corresponding
Bogoliubov—de Gennes equations. The perturbation theory is found to describe well the onset of supercon-
ductivity close to the transition poiti.,. Contrary to earlier calculations by other authors we do not find that
the perturbative scheme predicts any maximum of the dHvA oscillations bElgw Instead we obtain a
substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have
examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore, we have investigated the recently debated issue of the possibility of a sign
change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and
we have found good agreemef60163-18207)03226-9

I. INTRODUCTION the physical condition that the vortex lattice is the self-
consistent mean field of the Cooper pairs. The problem sim-
In recent years there has been a renewed interest in thifies when the electrons are confined to form pairs within
interplay between external magnetic fields and supercondut¢he same Landau leveliagonal approximationand this
tivity in type-Il superconductors. It is well known that de case has been treated by several autht¥sUnfortunately
Haas—van AlpheridHvA) oscillations are a useful tool for the diagonal approximation ignores the fact that the typical
probing the Fermi surface in metals in the normal state. Foexcitation is a superposition of an electron and a hole in
type-ll superconductors the magnetic field is allowed to pardifferent Landau levels, but with similar energies. This effect
tially penetrate the sample in the mixed state. One woulds strongest when the chemical potentialis either at a
then expect magnetic oscillations in the mixed state to givd.andau levehs= u/fiw.— 1/2=n (n intege) or exactly be-
information about the quasiparticle dispersion and the magtween two Landau levels;=n+1/2. We then have exact
netic field dependence of the correlations in the ground statelegeneracy between an electron state in a Landau level
Magnetic oscillations in the mixed state were observed fon;+m and a hole in the levai;—m, whenn;=n, and be-
the first time in the layered superconductor 2H-Nb®®er  tween an electron in a levak+m+ 1/2 and a hole in a level
20 years ago.More recently dHvA oscillations were ob- n;—m-—1/2, whenn;=n+ 1/2, respectively. A major effect
served in the organic superconducter(ET),CuNCS),,>  of the self-consistent pairing field is then to mix these two
the A15 compounds VSi (Ref. 3 and Nb;Sn;* the borocar-  degenerate excitations strongly. Following the results of the
bide superconductor YNB,C® and the high-temperature diagonal approximation Dukan and “Besvic *° have fo-
superconductors YBaCu@Ref. 6 and BaKBiO’ These ex- cused on the consequences of a gapless portion of the qua-
periments have sparked a variety of theoretical investigasiparticle spectrum. The calculation, which is appropriate for
tions, not least in order to understand the interplay betweetow-lying excitations in three dimensions, is not applicable
oscillations in the quasiparticle spectra and the ground-stat®r two-dimensional2D) systems where the number of gap-
condensation energy. The transition likk, between the less points and their dispersion law vary strongly with the
normal state and the mixed state was shown to exhibit weakiagnetic field and it does not take into account the oscilla-
oscillations as a function of the magnetic fifdFor high  tory behavior of the ground-state energy as a function of the
magnetic fields, clean samples, and very low temperaturemagnetic field. This oscillatory behavior of the ground-state
H., has been predicted theoretically to be a strongly oscilenergy has been considered by Miller and &fyd® in the
lating function!® The mixed state is characterized by the A>kgT limit. Normanet al!” have studied the problem nu-
interplay between Landau level quantization due to the magmerically and have linked the damping of the magnetic os-
netic field and Cooper pair formation characteristic of super<illations to the broadening of the Landau levels due to the
conductivity. This calls for a theory that takes both effectsgap. Recenthf there have been claims based partly on
into account consistently. The theory developed by Maki Gor’kov theory and partly on an assumed simplified form for
and Stephel? gives a simple picture of the vortex lattice the quasiparticle spectrum that below a certain field
acting as an extra scattering potential on quasiparticledil;,,<H.,, the magnetic oscillations should exhibit a rapid
thereby damping the magnetic oscillations. The theory use$80° phase shift.
semiclassical approximations and, crucially, fails to impose In this paper we develop a scheme for calculating the
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Gor’kov expansion terms treating the quantum effects of thewormal state is not larger thanO(kgT).%?

magnetic field exactly. In addition we solve numerically the In a two-dimensional metal the chemical potential is an
corresponding Bogoliubov—de Genn@lG) equations. Us-  oscillatory function of the magnetic field when the number of
ing the developed formalism we study the magnetic oscillaparticlesN is fixed. When higher harmonics are important
tions in the mixed state of a type-Il superconductor. We ardi.e., low temperatures and clean samplé® dHvVA signal
working in two dimensions since many organic metals ardn the normal state for fixetl looks qualitatively different
known to show almost perfect 2D behavior. Exploiting thefrom the case when the chemical potential is fixed. It is of
symmetry of the magnetic translation group of the vortexinterest to see what consequences this difference has for the
lattice we have been able to calculate the expansion coeffmagnetic oscillations in the mixed state. Examination of the
cients in the Gor’kov theory exactly to any order, making nodHvA oscillations in the mixed state in the two cases yields
restriction on the energy of the center of mass of the Coopethat the superconducting order for fixed number of particles
pairs. Self-consistency within this approach then transformseduces the oscillations in the chemical potential and that the
to the much simpler problem of minimizing a polynomial of gHvA oscillations are essentially the same in the two cases
a f|n|t_e number of variables. This a||0WS us to_develop aMapart from a narrow region close td.,. Specifically, the
analytical theory for the thermodynamic potential and thus,gie of damping of the magnetic oscillations is the same

for the .mag_netic oscillations close k., which contains N0 \yhean the number of particles is constant and when the
approximations apart from the assumption of a small Orde[:hemical potential is constant

parameter. 'I_'his establishes a rigorous basis for our theory, Since the contribution to the magnetic oscillations from
compared with earlier attempts. It turns out to be crucial to

determine the order parameter self-consistently since its 0the condensation energy is in antiphase with the contribution

cillatory behavior when the magnetic field varies is the caus%rqm the ”Ormf"" grapd potential, it has been suggeStbat .
of the damping of the dHVA oscillations. We find that the his will result in a sign change of the fundamental harmonic

dHVA oscillations are damped in the mixed state as com®f the dHvA oscillations foH <H;n <H.,. This would hap-

pared to the normal state, in agreement with what is observel®" if the superconducting contribution were to overwhelm
experimentally. This is due to the fact that the contributionth® contribution from the normal grand potential deep
from the superconducting order parameter to the magnetignough into the superconducting state. Based on an approxi-
oscillations partly cancels the contribution from the normalmate evaluation of the Gor’kov expansion parameters one
grand potential. The superconducting order parameter itseffan calculate an expression faf,, .*® Using our expressions

is an oscillating function of the magnetic field, with local for the damping, we are able to predict that within the region
maxima occurring whenever we have a Landau level at thef validity of the perturbative scheme this effect will not
chemical potential since electrons can then form Coopeoccur. Hence there is no theoretical reason, within perturba-
pairs without any cost in kinetic energy. This is the simpletion theory, to expect inversion of the magnetic oscillations.
physical picture of the damping emerging from our formal-This result agrees with the lack of experimental observation
ism and it complements the interpretation given by Miller of such an effect. It also agrees with our exact numerical
and Gyaffy*® and Normaret al*” When many Landau lev-  solutions to the BdG equations which show a complete sup-
els participate in the pairing we have simplified the exprespression of the magnetic oscillations deep enough into the
sions for the expansion parameters. This makes it possible {@ixed state®

give fairly simple analytical expressions for the rate of  Although there are currently experimental uncertainties
dhampmg af the de;Alosr]lllat:cpr_ls close to the trla(rjlsnmn line gpout the value oH,, in the organic superconductors, a
that may prove useful when fitting experimental data. comparison with experimental results for the quasi-2D super-

. . lg
. A similar .approlach has bgen taken by Maal_val. . Us- conductor «-(ET) ,CuNCS), yields good agreement be-
ing the semiclassical and various other approximations, the :
een theory and experiment.

calculate the Gor'kov expansion coefficients for a 2D metal . . .
The outline of our paper is as follows. Section Il sets up

to fourth order inA(r) when the motion of the centers of . e .
mass of the Cooper pairs is restricted to the lowest Landa@e formalism for describing the vortex state using both the

level. However, they obtaffi that the magnitude of the mag- ogoliubov—de Gennes equations and perturbatiop theory. In
netic oscillations exhibit a maximum beld,. This is con-  S€C- Il we compare the results of the perturbation theory
tradicted by our exact calculation of the expansion coeffiVith the exact numerical solution. The damping of the mag-
cients and also by our numerical solution to the Bdghetic oscillations is discussed in Sec. IV. We give a physical
equations. interpretation of the damping. The effect of a finite Zeeman

Recently it has been suggested that the degeneracy of tilitting term is discussed and the case of a conserved num-
Landau levels should give rise to nonperturbative terms irber of particles as opposed to a conserved chemical potential
the expansion of the grand potential, thereby making the trais considered. Using approximate expressions for the damp-
ditional Gor’kov theory invalid! We have tested our pertur- ing parameters we are able to give a simple analytical ex-
bative theory carefully against an exact numerical solution opression for the rate of damping of the dHvA oscillations
the BAG equations and we do not find any of the predictedlose toH.,. The spin dependence and the temperature de-
nonperturbative effects. The theory based on the Gor’koypendence of the oscillations can then be extracted. We then
expansion agrees very well with the exact solution if we areexamine the validity of the arguments leading to a sign
not too far belowH,. It is essentially a high-temperature change of the first harmonic of the dHvA oscillations. In Sec.
expansion in the sense that is an asymptotic series as long ¥ we compare our analytical theory with experimental re-
the change in the quasiparticle levels as compared to thsults. Finally we summarize our results in Sec. VII.
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Il. ELECTRONS IN THE VORTEX STATE where the order parameter is defined as
A. General representation and BdG equations
We consider a pure 2D electron gas in tig plane with A(N)=VY, W(N)W(M) dni(1) i (r){ankiam—k;)
a perpendicular magnetic field along thez axis. In the NM
Landau gaugeA=(0Hx,0), the single-particle eigenstates K (4)

can be chosen to be
This differs from the conventional BCS Hamiltonian since
we have introduced the weight functier(n). It is necessary

1 . x—kI? to have a smooth cutoff in the pairing interaction since we
dni(r)= \/Te Yon ) (1) otherwise would get nonphysical effects arising from Landau
y levels abruptly entering or leaving the pairing region. The

weight functionw(n) is chosen to be Gaussian, i.@/(N)

xce (E050D)®  \where wp is the pairing width and

a Hermite polynomial of ordeN, and |2=7%c/eH is the = : ;
. : X n=(N+1/2hw,—u. This approach was introduced by
magnetic length. The size of the systemlig<L,. Band oo et )7 although they used a different weighting

strugture effects are assu_med to be adequat_ely d_escribed ®fllnction. 1t should be noted that the above slightly uncon-
ploying an elect.ro.n effective mass*. The_B f|e!d is taken ._ ventional definition of the order parameter is necessary. Oth-
to be u_nlform within the sample, thgreby ignoring the partial g\ ise the self-consistency condition is not equivalent to
screening by the supercurrents. This approximation hoI_ds for[ninimizing the grand potential with respect taA(r) [i.e.,

strong type-ll superconductor%-1) such as the organics, 50/ 5A(r)=0]. In the vortex lattice case the order parameter

where the penetration depth is much larger than the cohe(:-an be characterized by a finite number of parameters
ence length. 17

. . A ’
In the mixed state of a conventional type-ll supercon- '
ductor the order parameter forms a vortex lattice. It is there-

where ¢y (x) = (2NN Varl) ~H2H  (x)e /2, with Hy being

fore advantageous to use a basis set which incorporates this _ Va i mg2i2
symmetry. We have chosen to use the following set of func- A(n)= \/TL 2 AJ% e ‘751,»’?9%(\/5”' ®
147 e

tions introduced by Normaat a

The A;’s are determined self-consistently as explained in
Ref. 17. Assuming not only translational but also ziﬁfold
> iKoat i wt2ia rotational symmetry of |A(r)| gives the restricti
Prilr)= \/L:XZ BT NN, ka2, () j=0,6,12,...,wherej<2Np.. Nmaxis the highest Landau
level participating in the pairing. Using the above transfor-
wherek, e [0,27/a,[ with Ak,=2m/L, andk,e[0a,/17[ mation the corresponding BdG equations split into a set of
with Ak,=2m/L, define the magnetic Brillouin zone €quations for eaclk and they can be solved numerically.
(MBZ). The symmetry of the order parameter restricts théNormanet al.”* have carried out an extensive numerical in-
pairing to be between electrons with quantum numbkeasd ~ Vestigation of the quasiparticle spectrum and the magnetic
— k.13 By adjusting a, we can obtain both a triangular Oscillations in the superconducting state. We have developed
[a,=1(\V37/2)¥2 and a square vortex lattice a_5|m|Iar numerical scheme to solve the _BdG equations. In
[a,=1(m/2)¥2 ]. Throughout this paper we choose to work this way we are able to _check our analytical results against
with the triangular lattice since we expect the free energy t¢n €xact numerical solution.
be minimized by this symmetriexcept possibly in the reen- _ _ )
trant regimé.!’ We are using mean-field BCS theory with a B. Perturbative expansion of the grand potential
smooth cutoff in the interaction around the Fermi surface, gsince we are interested in the region neap where the
applicable for weak-coupling superconductors. The meanprder parameter is small, it is natural to consider the Gor'kov
field Hamiltonian is expansion of the grand potential. This can be done either
through the equation of motion approach originally used or
~ by using the grand partition function for the symmetry-

i |:|O+Hl’ broken self-consistent Hamiltonian:
. —(elc)AT? _ . (e
Hozfdr %(r)(%—ﬂ Po(r), 2 fp(%(r.r)%(r,r))em( fodrf dr£(r,r)),

_ 2

L(r7)=g(1r,7) -

a’r

Hy=2> Jdr [A(r)wW(N)w(M) —M)%(r,f)

k

~ ~ 1
S —| AT (r, ) (T, )+C-C-——|A(r)|2},
X D R (N ayan_ +c.cl, ©)) [ CRTERT v

(6)
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where D(4%(r,7)¢,(r,7)) denotes functional integration over Grassman variables. We have defined

@U(r)=2n,kw(n)¢n,k(r)an,bfka. The (1NM)|A(r)|? term corrects for the double counting of the interaction energy in the
Hartree-Fock approximation. Expanding the grand potefitial( — 1/8)InZ in powers ofA(r) we obtain to eighth order

Qs— Q=05+ 0,4+ Qg+ Qg, !

where

1 1
szvf d|’|A(r)|2_ Ef drlerA(rl)A*(rz)Kz(l’l,l’z),
1
Q“:ﬁf dry - drgKa(ry,ra,rs,ra) AT A A* (rg) A*(ry),

Qg=— dry---drgKg(ry, ... Fe) A(rp)A(r) A(rg) A*(ry) A*(r5) A% (rg),

1

38
1

Qazﬁf dry---drgKg(ry, ... rg) A(ry)A(rp)A(rg) A(rg) A% (rs) A% (rg) A* (r7)A*(rg). (8)

The kernels are given by

1 ~
Ka(ry,ra)= ng (rz M,— V)G(l)(rzirl’wV)’

1o ~ ~ ~ ~
Ka(ry,ra,r3,rg)= ﬁz G?(U,rl,wy)e?(rs,rl,_ w,,)G?(rg,rz,w,,)G?(u,rz,— w,),

1 ~ ~ ~ ~ ~ ~
K6(r1! ERCE !r6): ﬁz G?(rSIrllwy)G?(rSIrll_wy)G?(r51r2|wy)G?(r4rr21_wV)G?(rélyr?,lwy)G?(rGyr?,l_wy)y
1 —~0 ~0 ~0 ~0 ~0
K8(rll e 1r8): hTE Gl(rﬁirl’wV)GT(r7’rl’_wV)Gl(r7!r2’wV)GT(r8!r2’_wV)Gl(rS!r:i’wV)
XGY(re.r3,—0,)G](rg.r4,0,)G0(rs.rs,—w,), 9

andw,=(2v+1)7kgT/% are the Matsubara frequencies. Maeival '° have calculated the expansion up to fourth order in

A(r) using essentially semiclassical approximations. They used a variational form of the order parameter which has no
symmetry built in initially but restricts the electrons to condense in the lowest center-of-mass Landad Jeyed Q). As will

be shown below, this restricion introduces no serious error within in the region of interest in the phase diagram. Since it is
known'” that the triangular lattice is the minimal energy configuratiexcept for the reentrant regimeve have exploited this
symmetry to calculate these expansion terms exactly. Because we are using a smooth pairing cutoff in our Hamiltonian we
have, instead of the Green’s function for the normal s@‘i(erz,rl,wy), the following function in our kernels:

¢nk rz) ¢nk(r1)

o h V), (10

G(r(rzirllw )= E
nk

where¢, = &,+gm* o/2mpfiw.. The only difference from the Green’s function for the normal state is that we have included
the weight functionsv(n) in the sum. Using the symmetry of the vortex lattice the integrals can be solved. We have to fourth
order

2 2
2:&2 - 22 B "2y Wi )tann/aénu/ )+ tanh Bénz1/2) NS a2 a
V2IL, LT 4l 7
x=y

Ny.nz 2(§n11+§n2T) J

and
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Vviad

Oy=grapaa 2 WAN)WA(N2)WA(ng)Wi(ng)f(n1.nz.n3.ny)
xbtyl Np...ng
N1N4RN3N2 R NN N3N = N +N = j1 . M2 T N3=jo A A A A
X11214 le Bj2 Bj3 BJ'4 ‘-”1+“2_j3v”3+“4—i4A11A12A13A14
21_12_1_4 Vi, i 8118404, (12
where
1 _ _ _ _ N
H(N1,NpuN3u0) = 22 [(—ifiw,~ En ) (150, — En ) (—ihw,— &0 ) (ihw,— En,)] (13
and
=12 _ Luly

i1iopisia —im(h2=h2p . S
Tlsda 4ma g BB, hlEhze L2 by, +1,-1(20185) @+, (2h280)

+e—iW<h1—hz>¢jl+j2,j(2hlax+ a) by, +j,-j(2ha+ay)]. (14)
The coeffiecienB}' is defined as

BN:M— JIIN+M—j)INIM!| 22 min(j, M) (—pM-m

j 2N+M m=max0j—N) (J=MIN+m—=j)I(M—m)Im!" (49

The sums over states above are restricted to Landau levels lying within the pairing width around the chemical potential.
Using the standard method of evaluating Matsubara sums by contour integration we obtain

f(ny,nz,nz,n,) =[ (e Fénil+ 1)(§n11+gnzT)(_§n11+§n31)(§n11+§n41)]71+[(eﬁ§nﬂ+1)(§n2T+§n11)(§n27+§n3i)
X(gnzT_§n4T)]_l+[(e_ﬁ§n3l+ 1)(_§n3l+ gnll)(gnsl"'gnzT)(§n31+§n4T)]_l+[(eB§n4T+ 1)(§n4T+§nll)
X(§n4T_gnzT)(§n41+§n3T)]7l- (16)

The second-order terifl, which determines theél, line agrees, apart from the inclusion of the weight function, with the
result of MacDonalcet al>* and Rajagopal and Ryan.The sixth and eighth-order ternfs and Qg can also be calculated
and they are given in Appendix A. We get the form

QS—QN:; aj(T,H)Af+ij yjl,,,j4(T,H)Ajl-.-Aj4+jEj ki g (TH)A - Afe
114 116

+ Ej Dy (THA - A (17)
1°°7)8

Thus we have derived the exact quantum-mechanical exential with respect toA(r).?® In the above formulation,
pressions for the expansion coefficients fog—(y up to  which takes into account the spatial symmetry of the order
eighth order assuming a vortex lattice. We have not yet reparameter, this reduces to minimizing our multidimensional
stricted the electrons to form pairs with the lowest possibleyolynomial with respect ta\ i - Although this is a standard
center-of-mass energyj £0). The result is a multidimen- numerical problem it is necessary to make further approxi-
sional polynomial imd; . Going to eighth order permits us to mations in order to obtain simple analytical results. The in-
check the convergence properties of the series. We could igability towards superconductivity is determined by the sign
principle calculate the expansion coefficients to any ordegpf the expansion coefficients;. Above H., we have
but, as usual, the algebra gets more cumbersome with iy, >0 for all j. The transition to the mixed vortex state oc-
creasing order, and the minimization condition cannot be&yrs when one of the;'s becomes negative. The system can
solved analytically for such high orders. then lower its energy by making the correspondingnon-
zero. It has been shown that the instability occurs first in the
j=0 channef* So we have ap<0 and «a;.o>0 for

The self-consistent determination of A(r) H=H., and thereforeA;>A;.,. We can then make the
=V(¢(r) ¢, (r)) is equivalent to minimizing the grand po- approximationA;.,=0, i.e., only consider condensation

C. Self-consistency and minimization ofQ2 g
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FIG. 1. The order parametér, vs n; calcu-
lated numerically(solid line), to fourth order in
] A, (dashed ling and to eighth order id, (dash-
dotted line.
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into pairs with lowest Landau level center-of-mass motion. We  now consider the  magnetization Mg
We have checked this approximation by solving the BAG=(dyg),= (dq(QAn+[Qs—Qn])),. The grand potential
equation numerically whed.,=0 and when all thed;’s  for a free 2D electron gaQy can be calculated analytically
are nonzero. In the region of interest there is essentially n§or the case when only two Landau levels are partially
difference between the two solutions thus justifying our ap-occupied:”-**For relatively highT, low H, or smallg factor,

proximation. this assumption breaks down, but it is then straightforward to
The grand potential now has the Landau form calculateQ) \ numerically. It should be noted that the chemi-
cal potentialu in general is a function oH. We have in
al2+ yAS+ kAS+ pAS (18 ~ most of this article, for simplicity, kept the chemical poten-

tial w fixed thereby avoiding having to determine self-
(a=agp, Y=7Y0000, €tc), and our self-consistency problem consistently. The oscillatory effect of the chemical potential
is reduced to a simple one-dimensional minimization problS most important for low temperature§ £0.2) and very
lem which can be easily solved. To fourth order we have Flean samples such that higher harmonics contribute to the
mexican hat potential when we are in the mixed statdnagnetic oscillations. In Sec. IV C we will show that even in
(<0 andy>0) and the minimum for the grand potential is this case one can to a good approximation consider the
obtained for nonzera\,. Requiring d, (Qg—Qp)|z.=0 chemical potential constant in the mixed state.

0 0

gives IIl. COMPARISON BETWEEN NUMERICAL DATA AND
PERTURBATION EXPANSION

3+ay(T,H)Z?+a,(T,H)z+as(T,H)=0, 19 . .
2t au( sl )2t as( ) (19 Recently it has been claimed that the degeneracy of the

_x2 _ _ _ Landau levels should give rise to nonperturbative terms in
v~vh§re z=4¢ and 3 3'_(/477’ 827 ¥/27, and as a/4_77' the expression fof)s— Oy making the Gor'kov theory in-
A is the value ofA, which minimizesQls—Qy. Equation  \5jid. For finite temperature there should be a non-
(19) is a cubic equation and can be solved exactly. To four”berturbativeﬁg term in Eq.(18) resulting in many interesting

order we obtain thermodynamic effect&. It is therefore of importance to es-
tablish the validity of the perturbation theory developed in
~p  a(TH) AT H) the preceding sections so that we can use it to derive results
Ao=— 2y(T,H)’ Qs=On=- 4y(T,H)" (20 instead of a cumbersome numerical solution. This is essential

in the case when many Landau levels participate in the pair-
Equation(19) yields X, and therefore (r) andQs—Q, as  iNg since the computation time is very long in this regime for
. ~ . o the numerical solution. In order to estimate the accuracy of
a function ofH. The valueA, which minimizesQgs—Q

. i L our perturbation expansion, we compare it to an exact nu-
will be a function of H and T through the coefficients merjca| solution of the corresponding BdG equations. As

a@,y,«,7. Because magnetic quantization has been acmentioned earlier, we have set up a code which solves these
counted for exactly, all coefficients and, hende; and equations self-consistently. We have chosen parameters such
Qs—Qy are oscillating functions ofl for a given tempera- that wp/w.=5, V/Awl?=8.2, andkgT/fw.=0.28 when
tureT. The condensation energys— () oscillates 180° out n,=12. In Fig. 1 we show the order paramefﬂqy as a func-

of phase with the normal statey close toH,. This is the  tion of the magnetic field. The chemical potentiais fixed.
origin of the damping of the magnetic oscillations Qfs  We have plotted the numerical, fourth-order, and eighth-
compared td)y . The physical reason for this effect is rather order solutions. There is good agreement between the nu-
simple as will be explained in Sec. IV A. merical solution and our perturbation expansion for both
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FIG. 2. The difference)s— () in the grand
potential between the mixed state and the normal
state. The solid line is a numerical calculation,
| the dashed line is fourth-order perturbation
theory, and the dash-dotted line is eighth-order
perturbation theory.
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fourth and eighth order. The general behaviorAgfis cor-  the numerical results, also as expected. We see from Fig. 1
rectly predicted by both the fourth- and eighth-order expanand Fig. 2 that the magnitude df, and Q5—Qy is still
sions. In Fig. 2 we have plotted the condensation energyairly well described fom;>12, but both fourth- and eighth-
Os— Oy . We are measuring energies in unitsfab,. Itis  order expansions start to pick up spurious oscillations in the
apparent that the contributidis— ) has local minima for  order parameter and in the ener@ys— () actually starts to

n; integer. Since(ly has local maxima fon; integer, the oscillate in phase with)y according to the perturbation
condensation energy oscillates 180° out of phase with théheory. This gives enhancement of the dHVA oscillations in
contribution from the normal-stat@,. We therefore get the mixed state as compared to the normal state, as seen from
partial cancellation of the normal-state oscillations and &ig. 3. This is an unphysical effect and is absent in the exact
damping of the dHVA oscillations. This is seen in Fig. 3 solution. Since this enhancement is neither confirmed nu-
where we have plotted the magnetizatidr= — (9,Q), for ~ merically nor experimentally, we conclude that perturbation
both the normal state and the mixed state. When the supetheory in the single parametdr, breaks down at this point.
conducting order starts to increasengt=10, we get signifi- It can be showff that the Gor’kov expansion is convergent
cant damping of the dHVA oscillations. Again the agreemenif the change in the quasiparticle energj&—¢,| is not

with the numerical data is good as long ms<12. Eighth-  larger thanO(kgT). We have looked at the numerically cal-
order theory tends to agree better with numerical data thaoulated quasiparticle energies as a functionnpf As ex-
does the fourth-order theory, indicating that the perturbatiompected and in agreement with Normanall’ we observe
expression is valid. Once we go too far into the superconthat the quasiparticle bands go from being essentially broad-
ducting state, the perturbation theory starts to disagree witened Landau levels close to the transition point to losing alll

30.0 ;

20.0 J
=z
=
b=
§ 10.0 1
s FIG. 3. The magnetization vs;. The solid
SC' line is a numerical calculation, the dashed line
-(% fourth order, the dash-dotted line eighth order,
g 0.0 - ] and the dotted line is the magnetization in the
§ underlying normal state.
=

-10.0 - 1

-20.0 ‘ ‘ :

8.0 10.0 12.0 14.0 16.0
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their Landau level structure deeper into the mixed state. Fog
the "".bo"‘? specific case we have found thatrige12 the have a Landau level at the chemical potential
guasiparticle energies are changed so much that the aboYe —int it d i i Kineti i K
condition for the validity of the Gor’kov series does not hold =N egc—_:‘D It Coes not cost any KINElic energy 1o make a
in large regions ok space, thus explaining the breakdown of superposmon of states W'th either occupied or uno_gcupled
perturbation theory. We have compared the numerical solP2i'S formed by electrons in that level. The instability to-
tion and the perturbation expansion for a number of differentVards superconductivity is therefore largest when we have
parameters. Our conclusion is that both fourth- and eighth#=(n+1/2)hw. Since the grand potential of the normal
order perturbation theories describe well the superconductingfate is at a maximutfiwhen u = (n+1/2)fiw, we have that
state and the corresponding damping of the magnetic oscif2s— {2y and{ly oscillate 180° out of phase. This analysis is
lations near the transition point. However, the perturbatiorirue for both constant chemical potential and constant num-
theory eventually breaks down when the quasiparticle level§er of particles. In the latter case one works with the Helm-
are changed too much, in the sense described above. THeltz free energy but the conclusions are the same. Math-
convergence range of the Gor'kov expansion is determine@matically the maximum in the damping comes from the fact
by the temperaturigT. that when the chemical potential is at a Landau level the sum
The numerical results show total suppression of the dHvAN Eq. (11) is dominated by the terms with zero denomina-
effect once we are deep enough into the mixed state. In Figors, as an application of I' Hopital's rule on these terms
3 the numerical solution shows thidt, loses its dHVA struc- ~ confirms. Hencex(H) has a local minimum and the super-
ture completely fom;=12. This contradicts the recent pre- conducting order a local maximum. This is the physical pic-
dictions of a sign shift of the first harmonic of the dHvA ture of the damping of the magnetic oscillations that natu-
oscillations®® This prediction is partly based on the assump-rally emerges from our formalism.
tion that the quasiparticle spectrum can be described by a Normanet al!” interpret the damping of the magnetic os-
simple splitting of the Landau levels into two levels sym- cillations as an effect of the broadening of the Landau levels
metrically placed on around each Landau level even whefiLL's) due to superconducting order. An alternate explana-
the actual change in energy is rather largetion has been put forward Miller and Gifty, *® that empha-
(|Ef— ¢,/ w~=0.22). We have found that the low-lying SiZeS the role of nondiagonal pairing. There is in fact an
quasiparticle levels lose their Landau level structure and dehtimate link between the two approaches that we now elu-
scribe essentially localized bound states when the change fidate by the following simple calculation: We estimate
energies is of the above magnitude. This crossover to locafts— 2 (for simplicity we conside =0) for the two cases
ized states makes the argument leading to the sign change When (1) the chemical potential is at a Landau level (n-

the first harmonic invalid and it leads to the suppression of€ger, maximum of the free enenggnd (Il) when it is ex-
the magnetic oscillatior actly between two LL K¢ is half an odd integer, minimum of

the free energy In both cases we diagonalize the BdG equa-
tions approximately, but insist on using degenerate perturba-
tion theory, because the diagonal approximation breaks
A. Physical interpretation down. Whenn; is an integer, perturbation theory yields for

To get a physical understanding of the superconductind® uasiparticle energg, ;=[F, . It can easily be seen
damping of the magnetic oscillations, it is helpful to considerthat the contributions of the other LL to the ground-state
the ground state which gives the dominant contribution to the&énergy cancel pairwise within degenerate perturbation theory
grand potential for low temperatures. By analogy with the(essentially because within degenerate perturbation theory
case of no magnetic fiefd,our numerical solution is based level repulsion is symmetric with respect to the unperturbed
on the following canonical transformation: degenerate level Therefore the reduction in the maximum

of the free energy for casg) in the mixed state is

Lké{‘,_k|o> are either occupied or unoccupied. When we

IV. DAMPING OF THE MAGNETIC OSCILLATIONS

3’%:% [U"ﬁkéNm*‘U”ﬁkéL—kl], (21
1

A ) ) 050~ 53 [Fyi

YI?L:% [U@nk, — 0 "Rl 1, (22) :
whereuy, is the coefficient ofp(fr)y, andvy, is the coef-  to lowest order in the pairing self-energy.
ficient of ¢* (r)y_k in the Bogoliubov amplitudes(r) and A similar calculation for casél), whenn; is half an odd
v(r) for the yth solution, respectively. The corresponding integer and the free energy is a minimum, gives an energy
ground state of our mean-field Hamiltonian is then shift which is of higher than linear order in the pairing self-

energy, because degenerate perturbation theory now leads to
~A complete pairwise canceling for all Landau levels to first
|‘I’g>°‘1;£ VI?T?’ZMW)’ (23 order in the pairing self-energy. Therefore the minimum of
the oscillation is reduced by substantially less than the maxi-
where|¥) is a state with all single-particle states with en- mum, which shows that the damping of the oscillations is a
ergy less thatu—wp empty and all single-particle states direct consequence of the broadening of the quasiparticle
with energy higher than+ wp occupied . We see that Eq. levels accompanied by the mixed orbital character of quasi-
(23) gives a coherent superposition of states where the paigarticle excitations.
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FIG. 4. The magnetization when the chemical
potential is constant{) and when the number of
particles is constant (*) for a very low tempera-
ture. The solid and dashed lines are the normal-
state magnetization for fixed chemical potential
and fixed number of particles, respectively.
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B. Finite Zeeman splitting to superconductivity. When only the first harmonic is impor-

Inclusion of spin in general reduces the magnitude of ostant the effect of the Zeeman term is simply a reduction by a

cillations of A, and Qs— (. This reduction in the ampli- factor cos(-rg_rrf‘/Zmo) er the amplitude of the oscillati(_)ns in
tude of the oscillations is due to the fact that spin-up and?°th the mixed and in the normal state. Deeper into the
spin-down electrons now have different energynless mixed state the superconducting order starts to suppress the
g=2nm,/m*, n=0,1,2,...). We cannever have the situ- effect of the spin splitting and the magnetic oscillations is
ation whereby pairing occurs without a cost in kinetic en-less affected by a finite Zeeman term. Hence in this region

ergy. The oscillatory effect is therefore damped. The mathihe relative size of the magnetic oscillations in the mixed

ematical reason for the reduction in oscillations is that forSt&t€ as compared to the normal state is larger for finite spin
finite spin the numerator in Eq11) never becomes zero. So splitting and the damping is less efficient as compared to the

we expect the magnetic oscillations in the mixed state to bd =0 case.
reduced due to spin. The question is whether this reduction is
larger or smaller than the corresponding reduction in the nor- C. Conserved number of particles

mal state, thus giving rise to extra damping effects. For tem- £, two-dimensional systems with a fixed number of par-
peraturegor impurity concentrationssuch that only the first  icjes it is well knowr® that the magnetic field dependence
harmonic of the dHVA oscillations is important in both the ¢ the chemical potentiali(H) has a strong effect on the
mixed and the normal statkgT=0.2hwc) and within the  magnetic oscillations in a normal metal when higher har-
region of validity of the perturbation expansion @s—Qn  monics are important. For low temperatures and clean
the result is that the amplitude of the first harmonic of thegamples the shape of the oscillations look qualitatively dif-
dHvA oscillations in the mixed state is reduced by a factorferent when the chemical potential is fixed as compared to
cos(rgm*/2mg). This is the same reduction as in the normal\yhen the number of particles is fixed. We have up until now
state and hence the relative damping due to superconductiyyainly considered the case of a constant chemical potential.
ity is insensitive to spin splitting. This result will be proved \yhen the number of particles is held fixed we need to con-
in Sec. V. We have confirmed this result by solving the BdGgjger Helmholz free energf=Q+Ng. The chemical po-
equations numerically with and without a finite Zeemaniantial is determined by the equation
splitting. The reduction in the amplitude in both the mixed
and in the normal state as compared to the amplitude with no
spin splitting corresponds very well to a cegft*/2m,) fac- QN — 7 12§ 71201 _ _
tor in the region where the mixed state is described well by (N) 0'%7] U *F ot lofd (A= F-n)]=N - 24
the perturbation expansion. Deeper into the mixed state the o )
numerical results indicate that the effect of spin is suppresse@there f 7, =[exp(BE7,) + 1]~ *. This is a numerically cum-
by the superconducting order. The reduction in the amplitud®ersome problem since we need to solve the BdG equations
of the magnetic oscillations due to a finite Zeeman term isself-consistently for a given chemical potential, then calcu-
less than the cos@gnt/2m,) factor. This is due to the fact late (N), and repeat the calculation for a new value wof
that when the superconducting order increases, the pairingntil Eq. (24) is obeyed. However, it is essential that we
interaction starts to dominate the Zeeman term and the effectetermine the chemical potential self-consistently. If we na-
of any finiteg factor is suppressed. ively assume that the chemical potential oscillates as in the
So we conclude that within the region described well bynormal state we would obtain persistent magnetic oscilla-
our perturbative expansion a finite Zeeman term does ndions of the free energy even when the Landau level structure
alter the rate of the damping of the magnetic oscillations dués completely destroyed by superconducting order. In Fig. 4
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100 +
& FIG. 5. n; as a function of the magnetic field
for fixed chemical potentialdashed ling and
fixed number of particlegsolid line).
9.0
8.0 1 i 1
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H-field

we have plotted the magnetization when the chemical poterwherea;>0 anda,>0. The coefficients,; anda, will in

tial is constant [J) and when the number of particles is general depend weakly on the magnetic field but we assume
constant (*) for a very low temperature. We have choserthey are constant. This is reasonable sinceuftf w.>1 the
parameters such that wp/w.=5, V/hwl?=9.0, rate of change of, anda, is very slow as compared to the
kgT/fhw.=0.05, andgm*/my=1 whenn;=12. For com- frequencyumdc/fie of the oscillations. The essential physics
parison the solid and dotted lines give the magnetization irtomes from the sign change a{H) and its oscillatory be-
the normal state fon;=8.2 for conservedk andN, respec- havior, combined with the features @{H) described below.
tively. We see that there is only a significant difference be+or simplicity we confine ourselves to fourth-order perturba-
tween the two curves close ky, (n;~7.7 atH;,) when the tion theory. The fourth-order coefficiept(H) has the form
chemical potential behaves differently in the two cases.

Deeper into the mixed state the oscillatory behavior of the

chemical potential is damped by the superconducting order Y(H)=0:~g,co82mplhw), (26

and it becomes practically constant. This is illustrated in Figwheregl>0 andg,> 0. Again bothg, andg, depend on the

5 where we have plotted;= u(H)/hw.—0.5 as a function  magnefic field but this dependence is weak as compared to
of the magnetic field Ki;~1.5) when the number of par- he strong oscillatory behavior coming from the Landau level
ticles, N, is constantsolid line) and when the chemical po- sirycture. Note that we have opposite signs for the first har-
tential is constanfdashed ling We see that the oscillations monics of &(H) and y(H). In Sec. VB we will extract

in the chemical potential wheN is constant are damped in ggtimates of, andg, from Eq.(11) and Eq.(12) whereas
the mixed state. Once the superconducting order has dampggh approximate expressions fay andg; will be given in

the oscillations in the magnetization it has also damped th%ppendix B. Using these approximate forms fefH) and
oscillation in w(H) and the behavior for fixed\ is essen- y(H) we get for the condensation energy

tially the same as for fixegh. Thus the conclusion is that
although there is some difference in the dHvA signal close to

H., whenN is fixed conserved as opposed to fixadthe Qe O — a*(T,H)
overall rate of damping of the oscillations is the same in the S UNTT 49T, H)
two cases. 5
[a1(1—H/H)+acoq2mulfiog)]
V. SIMPLIFIED FORM FOR THE DAMPING B 4[g1—0g,co82multiowe)]
A. First harmonic of the condensation energy (27

To obtain a simple form for the damping, we must take aAssuming thatg,<g, we get the following approximate
closer look at the coefficiente(H) and y(H) given in Eq.  form for the first harmonic ofQs—Qy to first order in
(11) and Eq.(12). As mentioned already, the transition to the g, /g;:
mixed state occurs whea(H) changes sign. The Gor’kov
expansion is most relevant for temperatures such that only

2
the lowest harmonics of the dHVA signal are significant. This (Qs— Q) = 1 ZalaZ(H [H—1)— gZal(H H—1)2
allows us to focus only on the zeroth and first harmonics of == “~"N17 4/ ¢, ‘¢ g7 =
the relevant quantities. Thus we takéH) to have the form 30,82
a
- 292 coq2mulhoy), 28)
a(H)=a;(1-H/H)+a,co2multios), (25 497
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where Q(H),, is the nth harmonic of(Q(H). It should be
recalled that the above expression is only valid for

819

B. Calculation of the oscillatory terms

In this section we will derive some approximate expres-

a(H)<0. When we are deep enough into the superconduCligns for the coefficienta, andg,. We are interested in how

ing state so that we are away from the reentrance region

have a;(H,/H—1)>a,. This means &3g,/49>

<a?/g,<(a;a,/g9;)(He/H—1) and we can neglect the

W&, andg, depend on the parametars, wp, andT. It turns

out that it is fairly straightforward to extract this dependence
for the oscillatory terms. First we note the following approxi-

small constant term &g,/g%. We thus get the following mate identity coming from the law of large numbers:

form for the first harmonic of the grand potential:

Qg =On1+(Qs— Q)1 (29
where®
eLLH hod ksT
__ BBl 20 (kgTlhiwg)
Ny 2whe @ Am ﬁwce °
xXcog2mulhwe). (30

Bh1M2~ ef(nlfn2)2/8n12

2
n n,)</8n
e (n1—ny) f,

TNy TNt

(31)

where we have assumed thiat; —n,|/n;<1 and n;=n;
(i.e., wp/w. =20<n;¢). Using this formula, Eq(11), and

We have written the reduction due to finite temperature irthe Poisson identity we get the following integrals for

square brackets.

tanr(,Bgn1/2) + tanr(BgnZ/Z)

h Bgt 22
o2 B b, + bn,

nqy,No

w2(ny)w?(ny)

~ ()% tank B¢, /2) + tank B&yI2)

a(H):

:z e27rinf(m—l)f dxf dyebri(mx—ly)e

I,m N

10.500p)? — g=x%10”

where &,=fiwx andw(x)=e (& . To es-

timate |, ,, where (,m)#(0,0) we write the integral in the

form

| 2kgT

dxf d
hw 2,, y
e—(x—y>2/4nf e—z(x2+y2)/(r2+2m(mx—|y)

VT N¢

X , (33

(x—iw)(ytiow))

wherew, =, /w.. The first harmonic ofx(H) comes from
the terms with|| —m|=1. Takingm=1 andl =0 yields the
integral

e27ri><—2><2/¢72 e—2y2/02—(x—y)2/4nf
fdx i J'dy . (39
14

ytio,

We approximate this integral by

J» d e27rix J g e—(y—x)2/4nf
X . / B L
X—iw! y yt+iow,

(39

since we have assumea8<a?. The integral can be solved

exactly and we get

W2)WA(y)= 2, || n€2mMm=D(32)

X+y m
[
Akg T , ,
g1 =—— e—277a)y( 1-P w;/\/n—) ev »2/ng
ot th\/Trango [ ( 1]
2 2 4kBT 2
+el1-d(t)]e 4™ M)= — 72 27 kgT/hag,
h o\ mng
(36)
- 4ksT 7T2€—2772kBT/hmc
h e mNg !

where <D(x)52w*1’2foe*32ds is the error function and
t=(w’+2mn;)/\n;. Here we have used that
exp27w,.q)<exp(—2mw,—q) for 2m%kgT/hw =1,
exp(—4m2n;)<1, andn; ¥?w,_,<1. So in this temperature
range the dominant contribution to the first harmonic comes
from the lowest Matsubara frequency, which makes our ap-
proximation above self-consistent. The contribution to the
first harmonic from thél —m|=1 term givenl,m=0 can be
calculated in the same way; it is proportional to
exp(-2mmkThew) and therefore  negligible for
27%kgT/hw,=1, in agreement with the results obtained by
Gruenberg and GunthérAfter some algebra, the calcula-
tions outlined above combined with E@.1) lead to the fol-
lowing approximate result;

V2(a /2w kgT
a,= e
2L L2 an, (heg)?
The above result that, is proportional to 1Jn; and
kgTe 27°keT/ioe and independent aby, is still correct even

—27%Kkg Tl 0

(37)
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when o?<8n;, as long as minfJn;)>1 and The calculations fog, are very similar to the ones above.
2m?kgT/hw.=1. Inclusion of spin is equivalent to making Using Ed.(12) and the Poisson formula we end up with the
the substitutionx— x+gm*/4m, and y—y—gm*/4m, in  following integrals determining the dependence pfon
the integrals |, ,. This results in a reduction factor N, T, andwp:

cos@rgni*/2mg) in Eq. (37) if min(yn;,0)>g.

keT el (X1 =x4)2+(x3=xp)+ (X, — X7+ (x3—x4) *1/8n
- e27TIﬂf(|1+|3—|2—|4)dX1...dX4 — — — —
1050304 Nt (lw,—X)(iw,+Xz)(iw,—X3) (1w, X4)
@~ 204+ 3545+ 02 g2mi(11x1 +13%5— 1 o Lxg) Z X1t XaXa+ X3 (39)

x1+x2,x3+x4’

=

where:j;’}i is given in Eq.(14). Contributions to the first harmong, come from the terms with; +15—1,—1,/=1. As in

the case fom, we can neglect the terms with more than dnéifferent from zero when 2%kgT/A wf.=1. Although we do

not have any simple expression fﬁéiii‘z‘izi? we can still extract the dependence Dhwp, andn;. This is because the

integral overx,- - -x, does not vary appreciably witk, on a scale=w,_,. Using the resultf dx[ exp(2mix,)/(iow’ —X;)1f(X,)
ocf(O)e*Z’”" (w'>0) for any well-behaved functiofi(x) which varies slowly fox<w’ and takingl;=1, I,=13=1,=0 we
get the integral

keT 27Xy DX+ (xg=x2) 235+ (xg—x)21/8ny
—Xm_ 7 dX2“'dX4

- — — e2(x§+x§+x‘21)/(rz»;«X4,X2+x3 (39)
Ny fw,— X (lw,+X)(iw,—X3)(iw,tXy)

= .
X9, X3+ Xy

The factors 1w’ *X;) in the integrand make the integral the field, making the results where the corrections to the
largely independent of any long-range behavior determinettarmonics of the dHVA oscillations due to superconductivity
by o and n; as long as|w’|<min(c,\n;). We therefore are expressed as a power seriedifRefs. 11, 12 and 3lof
conclude thag, is independent ofup, and that it only de- limited validity. However, to compare with the earlier pre-
pends onn; through then{l-factor coming from the four dictions_we ignore for the moment the oscillationsAip _and

BN'M coefficients. We also obtain thgh is proportional to  treat it formally as a free paramter [ie.,
keTexp(—2m2kgT/hwy). The proportionality constant is (2s—Qn)1=8245—0A5+ - -]. Here we focus on tha*
found through an exact evaluation pfgiven in Eq.(12). We  term since there are discrepancies between the predictions of

obtain different authors for this term. Since
(V/ﬁwc)427 2w 2kgTlhiow V2
Q2= 3zKeTe " ‘. (40) 2_ -1 2_ A 42
Ne(LyLy)”l Ac=(L,Ly) dr|A(r)] \/EL)Z(L)Z,IA , (41

Again the effect of spir(i.e., nonzerag factor provide an
additional cosfrgni*/2mg) in Eq. (40). It is not surprising  we obtain using Eqg40) and (30) the formal result for the
that the oscillatory terms, andg, are independent of the fourth-order term:
pairing widthwp since the oscillations are a consequence of
the individual Landau levels going through the chemical po- 10/ A \*
tential. Likewise the yn; and 1h; dependence reflects the (Qs— Q) 1la4 term= —92A8~QN1—< —) . (42
fact that the probability for two electrons, each with energy e\ hwe
(n+1/2)hw., to form a pair with minimum center-of-mass ) 4
energy is proportional to 3 for high quantum numbers, as Stepheff* obtained Nllelnf(A/ﬁwC) for the same
can be seen from Eq31). This proportionality can be ex- quantity using a different semiclassical approach. ihée-
plained via simple phase-space considerations. We haygendences of the two result agree but the numerical prefac-
tested the dependence @ andg, on the different param- tors are somewhat different. The above arguments for the
etersn;, wp, andT and we find excellent agreement with Ny dependence of, can easily be generalized yielding that
our approximate forms. the n; dependence of the first harmonic of thé" term is

To facilitate comparison with earlier papers we will now n;~ "2 This n; dependence agrees with the result obtained
formally treat the order parametdr(r) as a free parameter by Stephen whereas it disagrees with m‘e3’2 dependence
and assume that the oscillatory behavior of EB) only  for the A* term obtained by Maniet al3! We cannot over-
comes from the harmonics of the expansion coefficient€mphasize the fact that the above scheme to calculate the
a, v, etc. This is of course incorrect since the self-damping of the oscillations due to superconductivity is incor-
consistent order parameter itself is an oscillatory function ofrect, since it ignores the oscillations Anas a function of the
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field. To include those we have to use a self-consistent ordeg proportional to cog{/%w,). It is also confirmed by experi-
parameter and hence E@8). mental observation€. Likewise the effect of spin on

One debated issue is the possibility of reentrance foy(s—€,); is a reduction in the amplitude by a factor
type-Il superconductor. The oscillatory behavior ot due  cosgrgn#/2my). This is the same reduction factor as for the
to the Landau level structure gives rise to the possibility ofpscillations in the normal staf8.We thus have no extra
several solutions tar(H) =0 for a given temperature. This damping effects due to spin close to the transition line where
should be reflected in a highly oscillatory behavior of thethe perturbation theory is valid.
transition lineH,(T,H). Such an oscillatory behavior has  We can now examine whether the arguments based on the
never been observed experimentally. Using the approximatgor’kov expansion leading to a sign change of the first har-
expressions fom; anda, we can estimate the temperature monic are valid. Naively one would expect a sign change
below which there is reentrance and such oscillations isince the contribution from the condensation energy to the
H¢, should occur in a two-dimensional metal. We obtain thatmagnetic oscillations is in antiphase with the normal-state
when there is no impurity scattering, no Zeeman splitting,oscillations. When the system is deep enough into the mixed
andn;~O(10?) one should observe these oscillatory effectsstate the superconducting oscillations would dominate lead-
in He; in a 2D metal for temperatures lower than ingto a sign change of the magnetic oscillations. Extrapolat-
kgT/hw~0.3. However, inclusion of spin reduces the am-ing the rate of the damping close K, obtained from the
plitude of the oscillations ofx by a factor cosfgm*/2m) Gorkov expansion Maniv and Roffihave estimated the
close to the transition line. Assuming that impurities reducesnagnetic fieldH;,,<H., at which this sign change should
the oscillations by a factor exp(2m?kgTp/%w.) where occur. We are now able to show that this argument based on
Tp is the Dingle temperature we obtain that there will not bethe perturbative expansion of the grand potential is incorrect.
any reentrance ikgTp/hw.~0.2 no matter how low the From Eq.(28) we obtain that the maximum amplitude of the
temperature is. In the case of the experiments being done amntiphase oscillations dbs— Q) is given bya§/4gz. Using
k-(ET),CuNCS), (Ref. 2 the experimental parameters are our approximate expressions fay andg, we get
such that kgTp/hw.~0.27 and |cos@gm*/2my)|~0.3.
They will therefore never observe these reentrance effects. a% LxLya>2(7T )

K L L K . iy e __ —27°kgT/hw

The magnetic oscillations in the thermodynamic quantities 4g =~ %7 kgTe c (43
will of course still be there since and y are still oscillatory. 2
Comparing this amplitude with the contribution from the
normal-state oscillations given in E¢B0) we see that our
perturbation scheme roughly predicts a maximum damping

In this section we will draw some conclusions from the of 50%. It must be emphasized that this does not mean that
general form of the damping of the dHvA oscillations due tothe damping of the model described by the Hamiltonian in
the growth of the superconducting order described by Edeq. (3) has a maximum of 50%. However, using the result
(28). The first thing we notice is that in this approximation above combined with the results in Sec. Ill, we can conclude
the superconducting damping has a simple polynomial formhat neither the argument based on the Gor'’kov expansion
in  (Hg/H—1). The damping is maximum for northe arguments based on a simplified form for the quasi-
(Heo/H—1)=ay9:/a,9,. For (He/H—1)>a,9;:/a;9,  particle spectrum leading to an inversion of the first har-
the damping decreases when we go deeper into the supercafonic of the dHVA signal are valid.
ducting state and forH.,/H—1)>2a,0,/a;9, the mag-
netic oscillations are enhanced by the superconducting order.
This explains the observations made in Sec. lll. The in-phase
oscillations between the fourth-ord€¥s—Qy and Qy are In this section we present a typical result for the damping
due to the oscillatory behavior af(H). Sincey(H) oscil-  of the magnetic oscillations obtained from our theory when
lates in phase witlf),, we will get the enhancement of the many Landau levels participate in the pairing. We have cho-
oscillations ofQ)g compared td), when the smooth part of sen parameters such that we can compare our result with the
a(H) is sufficiently large. Again we must emphasize thatexperimental observations made by van der \atedl? First
this is obviously a sign that our perturbative scheme hasve compare our approximate expressions for the damping
broken down and does not reflect any physical effect. from Eq.(28) with the result based on the exact evaluation of

To make any quantitative predictions we need to use ourr and y from Eq. (11) and Eq.(12). We used the set of
approximate expressions fay andg;. Since we only have parameters such thdzT/%w.=0.25, V/Ihw.=2.315, and
very good approximations fa, andg, and for the tempera- wp/w.=75 whenn;=175. There is no Zeeman effect and
ture and spin dependence ®&f andg,, we will concentrate the chemical potential is conserved. In Fig. 6 we have plotted
on properties that can be derived from these results. Frorthe magnetization for both the normal state and the mixed
Eqg. (28) and the temperature dependenceapfand g; we  state calculated from the perturbative expansion to fourth
conclude that the first harmonic of the condensation energgrder as a function ofi;. The perturbation theory predicts a
(Qs—Qy); is proportional tokg Texp(—272kgT/hw,). Since  substantial damping of the oscillations over many periods,
we also have)y;xkgTexp(—2mkgT/fiw,), this means that reaching a maximum fon;=170. At the maximum the first
the magnetic oscillations have the same temperature depeharmonic is damped approximately 50% in agreement with
dence in the mixed state as in the normal state. This resuthe result in the previous section. As we go deeper into the
agrees with the general theofyee Schoenberj,Sec. 2.5 mixed state, the damping decreases according to the pertur-
and Sec. 2.Bvalid for any part of the grand potential which bative scheme. Based on the results in Sec. Ill, we expect the

C. Approximate results for damping

VI. COMPARISON WITH EXPERIMENT
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perturbation theory to describe the damping well for
n;=170. Due to the large number of Landau levels involved

in pairing, we have not undertaken the exact numerical cal-
culation for this set of parameters. In Fig. 7 we have plotted

M, calculated from the exact evaluation ef(H) and
y(H) and calculated from Eq28). We see that the simpli-

o 2mg1 0N,

FIG. 6. The magnetization us$; in the mixed
state (solid line) and in the underlying normal
state(dashed ling

w18

(Hea/H—-1), (44)

where we have used E{R8). The approximate equality is
only valid for a,g;/a;9,<Hs/H—1. Using the expres-

fied expression reproduces the perturbative predictions welgions fora;, g;, and(y; we can now compare this expres-
The above parameters approximate the experiment pesion with the experimental observations. Unfortunately the
formed by van der Webt al? on the essentially 2D organic experimental value of, is uncertain. The transition from

superconductok-(ET) ,Cu(NCS) ,. To compare with the ex-

the normal state to the superconducting state occurs over a

perimental data we will formulate our results in terms of afield range of approximately 2* This gives a “smooth”
field-dependent quasiparticle scattering ratelefined such Vvariation of ther~* on entering the mixed state which our
thate™ "¢ gives the damping of the first harmonic of the theory cannot account for. To model this transition region we
use the method introduced in Ref. 2 by including a Gaussian
spread inH;,. In Fig. 8 we have plotted the experimental
data for7~! (bar§ measured iTHz) as a function of B
measured in T1. The solid line is our theoretical prediction
based on Eq(44) including a Gaussian spread fli.,. The
agreement between theory and experiment is good. It should

dHvVA oscillations due to superconductivity. From Eg9)
we get

-1 wC
T =—?|n[1+(QS—QN)1/QN1]

20.0 ; T T

10.0 -

0.0 -

Magnetization

-10.0 -

-20.0

1
166.0 174.0

168.0 170.0 172.0

176.0

FIG. 7. The magnetization us in the mixed
state. The solid line is the first harmonic of the
perturbative calculation and the dashed line is ob-
tained from Eq(28).
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be noted that we have no fitting parameters apart fitm APPENDIX A

However, without a more reliable measurementHyf, a
precise comparison between our theory and the experlmental
observations cannot be made.

Using the symmetry of the vortex lattice and making the
restrictionA;.o=0 we obtain

VII. CONCLUSION Qg=— m

V6 6
GAG En f(nl! LR ln6)
.Ng
In this paper we have examined the dHVA oscillations in
the mixed state of a type-Il superconductor in the 2D limit
using both a numerical solution of the BdG equations and an v B”l o N1 Mg g N g (AD)
analytical theory based on a self-consistent Gor’kov expan- =ng+n,.ng+ny,ng+ng’
sion. The use of translational and rotational symmetry has
simplified the analysis such that we have been able to Ca|CLYV

late the expansion coefficients exactly to any order without

Ny No N3 Ny N5 NgNs Ny N3 Ny
x Bt "2B03 MBS "eg s "By

1
using semiclassical or other approximations. Comparisonf(n,,n,, ... Ny)= =2, [(—ihw,—& )
with the exact numerical solution has showed that perturba- B
tion theory works well close tdl.,, thereby disproving re- Y (ihw — i — -1
cent claims of nonperturbative effects. We have found that (1w, &n,1) (e g”Z'T)]
the condensation energy oscillates in antiphase with the nor- (A2)

mal grand potential, thus producing damping of the dHVA
oscillations in agreement with numerical and experimental”‘nd

results. The damping is directly connected with the enhance- )

ment of superconductivity when we have a Landau level at £/t 1 = >} Xi, (K)o xg, (KX (K)- - xf, (K),
the chemical potential. We have excluded the possibility of a keMBZ

sign change of the first harmonic of the dHVA oscillations in (A3)
the mixed state. The effect of spin and a conserved number

of particles as opposed to a conserved chemical potential was x;(k)= \/’2 e2ikxabg—imb? /2¢ [\/_(k I+bag/I)].
examined. Using a simple approximate form of our analyti-

cal theory valid when many Landau levels participate in pair- (A4)
ing we have compared our theory with an experiment on thg j ewise the eighth-order term gives far;.,=0
quasi-2D organic superconducta-(ET) ,CuNCS),. We
have found good agreement. However, due to experimental
uncertainty aboul ., any quantitative comparison is impos-
sible.

V8 8
8
QB 64('. L )SA En f(nl,---ﬂs)
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APPENDIX B have checked this independence against the exact result
given in Eg.(11) and found very good agreement. To obtain

In this appendix we will extract the dependencegpfand the dependence am and o we make the simplification

g, onn;, T, o, and spin. This is considerably harder than for
a, andg, because we do not have any oscillatory factor intanj K o(v +u)]+tanj Ko(v —u)Jv %
the integrals that would make the long-range behavior of the

remaining integrand insignificant. It turns out that it is still 0 if |u[<]ul,
fairly straightforward to derive the temperature and spin de- ~_{ 2 (B2)
pendence ofa; and g;, whereas we have to make some B if |v|>]ul,

rather drastic approximations to obtain the dependence on

ns and o for g;. which is a very good approximation sinée>1. It is exact
The smooth parfzero harmonigof «(H) comes from the for T=0. The integral can be solved and we obtain

terms|,, in Eq. (32). We first look at the termi=m=0.

Making the variable substitution v =(x+y)/o 2, 4 o’ o’ o?
L ’ lgo= ——=In —+1+\/—+2|=2In|—],
u=(x—y)/o+2 we get the following integral: " J1+nl6? 4n; 4n; N
(B3)
(2 2 2 . .
|Ooz_j duf dve (@72 2 tanf Ko (v +u) ] where we have assumecf>4n;. This yields the result
' \/27Tnf
22 VA(ay/l) _
e~ v alz — 2 .
+tanjKo(v—u)]} o (B1) 4nl,L “h o,

The expression foa, is independent of any spin effects for
whereK = Bfiw./2y/2>1 determines the temperature depen-min(\/n—,a)>g. We have again checked the independence
dence of the integral. Sind€ is only important around the of a; onng, o, and spin against the exact result and we find
regionv=0 which does not contribute significantly to the very good agreement.

integral, we conclude thay , is independent of the tempera- ~ The dependence a@f; onn;, o, andT is determined by
ture to a very good approximation. Since similar calculationghe integrals in Eq(38) for whichl,—1,+13—1,=0. Again

to the ones in Sec. V B show that form2kgT/Aw,=1 we it turns out that for 2r’kgT/Aw.=1 we can neglect the
can neglect the contribution to the zero harmonic from thecontribution tog, from the terms with;—1,+1;—1,=0 and

I, terms wherd # 0, we conclude thaa;, for is independent  max(ly,|l5],|l3],|l4))>0. Using Eq.(16) we can rewrite the in-

of the temperature for temperatures that are not too low. Weegral withl;=1,=13=1,=0 as

ﬁwc{ 1 ( tani(Kx,/2) tanh Kx3/2) 1 [ tanhKx,/2)
dxq---dx, — +
2 [Xa=Xq| (X3+X2) (X3+Xs)  (Xa+X2)(Xa+Xg)| ~ Xg=Xa\ (Xg+X) (X +X3)
B tanh(Kx,/2) e[(xl—x4)2+(x37x2)2+(x17x2)2+(x3*X4)2]/8nfe*Z(Xi+xg+xg+xi)/"2:X1+X4’X2+X3 (B5)
(Xa+X1) (Xg+X3) XX Xg X!

where K=#Aw./kgT determines the temperature depen-the phase factor will change “randomly” and make the sum
dence. Again for min{n;,o)>g, g, will be independent of approximately zero. Physically it corresponds to ignoring
spin effects. As in the case af, it is fairly straightforward cases where electrons in four different Landau levels inter-
to see that since K/<min(yn¢, o), the integral and therefore act. Using this simplification, Eq31), and the Poisson for-
g, are independent of the temperature to a very good aphula we get from Eq(12) the following integral determin-
proximation. We have checked this independence against tHeg the dependence @f, onn; ando:
exact result given in Eq12) and find very good agreement.

To make any progress in determining the dependence 02 LTJ dxdxdx,
g; on o and n; we need some simple expression for 7 nNg

—=Nj+ng,Ny+ng . . T
B, ngtn, As a rough approximation we make the sim o [(x=x0)%+ (x-x0)/dn;

plification to N — _ —2(22+x5+x5) 02
(io"—x)(1w"+X) (o' +Xy4)
Ll => 1 (B7)
=Nptng,np+ng x-y ’
‘—’ni+n:’n§+nj (5n1,n3+5n2,n4) 47Ta.2 (BG) o' ®
X

o . . . where o'=w,/lw,. We have again assumed
This is based on the fact tha (k)xj (k) in general is @ 272k, T/fw,=1. Assume now that &<o?. We approxi-
complex number folj;#j,. When thek sum is performed mate the integrals by
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keT o x/2ng o xlang o xalang where x,=Qy/wcny and Ax=27kgT/hwc\/ns. Since
Iw,:—f X zf Xor f XaT Ax<1, we can approximate this sum by an integral and we
Ny (lo"=x) lw™ Xz lw )%;38) therefore conclude thay, is independent of the temperature

in agreement with the result above. Furthermore, we obtain
We will now show that in this approximation the sum of the g;«<1/n; for n; large andg,; independent ofo. When

integrals is largely independent af; and thereforeg, a?>8n; does not hold the calculation is the same as above.
«1/n;. The integral can be solved and we get We just have to substitute Td with 1/4nf+2/<r_2 in the
integrals. The M; dependence coming from &} '? fac-

| = k%; o] e’ 220 1 _ g o] b 27 w2 tors in Eq.(12) is unaltered and we still get thg > 1/n; for
“ g Jn¢ NTY min(yn¢,o) large and thag; is independent ofr and the
o ) temperature. By calibrating, through an exact evaluation
) , .
y 1—613( ) oo %20, (B9) based on Eq(12), we obtain
2\n;

V4
9= (L) 2 (hwe) 3540,

where we again haveD(x)E(Zl\/F)fédte“z. Equation (B1))

(B7) can then be written on the form
« whereg, is defined in Sec. V A. It should be noted that the
1-d| =
( ﬁ)

fiwe " /_277J 2 dependence of); on n; and o in the above expression is

2
AXD, { — X,en2

2mng 5 only approximate and rests on the various simplifications
5 made. We have tested the above expression against the exact
X ; ;
<|1-@| 20 exﬁ’z, (B10) result and we find that the dependencengrand o fits to an
2 accuracy of 20%.
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