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First-principles theory of magnetocrystalline anisotropy of disordered alloys:
Application to cobalt platinum
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We present a first-principles theory of magnetocrystalline anisotropy of disordered alloys within the frame-
work of the spin-polarized fully relativistic Korringa-Kohn-Rostoker coherent-potential approximation in
which relativistic effects such as spin-orbit coupling and magnetization are treated on an equal footing. Unlike
in some other methods, we calculate the magnetocrystalline anisotropy energy~MAE! of a material directly
rather than subtracting the total energies of the material for two magnetization directions calculated separately.
Since the total energy of a system is several orders of magnitude larger than its MAE (;m eV!, this approach
provides a robust method. Our predictions of the MAE and magnetic easy axis of elemental bcc-Fe, fcc-Co,
and fcc-Ni are in reasonable accord with previous calculations as well as with the experimental results. We
calculate the MAE of disordered fcc-CoxPt12x alloys forx50.25, 0.5, and 0.75 and find that the magnetic easy
axis for these alloys is along the@111# direction of the crystal, and that the magnitude of MAE is largest for the
equiatomic composition. We also find that the magnitude of MAE decreases with temperature in these alloys,
but the magnetic easy axis remains unchanged.@S0163-1829~97!02538-1#
fe
re

be
ity
s
de
y
ed
s

s
ia
o

sti

n
rg
th

o
u
o
tu
c

on
,
te
he
ua
u
ig

ion

s.
ches
’’
not

d
ied

pro-
This

s.

but
ee-
ut

nd
us
con-

in
tic
de-
-

m
-

bu-

by
in

f

I. INTRODUCTION

In recent years, the magnetocrystalline anisotropy of
romagnetic materials containing transition metals has
ceived attention, both theoretically and experimentally,
cause of the technological implications in high-dens
magneto-optical storage media.1–3 To make these material
useful for future magneto-optical recording systems, a
tailed understanding of the mechanism of this anisotrop
needed. Several experimental studies have been devot
understand its origin and also to correlate it with other phy
cal properties of the materials.4–13However, anab initio the-
oretical approach that can explain the underlying physic
most desirable, because it will help to predict new mater
with such desired properties. Over the past few years, c
siderable progress has been made in this direction,14–31but a
comprehensive explanation at the microscopic level is
lacking.

In a solid, the equilibrium direction of the magnetizatio
is along one of the cystallographic directions. The ene
required to alter the magnetization direction is called
magnetocrystalline anisotropy energy~MAE!. Brooks32 sug-
gested that the origin of this anisotropy is the interaction
magnetization with the crystal field, i.e., the spin-orbit co
pling. Most of the present day theoretical investigations
magnetocrystalline anisotropy use standard band struc
methods within the scalar-relativistic local spin-density fun
tional theory and treat spin-orbit coupling as a perturbati
The MAE is then calculated by using the force theorem33

which states that the difference in total energy of two sta
with similar charge density is given by the difference in t
single-electron contributions to the total energy. In act
calculations, this is evaluated as the difference in the s
over all occupied single-electron energies. Several invest
560163-1829/97/56~13!/8082~9!/$10.00
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tions have been reported within this approach for transit
metals,14,15 as well as for ordered transition-metal alloys21,22

and layered materials16–19 with varying degrees of succes
Some controversy surrounds these perturbative approa
regarding the method of summing over all the ‘‘occupied
single-electron energies for the perturbed state which is
calculated self-consistently.23–25 Freeman and co-workers23

have argued that this ‘‘blind Fermi filling’’ is incorrect an
proposed the state-tracking approach in which the occup
set of perturbed states are determined according to their
jections back to the occupied set of unperturbed states.
approach, combined with the so-called torque method,26 was
used by these authors to calculate the MAE of multilayer27

More recently, Trygget al.28 included spin-orbit coupling
self-consistently in the electronic structure calculations
within a scalar relativistic theory. They obtained good agr
ment with experiment for bcc-Fe, fcc-Co, and hcp-Co, b
failed to obtain the correct magnetic easy axis for fcc-Ni.

We note that in almost all the above studies, the ba
structure methods used are not fully relativistic and th
these approaches might not be adequate for materials
taining elements with f electrons. Moreover, Jansen34

pointed out that, the spin-orbit coupling which is the orig
of magnetocrystalline anisotropy, is essentially a relativis
phenomenon, and therefore, can be more appropriately
scribed within a fully relativistic framework. Thus it is de
sirable to treat relativity and magnetization~spin polariza-
tion! on an equal footing. We also point out that, apart fro
this conceptual difficulty, in all of the previous investiga
tions, either the total energy or the single-electron contri
tion to it ~if using the force theorem! was calculated for two
magnetization directions separately and MAE obtained
subtracting one from the other. However, the MAE which
many cases is of the order ofm eV, is several orders o
8082 © 1997 The American Physical Society
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56 8083FIRST-PRINCIPLES THEORY OF . . .
magnitude smaller than the total energy of the syste
Therefore, it is numerically more precise to calculate
difference directly, rather than taking the above cours35

Consequently, a fully relativistic theory of magnetocryst
line anisotropy is needed which, in addition, should facilita
the direct calculation of MAE. Strangeet al.36,37have devel-
oped a relativistic spin-polarized version of the Korring
Kohn-Rostoker~SPR-KKR! formalism to calculate the elec
tronic structure of solids, and Ebert and co-workers38 have
extended this formalism to disordered alloys by incorpor
ing coherent-potential approximation~SPR-KKR-CPA!. This
formalism has been successfully used to describe the e
tronic structure and other related properties of disordered
loys such as magnetic circular x-ray dichroism, hyperfi
fields, magneto-optic Kerr effect, etc. by Ebert a
co-workers.39–45 Strangeet al.30 and more recently Staunto
et al.35 have formulated a theory to calculate the MAE
elemental solids within the SPR-KKR scheme, and t
theory has been applied to Fe and Ni.30,31 They have also
shown that, in the nonrelativistic limit, MAE will be identi
cally equal to zero, indicating that the origin of magne
anisotropy is relativistic. In this paper we present a gener
zation of the theory of Stauntonet al.35 to disordered alloys.

Owing to the typically small magnitude of MAE (;m
eV! of transition metals and their alloys, we have first tes
the accuracy of our method, and for this purpose, calcula
the MAE of elemental bcc-Fe, fcc-Co, and fcc-Ni. As di
cussed below~in Sec. IV A!, our method correctly predict
the easy axes of magnetization for all these elements
though the magnitude of MAE is somewhat smaller wh
compared to the experimental data.

We then use our method to calculate the MAE of dis
dered fcc-CoxPt12x alloys. These alloys have attracted o
interest because of the following reasons. Large magn
anisotropy,6,7 large magneto-optic Kerr effect signals com
pared to the Co/Pt multilayers in the whole range of wa
lengths ~820–400 nm!8,9 make these alloys potentia
magneto-optical recording materials. The chemical stab
of these alloys, a suitable Curie temperature, and the eas
manufacturing enhances their usefulness in commer
applications.8 Furthermore, these alloys are important fro
the point of view of fundamental physics of magnetic anis
ropy; in Co-Pt systems spin-polarization is induced by
whereas spin-orbit coupling is stronger in Pt, and therefo
this is a good system to test our theory. We are not awar
any theoretical calculation of MAE of alloys which trea
relativistic effects such as spin-orbit coupling and sp
polarization on an equal footing.

Most of the experimental work on Co-Pt alloys have be
on the ordered tetragonal phase, which has a very large m
netic anisotropy (;400 meV! and the magnetic easy axis
along thec axis.6,7 We are not aware of any experiment
work on the bulk disordered fcc phase of these alloys. Ho
ever, some results have been reported for disordered
phase of these alloys in the form of thin films.8–13 It is found
that the magnitude of MAE is more than one order of ma
nitude smaller than that of the bulk ordered phase, and
magnetic easy axis varies with the film thickness. We beli
that theoretical investigation on the bulk disordered allo
will also provide insight into the mechanism of magne
anisotropy in the ordered phase as well as in thin films.
.
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this paper, we investigate the magnetic anisotropy of the
ordered fcc phase of CoxPt12x alloys forx50.25, 0.50, and
0.75. In our calculations, we have used the self-consis
potentials from spin-polarized scalar relativistic KKR-CP
calculations. Our calculations predict that the easy axis
magnetization is along the@111# direction of the crystal for
all the three compositions, and the anisotropy is largest
x50.50.

The paper is organized as follows. In Sec. II, we pres
the formulation. We start with a brief outline of the SPR
KKR-CPA method and then derive an expression for
MAE within this formalism. In Sec. III, we present the nu
merical details. Afterwards, we present our results in Sec.
and in Sec. V, we draw some conclusions.

II. FORMULATION

Our theory of magnetocrystalline anisotropy is based
the relativistic spin-polarized density functional theory.46–48

MacDonald and Vosko developed the theory for a ma
electron system in presence of a ‘‘spin-only’’ magnetic fie
i.e., ignoring the diamagnetic effects. This is a suitable ba
for describing electrons in condensed matter. Within this f
malism, the relativistic Kohn-Sham-Dirac single partic
equations, in presence of an external field, can be written

$2 i\ca•¹1bmc21IVeff@n~r !,m~r !#

2bs•Beff@n~r !,m~r !#2« i%c i50, ~2.1!

where

n~r !5(
i

occ

Trc i
†~r !c i~r !, ~2.2!

m~r !5(
i

occ

Trc i
†~r !bsc i~r !, ~2.3!

Veff@n~r !,m~r !#5Vext~r !1
dExc@n~r !,m~r !#

dn~r !

1e2E n~r 8!

ur2r 8u
dr 8, ~2.4!

and

Beff@n~r !,m~r !#5
e\

2mcS Bext~r !1
dExc@n~r !,m~r !#

dm~r ! D .

~2.5!

In the above equationsa and b are the standard Dirac
matrices,s are 434 Pauli spin matrices,Bext(r ) is the ex-
ternal magnetic field coupling to the electron spin only,Exc
is the relativistic exchange-correlation energy, andc i is a
four-spinor. Within the local approximation, the total ener
of the system can be written as
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8084 56S. S. A. RAZEE, J. B. STAUNTON, AND F. J. PINSKI
E@n~r !,m~r !#5EEF
«n~«!d«2

e2

2 E E n~r !n~r 8!

ur2r 8u
drdr 8

2E S dExc@n~r !,m~r !#

dn~r !
n~r !

2
dExc@n~r !,m~r !#

dm~r !
•m~r ! Ddr

1Exc@n~r !,m~r !#, ~2.6!

wheren(«) is the Kohn-Sham-Dirac single-particle dens
of states, andEF is the Fermi energy of the system.

We recall the key equations of the SPR-KKR-CPA fo
malism in Sec. II A and in Sec. II B we derive an express
for the magnetocrystalline anisotropy energy of disorde
alloys.

A. SPR-KKR-CPA formalism

The electronic Green’s function for a system of relativ
tic spin-polarized scattering centres can be written as37,49

G~r ,r 8;E!5 (
LL8

ZL
R~r ;E!tLL8

00
~E!ZL8

L
~r 8;E!

2(
L

ZL
R~r,;E!JL

L ~r.;E!, ~2.7!

where ZL
R(r ;E) and ZL

L (r ;E) are, respectively, the right
hand-side and left-hand-side regular solutions, andJL

L (r ;E)
is the left-hand-side irregular solution of the Kohn-Sha
Dirac equation for a single scatterer,50 and tLL8

00 (E) is the
site-diagonal path-operator matrix. The indexL represents
the elements of various matrices according to the adop
representation. For an ordered system,tLL8

00 can be obtained
from the Brillouin zone integration

tLL8
00

~E!5
1

VBZ
E @ t21~E!2g~k;E!#LL8

21 dk, ~2.8!

whereg(k;E) is the KKR structure constant matrix andt is
the single-site scattering matrix. For a binary disordered
loy AxB12x , the effectivet matrix is determined by the CPA
condition

tCPA
00 5xtA

001~12x!tB
00, ~2.9!

where

tA~B!
00 5@ tA~B!

21 2tCPA
21 1~tCPA

00 !21#21. ~2.10!

In Eqs.~2.9! and~2.10! we have suppressed the quantu
number indexL. In all subsequent discussions we will co
tinue to do so unless it is essential to write the index. O
we have determined the Green’s function we can calcu
the density of states, by

n~E!52
1

p
IE TrG~r ,r ;E!dr . ~2.11!
d

-

-

d

l-

e
te

B. Magnetocrystalline anisotropy

We start from the total energy of a system within the loc
approximation of the relativistic spin-polarized density fun
tional formalism, as given by Eq.~2.6!. The change in the
total energy of the system caused by the change in the d
tion of the magnetization is defined as the magnetocrystal
anisotropy energy, i.e.,

DE5E@n~r !,m~r ;e1!#2E@n~r !,m~r ;e2!#, ~2.12!

where m(r ;e1) and m(r ;e2) are the magnetization vector
pointing along two directionse1 and e2, respectively, the
magnitudes being identical. Considering the stationarity
the energy functional and the local approximation, the c
tribution to DE is predominantly from the single-particl
term in the total energy. Thus, now we have

DE5EEF1
n~«;e1!«d«2EEF2

n~«;e2!«d«, ~2.13!

wheren(«;e1) andn(«;e2) are the single-particle density o
states, when the magnetic moments are pointing alonge1 and
e2, respectively, andEF1

and EF2
are the corresponding

Fermi energies. We know that

EEF
n~«!«d«5ZEF2EEF

N~«!d«, ~2.14!

where Z is the total number of electrons per atom in t
system andN(«) is the integrated density of states. Puttin
Eq. ~2.14! in Eq. ~2.13! and using a Taylor expansion o
N(«;e2) aboutEF2

, we obtain

DE52EEF1
@N~«;e1!2N~«;e2!#d«2

1

2
n~EF2

;e2!

3~EF1
2EF2

!21O~EF1
2EF2

!3. ~2.15!

In most of the cases, the second term is expected to
very small compared toDE. The first term which contains
the predominant contribution toDE needs to be evaluate
accurately. Stauntonet al.35 and Gubanovet al.53 have
shown that use of Lloyd formula for the integrated density
states54 in Eq. ~2.15! leads to a more convenient expressio
We use the Lloyd formula for the integrated density of sta
of a disordered alloy in Eq.~2.15! to get

DE52
1

p
IEEF1

d«

3F 1

VBZ
E dklni I 1@ tc

21~e2!2tc
21~e1!#tc~k;e1!i

1 x$ lniDA~e1!i2 lniDA~e2!i%

1~12x!$ lniDB~e1!i2 lniDB~e2!i%G
2

1

2
n~EF2

;e2!~EF1
2EF2

!21O~EF1
2EF2

!3.

~2.16!
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In Eq. ~2.16!, tc(e1) and tc(e2) are the SPR-KKR-CPAt
matrices for magnetization alonge1 and e2 directions, re-
spectively,

tc~k;e1!5@ tc
21~e1!2g~k!#21 ~2.17!

and

DA~e1!5@ I 2tc
00~e1!$tc

21~e1!2tA
21~e1!%#21 ~2.18!

with similar expressions forDA(e2), DB(e1), and DB(e2).
Note that tA(e2) and tB(e2) can be obtained directly from
tA(e1) andtB(e1), respectively, by simple rotational transfo
mation

tA~B!~e2!5R~abg!tA~B!~e1!R†~abg!. ~2.19!

In the above equation,R(abg) is the rotation matrix cor-
responding to the Euler anglesa, b, andg of the directione2
with respect to the directione1.51 However, for the CPA
medium, this transformation will not hold as the CPAt ma-
trix is related to the symmetry in thek space~through the
path operator and the CPA condition! and the symmetry op
erations for two directions of magnetization are not sam52

Therefore, we need to solve the SPR-KKR-CPA equati
for the two magnetization directions separately to obt
tc(e1) and tc(e2).

For a pure metal, Eq.~2.16! reduces to

DE52
1

p
IEEF1

d«

3F 1

VBZ
E dklni I 1@ t21~e2!2t21~e1!#t~k;e1!i G

2
1

2
n~EF2

;e2!~EF1
2EF2

!21O~EF1
2EF2

!3 ~2.20!

and if we use the relationi t(e2)i5i t(e1)i @which is true for
pure metals, by virtue of Eq.~2.19!#, Eq. ~2.20! reduces to
the expression given by Stauntonet al.35

Note that, in Eqs.~2.16! and ~2.20!, the upper limit of
energy integration isEF1

, the Fermi energy of the system

when the magnetization is alonge1. The contribution toDE
due to the difference in the two Fermi levels is of the ord
of (EF1

2EF2
)2. This contribution is expected to be ver

small, but nevertheless, it can be approximately estimate
follows. We have

N~EF1
;e2!5Z1DZ, ~2.21!

whereDZ is the deviation in the total number of electro
(Z) due to incorrect Fermi energy for the magnetizati
along e2. SinceZ5N(EF1

;e1), DZ is the difference in the
integrated density of states for the two magnetization dir
tions at the energyEF1

. Thus, with the help of Lloyd’s for-
mula, we can write
s
n

r

as

-

DZ5
1

p
IF 1

VBZ
E dklni$I 1@ tc

21~EF1
;e2!

2tc
21~EF1

;e1!#tc~k,EF1
;e1!%i1x$ lniDA~EF1

;e1!i

2 lniDA~EF1
;e2!i%1~12x!$ lniDB~EF1

;e1!i

2 lniDB~EF1
;e2!i%G . ~2.22!

We can then use this value ofDZ to determineEF2
from

Eq. ~2.21! by rewriting it as

DZ5E
EF2

EF1
n~«;e2!d«. ~2.23!

In real applications,EF1
andEF2

are expected to be ver
close. Therefore, we can approximate Eq.~2.23! using the
trapezoidal rule as

DZ'
1

2
~EF1

2EF2
!@n~EF1

;e2!1n~EF2
;e2!#. ~2.24!

Thus we have

1

2
n~EF2

;e2!~EF1
2EF2

!2'
2~DZ!2n~EF2

;e2!

@n~EF1
;e2!1n~EF2

;e2!#2
.

~2.25!

In most of the metals and their alloys,n(EF1
;e2) and

n(EF2
;e2) are at least of the order of 1 states/eV. Therefo

for the above term to give meaningful contribution toDE,
we would needDZ to be at least of the order of 1024. Thus
when DZ is less than 1024 we can quite justifiably neglec
the terms containing (EF1

2EF2
)2. In other words, in such

cases, we do not need to estimateEF2
; only a knowledge of

EF1
will suffice. Only in rare instances, should the seco

order term be significant.

III. COMPUTATIONAL ASPECTS

In this section we discuss computational details and pr
tical difficulties in the calculation of MAE of disordered a
loys. A good review of technical aspects of solving t
Kohn-Sham-Dirac equations and calculating the KK
Green’s function at real as well as complex energies is gi
by Strangeet al.,36,37 and those will not be repeated here.

We need to evaluate the energy integral as well as
Brillouin zone integral in Eq.~2.16! to a very high degree o
accuracy. Therefore, it is advisable to distort the energy
tegration into the complex plane. In the complex plane,
integrand becomes a smooth function of energy andk and
we need fewer energy points as well as fewerk points to
obtain an accurate integral.55 In our calculation, we have
used a rectangular box contour starting from below the b
tom of the valence band on the real axis and ending at
Fermi energy on the real axis. The top of the box contou
1.0 Ry above the real axis where the integrand is alm
featureless, and therefore, we need a very few energy po
along this line. Along the two legs of the contour, in partic
lar, nearer to the real axis we need a finer mesh. Accordin
we have used a logarithmic mesh along the two legs of
contour. Again, if our contour starts from below the valen
band, as is the case, the integrand is structureless along
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bottom leg as well. Thus, practically, we need a dense m
only in the top leg of the contour. In our calculations, t
number of energy points is approximately 70~10 each in the
bottom leg and on the top horizontal line, and 40–50 poi
in the top leg!. We have checked that this number is suf
cient enough to give accurate energy integrals.

The second important point is the Brillouin zone integ
tion. Depending upon the direction of magnetization,
number of symmetry operations in the Brillouin zone will b
different.52 In a cubic crystal, the effective symmetry is t
tragonal, trigonal or orthorhombic depending on whether
magnetization is along the@001#, @111#, or @110# directions,
respectively. Because of that, the irreducible part of the B
louin zone will be different when the direction of magne
zation is altered. Strangeet al.37 have discussed the evalu
tion of the path operator for different magnetizatio
directions. They have pointed out that, owing to the redu
symmetry in the Brillouin zone, it is necessary to perform t
Brillouin zone integration in1

16th of the zone when the mag
netization is along@001# direction and in 1

4th of the zone
when it is along a general direction~as opposed to1

48th in the
nonrelativistic case!. They have also shown the structure a
symmetry of the path operator matrix in presence of a fi
along the@001# direction, in (km) as well as (lms) repre-
sentation. We refer the reader to that reference for details
our calculation, we work throughout in the (lms) represen-
tation for the simple reason that it is more comprehensi
and moreover, there is no real advantage in working with
(km) representation when the magnetization is along a g
eral direction, because then all the degeneracies in the m
elements of the path-operator are lifted. In Fig. 1, we sh
the structure of the path operator matrix in the (lms) repre-
sentation~for l<2) when the magnetization is along a ge
eral direction. We note that there are altogether 180 nonz
elements~indicated asX). The symmetry of the matrix is
given by

t l 8m8s8; lms
00

5~ i !m2m81s2s8t lms; l 8m8s8
00 , ~3.1!

FIG. 1. The matrix structure oft00 in the (lms) representation
for a cubic crystal when the magnetization is along a general di
tion. The nonzero elements are indicated by X. The symmetry
the matrix is given by Eq.~3.1!.
sh

s

-
e

e

l-

d
e

d

In

e,
e
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and therefore, there are only 99 independent elements w
need to be calculated. The SPR-KKR-CPAt matrix will also
have a similar structure.

For the Brillouin zone integration we have used the pri
method described in detail by Stockset al.56 While solving
the SPR-KKR-CPA equations, we have used 55 direction
each of the forty-eighths of the Brillouin zone. The numb
of k points per direction varies depending upon the value
imaginary part of the complex energy. Near the real axis,
have used about 200k points per direction and far fewerk
points as we go away from the real axis. Evidently, we ne
more k points for the calculation of MAE. We will discus
this later. The SPR-KKR-CPA equations were solved us
the algorithm of Millset al.57 which has been proved to lea
to fast convergence in earlier works.42,58We have obtained a
self-consistency of the order of 1029 in the t matrices for
both magnetization directions.

In our studies, we have used the potentials generated
the self-consistent spin-polarized scalar relativistic KK
CPA method, which gives spin-up and spin-down potenti
V↑(r ) andV↓(r ). The potential and field, which we need
the fully relativistic treatment, are given by

Veff~r !5
1

2
@V↑~r !1V↓~r !# ~3.2!

and

Beff~r !5
1

2
@V↑~r !2V↓~r !#. ~3.3!

In previous calculations,15,30 it was observed that MAE is
quite sensitive to small inaccuracies in the Fermi energy~or
equivalently, to electron filling!. From Eq.~2.16! it is quite
evident that, even an inaccuracy of the order of 1 mRy in
Fermi energies will affect the MAE drastically, and hence w
have to determine the Fermi energy to a corresponding
curacy. As explained in the previous section, we need
calculate the Fermi energy for only one magnetization dir
tion, namely,@001#, and we can estimate the second term
Eq. ~2.16! according to Eq.~2.25!.

IV. RESULTS AND DISCUSSION

A. Pure elements

Before attempting a full-fledged calculation of the MA
for disordered alloys, it is worthwhile to test our theory b
performing calculations for elemental solids and compar
our results with available experimental data as well as res
of previous theoretical calculations. For this exercise,
have chosen bcc-Fe, fcc-Co, and fcc-Ni for which expe
mental as well as theoretical data exist in the literature.
found that the Fermi energy for the@001# direction of mag-
netization, calculated within the SPR-KKR-CPA is abo
1–2 mRy above the scalar relativistic value for all the thr
elements. We also estimated the order of magnitude of
second term in Eq.~2.16! for these three elements, and foun
that, it is of the order of 1022 meV, which is one order of
magnitude smaller than the first term.

In Table I, we compare our results for bcc-Fe, fcc-Co, a
fcc-Ni with the experimental results as well as the results

c-
f
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TABLE I. Experimental and calculated magnetocrystalline anisotropy energy, defined
DE5E(001)2E(111) per atom for Fe, Ni, and Co, in units ofmeV. Column A is from Ref. 15, column B
is from Ref. 30, column C is from Ref. 62, column D is from Ref. 28 without orbital polarization, colum
is also from Ref. 28 but with orbital polarization, and column F is the present work.

Solid Experiment Theory
A B C D E F

bcc Fe 21.4a 20.5 29.6 7.4 20.5 21.8 20.95
fcc Co 1.8b 0.5 2.2 0.86
fcc Ni 2.7c 20.5 10.5 10.0 20.5 20.5 0.11

aRef. 59.
bRef. 60.
cRef. 59,61.
cu

o
i
i

of
s
e
to
ls
o
h
ou
a
w
gn
ta
n
is

sfi
ri
1

nd
th
r

-
th
m

or
ic
p
n-
s
e
on

o
he

s
lar
5
of

on
the
l
i

ns
, as

ec-
it
e,
to

is

e

n
d a
se
nd
r to

of

a
e.
lex
for
ort.
rgy
the
is-
are
rmi

re
m-
at
previous calculations. Among the results of previous cal
lations, the results of Trygget al.28 ~columns D and E! are
closest to the experiment, and therefore, we will compare
results to theirs. Their results for bcc-Fe and fcc-Co are
good agreement with the experiment if orbital polarization
included in the calculation of MAE. However, in case
fcc-Ni, their prediction of the magnitude of MAE as well a
the magnetic easy axis is not in accordance with the exp
ment, and even the inclusion of orbital polarization fails
improve the result. Our results for bcc-Fe and fcc-Co are a
in good agreement with the experiment, predicting the c
rect easy axis, although the magnitude of MAE is somew
smaller than the experimental value. Considering that in
calculations orbital polarization is not included we feel th
our results are quite satisfactory. In the case of fcc-Ni,
obtain the correct easy axis of magnetization, but the ma
tude of MAE is far too small compared to the experimen
value. As noted earlier, in the calculation of MAE, the co
vergence with regards to the Brillouin zone integration
very important. We have checked this aspect and are sati
that our results are well converged with respect to the B
louin zone integration. In our calculation, we have used 2
directions in the irreducible wedge of the Brillouin zone a
we have taken around 600 points per direction, when
energy is near the real axis, and less and less numbe
points as we go further to the complex plane. Compared
this, Daalderopet al.15 used;500 000k points in the irre-
ducible part of the Brillouin zone, and Trygget al.28 used
2000k points for bcc-Fe and 6000k points for fcc-Co and
fcc-Ni in the irreducible part of the Brillouin zone. There
fore, it seems that our method is capable of calculating
magnetocrystalline anisotropy of solids in reasonable co
putational time.

B. CoxPt12x alloys

Now we present the results of our calculation of MAE f
disordered fcc-CoxPt12x alloys. We have used the atom
sphere potentials generated by the self-consistent s
polarized scalar relativistic KKR-CPA method and co
structed the spin-averaged and spin-dependent potential
cording to Eqs.~3.2! and~3.3!. However, we recalculated th
Fermi energy by SPR-KKR-CPA method for magnetizati
along the@001# direction~denoted asEF1

). This exercise was
necessary because in previous studies on elemental s
MAE was found to be quite sensitive to the position of t
-
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Fermi level.15,30We found that, for all the three composition
of the alloy, the difference in the Fermi energies of the sca
relativistic and fully relativistic cases is of the order of
mRy which is quite large compared to the magnitude
MAE. Secondly, on rotating the magnetization directi
there is a redistribution of the occupied energy bands in
Brillouin zone. This will lead to a shift in the Fermi leve
~denoted asEF2

). The effect of this small shift in the Ferm

energy on the MAE is given by the second term in Eq.~2.16!
which is of the order of (EF1

2EF2
)2. This term can be cal-

culated in terms of the difference in number of electro
between the two directions at a common Fermi energy
given by Eq.~2.25!. We calculatedDZ using Eq.~2.22!, and
the values are 9.631026, 1.431024, and 2.831025 elec-
trons forx50.25, 0.50, and 0.75, respectively. Thus the s
ond term of Eq.~2.16! comes out to be very small; in fact
is less than 0.01meV for all the three compositions. Henc
the first term of Eq.~2.16! is the dominant term and needs
be evaluated accurately.

Another important question in the calculation of MAE
the convergence of integral in Eq.~2.16! with respect to the
number of k points used in the Brillouin zone. We hav
calculated the MAE of CoxPt12x alloys as a function of
number ofk points in the irreducible wedge of the Brilloui
zone. In our calculations, as stated earlier, we have use
complex energy contour for energy integration. We u
fewer points when we are far removed from the real axis, a
gradually increase the number of points as we come close
the real axis. In Fig. 2 we plot the MAE as a function
number ofk points~in the irreducible wedge of the Brillouin
zone! for the energy on the real axis. We note that quite
large number ofk points is needed to get a convergenc
Thus if we do not use an appropriate contour in the comp
energy plane, we would have to use this many points
each energy requiring an enormous computational eff
This underlines the importance of using the complex ene
plane in such calculations. Moreover, we also study
MAE as a function of temperature by using Fermi-Dirac d
tribution in the energy integration. The energy integrals
then transformed into sums over the poles of the Fe
factor.63

In Fig. 3 we show the MAE of disordered fcc-CoxPt12x
alloys forx50.25, 0.5, and 0.75 as a function of temperatu
between 0 and 1500 K. We note that for all the three co
positions, MAE is positive at all temperatures implying th
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the magnetic easy axis is always along the@111# direction of
the crystal, though the magnitude of MAE decreases with
increase in the temperature. We recall that the magnetic
axis of fcc-Co is also along the@111# direction but the mag-
nitude of MAE is smaller. Thus, alloying with Pt does n
alter the magnetic easy axis. We also note that the e
atomic composition has the largest MAE which is about
meV at 0 K. In these alloys, one component~Co! has strong
magnetic moment but weak spin-orbit coupling, while in t
other component~Pt! spin-orbit coupling is strong but th
magnetic moment is small. Addition of Pt to Co results in
monotonic decrease in the average magnetic moment o
system38,39 but the spin-orbit coupling becomes strong
Around the equiatomic composition, both the magnetic m
ment as well as the spin-orbit coupling are significant,
other compositions either the magnetic moment or the s
orbit coupling is weaker. We expect that this is the reason
MAE being largest for the equiatomic composition.

FIG. 2. Convergence of the magneto6rystalline anisotropy
ergy of CoxPt12x alloys for x50.25, 0.50, and 0.75, as a functio
of number ofk points in the irreducible wedge of the Brilloui
zone.

FIG. 3. Magnetocrystalline anisotropy energy of CoxPt12x al-
loys for x50.25, 0.50, and 0.75, as a function of temperature.
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We can understand the magnetocrystalline anisotropy
system in terms of its electronic structure. In Fig. 4 we sh
the spin-resolved density of states on Co and Pt atom
Co0.50Pt0.50 alloy for magnetization along the@001# direc-
tion. We observe that Pt density of states is rather struct
less except around the Fermi energy where there is spin s
ting due to hybridization with Cod bands. When the
direction of magnetization is altered to@111# direction of the
crystal the electronic structure also changes due to redi
bution of the electrons, but the difference is quite small a
difficult to visualize. Therefore, in Fig. 5 we have plotted th
difference in the density of states for the two directions
magnetization. We note that, in the lower part of the ba

- FIG. 4. Spin-resolved density of states for Co and Pt in fcc-

0.5Pt0.5 alloy for magnetization along the@001# direction of the crys-
tal. The vertical dotted line indicates the Fermi level. The calcu
tions have been done with an imaginary part of 1.431024 eV in the
energy.

FIG. 5. The difference between the densities of states of
Co0.5Pt0.5 alloy for magnetization along the@001# and @111# direc-
tions of the crystal. The vertical dotted line indicates the Fer
level. The separation between two Fermi levels is less than
thickness of this line.
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which is Pt dominated, there is little difference between
two. And it is quite oscillatory in the upper part dominate
by Co d-band complex. We also observe spikes at energ
where there are peaks in the Co density of states. Due to
oscillatory nature of this curve, the magnitude of MAE
quite small; the two large peaks around 2 and 3 eV below
Fermi energy almost cancel each other and only the sm
peaks contributing to the MAE. Also, due to this oscillato
behavior, a shift in the Fermi level will alter the magnitud
as well as the sign of the MAE. This was also observed
previous studies on elemental solids.15,30This curve also tells
us that states far removed from the Fermi level~in this case,
4 eV below the Fermi level! can also contribute to the MAE
and not just the electrons on the Fermi surface.

In contrast to what we have found for the disordered
phase of CoxPt12x alloys, in the ordered tetragonal CoP
alloy MAE is quite large (;400 meV! and, more impor-
tantly, the magnetic easy axis is along thec axis.6 Theoreti-
cal calculations of MAE for the ordered tetragonal Co
alloy21,22 based on scalar relativistic methods do reprod
the correct easy axis but overestimate the MAE by a facto
2. At this stage it is not clear, whether it is the atomic ord
ing or the loss of cubic symmetry of the crystal in the tetra
onal phase, which is responsible for altogether different m
netocrystalline anisotropies in disordered and ordered C
alloys. However, we believe that it is a combined effect
the two and intend to study the effect of atomic short-ran
order on the magnetocrystalline anisotropy of alloys as
next step. In our calculations, we have assumed that the
bital angular momentum is quenched, and so the inclusio
orbital polarization in the calculation may also affect the
results. In principle, orbital polarization can be included
the theory by using current-density functional theory.64 We
are now working along these lines.
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V. CONCLUSIONS

We presented a first-principles method to calculate
magnetocrystalline anisotropy of disordered alloys based
the SPR-KKR-CPA scheme. In our theory, relativistic effe
such as the spin-orbit coupling and spin-polarization
treated on an equal footing. Before attempting a study of
MAE for complex systems such as disordered alloys, we
it necessary to assess our method by using it to study
MAE of systems for which experimental as well as previo
theoretical results exist in the literature. We have done
by calculating the MAE of bcc-Fe, fcc-Co, and fcc-Ni. W
found good agreement with the experimental as well as p
vious theoretical results. Then we calculated the MAE
disordered fcc-CoxPt12x alloys for x50.25, 0.5, and 0.75
We found that, for all the three compositions, the magne
easy axis is along the@111# direction of the crystal and an
isotropy is largest forx50.50. We also found that states fa
removed from the Fermi level can also contribute to t
MAE, and that, a slight shift in the Fermi level might alte
the magnitude of MAE as well as the direction of the ma
netic easy axis. Thus, the Fermi level needs to be evalu
very accurately. The other factor in the calculation of MA
is the Brillouin zone integration which must be perform
with great care. We also pointed out that there is a nee
include the effects of atomic short-range order, orbital pol
ization, etc., in the calculation of MAE of alloys.
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