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We present a first-principles theory of magnetocrystalline anisotropy of disordered alloys within the frame-
work of the spin-polarized fully relativistic Korringa-Kohn-Rostoker coherent-potential approximation in
which relativistic effects such as spin-orbit coupling and magnetization are treated on an equal footing. Unlike
in some other methods, we calculate the magnetocrystalline anisotropy dive) of a material directly
rather than subtracting the total energies of the material for two magnetization directions calculated separately.
Since the total energy of a system is several orders of magnitude larger than its MAREY), this approach
provides a robust method. Our predictions of the MAE and magnetic easy axis of elemental bcc-Fe, fcc-Co,
and fcc-Ni are in reasonable accord with previous calculations as well as with the experimental results. We
calculate the MAE of disordered fcc-Get, _, alloys forx=0.25, 0.5, and 0.75 and find that the magnetic easy
axis for these alloys is along tli#11] direction of the crystal, and that the magnitude of MAE is largest for the
equiatomic composition. We also find that the magnitude of MAE decreases with temperature in these alloys,
but the magnetic easy axis remains unchan{®@163-18207)02538-]

[. INTRODUCTION tions have been reported within this approach for transition
metalsi*'%as well as for ordered transition-metal alléy&’

In recent years, the magnetocrystalline anisotropy of ferand layered materia&° with varying degrees of success.
romagnetic materials containing transition metals has reSome controversy surrounds these perturbative approaches
ceived attention, both theoretically and experimentally, beregarding the method of summing over all the “occupied”
cause of the technological implications in high-densitysingle-electron energies for the perturbed state which is not
magneto-optical storage mediz& To make these materials calculated self-consistentfy-2°> Freeman and co-workers
useful for future magneto-optical recording systems, a dehave argued that this “blind Fermi filling” is incorrect and
tailed understanding of the mechanism of this anisotropy iproposed the state-tracking approach in which the occupied
needed. Several experimental studies have been devoted et of perturbed states are determined according to their pro-
understand its origin and also to correlate it with other physifjections back to the occupied set of unperturbed states. This
cal properties of the materiafs'® However, arab initio the-  approach, combined with the so-called torque metiadas
oretical approach that can explain the underlying physics isised by these authors to calculate the MAE of multilayérs.
most desirable, because it will help to predict new materialdvlore recently, Trygget al?® included spin-orbit coupling
with such desired properties. Over the past few years, corself-consistently in the electronic structure calculations but
siderable progress has been made in this direéfioftbut a  within a scalar relativistic theory. They obtained good agree-
comprehensive explanation at the microscopic level is stilment with experiment for bcc-Fe, fcc-Co, and hcp-Co, but
lacking. failed to obtain the correct magnetic easy axis for fcc-Ni.

In a solid, the equilibrium direction of the magnetization = We note that in almost all the above studies, the band
is along one of the cystallographic directions. The energystructure methods used are not fully relativistic and thus
required to alter the magnetization direction is called thethese approaches might not be adequate for materials con-
magnetocrystalline anisotropy ener@yAE). Brooks” sug-  taining elements withf electrons. Moreover, Jansén
gested that the origin of this anisotropy is the interaction ofpointed out that, the spin-orbit coupling which is the origin
magnetization with the crystal field, i.e., the spin-orbit cou-of magnetocrystalline anisotropy, is essentially a relativistic
pling. Most of the present day theoretical investigations orphenomenon, and therefore, can be more appropriately de-
magnetocrystalline anisotropy use standard band structueribed within a fully relativistic framework. Thus it is de-
methods within the scalar-relativistic local spin-density func-sirable to treat relativity and magnetizati¢spin polariza-
tional theory and treat spin-orbit coupling as a perturbationtion) on an equal footing. We also point out that, apart from
The MAE is then calculated by using the force theorém, this conceptual difficulty, in all of the previous investiga-
which states that the difference in total energy of two statesions, either the total energy or the single-electron contribu-
with similar charge density is given by the difference in thetion to it (if using the force theorejrwas calculated for two
single-electron contributions to the total energy. In actuamagnetization directions separately and MAE obtained by
calculations, this is evaluated as the difference in the sursubtracting one from the other. However, the MAE which in
over all occupied single-electron energies. Several investiganany cases is of the order @f eV, is several orders of
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magnitude smaller than the total energy of the systemthis paper, we investigate the magnetic anisotropy of the dis-
Therefore, it is numerically more precise to calculate theordered fcc phase of G&t, _, alloys forx=0.25, 0.50, and
difference directly, rather than taking the above codrse. 0.75. In our calculations, we have used the self-consistent
Consequently, a fully relativistic theory of magnetocrystal-potentials from spin-polarized scalar relativistic KKR-CPA
line anisotropy is needed which, in addition, should facilitatecalculations. Our calculations predict that the easy axis of
the direct calculation of MAE. Strange al3®%"have devel- Magnetization is along thigl11] direction of the crystal for
oped a relativistic spin-polarized version of the Korringa-2all the three compositions, and the anisotropy is largest for
Kohn-Rostokel(SPR-KKR) formalism to calculate the elec- X=0-50. _ )

tronic structure of solids, and Ebert and co-work&isave The paper is organized as follows. In Sec. Il, we present
extended this formalism to disordered alloys by incorporatihe formulation. We start with a brief outline of the SPR-
ing coherent-potential approximatié8PR-KKR-CPA. This  KKR-CPA method and then derive an expression for the
formalism has been successfully used to describe the eleMAE within this formalism. In Sec. Ill, we present the nu-
tronic structure and other related properties of disordered afmerical details. Afterwards, we present our results in Sec. IV
loys such as magnetic circular x-ray dichroism, hyperfing"d in Sec. V, we draw some conclusions.

fields, magneto-optic Kerr effect, etc. by Ebert and

co—wgsrkerég“‘SStrangeet al3 and more recently Staunton Il. FEORMULATION

et al™ have formulated a theory to calculate the MAE of

elemental solids within the SPR-KKR scheme, and this Our theory of magnetocrystalline anisotropy is based on
theory has been applied to Fe and3Ri! They have also the relativistic spin-polarized density functional thed?y
shown that, in the nonrelativistic limit, MAE will be identi- MacDonald and Vosko developed the theory for a many
cally equal to zero, indicating that the origin of magnetic electron system in presence of a “spin-only” magnetic field,
anisotropy is relativistic. In this paper we present a generalik-€., ignoring the diamagnetic effects. This is a suitable basis
zation of the theory of Stauntcet al3® to disordered alloys. for describing electrons in condensed matter. Within this for-

Owing to the typically small magnitude of MAE~x  malism, the relativistic Kohn-Sham-Dirac single particle
eV) of transition metals and their alloys, we have first testedequations, in presence of an external field, can be written as
the accuracy of our method, and for this purpose, calculated
the MAE of elemental bcc-Fe, fcc-Co, and fcc-Ni. As dis- {—ifica-V+BmE+1Ven(r),m(r)]
cussed belowin Sec. IV A), our method correctly predicts
the easy axes of magnetization for all these elements, al-
though the magnitude of MAE is somewhat smaller when —Bo-Bn(r),m(r)]—&}=0, 2.9
compared to the experimental data.

We then use our method to calculate the MAE of disor-where
dered fcc-CqPt; _, alloys. These alloys have attracted our
interest because of the following reasons. Large magnetic occ
anisotropy?”’ large magneto-optic Kerr effect signals com- n(r)=2 Tnﬁ?(r)wi(r), (2.2
pared to the Co/Pt multilayers in the whole range of wave- [
lengths (820-400 nnf° make these alloys potential
magneto-optical recording materials. The chemical stability occ
of these alloys, a suitable Curie temperature, and the ease of m(r)zz Tflﬂ?(f)ﬁﬂkﬂi(r), 2.3
manufacturing enhances their usefulness in commercial [
application€ Furthermore, these alloys are important from
the point of view of fundamental physics of magnetic anisot-

: . o s SExd N(r),m(r)]
ropy; in Co-Pt systems spin-polarization is induced by Co Ve n(r),m(r)]=Vve{r) +
whereas spin-orbit coupling is stronger in Pt, and therefore, on(r)
this is a good system to test our theory. We are not aware of n(r’)
any theoretical calculation of MAE of alloys which treats +92f —dr’, (2.9
relativistic effects such as spin-orbit coupling and spin- [r—r’|
polarization on an equal footing.

Most of the experimental work on Co-Pt alloys have beerand
on the ordered tetragonal phase, which has a very large mag-
netic anisotropy {400 weV) and the magnetic easy axis is

oy € _ SEydn(r),m(r)]
along thec axis.’ We are not aware of any experimental B n(r),m(r)]= (Bext(r)+—
work on the bulk disordered fcc phase of these alloys. How- om(r)
ever, some results have been reported for disordered fcc 2.9
phase of these alloys in the form of thin filifig3 It is found
that the magnitude of MAE is more than one order of mag- In the above equationa and 8 are the standard Dirac
nitude smaller than that of the bulk ordered phase, and thmatrices,o are 4x4 Pauli spin matricesB®{(r) is the ex-
magnetic easy axis varies with the film thickness. We believéernal magnetic field coupling to the electron spin oridy,
that theoretical investigation on the bulk disordered alloysis the relativistic exchange-correlation energy, afdis a
will also provide insight into the mechanism of magnetic four-spinor. Within the local approximation, the total energy
anisotropy in the ordered phase as well as in thin films. Irof the system can be written as

eh
2mc
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Er e? n(ryn(r’) B. Magnetocrystalline anisotropy
E[n(r),m(r)]zf Sn(s)ds_ff f r—r| drdr We start from the total energy of a system within the local
approximation of the relativistic spin-polarized density func-
SE[n(r),m(r)] tional formalism, as given by Eq2.6). The change in the
—f T(r)n(r) total energy of the system caused by the change in the direc-

tion of the magnetization is defined as the magnetocrystalline

SEdn(r),m(r)] anisotropy energy, i.e.,
—5m—(r)-m(r))dr
AE=E[n(r),m(r;e)]-E[n(r),m(r;ey)], (2.12
+Eyxn(r),m(r)], (2.6)

wherem(r;e;) and m(r;e,) are the magnetization vectors
wheren(e) is the Kohn-Sham-Dirac single-particle density POINting along two directions; and &,, respectively, the
of states, andy. is the Fermi energy of the system. magnitudes being identical. Considering the stationarity of

We re,call the key equations of the SPR-KKR-CPA for- the energy functional and the local approximation, the con-
malism in Sec. Il A and in Sec. Il B we derive an expressiontribu“_On to AE is predominantly from the single-particle
for the magnetocrystalline anisotropy energy of disordered®™ in the total energy. Thus, now we have
alloys. E E

Fy F2
AE=J n(s;el)gds—f n(e;e)ede, (2.13

A. SPR-KKR-CPA formalism

The electronic Green'’s function for a system of relativis-
tic spin-polarized scattering centres can be writtet{&s

wheren(e;e;) andn(e;e,) are the single-particle density of
states, when the magnetic moments are pointing atpagd
e, respectively, andEF1 and Er, are the corresponding
Fermi energies. We know that
G(r,r’;E)= 2>, ZR(r;E)rO (E)Z,(r";E) . .
AN f Fn(s)gds:ZEF—f N(e)de, (214
_; ZX(r < E)JI5(r=1E), 27 where Z is the total number of electrons per atom in the
system andN(e) is the integrated density of states. Putting
where ZR(r;E) and z(r;E) are, respectively, the right- Eg. (2.14 in Eq. (2.13 and using a Taylor expansion of
hand-side and left-hand-side regular solutions, aip¢t;E)  N(e;€;) aboutEg , we obtain
is the left-hand-side irregular solution of the Kohn-Sham-
Dirac equation for a single scattef8rand TRON(E) is the
site-diagonal path-operator matrix. The ind&xrepresents
the elements of various matrices according to the adopted
representation. For an ordered systeffl,, can be obtained
from the Brillouin zone integration

Ee, 1
AE:—J [N(e;e) —N(e;ep)]de — 5n(Ee, &)
X (Eg,— EF2)2+ O(Eg,— E,:2)3. (2.19

In most of the cases, the second term is expected to be
1 very small compared taE. The first term which contains
00 _ -1 eyt the predominant contribution tAE needs to be evaluated
Tan (E)= f t Y E)—g(k;E)] y.dk, (2.8 P
anr(E) Qpz (B =g(GE) ax 28 accurately. Stauntoret al3® and Gubanovet al®>® have
L . ] shown that use of Lloyd formula for the integrated density of
whereg(k;E) is the KKR structure constant matrix abds  gt41e8%in Eq. (2.15 leads to a more convenient expression.

the single-site scattering matrix. For a binary disordered alye se the Lloyd formula for the integrated density of states
loy A;B;_y, the effectivet matrix is determined by the CPA ¢ 5 yisordered alloy in Eq2.15) to get
condition
1 [Eg,
790, =x7%+ (1—x) 7%, (2.9 AE=— ;3 de

where

1
x Q_BJ dkin||1 +[t; *(e) —tg (en) I re(k;ey)|

Tg?s):[t;(ls)_tEPlA+(Toc% B (2.10
In Egs.(2.9) and(2.10 we have suppressed the quantum * x{In[Da(ey)]| = Inl[Dace;)[}
number indexA. In all subsequent discussions we will con-
tinue to do so unless it is essential to write the index. Once +(1=x){In[Dg(ey)[|—In|Dg(&,)|}
we have determined the Green’s function we can calculate

the density of states, by

1
_En(EFZ;eZ)(EFl_ EF2)2+ O(Egr,— EF2)3-

1
n(E):_;gJ TIG(r.r:E)dr. (2.1 (2.16
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In Eq. (2.16), t.(e;) andt.(e,) are the SPR-KKR-CPA
matrices for magnetization along and e, directions, re-
spectively,

re(k;ep) =[ts H(e)—g(k)]? (2.17)

and

Dale)=[1—72%e){t; (e —tat(e)}] ™t (2.18

with similar expressions foDs(e,), Dg(e;), and Dg(e,).
Note thatt,(e,) andtg(e,) can be obtained directly from
ta(ey) andtg(e;), respectively, by simple rotational transfor-
mation

tas) (&) =R(aBy)tae)(e)R (aBy). (2.19

In the above equatioR(aBv) is the rotation matrix cor-
responding to the Euler angles B, andy of the directiore,
with respect to the directior,.>* However, for the CPA
medium, this transformation will not hold as the CPAna-
trix is related to the symmetry in thie space(through the
path operator and the CPA conditjosnd the symmetry op-
erations for two directions of magnetization are not safne.

Therefore, we need to solve the SPR-KKR-CPA equations
for the two magnetization directions separately to obtain

te(e) andtc(e,).
For a pure metal, Eq2.16) reduces to

1

Fl
——J de
T

AE

X

1 B _ .
Q—BJ dkin[1 + [t~ (e —t ey ] 7(k; &)

1
~ 5N(Er,i)(Er,~Er,)?+ O(Er, ~Er)* (2.20

and if we use the relatioft(e,)||=|t(e,)| [which is true for
pure metals, by virtue of Eq2.19], Eq. (2.20 reduces to
the expression given by Stauntenal*®

Note that, in Eqs(2.16 and (2.20, the upper limit of
energy integration i£,:l, the Fermi energy of the system

when the magnetization is alorg. The contribution tAAE
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111 “YE. :
AZ= ;3 Q_Bzf dkin|{1+[t; (E,:l,ez)
_t;l(EFl;el)]Tc(k,EFl;el)}” +X{In[DA(E ;&)

—IN[DAEr &)} + (1=x){In[Dg(Er ;&)

- |n||DB(EFl§92)||} (2.22

We can then use this value AfZ to determineEF2 from
Eq. (2.21) by rewriting it as

Er
sz
Er,
In real applicationsEFl and Er, are expected to be very

close. Therefore, we can approximate E2.23 using the
trapezoidal rule as

'n(e;e,)ds. (2.23

1
AZ~ E(EFl_ Er ) [N(Ef ;&) +N(Ef ;)] (2.29

Thus we have

, 2(AZ)*n(Eg,;€)

1
—n(Eq_:e,)(Er. —E '
5N(Er, ) (Er —Ef) [N(Er ;&) +n(Eg,ie)]°

(2.29

In most of the metals and their aIone(EFl;ez) and
n(EFZ;eZ) are at least of the order of 1 states/eV. Therefore,

for the above term to give meaningful contribution Ade,
we would need\Z to be at least of the order of 16. Thus
whenAZ is less than 10* we can quite justifiably neglect
the terms containingE(Fl—EFz)z. In other words, in such

cases, we do not need to estimEI;eZ; only a knowledge of
Er, will suffice. Only in rare instances, should the second
order term be significant.

[lI. COMPUTATIONAL ASPECTS

In this section we discuss computational details and prac-
tical difficulties in the calculation of MAE of disordered al-
loys. A good review of technical aspects of solving the
Kohn-Sham-Dirac equations and calculating the KKR
Green'’s function at real as well as complex energies is given
by Strangeet al,*®3” and those will not be repeated here.

We need to evaluate the energy integral as well as the
Brillouin zone integral in Eq(2.16) to a very high degree of

due to the difference in the two Fermi levels is of the orderaccuracy. Therefore, it is advisable to distort the energy in-
of (Ef,— EFZ)Z. This contribution is expected to be very tegration into the complex plane. In the complex plane, the
small, but nevertheless, it can be approximately estimated d8tegrand becomes a smooth function of energy rahd
follows. We have we need fewer energy points as well as fewepoints to
obtain an accurate integral.In our calculation, we have
used a rectangular box contour starting from below the bot-
tom of the valence band on the real axis and ending at the
Fermi energy on the real axis. The top of the box contour is

whereAZ is the deviation in the total number of electrons 1.0 Ry above the real axis where the integrand is almost
() due to incorrect Fermi energy for the magnetizationfeaturelessy and therefore, we need a very few energy points

N(Er ;&) =Z+AZ, (2.21

along e,. SinceZ=N(Eg :e,), AZ is the difference in the along this line. Along the two legs of the contour, in particu-
. se),

integrated density of states for the two magnetization direc
tions at the energ¥r . Thus, with the help of Lloyd's for-

mula, we can write

lar, nearer to the real axis we need a finer mesh. Accordingly,
we have used a logarithmic mesh along the two legs of the
contour. Again, if our contour starts from below the valence
band, as is the case, the integrand is structureless along the
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and therefore, there are only 99 independent elements which

s - UP DOWN

s [T o] 1 3 o1 3 need to be calculated. The SPR-KKR-CPatrix will also
! 1 ;:’l“ R N R L have a similar structure.
0 X[ X X X X X|X X X X X X For the Brillouin zone integration we have used the prism
i XX X% x method described in detail by Stocksal®® While solving
u L X X X|_ - X X X the SPR-KKR-CPA equations, we have used 55 directions in
P -2 X X X X X XX X X X X X . . .

a1 |x X X X X X[x X X X X X each of the forty-eighths of the Brillouin zone. The number

00X R PR of k points per direction varies depending upon the value of

2 X X X X X X|X X X X X X imaginary part of the complex energy. Near the real axis, we

0] 0 X X X X X X[X X X X X X . . .

1 XX X X X X have used about 200 points per direction and far fewdr
ol R R points as we go away from the real axis. Evidently, we need
v rxrxxxx Txxxx morek points for the calculation of MAE. We will discuss

2( 0 |X X X X X X|X X X X X X this later. The SPR-KKR-CPA equations were solved using
X X X X X X|X X X X X X H H 57 H
N B T XX X xlx T XX X x the algorithm of Millset al>’ which has been proved to lead

to fast convergence in earlier worf&>®We have obtained a
FIG. 1. The matrix structure of® in the (Ims) representation self-consistency of the order of 18 in the t matrices for
for a cubic crystal when the magnetization is along a general direcbOth magnetization directions.

tion. The nonzero elements are indicated by X. The symmetry of In our stud_ies, we have us_ed the potentials_g_en_erated by
the matrix is given by Eq(3.1). the self-consistent spin-polarized scalar relativistic KKR-

CPA method, which gives spin-up and spin-down potentials

_ V,(r) andV (r). The potential and field, which we need in
bottom leg as well. Thus, practically, we need a dense mesfjq fully relativistic treatment, are given by

only in the top leg of the contour. In our calculations, the
number of energy points is approximately (A each in the 1
bottom leg and on the top horizontal line, and 40—-50 points Vefir)= SVi(N+V (] (3.2
in the top leg. We have checked that this number is suffi-
cient enough to give accurate energy integrals. and
The second important point is the Brillouin zone integra-
tion. Depending upon the direction of magnetization, the
number of symmetry operations in the Brillouin zone will be
different® In a cubic crystal, the effective symmetry is te-
tragonal, trigonal or orthorhombic depending on whether the In previous calculation¥}*it was observed that MAE is
magnetization is along th@01], [111], or [110] directions, quite sensitive to small inaccuracies in the Fermi endagy
respectively. Because of that, the irreducible part of the Bril-equivalently, to electron filling From Eq.(2.16) it is quite
louin zone will be different when the direction of magneti- evident that, even an inaccuracy of the order of 1 mRy in the
zation is altered. Stranget al®” have discussed the evalua- Fermi energies will affect the MAE drastically, and hence we
tion of the path operator for different magnetization "@ve to determine the Fermi energy to a corresponding ac-
directions. They have pointed out that, owing to the reduce§uracy. As explained in the previous section, we need to

symmetry in the Brillouin zone, it is necessary to perform thecalculate the Fermi energy for only one magnetization direc-

Brillouin zone integration inith of the zone when the mag- tion, namely,[OOlJ, and we can estimate the second term in
netization is alongd001] direction and injth of the zone Eq. (2.16 according to Eq(2.25.

when it is along a general directidas opposed tgsth in the

nonrelativistic case They have also shown the structure and IV. RESULTS AND DISCUSSION

symmetry of the path operator matrix in presence of a field A. Pure elements

along the[001] direction, in (xu) as well as (ms) repre-
sentation. We refer the reader to that reference for details. IP disordered all L hwhil h b
our calculation, we work throughout in théngs) represen- or disordered alloys, it Is worthwhile to test our theory by
tation for the simple reason that it is more comprehensibleperformlng cglculat!ons for elemental solids and comparing
and moreover, there is no real advantage in working with thé)ur results with available experimental data as well as results

(k) representation when the magnetization is along a ge of previous theoretical calculations. For this exercise, we

eral direction, because then all the degeneracies in the matrrhgve chosen hcc-Fe, fcc-Co, and fcc-Ni for which experi-
ental as well as theoretical data exist in the literature. We

elements of the path-operator are lifted. In Fig. 1, we shom%gund that the Fermi energy for t801] direction of mag-

the structure of the path operator matrix in the§) repre- o o .

setatono 1) uen e magnetzation 1 along a gen- "ELZELCN, Sacted Wi he SPRICICEA e about

eral direction. We note that there are altogether 180 nonzero y ; :

elements(indicated asX). The symmetry of the matrix is elements. We also estimated the order of magnitude of the
' second term in Eq2.16) for these three elements, and found

Beﬁ(f)=E[V (n=V (] (3.3
2L% 1 ' :

Before attempting a full-fledged calculation of the MAE

given by that, it is of the order of 10? weV, which is one order of
magnitude smaller than the first term.
00 e 4s—s’ 00 In Table I, we compare our results for bce-Fe, fcc-Co, and
Tirmrssims— (1) Tims;l'm’s’ » (3D fcc-Ni with the experimental results as well as the results of
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TABLE |. Experimental and calculated magnetocrystalline anisotropy energy, defined as
AE=E(001)—E(111) per atom for Fe, Ni, and Co, in units @eV. Column A is from Ref. 15, column B
is from Ref. 30, column C is from Ref. 62, column D is from Ref. 28 without orbital polarization, column E
is also from Ref. 28 but with orbital polarization, and column F is the present work.

Solid Experiment Theory

A B C D E F
bce Fe —-1.4 -05 -9.6 7.4 -0.5 -18 —-0.95
fcc Co 1.8 0.5 2.2 0.86
fcc Ni 2.7 -05 10.5 10.0 -05 -05 0.11
%Ref. 59.
bRef. 60.
°Ref. 59,61.

previous calculations. Among the results of previous calcufermi level*>3°We found that, for all the three compositions
lations, the results of Tryggt al?® (columns D and Eare  of the alloy, the difference in the Fermi energies of the scalar
closest to the experiment, and therefore, we will compare ourelativistic and fully relativistic cases is of the order of 5
results to theirs. Their results for bce-Fe and fcc-Co are imRy which is quite large compared to the magnitude of
good agreement with the experiment if orbital polarization iSMAE. Secondly, on rotating the magnetization direction
included in the calculation of MAE. However, in case of there is a redistribution of the occupied energy bands in the
fce-Ni, their prediction of the magnitude of MAE as well as gyijiouin zone. This will lead to a shift in the Fermi level

the magnetic easy axis is not in accordance with the eXperigenoted a€ ). The effect of this small shift in the Fermi

ment, and even the inclusion of orbital polarization fails to L .
improve the result. Our results for bce-Fe and fec-Co are als§" €"9Y ON the MAE is given by thez secpnd term in E2419
which is of the order ofIE,:l— EFz) . This term can be cal-

in good agreement with the experiment, predicting the cor-
rect easy axis, although the magnitude of MAE is somewhagulated in terms of the difference in number of electrons
smaller than the experimental value. Considering that in oubetween the two directions at a common Fermi energy, as
calculations orbital polarization is not included we feel thatgiven by Eq.(2.25. We calculated\Z using Eq.(2.22, and
our results are quite satisfactory. In the case of fcc-Ni, wehe values are 9%610°°, 1.4x10 %, and 2.8107° elec-
obtain the correct easy axis of magnetization, but the magnitrons forx=0.25, 0.50, and 0.75, respectively. Thus the sec-
tude of MAE is far too small compared to the experimentalond term of Eq(2.16 comes out to be very small; in fact it
value. As noted earlier, in the calculation of MAE, the con-is less than 0.0eV for all the three compositions. Hence,
vergence with regards to the Brillouin zone integration isthe first term of Eq(2.16) is the dominant term and needs to
very important. We have checked this aspect and are satisfidie evaluated accurately.
that our results are well converged with respect to the Bril- Another important question in the calculation of MAE is
louin zone integration. In our calculation, we have used 21@he convergence of integral in E€R.16) with respect to the
directions in the irreducible wedge of the Brillouin zone andnumber ofk points used in the Brillouin zone. We have
we have taken around 600 points per direction, when thealculated the MAE of CgPt;_, alloys as a function of
energy is near the real axis, and less and less number olumber ofk points in the irreducible wedge of the Brillouin
points as we go further to the complex plane. Compared t@one. In our calculations, as stated earlier, we have used a
this, Daalderopet al® used~500 000k points in the irre- complex energy contour for energy integration. We use
ducible part of the Brillouin zone, and Tryget al?® used  fewer points when we are far removed from the real axis, and
2000k points for bcc-Fe and 600K points for fcc-Co and  gradually increase the number of points as we come closer to
fcc-Ni in the irreducible part of the Brillouin zone. There- the real axis. In Fig. 2 we plot the MAE as a function of
fore, it seems that our method is capable of calculating th@umber ofk points(in the irreducible wedge of the Brillouin
magnetocrystalline anisotropy of solids in reasonable comzone for the energy on the real axis. We note that quite a
putational time. large number ofk points is needed to get a convergence.
Thus if we do not use an appropriate contour in the complex
energy plane, we would have to use this many points for
each energy requiring an enormous computational effort.
Now we present the results of our calculation of MAE for Thjs underlines the importance of using the complex energy
disordered fcc-CePt;_, alloys. We have used the atomic plane in such calculations. Moreover, we also study the
sphere potentials generated by the self-consistent SpiMAE as a function of temperature by using Fermi-Dirac dis-
polarized scalar relativistic KKR-CPA method and con-tribution in the energy integration. The energy integrals are
structed the spin-averaged and spin-dependent potentials agen transformed into sums over the poles of the Fermi
cording to Egs(3.2) and(3.3). However, we recalculated the factor®3
Fermi energy by SPR-KKR-CPA method for magnetization |n Fig. 3 we show the MAE of disordered fcc-GRt; _
along the[001] direction(denoted a&, ). This exercise was  alloys forx=0.25, 0.5, and 0.75 as a function of temperature
necessary because in previous studies on elemental soliletween 0 and 1500 K. We note that for all the three com-
MAE was found to be quite sensitive to the position of thepositions, MAE is positive at all temperatures implying that

B. Co,Pt,_, alloys
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FIG. 2. Convergence of the magneto6rystalline anisotropy en- . . :
. FIG. 4. Spin-resolved density of states for Co and Pt in fcc-Co
ergy of CqPt; _, alloys forx=0.25, 0.50, and 0.75, as a function b 4

: . ) : - Pty 5 alloy for magnetization along tH&01] direction of the crys-
05 o5
;);nn:mber ofk points in the irreducible wedge of the Brillouin tal. The vertical dotted line indicates the Fermi level. The calcula-

tions have been done with an imaginary part o114 * eV in the

. . . ) energy.
the magnetic easy axis is always along {th&1] direction of

the crystal, though the magnitude of MAE decreases with the . .

increase in the temperature. We recall that the magnetic easy We can understand the magnetocrystalline anisotropy of a
axis of fcc-Co is also along thed 11] direction but the mag- System in terms of its electronic structure. In Fig. 4 we show
nitude of MAE is smaller. Thus, alloying with Pt does not the spin-resolved density of states on Co and Pt atoms in
alter the magnetic easy axis. We also note that the equic0qsdPtoso alloy for magnetization along thEd01] direc-
atomic composition has the largest MAE which is about 3.0tion. We observe that Pt density of states is rather structure-
neV at 0 K. In these alloys, one componé@i) has strong  less except around the Fermi energy where there is spin split-
magnetic moment but weak spin-orbit coupling, while in theting due to hybridization with Cod bands. When the
other componentPt) spin-orbit coupling is strong but the direction of magnetization is altered fb11] direction of the
magnetic moment is small. Addition of Pt to Co results in acrystal the electronic structure also changes due to redistri-
monotonic decrease in the average magnetic moment of tHaution of the electrons, but the difference is quite small and
systeni®®® but the spin-orbit coupling becomes stronger.difficult to visualize. Therefore, in Fig. 5 we have plotted the
Around the equiatomic composition, both the magnetic mo-difference in the density of states for the two directions of

ment as well as the spin-orbit coupling are significant, formagnetization. We note that, in the lower part of the band
other compositions either the magnetic moment or the spin-

orbit coupling is weaker. We expect that this is the reason for

MAE being largest for the equiatomic composition. 0.010 . . .
N
2
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Temperature (K) FIG. 5. The difference between the densities of states of fcc-
Coy 5Pty 5 alloy for magnetization along tH®01] and[111] direc-
tions of the crystal. The vertical dotted line indicates the Fermi
FIG. 3. Magnetocrystalline anisotropy energy of ,8t, , al- level. The separation between two Fermi levels is less than the
loys for x=0.25, 0.50, and 0.75, as a function of temperature.  thickness of this line.
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which is Pt dominated, there is little difference between the V. CONCLUSIONS
two. And it is quite oscillatory in the upper part dominated

by Cod-band complex. We also observe spikes at energies . : .
where there are peaks in the Co density of states. Due to t agnetocrystalline anisotropy of disordered aII_oys.based on
oscillatory nature of this curve, the magnitude of MAE is the SPR-KKR-CPA scheme. In our theory, relativistic effects

quite small; the two large peaks around 2 and 3 eV below th€Uch as the spin-orbit coupling and spin-polarization are
Fermi energy almost cancel each other and only the smalldféated on an equal footing. Before attempting a study of the
peaks contributing to the MAE. Also, due to this oscillatory MAE for complex systems such as disordered alloys, we felt
behavior, a shift in the Fermi level will alter the magnitude it necessary to assess our method by using it to study the
as well as the sign of the MAE. This was also observed infVMIAE of systems for which experimental as well as previous
previous studies on elemental solidSCThis curve also tells  theoretical results exist in the literature. We have done this
us that states far removed from the Fermi lefielthis case, by calculating the MAE of bcc-Fe, fcc-Co, and fcc-Ni. We

4 eV below the Fermi levglcan also contribute to the MAE, found good agreement with the experimental as well as pre-
and not just the electrons on the Fermi surface. vious theoretical results. Then we calculated the MAE of

In contrast to what we have found for the disordered fccdisordered fecc-CgPt, _, alloys for x=0.25, 0.5, and 0.75.

phase of CqPt;_, alloys, in the ordered tetragonal CoPt We found that, for all the three compositions, the magnetic
alloy MAE is quite large (-400 ueV) and, more impor- easy axis is along thgl11] direction of the crystal and an-
tantly, the magnetic easy axis is along thexis® Theoreti-  isotropy is largest fox=0.50. We also found that states far
cal calculations of MAE for the ordered tetragonal CoPtremoved from the Fermi level can also contribute to the
alloy*** based on scalar relativistic methods do reproduceyiAE, and that, a slight shift in the Fermi level might alter
the correct easy axis but overestimate the MAE by a factor ofhe magnitude of MAE as well as the direction of the mag-
2. At this stage it is not clear, whether it is the atomic Order-netic easy axis. Thus, the Fermi level needs to be evaluated
ing or the loss of cubic symmetry of the crystal in the tetrag-very accurately. The other factor in the calculation of MAE
onal phase, which is responsible for altogether different magis the Brillouin zone integration which must be performed
netocrystalline anisotropies in disordered and ordered COR/hth great care. We also pointed out that there is a need to

alloys. However, we believe that it is a combined effect ofinclude the effects of atomic short-range order, orbital polar-
the two and intend to study the effect of atomic short-ranggzation, etc., in the calculation of MAE of alloys.

order on the magnetocrystalline anisotropy of alloys as the

next step. In our calculations, we have assumed that the or-
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