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Electric-field fluctuations in random dielectric composites
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When a composite is subjected to a constant applied electric, thermal, or stress field, the associated local
fields exhibit strong spatial fluctuations. In this paper, we evaluate the distribution of the local electric field
(i.e., all moments of the fie)dfor continuum(off-lattice) models of random dielectric composites. The local
electric field in the composite is calculated by solving the governing partial differential equations using
efficient and accurate integral equation techniques. We consider three different two-dimensional dispersions in
which the inclusions are eithér) circular disksii) squares, ofiii) needles. Our results show that in general
the probability density function associated with the electric field for disks and squares exhibits a double-peak
character. Therefore, the variance or second moment of the field is inadequate in characterizing the field
fluctuations in the composite. Moreover, our results suggest that the variances for each phase are generally not
equal to each other. In the case of a dilute concentration of needles, the probability density function is a singly
peaked one, but the higher-order moments are appreciably larger for needles than for either disks or squares.
[S0163-18207)03337-1

I. INTRODUCTION Thus breakdown in the composite is generally related to
max(E(r)|), which can be expressed as

In the study of heterogeneous materials, much effort has
been devoted to determining the effective transport and me- max(|E(r)|)= lim (E(r)2k>1/2k, ©)
chanical properties of the composite mateti@The analy- Koo
sis and evaluation of the distribution of the local figid.,
fluctuations of the local fieldhas received far less attention. where(E(r)Z") is the even-order moment of the field.
Nonetheless, the distribution of the local field is of great The effective cubic nonlinearity coefficiénbg; of the
fundamental and practical importance in understanding mangomposite can be calculated by the relation
crucial material properties such as the breakdown
phenomenoh’ and the nonlinear behavior of composifes. (b(r)E(r)*) = ber( E(r))%, (4)

To show the importance of the local-field distribution, let
us begin with the effective property itself. It is well known \where b(r) is the local nonlinear conductivity coefficient.
that in a statistically homogeneous and isotropic dielectricaithough b is a nonlinear property of the composites, it
composite, the effective dielectric constan of the com-  was shown that it can be approximated, to the first order of
posite can be defined through the following two equivalenthe nonlinearity, by linear composites with the same micro-

relations: structure through Eq4). From this nonlinear conductivity,
one can further obtain the resistance fluctuation noise of the
(D(r))= ee(E(T)), (1) composites known as “flicker” noise. The flicker noise is
defined as
(e(NE(N?)=eer(E(N))?, @
1 beg
in which E(r) is the local electric field at position in the \ egﬁ’

compositeD(r) = e(r)E(r) is the displacement field(r) is
the local dielectric constant, and angular bracketslenote  wheree. is the effective dielectric constant.
the averaging for an ergodic system, either an ensemble or a Previous work on fieldor voltage distribution in com-
volume average. We see here that the effective dielectriposites on lattice models can be found in the papers by de
constant is determined from lower moments of the localArcangeliset al,'® Sheng and Chelf, and Helsinget al.’
field. Sheng and Chen found that the local-field distribution gen-
The local-field distribution is also fundamental to under-erally exhibits a double-peak character in their modéie
standing material failure or breakdown phenomenon. Breakerigin of which is different than what we find for continuum
down phenomena have received considerable attention in reaodeld. For continuum models, Berdhand Axelf® derived
cent yeargsee Refs. 9—14 and references therdielectric  bounds for the variance of the fields within each phase, while
(elastio breakdown in a composite material occurs at locali-Bobeth and Diené? obtained approximate expressions for
ties where the field is the high&sir at “hot spots” where the same quantity. The results of Bobeth and Diener and
the local Joule heafdefined ase(r)E(r)?] is very large’  Axell were established upon a result which states that the
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effective dielectric constant of the composite is related to thelerived from the time-independent Maxwell equations em-
ensemble average of the second moment of the field in eaghloying the method developed by Greengard and Métira.

phase according to the second step, we compute the electric field from the sur-
face charge density obtained after solving the integral equa-
deer (X (NE(r)?) tion. This amounts to performing a numerical integration of
Je; = (EM?) ®  the single layer potential, as defined below in Etp). Un-

like the calculation of the effective conductivity, which can

where y)(r) denotes the characteristic function of phase Pe obtained from the charge density easily and accurately by
This relation was derived by Bergnfras a consequence of & smple application of Green's formula, the evaluatlo_n of
an analytical property of. as a function ofe;. Among the field presents a mych greater chal_len_ge numen_cally,
other results, we will show that the variance or second moSince the kernel of the single layer potential is nearly singu-
ment of the field is inadequate in describing the field fluc-la" if the target pointat which we want to compute the figld
tuations. coincides or lies very close to one of the source points. The

As we have pointed out, the most comprehensive numeriaccurate_ evaluation of the integrals in suc_h cases is ex-
cal work on field distributions has been carried out for latticelfémely important for the accurate determination of the
models. A primary intent of the present work is to accom-fields, l_Jecause the COﬂtI’_IbuFIOI‘_I from the near source points
plish this task for continuum models of composites. Ourt© the field of a target point is likely to have the same mag-
model two-dimensional composite materials are made bjlitude as that from distant source points. In such cases, we
embedding inclusions of one material into a uniform matrix9réatly refine the local discretization to ensure the accuracy
of another material. We consider three different types of in0f the field, using the fact that the kernel is nonoscillating
clusions:(i) disks, i) squares, andii ) needles. In each case, desPite its integrable near smggla_r‘?fyln the final step of
the applied electric fieldE, [equal to the average field th_e calculation, we perform statistical analyses on the_sa_m-
(E(r))] is directed along the direction and we determine pling data of thg field obtameq for each model .composne in
the probability density functiofi(E, (r)/Eo), whereE,(r) is order to determine the p_robablllty density functibmas well
the x component of the local fiel(r) and Eq=|E,|. The &S the moments of the field.
quantity f(E)dE is the probability thate has a value be-
tweenE andE+dE. We will also calculate th&th moment A. Formulation

(|Ex(r)|*) of the field distribution. For reasons of mathemati-  consider a two-phase random composite consisting of a
cal analogy, our results for the local field trans_lat_e immedi-atrix phase 1 regiol/; possessing a dielectric constasnt
ately into equwalgnt results for the Iocallelelctnc.fleld, local 3nd an inclusion phase 2 regiafy possessing a dielectric
temperature gradient, and local magnetic field in the probgqngsiante,. The standard time-independent Maxwell equa-
lems of electrostatics, steady-state heat conduction, and magg 5 governing the electric fiell(r) and displacement field

netostatics, respectively. _ _ D(r) in phase of a dielectric composite are
The remainder of this paper is organized as follows: In

Sec. Il, we will describe briefly the formulation of the prob- V.D(r)=0 (6)
lem and the numerical method that we will use to solve for ’
the field. In Sec. Ill, we present our calculations on the dis-

" . ) X =
tributions of the field for the three types of composites that VXE(r)=0, @)
we described earlier. Section IV contains some concludin
remarks. J D(r)=e(r)E(r). (8)
Here
Il. FORMULATION AND NUMERICAL TECHNIQUES
e(r)=erxV(r)+ex'?(r) 9

In order to show how the local field is distributed in a
composite, one needs to solve the field accurately. To obtaiis the local dielectric constant where
the field, we must solve the governing Maxwell equation
directly. The basic method to solve the Maxwell equation ) 1, reV,,
was devised first by Rayleighabout a century ago, in an x"(r)=
effort to improve the approximation formula given even ear-
lier by Lorentz and Lorenz for the effective conductivity. js the characteristic function of phase
Considerable progress has been made to improve this |tis convenient to study this problem via the electric field
method in the past few decades. Recently, this method hasotential defined as
been extended successfully by Greengard and Moum
treat problems with complex geometries and with near sin- E(r)=—Vu(r). (10)
gular interactions between inclusiofisHowever, most of
this effort was directed towards finding the effective proper-The scalar potentiali(r) is the solution of the following
ties after solving the Maxwell equations. The analysis of théooundary value problem:
local field itself remains to be addressed using these accurate
numerical techniques. V-(e(r)Vu(r))=0, reV;, (i=12), (11)

The numerical calculation of the field distribution consists
of three steps. In the first step, we solve an integral equation u,(ry=u_(r), redV,, (12

0, otherwise,
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du,(r) au_(r) v 13 B. Numerical techniques
on 2 gn eV (13

€1 To solve Eqg.(16) numerically, the surface charge densi-
ties p;(r) will be discretized on the boundary of the inclu-

yvhere_u+ andu_ are the poteryuals as one.approaches th%ions, and the integrals in E(QL6) will be approximated by
inclusion surface from the matrix and inclusion side, respec:

. - e the piecewise trapezoidal rule. Hence, becomes
tively, and d/dn is the standard normal derivative taken on P P EH)

the inclusion surface with the normal vector pointing out- u(rh) 1 N ainlrl =Y

ward from the inclusion. Relationd1)—(13) do not in gen- ZBL:pi(r:)_ _2 B ;91(?1)555(’
eral define a well-posed boundary value problem and an ex- an; T k=1 an;

tra boundary condition is needed to guarantee the well (17)
posedness. wherel=1,2,... N;, andN;,N; are the numbers of dis-

Before giving this condition, we first describe our com- cretization points on thith andjth inclusions, respectively,
posite model in more detail. The two-dimensional randomyity i running over the inclusions in the unit cell and
dielectric composites under consideration are built by firstoyering the inclusions in the entire space. It is easy to see
randomly distributing a collection of inclusion into a squarénat the summation over can be translated into a double
region—the generic unit cell. This unit cell is replicated pe-gm 5 Jattice sum of a sum over all inclusions in the unit
riodically in both x andy directions to model an infinite ¢q|| At the removable singular point of the kernel of Eq.
medium. For simplicity, let us assume the unit cell to be(17), ie., r!=?}‘, the exact limitix(r') is taken?> where

[—0.5,0.5%X[—0.5,0. and the external electric field . . .
Eo=(Eqx.Eoy). For such a unit cell we require ;c!(ri) is the curvature of the boundary of thé inclusion at

i
u(x+1y)=Uu(x,y) — Eoy, The linear systenl7) is solved iteratively using the gen-
eralized minimal residual meth8t(GMRES, and the fast
(14) multipole method’ (FMM) is used to speed up the matrix-
vector multiplication. An iterative metho@GMRES is fa-
where &,y)=r is the componentwise position vector. Rela- vored because our linear system is generally very large and
tions (11)—(14) combine to define a well-posed partial dif- therefore a direct method is insufficient. In fact, had we not

ferential equation system which is solved fdr). The elec- used the FMM, even the GMRES would be too time con-

u(x.y+1)=u(x,y)~Eoy,

tric field is then calculated through E(L0). suming to be performed on a workstation. The FMM is in
We look for the solution of Eqg11)—(14) in the form of general a fast and accurate method for calculating the Cou-

a single-layer potential lombic interactions among particlésee Ref. 26 and refer-

ences therein Here we used it to calculate the sum of the
- - form
u(r)=ug(r) + 2 Lveu,ri)pi(ri)dsv, (15) )

in which ug(r)=—r - E,. The summation is summed over all Sj_zl ailnfri—rjl,

inclusions in the entire spacegV; is the boundary of théth ) . ) ) .

inclusion, and G(r,?)=(1/2w)|n|r—?| is the two- ?gl? t|rtfatspat|al gradient, which appeared in Eg). We re-

dimensional fundamental solution of the Laplace’s equation.
pi(t}) is the unknown surface charge density defined on alnjr! =74
~ 1 ~
aV; . From periodicity, it is clear that only thogg(r;) de- Tj=n(f:)~v(|n|f:— fﬂ)-
fined for the inclusions inside the unit cell are independent. :
With the representatioril5), one can deduce from Egs. By using the FMM, we substantially reduced the amount of
(11)—(14) the following system of Fredholm integral equa- work of per matrix-vector production fror®(N?) by a di-

tions of the second kind for the unknown densitigér): rect calculation tdO(N) in our case, wherél=X;N; is the
dimension of the unknown vector. If there are no particularly
U aG(r. 1) ~ strong interactions among the inclusions, the above method

2p

pj(r;dsy can resolve the boundary-value problem extremely well, and
achieves spectral accuraty.

Once the surface charge density has been solved success-
for riedVv;. (16)  fully, the next stage in the calculation is to obtain the electric
field at a collection of uniformly, but randomly, distributed
points in the unit cell. Unlike the case of computing the

effective conductivity frompi(7i), the calculation of the
gield presents a much more difficult numerical task. The ma-
jor obstacle is related to the evaluation of the integral in Eq.
n(y;s)’ which can be rewritten in terms of a target paipas

(ri)
an, :Pi(ri)_zg ﬁfrj<9—r1i

Here j runs over all inclusions in the entire space and
B=(e,—€1)/(ex+€1) is the “polarizability” which de-
pends on the phase contrast. We put the subscrist the
standard outward normal derivative to emphasize that it i
taken atr; on dV;. The indexi should range over all inclu-
sions in the entire space, and hence there are infinitely ma
equations in Eq(16). However, due to periodicity, only a
finite number of them are necessary; i.e., we only need to run u(ry) = uo(rt)+2 f G(ry ,Fi)pi(?i)ds;_
i over the inclusions in the unit cell. i Jov
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Here we want to calculate the field gt. However, in the $r=4nl2, (20)
case thatr, is very close or coincides with one of the

discretization pointsr;, the above integration becomes
nearly singular because in the kernel we h&g,,r;)=

(1/27)In|r,—T;|. To tackle this difficulty, we utilized the
techniques described by Davis and Rabinofflitar singular ¢,=nmb?/50. (21
integration by greatly refining the local discretization inter-
vals, together with an interpolation on the density whenever Before presenting our numerical results, it is useful to
Ir,—=Ti|<e, wheres is the preset tolerance. Another diffi- make some remarks. First, our general primary goal in this
culty is related to the large scale calculations necessary ¥fO'K is to give a basic analysis of the field distribution in the
this stage of computation. Suppose we discretized the boun@ntiré composite. Alternatively, one may look at the field
ary of the inclusions in the unit cell byl points, and we distribution inone phaseonly, as suggested by E¢). If
want to obtain the field a target points. A straightforward ©ne is interested only in breakdown phenomenon, it may be
calculation of thesé\ field values would requir©(M X N) best to study the field d|str|buyon at th#hase interfaces
evaluations of the source to target influence. Fortunately, thi§Xclusively, because the potential and the components of the
difficulty can be overcome by another application of the fasti€ld are harmonic and thus achieve extreme values on the
multipole method. The FMM can reduce the work to anmterfacgs only. S_eC(_)nd, our numerical method descrl_bed in
amount ofO(M +N) such evaluations. the previous section is capa}ble of computing the Iocal_ﬂeld at
For each model composite, with its inclusion type, inclu-2nY Position in the composite. However, for our continuum
sion volume fraction and dielectric constant ratio fixed, weMCdels, it is certainly impossible to obtain and analyze nu-
calculated 200 000 sampling local-field values from manyMerically the field atall points in the composite. Thus, a
different realizations generated by the standard Metropoli§€C€sSary approximation is to perform the analysis of the
Monte Carlo algorithm. From these sampling data, we firsfield dlstr_lbut_lon on a representative sample of th_e_fleld. Our
compute the probability density functidiiE, (r)/Ey). In or- sample size is 200 000 field values for each specific compos-

der to do so, we use a common binning procedure, for whicf{€: With its inclusion type, inclusion volume fraction, and
we first divide the whole range of the field value into a num-dielectric constant ratio fixed. Such a sample is chosen from
ber of “bins (intervaly,” determine for each local-field 20 realizations of the specified composite, each realization is

value in the sample which bin it belongs, calculate the numSolved separately and 10 000 field values are calculated from
ber of total field values in each bin, then the probabilitythe solution. Last, all of our composite models are assumed

densityf is approximated in théth bin by the formula to satisfy a}np—cluste.ring conditioni.e., the inclus!ons must
lie at a minimum distance of one another. This minimum
T distance was set to be 0.04050.005/2I, and 0.006 for
fi:m’ Qisks, squares, and nee_dles, respectively. This approximation
is reasonable because it does not change the presence of the
whereT; is the total number of occurrence ith bin and field distribution in a noticeable manner, and it can ease the
Npgw is the bin width. The probability density functidnwill computational effort dramatically. In all our calculations,
be shown in figures. Then we complete our statistical analythe field is generated by a unit potential drop across the
sis by calculating some moments of the field distributionhorizontal edges of the unit computational cg#0.5,0.9
from the sampling data. The moments are presented in th&[—0.5,0.5; i.e., we setEy=(1,0). This does not lead to a

In the case of needles we actually use slender ellipses with
an aspect ratio of 50. Letting the length of the long axis be
denoted byb, the needle volume fraction is given by

form of loss of generality because our composites are taken to be
1K isotropic and homogeneous, and our results are normalized
(|Ex(N[*)*™/Eq, (18)  with respect to the applied field.
fork=1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and _
The casek= is simply the maximum value of the magni- A. Disks
tude of the local field in the sample. In this section, we will be concerned with the field distri-
butions in composite materials made by embedding circular
lll. FIELD DISTRIBUTIONS disks into a uniform matrix. The configurations were gener-

ated using standard Monte Carlo simulation techniques. We

t.naneé(gm'r;iqtéhfngte;?;'ss’t”ggg?gs ";].tfr;rr%e ;ypelfsegf fqglg'used 64 disks in all of our examples. A typical realization at
inuu hos| ais u uni PRl '®%the disk volume fraction of 0.4 is depicted in Fig. 1.

The composite materials are made by randomly distributing In Figs. 2—4 and Table I, we present our calculated field

Idr}sgs ugi';orsmugfggg?rzﬁ? r:T;zaetglll)t(a -EE:SS de;:]iefzs%r:;"a{_he distributions for such composite materials for various vol-
' q ’ P : ume fractions and dielectric constant ratios. In the figures,

composites with disks are characterized by the uniform disl§v - : . :
) . ) . e plot the probability density functioh(E,(r)/Eg) against
diameterd. For disks of diameted at number density, the E,(1)/E,. In the table, we give the calculated moments, de-

volume fraction of the inclusions can be calculated by fined by Eq.(18), from the sampling data as an approxima-
= nwd2/4. 19 tion to that of the field distribution for each case. From Figs.
$o=nm (19 2—-4, we see clearly that the probability density function of
In the case of squares with a side lengththe inclusion the field also exhibits a double-peak character. In general, the
volume fraction is peak on the left side is determined by the field inside the
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~0.5 ] 05 FIG. 3. The probability density functiorf(E,(r)/Ey) vs

E,(r)/Eq for dispersions of randomly distributed disks in which the

article to matrix dielectric constant ratig /€, =1000.0.
FIG. 1. A typical realization of randomly dispersed disk-shapedp 26

inclusions at an inclusion volume fractiaf,=0.4. The disk diam-
eter isd. Note that the figure does not reflect the periodic boundaryohase. At the same time, the induced polarization charges
conditions used in the calculations. enhance the field in the matrix phase, leading to a higher
value of thex component of the electric field in the matrix
phase with higher dielectric constant, and the peak on thghase than the applied field. Therefore, the left peak must lie
right side is determined by the field inside the phase withg the left of the average field value and is associated with
lower dielectric constant. _ the field in the phase with a higher dielectric constant. Simi-
To see the physical reason for this effect, let us assumg,y the right peak must lie to the right of the average field
that the inclusion phase has a higher dielectric constant thavnCllue and is associated with the field in the phase with a

Lheevrg:\t:)é 22a:e.e-rrtr;erbit?g:]rlgfﬂtﬁg i';s'gzggiggggstsge C"aezgwer dielectric constant. This double-peak character indi-
P P PPI€C tes that the variance or second moment is generally not

field. Without an inclusion phase, the perturbation effect ISadequate in describing the field distribution in composites.

zero, and the electric field is just the applied field. The pres- Double-peak behavior in the field distribution was also

ence of higher d|electr|p constant inclusions induces pol_aréeen by Sheng and CHéror a lattice model. However, the
ization charges at the inclusion surfaces that weaken fiel

o : ; . arigin of the double-peak behavior observed in their study
inside the inclusion phase. In our case, this leads to a Iowe(rdue to two types of local environmerarises for different
value of thex component of the electric field in the inclusion

reasons. First, we consider all multipole contributions for a
continuum dielectric moddfandom placement of inclusions
of finite size in a matrix whereas Sheng and Chen consider
a0l ‘ Dielectric Constant Ratio, &/e,=5.0 | poinF .dipole pqrtigles on a lattice. _Second, they consider a
3 i modified electric fieldthe Lorentz fieldE, ), as opposed to

; ——y the Maxwell field that we compute. Third, in contrast to the

‘ B pointwise field that we calculate throughout the entire com-
9,=04 posite, they determined the Lorentz field for each point par-
. ticle. In order to make our field calculations equivalent to
theirs, we would have to compute “averaged” Lorentz fields
for each inclusion in the composite up to dipole contributions
and randomly locate the particles on a lattice. We emphasize
that the double-peak behavior that we find is due to high and
low fields occurring in the low and high dielectric phases,
respectively.

The first line of Table | shows not only that our calcula-
tion of the field is accurate, but also that the samples which
3.0 we have taken to represent the field in the whole composite

are quite adequate. The latter is true because our results here
agree with the exact value for that line, which should be the

FIG. 2. The probability density functiorf(E,(r)/E,) vs  applied field(1.000, to three figures.

E,(r)/E, for dispersions of randomly distributed disks in which the  In the disk-to-matrix dielectric constant rat&g/e;=5.0
particle to matrix dielectric constant ratig /e;=5.0. case(Fig. 2 and columns 2—4 of Table, lwe see that the

T T T

Probability density f
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TABLE I. The moments of the field distribution for composites with circular disks. Hdeethe order of
the momente, /e, stands for the dielectric constant ratio, apigldenotes the inclusion volume fraction. The
data fork=c are the observed maximum values |&|. The last row gives the dimensionless effective
dielectric constant of the composites.

€,/€,=5.0 €,/€,=1000.0 €,/e,=0.001

k $,=0.2 $,=04 ¢,=0.6 $,=02 ¢,=04 $,=0.6 =02 $,=0.4 ¢,=0.6

1 1.000 0.999 1.002 0.999 0.995 0.999 1.001 0.999 0.999
2 1.068 1.133 1.187 1.178 1.457 1.956 1.113 1.159 1.177
3 1.121 1.250 1.380 1.290 1.811 2.895 1.234 1.326 1.348
4 1.167 1.354 1.565 1.400 2.227 4.243 1.367 1.495 1.544
5 1.211 1.451 1.742 1.557 2.816 6.185 1.528 1.732 1.793
10 1.537 1.982 2.598 3.675 7.012 17.54 3.126 3.577 3.633
15 1.991 2.556 3.315 5.510 10.32 25.90 4.566 5.045 5.180
20 2.338 3.002 3.846 6.753 12.62 31.61 5.534 6.045 6.259
25 2.591 3.327 4.239 7.629 14.25 35.66 6.214 6.753 7.033
30 2.783 3.571 4.538 8.276 15.45 38.67 6.714 7.279 7.610
35 2.935 3.758 4,772 8.771 16.37 40.98 7.097 7.682 8.055
40 3.057 3.907 4.959 9.162 17.10 42.80 7.399 8.002 8.408
45 3.158 4.027 5.111 9.478 17.69 44.28 7.644 8.260 8.696
50 3.241 4.127 5.239 9.739 18.18 45.49 7.847 8.474 8.933
© 4.132 5.187 6.609 12.43 23.21 58.07 9.984 10.72 11.40
€citl €1 1.316 1.767 2.417 1.532 2.592 4.979 0.649 0.388 0.199
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field behaves nicely with its two peaks sharply separated and Berarf® conjectured that in a two-phase composite mate-

the first peak rises with the increasing of the dgkhich is
the phase with a higher dielectric consjawlume fraction,
because of the increasing possibility of the sampling points
being in the disks. In the case that the disks have a high

dielectric constantd, /e, =1000.0)(Fig. 3 and columns 5-7
of Table ), we see that while the field in the matrix phase

rial, the variance of the field in phase 1 is of the order of the
variance of the field in phase 2, i.e.,

where

(the second peakbehaves nearly the same as in previous
case, the first peak now looks like a delta function at

E,(r)=0. In the case that the disks have a very low dielec-

tric constant relative to the matrixef/e;=0.001), Fig. 4

and Table | show that the two peaks of the field distribution

are not so well separated.

Probability density f

2.0 , \ ; <
Dielectric Constant Ratio, £,/e,=0.001
— ¢,=02
15 - : 1
C 0, = 0.4
$,=0.6
1.0 - b
05 1
0.0 e ‘ -
-0.5 0.5 1.5 25 3.5 4.5
E (r)E,

FIG. 4. The probability density functionf(E,(r)/Egy) vs

particle to matrix dielectric constant ratianA/e;=0.001.

~2 _

02 =
E;

O(vt,),

0.5

0.4

0.31

0.1

ool

FIG. 5. A typical realization of randomly dispersed and ran-
domly oriented square-shaped inclusions at an inclusion volume
fraction ¢,=0.4. The length of the square side.idote that the
E,(r)/E, for dispersions of randomly distributed disks in which the figures does not reflect the periodic boundary conditions used in the

calculations.
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3-0 H T T
:: Comparison of the disk and square
I: 1 cases with ¢, = 0.4
‘ +H
H —— Square, e,/e, = 5.0
[ L I AL + Disk, &,/¢, = 5.0
> 2.0 i 21
9 i b e Guare, g,/e, = 0.001
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i i « Disk, &/¢,= 0.001
% 1: 1 — —— Square, ¢,/e,= 1000.0
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FIG. 6. The probability density functiorf(E,(r)/Ey) vs - ) ) F i
E,(r)/E, for disperions of randomly distributed squares in com- COmposite materials with randomly distributed square-
parison with that of the disk at volume fracti@i=0.4, and dielec-

tric constant ratio varied as,/e,;=5.0, 1000.0, and 0.001.

~5 _ ((Ei—(E))-(Ei—(E})))
g (Ei)(Ei) '

the two peakgan indication of the variance dt,(r)/Eg]
were rather different from each other in our figures.

B. Squares

In this section, we calculate the field distribution in two
dimensional dispersions in which the inclusions are squares.
Of particular interest is how the presence of corners will
affect the field distribution. The square-shaped inclusions in
our model composites are randomly distributed and ran-
domly oriented. A typical configuration at volume fraction
0.4 with 64 squares in the unit cell is depicted in Fig. 5. Our
configurations for randomly distributed squares are gener-
ated by first generating a random distribution of disks with a
desired volume fraction, and then making a square from each
disk with a randomly chosen angle at which the first vertex
of the square lies.

In Fig. 6 and columns 2—4 of Table Il, we showed our
calculated results of the field distribution in three cases of

shaped inclusions. The inclusion volume fraction is 0.4 for

all examples. The dielectric constant ratios were varied as
€,/€,=5.0, 1000.0, and 0.001. For comparison, we also in-

cluded in Fig. 6 the results for the corresponding disk cases.
From the figure, we see that field distributions for the case of
squares nearly coincided with those for the disk case. One
reason is probably that numerically we cannot calculate ex-

and E; is the electric field in phase Beran assumed this actly the charge density at the corners because it is not well
relation to derive other results. While it is possible that thisdefined there, and thus we approximated the density by re-
could be true for certain class of materials, we found ndfining the discretization at the vicinity of corners but skip-

numerical evidence to support this conjecture for the modelping the exact corner position, thereby limiting the true in-

considered in the present work. This would certainly not befluence of the corners. This is exactly the reason that our
true for the highly conducting disk case for which the field in observed maximum values from the sample are actually
the inclusion phase is nearly uniform. Overall, the widths oflower than that for disk case, for which the close interaction

TABLE II. The moments of the field distributions for the square- and needle-shaped inclusionk idere
the order of the momeng, /e, stands for the dielectric constant ratio, afigldenotes the inclusion volume
fraction. The data fok=c are the observed maximum values Bf|. The last line is the effective dielectric

constant of the composites.

Squares $,=0.4)

Needles ¢,=0.012)

k €;,/€,=5.0 €,/€,=1000.0 €,/6,=0.001 €,/6;,=5.0 €,/€,=100.0 €,/€,=0.001
1 1.001 1.005 1.003 1.000 1.001 0.999
2 1.130 1.455 1.166 1.003 1.041 3.496
3 1.240 1.754 1.316 1.006 1.085 8.629
4 1.335 2.024 1.479 1.018 1.161 17.19
5 1.420 2.308 1.686 1.089 1.345 27.83
10 1.843 4.125 3.250 2.905 3.378 83.23
15 2.298 5.717 4.460 4.362 4.901 121.2
20 2.657 6.857 5.268 5.346 5.928 146.7
25 2.921 7.682 5.837 6.040 6.665 164.7
30 3.120 8.299 6.258 6.552 7.197 178.1
35 3.274 8.775 6.584 6.944 7.614 188.3
40 3.397 9.154 6.843 7.254 7.946 196.5
45 3.497 9.462 7.055 7.504 8.215 203.1
50 3.580 9.717 7.231 7.710 8.438 208.6
® 4.470 12.39 9.162 9.842 10.77 265.9

€eitl €1 1.773 2.648

0.379

1.027 1.239 0.718
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T05 0 0.5 E,(r)/E, for dispersions of randomly distributed needles with thee

representative particle to matrix dielectric constant ratios.
FIG. 7. A typical realization of randomly dispersed needle-

shaped inclusions. The length of the needle.ifspect ratio here is  different needle-matrix dielectric constant ratios were cho-
10. Our field distribution calculations are based on an aspect ratio a§en:e,/e;=5.0, 100.0, and 0.001. The last case mimics the
50, however. Note that the figure does not reflect the periodicase of cracks. From Fig. 8, we see that the field distribution
boundary conditions used in the calculations. for needles becomes single peaked, especially for the case in

which e,/e,=5.0, where it become&-function-like with its
among inclusions is more likely due to our configurationtop being cut off in the figure. The reason that the other peak
generating process. A second reason is that even if we coultisappears is simply because the needle phase volume frac-
calculate the density at the corners with more accuracy, it ision is sufficiently small such that the probability of sampling
still unlikely to change the field distribution in the whole in the needle phase is very small. Notice that the peaks for
composite vastly(this will certainly change the line of ob- ¢,/e;=5.0(solid line) and €,/e;=100.0(dotted ling lie to
served maximum value in the table, howeverhis is be-  the right of E,(r)/Ey,=1.0. And the peak for the crack case
cause the corners are rare and the chance of our samplirg/e;=0.001(dashed linglies to the left ofE,(r)/E,=1.0.
position(where we calculate the local figltying very close  This is because in the first two cases, the inclusion phase has
to one of them is very small. While the corner effect is nota higher dielectric constant, and in the last case, the dielectric
strong enough to be seen on the local field distribution figuregonstant of the needles is lower than that of the matrix,
we should also notice that the combined effect of the cornershich confirms our earlier suggestions. Although we do not
is certainly not negligible as far as the effective dielectricsee strong field fluctuations from the plots of the probability
constant is concerned. Indeed, we do see a stronger influendensity functions, a close examination of the moment data in
on the effective dielectric constant due to the presence of th@able Il shows us that needles give rise to very high moment

corners from the data in the table. values, even though they occupy a small fraction of the
space. Diskgor squarepat the same value of dielectric con-
C. Needles stant ratioe, /€, require a much higher volume fraction to

achieve similar values of the moments. We were able to
Here we present our calculations for random distributionsapture the high-field behavior due to sharp ends in the
of needles in a matrix for various phase dielectric constanheedle caséunlike the instance of squadef®r two reasons.
ratios. In the case that the inclusions have a very small difjrst, the influence of the sharp ends of the needles is stron-
electric constant compared to that of the matrix phase, Wger than the influence of the corners of the squares. Second,
mimic materials with cracklike flaws. Figure 7 displays awe assume that each needle is actually a very slender ellipse

typical configuration of our composite material with 64 \yhose boundary is smooth and is numerically more tractable.
needle-shaped inclusions. The needles are randomly placed

and randomly oriented. The generation of the configurations
for randomly distributed needles is similar to that for
squares. Specifically, we first generate a random distribution In this paper, we studied the local-field distributions for
of disks of diameted and then place a need{ef lengthd) continuum(off-lattice) models of random dielectric compos-
with random orientation within each disk. As noted earlier,ites. We considered three different two-dimensional disper-
each needle is actually a very slender ellipse with an aspesions in which the inclusions were eith@j circular disks,
ratio of 50.0.(In the figure, the aspect ratio is only 10.0. (i) squares, ofiii) needles. The fluctuations were quantified
Our results on the field distributions for the case ofin two ways: by computing the probability density function
needles are summarized in Fig. 8 and columns 5-7 of Tablassociated with the electric field and by computing the mo-
Il. The needle volume fraction is merely 0.012 and threements of the field. We showed that in general the probability

IV. CONCLUSIONS
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density function for disks and squares exhibits a double-peak ACKNOWLEDGMENTS
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