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Electric-field fluctuations in random dielectric composites
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~Received 30 December 1996; revised manuscript received 30 April 1997!

When a composite is subjected to a constant applied electric, thermal, or stress field, the associated local
fields exhibit strong spatial fluctuations. In this paper, we evaluate the distribution of the local electric field
~i.e., all moments of the field! for continuum~off-lattice! models of random dielectric composites. The local
electric field in the composite is calculated by solving the governing partial differential equations using
efficient and accurate integral equation techniques. We consider three different two-dimensional dispersions in
which the inclusions are either~i! circular disks,~ii ! squares, or~iii ! needles. Our results show that in general
the probability density function associated with the electric field for disks and squares exhibits a double-peak
character. Therefore, the variance or second moment of the field is inadequate in characterizing the field
fluctuations in the composite. Moreover, our results suggest that the variances for each phase are generally not
equal to each other. In the case of a dilute concentration of needles, the probability density function is a singly
peaked one, but the higher-order moments are appreciably larger for needles than for either disks or squares.
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I. INTRODUCTION

In the study of heterogeneous materials, much effort
been devoted to determining the effective transport and
chanical properties of the composite material.1–5 The analy-
sis and evaluation of the distribution of the local field~i.e.,
fluctuations of the local field! has received far less attentio
Nonetheless, the distribution of the local field is of gre
fundamental and practical importance in understanding m
crucial material properties such as the breakdo
phenomenon6,7 and the nonlinear behavior of composites.8

To show the importance of the local-field distribution, l
us begin with the effective property itself. It is well know
that in a statistically homogeneous and isotropic dielec
composite, the effective dielectric constanteeff of the com-
posite can be defined through the following two equival
relations:

^D~r !&5eeff^E~r !&, ~1!

^e~r !E~r !2&5eeff^E~r !&2, ~2!

in which E(r ) is the local electric field at positionr in the
composite,D(r )5e(r )E(r ) is the displacement field,e(r ) is
the local dielectric constant, and angular brackets^& denote
the averaging for an ergodic system, either an ensemble
volume average. We see here that the effective dielec
constant is determined from lower moments of the lo
field.

The local-field distribution is also fundamental to unde
standing material failure or breakdown phenomenon. Bre
down phenomena have received considerable attention i
cent years~see Refs. 9–14 and references therein!. Dielectric
~elastic! breakdown in a composite material occurs at loca
ties where the field is the highest6 or at ‘‘hot spots’’ where
the local Joule heat@defined ase(r )E(r )2# is very large.7
560163-1829/97/56~13!/8060~9!/$10.00
s
e-

t
ny
n

c

t

r a
ic
l

-
k-
re-

-

Thus breakdown in the composite is generally related
max(uE(r )u), which can be expressed as

max~ uE~r !u!5 lim
k→`

^E~r !2k&1/2k, ~3!

where^E(r )2k& is the even-order moment of the field.
The effective cubic nonlinearity coefficient8 beff of the

composite can be calculated by the relation

^b~r !E~r !4&5beff^E~r !&4, ~4!

where b(r ) is the local nonlinear conductivity coefficien
Although beff is a nonlinear property of the composites,
was shown that it can be approximated, to the first orde
the nonlinearity, by linear composites with the same mic
structure through Eq.~4!. From this nonlinear conductivity
one can further obtain the resistance fluctuation noise of
composites known as ‘‘flicker’’ noise. The flicker noise
defined as

1

V

beff

eeff
2

,

whereeeff is the effective dielectric constant.
Previous work on field~or voltage! distribution in com-

posites on lattice models can be found in the papers by
Arcangeliset al.,15 Sheng and Chen,16 and Helsinget al.7

Sheng and Chen found that the local-field distribution g
erally exhibits a double-peak character in their models~the
origin of which is different than what we find for continuum
models!. For continuum models, Beran17 and Axell18 derived
bounds for the variance of the fields within each phase, w
Bobeth and Diener19 obtained approximate expressions f
the same quantity. The results of Bobeth and Diener
Axell were established upon a result which states that
8060 © 1997 The American Physical Society
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56 8061ELECTRIC-FIELD FLUCTUATIONS IN RANDOM . . .
effective dielectric constant of the composite is related to
ensemble average of the second moment of the field in e
phase according to

]eeff

]e i
5

^x~ i !~r !E~r !2&

^E~r !2&
, ~5!

wherex ( i )(r ) denotes the characteristic function of phasei .
This relation was derived by Bergman20 as a consequence o
an analytical property ofeeff as a function ofe i . Among
other results, we will show that the variance or second m
ment of the field is inadequate in describing the field flu
tuations.

As we have pointed out, the most comprehensive num
cal work on field distributions has been carried out for latt
models. A primary intent of the present work is to acco
plish this task for continuum models of composites. O
model two-dimensional composite materials are made
embedding inclusions of one material into a uniform mat
of another material. We consider three different types of
clusions:~i! disks,~ii ! squares, and~iii ! needles. In each case
the applied electric fieldE0 @equal to the average fiel
^E(r )&# is directed along thex direction and we determine
the probability density functionf „Ex(r )/E0…, whereEx(r ) is
the x component of the local fieldE(r ) and E05uE0u. The
quantity f (E)dE is the probability thatE has a value be-
tweenE andE1dE. We will also calculate thekth moment
^uEx(r )uk& of the field distribution. For reasons of mathema
cal analogy, our results for the local field translate imme
ately into equivalent results for the local electric field, loc
temperature gradient, and local magnetic field in the pr
lems of electrostatics, steady-state heat conduction, and m
netostatics, respectively.

The remainder of this paper is organized as follows:
Sec. II, we will describe briefly the formulation of the pro
lem and the numerical method that we will use to solve
the field. In Sec. III, we present our calculations on the d
tributions of the field for the three types of composites t
we described earlier. Section IV contains some conclud
remarks.

II. FORMULATION AND NUMERICAL TECHNIQUES

In order to show how the local field is distributed in
composite, one needs to solve the field accurately. To ob
the field, we must solve the governing Maxwell equati
directly. The basic method to solve the Maxwell equati
was devised first by Rayleigh21 about a century ago, in a
effort to improve the approximation formula given even e
lier by Lorentz and Lorenz for the effective conductivit
Considerable progress has been made to improve
method in the past few decades. Recently, this method
been extended successfully by Greengard and Moura22 to
treat problems with complex geometries and with near s
gular interactions between inclusions.23 However, most of
this effort was directed towards finding the effective prop
ties after solving the Maxwell equations. The analysis of
local field itself remains to be addressed using these accu
numerical techniques.

The numerical calculation of the field distribution consis
of three steps. In the first step, we solve an integral equa
e
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derived from the time-independent Maxwell equations e
ploying the method developed by Greengard and Moura.22 In
the second step, we compute the electric field from the s
face charge density obtained after solving the integral eq
tion. This amounts to performing a numerical integration
the single layer potential, as defined below in Eq.~15!. Un-
like the calculation of the effective conductivity, which ca
be obtained from the charge density easily and accuratel
a simple application of Green’s formula, the evaluation
the field presents a much greater challenge numerica
since the kernel of the single layer potential is nearly sin
lar if the target point~at which we want to compute the field!
coincides or lies very close to one of the source points. T
accurate evaluation of the integrals in such cases is
tremely important for the accurate determination of t
fields, because the contribution from the near source po
to the field of a target point is likely to have the same ma
nitude as that from distant source points. In such cases
greatly refine the local discretization to ensure the accur
of the field, using the fact that the kernel is nonoscillati
despite its integrable near singularity.24 In the final step of
the calculation, we perform statistical analyses on the s
pling data of the field obtained for each model composite
order to determine the probability density functionf as well
as the moments of the field.

A. Formulation

Consider a two-phase random composite consisting o
matrix phase 1 regionV1 possessing a dielectric constante1
and an inclusion phase 2 regionV2 possessing a dielectri
constante2. The standard time-independent Maxwell equ
tions governing the electric fieldE(r ) and displacement field
D(r ) in phasei of a dielectric composite are

“•D~r !50, ~6!

“3E~r !50, ~7!

D~r !5e~r !E~r !. ~8!

Here

e~r !5e1x~1!~r !1e2x~2!~r ! ~9!

is the local dielectric constant where

x~ i !~r !5H 1, rPVi ,

0, otherwise,

is the characteristic function of phasei .
It is convenient to study this problem via the electric fie

potential defined as

E~r !52“u~r !. ~10!

The scalar potentialu(r ) is the solution of the following
boundary value problem:

“•~e~r !“u~r !!50, rPVi , ~ i 51,2!, ~11!

u1~r !5u2~r !, rP]V2 , ~12!
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8062 56H. CHENG AND S. TORQUATO
e1

]u1~r !

]n
5e2

]u2~r !

]n
, rP]V2 , ~13!

whereu1 and u2 are the potentials as one approaches
inclusion surface from the matrix and inclusion side, resp
tively, and]/]n is the standard normal derivative taken
the inclusion surface with the normal vector pointing o
ward from the inclusion. Relations~11!–~13! do not in gen-
eral define a well-posed boundary value problem and an
tra boundary condition is needed to guarantee the w
posedness.

Before giving this condition, we first describe our com
posite model in more detail. The two-dimensional rand
dielectric composites under consideration are built by fi
randomly distributing a collection of inclusion into a squa
region—the generic unit cell. This unit cell is replicated p
riodically in both x and y directions to model an infinite
medium. For simplicity, let us assume the unit cell to
@20.5,0.5#3@20.5,0.5# and the external electric field
E05(E0x ,E0y). For such a unit cell we require

u~x11,y!5u~x,y!2E0x ,

u~x,y11!5u~x,y!2E0y , ~14!

where (x,y)5r is the componentwise position vector. Rel
tions ~11!–~14! combine to define a well-posed partial di
ferential equation system which is solved foru(r ). The elec-
tric field is then calculated through Eq.~10!.

We look for the solution of Eqs.~11!–~14! in the form of
a single-layer potential

u~r !5u0~r !1(
i
E

]Vi

G~r , r̃ i !r i~ r̃ i !dsr̃ , ~15!

in which u0(r )52r•E0. The summation is summed over a
inclusions in the entire space,]Vi is the boundary of thei th
inclusion, and G(r , r̃ )5(1/2p)lnur2 r̃ u is the two-
dimensional fundamental solution of the Laplace’s equati
r i( r̃ i) is the unknown surface charge density defined
]Vi . From periodicity, it is clear that only thoser i( r̃ i) de-
fined for the inclusions inside the unit cell are independe
With the representation~15!, one can deduce from Eqs
~11!–~14! the following system of Fredholm integral equ
tions of the second kind for the unknown densitiesr i( r̃ ):

2b
]u0~r i !

]ni
5r i~r i !22(

j
bE

G j

]G~r i , r̃ j !

]ni
r j~ r̃ j !dsr̃

for r iP]Vi . ~16!

Here j runs over all inclusions in the entire space a
b5(e22e1)/(e21e1) is the ‘‘polarizability’’ which de-
pends on the phase contrast. We put the subscripti on the
standard outward normal derivative to emphasize that i
taken atr i on ]Vi . The indexi should range over all inclu
sions in the entire space, and hence there are infinitely m
equations in Eq.~16!. However, due to periodicity, only a
finite number of them are necessary; i.e., we only need to
i over the inclusions in the unit cell.
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B. Numerical techniques

To solve Eq.~16! numerically, the surface charge dens
ties r i( r̃ ) will be discretized on the boundary of the inclu
sions, and the integrals in Eq.~16! will be approximated by
the piecewise trapezoidal rule. Hence, Eq.~16! becomes

2b
]u0~r i

l !

]ni
5r i~r i

l !2
1

p(
j

b(
k51

Nj ] lnur i
l2 r̃ j

ku
]ni

r j~ r̃ j
k!dsj

k ,

~17!

where l 51,2, . . . ,Ni , and Ni ,Nj are the numbers of dis
cretization points on thei th and j th inclusions, respectively
with i running over the inclusions in the unit cell andj
covering the inclusions in the entire space. It is easy to
that the summation overj can be translated into a doub
sum—a lattice sum of a sum over all inclusions in the u
cell. At the removable singular point of the kernel of E
~17!, i.e., r i

l5 r̃ j
k , the exact limit 1

2 k(r i
l) is taken,25 where

k(r i
l) is the curvature of the boundary of thei th inclusion at

r i
l .

The linear system~17! is solved iteratively using the gen
eralized minimal residual method26 ~GMRES!, and the fast
multipole method27 ~FMM! is used to speed up the matrix
vector multiplication. An iterative method~GMRES! is fa-
vored because our linear system is generally very large
therefore a direct method is insufficient. In fact, had we n
used the FMM, even the GMRES would be too time co
suming to be performed on a workstation. The FMM is
general a fast and accurate method for calculating the C
lombic interactions among particles~see Ref. 26 and refer
ences therein!. Here we used it to calculate the sum of th
form

sj5(
i 51

K

qi lnur i2r j u,

and its spatial gradient, which appeared in Eq.~17!. We re-
call that

] lnur i
l2 r̃ j

ku
]ni

5n~r i
l !•“~ lnur i

l2 r̃ j
ku!.

By using the FMM, we substantially reduced the amount
work of per matrix-vector production fromO(N2) by a di-
rect calculation toO(N) in our case, whereN5( jNj is the
dimension of the unknown vector. If there are no particula
strong interactions among the inclusions, the above met
can resolve the boundary-value problem extremely well, a
achieves spectral accuracy.22

Once the surface charge density has been solved suc
fully, the next stage in the calculation is to obtain the elect
field at a collection of uniformly, but randomly, distribute
points in the unit cell. Unlike the case of computing th
effective conductivity fromr i( r̃ i), the calculation of the
field presents a much more difficult numerical task. The m
jor obstacle is related to the evaluation of the integral in E
~15!, which can be rewritten in terms of a target pointr t as

u~r t!5u0~r t!1(
i
E

]Vi

G~r t , r̃ i !r i~ r̃ i !dsr̃ .
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Here we want to calculate the field atr t . However, in the
case thatr t is very close or coincides with one of th
discretization points r̃ i , the above integration become
nearly singular because in the kernel we haveG(r t , r̃ i)5

(1/2p)lnur t2 r̃ i u. To tackle this difficulty, we utilized the
techniques described by Davis and Rabinowitz24 for singular
integration by greatly refining the local discretization inte
vals, together with an interpolation on the density whene
ur t2 r̃ i u,«, where« is the preset tolerance. Another diffi
culty is related to the large scale calculations necessar
this stage of computation. Suppose we discretized the bo
ary of the inclusions in the unit cell byM points, and we
want to obtain the field atN target points. A straightforward
calculation of theseN field values would requireO(M3N)
evaluations of the source to target influence. Fortunately,
difficulty can be overcome by another application of the f
multipole method. The FMM can reduce the work to
amount ofO(M1N) such evaluations.

For each model composite, with its inclusion type, inc
sion volume fraction and dielectric constant ratio fixed,
calculated 200 000 sampling local-field values from ma
different realizations generated by the standard Metrop
Monte Carlo algorithm. From these sampling data, we fi
compute the probability density functionf „Ex(r )/E0…. In or-
der to do so, we use a common binning procedure, for wh
we first divide the whole range of the field value into a nu
ber of ‘‘bins ~intervals!,’’ determine for each local-field
value in the sample which bin it belongs, calculate the nu
ber of total field values in each bin, then the probabil
density f is approximated in thei th bin by the formula

f i5
Ti

200 0003NBW
,

where Ti is the total number of occurrence ini th bin and
NBW is the bin width. The probability density functionf will
be shown in figures. Then we complete our statistical an
sis by calculating some moments of the field distributi
from the sampling data. The moments are presented in
form of

^uEx~r !uk&1/k/E0 , ~18!

for k51, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 and`.
The casek5` is simply the maximum value of the magn
tude of the local field in the sample.

III. FIELD DISTRIBUTIONS

We examined the field distributions in three types of co
tinuum composite materials under a uniform applied fie
The composite materials are made by randomly distribu
in a uniform background matrix phase either~i! circular
disks, ~ii ! squares, or~iii ! needle-shaped inclusions. Th
composites with disks are characterized by the uniform d
diameterd. For disks of diameterd at number densityn, the
volume fraction of the inclusions can be calculated by

f25npd2/4. ~19!

In the case of squares with a side lengthl , the inclusion
volume fraction is
r
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f254nl2. ~20!

In the case of needles we actually use slender ellipses
an aspect ratio of 50. Letting the length of the long axis
denoted byb, the needle volume fraction is given by

f25npb2/50. ~21!

Before presenting our numerical results, it is useful
make some remarks. First, our general primary goal in
work is to give a basic analysis of the field distribution in t
entire composite. Alternatively, one may look at the fie
distribution in one phaseonly, as suggested by Eq.~5!. If
one is interested only in breakdown phenomenon, it may
best to study the field distribution at thephase interfaces
exclusively, because the potential and the components o
field are harmonic and thus achieve extreme values on
interfaces only. Second, our numerical method describe
the previous section is capable of computing the local field
any position in the composite. However, for our continuu
models, it is certainly impossible to obtain and analyze n
merically the field atall points in the composite. Thus,
necessary approximation is to perform the analysis of
field distribution on a representative sample of the field. O
sample size is 200 000 field values for each specific comp
ite, with its inclusion type, inclusion volume fraction, an
dielectric constant ratio fixed. Such a sample is chosen fr
20 realizations of the specified composite, each realizatio
solved separately and 10 000 field values are calculated f
the solution. Last, all of our composite models are assum
to satisfy ano-clustering condition; i.e., the inclusions mus
lie at a minimum distance of one another. This minimu
distance was set to be 0.005d, 0.005A2l , and 0.005b for
disks, squares, and needles, respectively. This approxima
is reasonable because it does not change the presence
field distribution in a noticeable manner, and it can ease
computational effort dramatically. In all our calculation
the field is generated by a unit potential drop across
horizontal edges of the unit computational cell@20.5,0.5#
3@20.5,0.5#; i.e., we setE05(1,0). This does not lead to
loss of generality because our composites are taken to
isotropic and homogeneous, and our results are normal
with respect to the applied field.

A. Disks

In this section, we will be concerned with the field distr
butions in composite materials made by embedding circu
disks into a uniform matrix. The configurations were gen
ated using standard Monte Carlo simulation techniques.
used 64 disks in all of our examples. A typical realization
the disk volume fraction of 0.4 is depicted in Fig. 1.

In Figs. 2–4 and Table I, we present our calculated fi
distributions for such composite materials for various v
ume fractions and dielectric constant ratios. In the figur
we plot the probability density functionf „Ex(r )/E0… against
Ex(r )/E0. In the table, we give the calculated moments, d
fined by Eq.~18!, from the sampling data as an approxim
tion to that of the field distribution for each case. From Fig
2–4, we see clearly that the probability density function
the field also exhibits a double-peak character. In general,
peak on the left side is determined by the field inside
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8064 56H. CHENG AND S. TORQUATO
phase with higher dielectric constant, and the peak on
right side is determined by the field inside the phase w
lower dielectric constant.

To see the physical reason for this effect, let us assu
that the inclusion phase has a higher dielectric constant t
the matrix phase. The electric field inside the composite
be viewed as a perturbation of the imposed constant app
field. Without an inclusion phase, the perturbation effect
zero, and the electric field is just the applied field. The pr
ence of higher dielectric constant inclusions induces po
ization charges at the inclusion surfaces that weaken fi
inside the inclusion phase. In our case, this leads to a lo
value of thex component of the electric field in the inclusio

FIG. 1. A typical realization of randomly dispersed disk-shap
inclusions at an inclusion volume fractionf250.4. The disk diam-
eter isd. Note that the figure does not reflect the periodic bound
conditions used in the calculations.

FIG. 2. The probability density functionf „Ex(r )/E0… vs
Ex(r )/E0 for dispersions of randomly distributed disks in which th
particle to matrix dielectric constant ratioe2 /e155.0.
e
h

e
an
n

ed
s
-

r-
ld
er

phase. At the same time, the induced polarization char
enhance the field in the matrix phase, leading to a hig
value of thex component of the electric field in the matri
phase than the applied field. Therefore, the left peak mus
to the left of the average field value and is associated w
the field in the phase with a higher dielectric constant. Sim
larly, the right peak must lie to the right of the average fie
value and is associated with the field in the phase wit
lower dielectric constant. This double-peak character in
cates that the variance or second moment is generally
adequate in describing the field distribution in composite

Double-peak behavior in the field distribution was al
seen by Sheng and Chen16 for a lattice model. However, the
origin of the double-peak behavior observed in their stu
~due to two types of local environment! arises for different
reasons. First, we consider all multipole contributions fo
continuum dielectric model~random placement of inclusion
of finite size in a matrix!, whereas Sheng and Chen consid
point dipole particles on a lattice. Second, they conside
modified electric field~the Lorentz fieldEL), as opposed to
the Maxwell field that we compute. Third, in contrast to t
pointwise field that we calculate throughout the entire co
posite, they determined the Lorentz field for each point p
ticle. In order to make our field calculations equivalent
theirs, we would have to compute ‘‘averaged’’ Lorentz fiel
for each inclusion in the composite up to dipole contributio
and randomly locate the particles on a lattice. We empha
that the double-peak behavior that we find is due to high
low fields occurring in the low and high dielectric phase
respectively.

The first line of Table I shows not only that our calcul
tion of the field is accurate, but also that the samples wh
we have taken to represent the field in the whole compo
are quite adequate. The latter is true because our results
agree with the exact value for that line, which should be
applied field~1.000!, to three figures.

In the disk-to-matrix dielectric constant ratioe2 /e155.0
case~Fig. 2 and columns 2–4 of Table I!, we see that the

d

y

FIG. 3. The probability density functionf „Ex(r )/E0… vs
Ex(r )/E0 for dispersions of randomly distributed disks in which th
particle to matrix dielectric constant ratioe2 /e151000.0.
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TABLE I. The moments of the field distribution for composites with circular disks. Herek is the order of
the moment,e2 /e1 stands for the dielectric constant ratio, andf2 denotes the inclusion volume fraction. Th
data fork5` are the observed maximum values ofuExu. The last row gives the dimensionless effecti
dielectric constant of the composites.

e2 /e155.0 e2 /e151000.0 e2 /e150.001

k f250.2 f250.4 f250.6 f250.2 f250.4 f250.6 f250.2 f250.4 f250.6

1 1.000 0.999 1.002 0.999 0.995 0.999 1.001 0.999 0.99
2 1.068 1.133 1.187 1.178 1.457 1.956 1.113 1.159 1.17
3 1.121 1.250 1.380 1.290 1.811 2.895 1.234 1.326 1.34
4 1.167 1.354 1.565 1.400 2.227 4.243 1.367 1.495 1.54
5 1.211 1.451 1.742 1.557 2.816 6.185 1.528 1.732 1.79
10 1.537 1.982 2.598 3.675 7.012 17.54 3.126 3.577 3.63
15 1.991 2.556 3.315 5.510 10.32 25.90 4.566 5.045 5.18
20 2.338 3.002 3.846 6.753 12.62 31.61 5.534 6.045 6.25
25 2.591 3.327 4.239 7.629 14.25 35.66 6.214 6.753 7.03
30 2.783 3.571 4.538 8.276 15.45 38.67 6.714 7.279 7.61
35 2.935 3.758 4.772 8.771 16.37 40.98 7.097 7.682 8.05
40 3.057 3.907 4.959 9.162 17.10 42.80 7.399 8.002 8.40
45 3.158 4.027 5.111 9.478 17.69 44.28 7.644 8.260 8.69
50 3.241 4.127 5.239 9.739 18.18 45.49 7.847 8.474 8.93
` 4.132 5.187 6.609 12.43 23.21 58.07 9.984 10.72 11.4

eeff /e1 1.316 1.767 2.417 1.532 2.592 4.979 0.649 0.388 0.19
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field behaves nicely with its two peaks sharply separated
the first peak rises with the increasing of the disk~which is
the phase with a higher dielectric constant! volume fraction,
because of the increasing possibility of the sampling po
being in the disks. In the case that the disks have a h
dielectric constant (e2 /e151000.0)~Fig. 3 and columns 5–7
of Table I!, we see that while the field in the matrix pha
~the second peak! behaves nearly the same as in previo
case, the first peak now looks like a delta function
Ex(r )'0. In the case that the disks have a very low diel
tric constant relative to the matrix (e2 /e150.001), Fig. 4
and Table I show that the two peaks of the field distribut
are not so well separated.

FIG. 4. The probability density functionf „Ex(r )/E0… vs
Ex(r )/E0 for dispersions of randomly distributed disks in which t
particle to matrix dielectric constant ratione2A/e150.001.
d

ts
h

s
t
-

n

Beran20 conjectured that in a two-phase composite ma
rial, the variance of the field in phase 1 is of the order of t
variance of the field in phase 2, i.e.,

s̃E1

2 5O~ s̃E2

2 !,

where

FIG. 5. A typical realization of randomly dispersed and ra
domly oriented square-shaped inclusions at an inclusion volu
fraction f250.4. The length of the square side isl . Note that the
figures does not reflect the periodic boundary conditions used in
calculations.
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s̃Ei

2 5
^~Ei2^Ei&!•~Ei2^Ei&!&

^Ei&^Ei&
,

and Ei is the electric field in phasei . Beran assumed thi
relation to derive other results. While it is possible that t
could be true for certain class of materials, we found
numerical evidence to support this conjecture for the mod
considered in the present work. This would certainly not
true for the highly conducting disk case for which the field
the inclusion phase is nearly uniform. Overall, the widths

FIG. 6. The probability density functionf „Ex(r )/E0… vs
Ex(r )/E0 for disperions of randomly distributed squares in co
parison with that of the disk at volume fractionf250.4, and dielec-
tric constant ratio varied ase2/e155.0, 1000.0, and 0.001.
s
o
ls
e

f

the two peaks@an indication of the variance ofEx(r )/E0#
were rather different from each other in our figures.

B. Squares

In this section, we calculate the field distribution in tw
dimensional dispersions in which the inclusions are squa
Of particular interest is how the presence of corners w
affect the field distribution. The square-shaped inclusions
our model composites are randomly distributed and r
domly oriented. A typical configuration at volume fractio
0.4 with 64 squares in the unit cell is depicted in Fig. 5. O
configurations for randomly distributed squares are gen
ated by first generating a random distribution of disks with
desired volume fraction, and then making a square from e
disk with a randomly chosen angle at which the first ver
of the square lies.

In Fig. 6 and columns 2–4 of Table II, we showed o
calculated results of the field distribution in three cases
composite materials with randomly distributed squa
shaped inclusions. The inclusion volume fraction is 0.4
all examples. The dielectric constant ratios were varied
e2 /e155.0, 1000.0, and 0.001. For comparison, we also
cluded in Fig. 6 the results for the corresponding disk cas
From the figure, we see that field distributions for the case
squares nearly coincided with those for the disk case. O
reason is probably that numerically we cannot calculate
actly the charge density at the corners because it is not
defined there, and thus we approximated the density by
fining the discretization at the vicinity of corners but ski
ping the exact corner position, thereby limiting the true
fluence of the corners. This is exactly the reason that
observed maximum values from the sample are actu
lower than that for disk case, for which the close interact

-

re
TABLE II. The moments of the field distributions for the square- and needle-shaped inclusions. Hek is
the order of the moment,e2 /e1 stands for the dielectric constant ratio, andf2 denotes the inclusion volume
fraction. The data fork5` are the observed maximum values ofuExu. The last line is the effective dielectric
constant of the composites.

Squares (f250.4) Needles (f250.012)

k e2 /e155.0 e2 /e151000.0 e2 /e150.001 e2 /e155.0 e2 /e15100.0 e2 /e150.001

1 1.001 1.005 1.003 1.000 1.001 0.999
2 1.130 1.455 1.166 1.003 1.041 3.496
3 1.240 1.754 1.316 1.006 1.085 8.629
4 1.335 2.024 1.479 1.018 1.161 17.19
5 1.420 2.308 1.686 1.089 1.345 27.83
10 1.843 4.125 3.250 2.905 3.378 83.23
15 2.298 5.717 4.460 4.362 4.901 121.2
20 2.657 6.857 5.268 5.346 5.928 146.7
25 2.921 7.682 5.837 6.040 6.665 164.7
30 3.120 8.299 6.258 6.552 7.197 178.1
35 3.274 8.775 6.584 6.944 7.614 188.3
40 3.397 9.154 6.843 7.254 7.946 196.5
45 3.497 9.462 7.055 7.504 8.215 203.1
50 3.580 9.717 7.231 7.710 8.438 208.6
` 4.470 12.39 9.162 9.842 10.77 265.9

eeff /e1 1.773 2.648 0.379 1.027 1.239 0.718



on
ou
it
le
-

pl

o
r
e
ric
en
t

n
an
d
w
a
4

ac
on
or
tio

er
pe

o
b
e

o-
the
ion
se in

eak
frac-
g
for

e

has
ctric
rix,
ot

lity
a in
ent
the
-
o
to

the

ron-
ond,
lipse
ble.

or
-
er-

d
n
o-

lity

ee

le

io
d

56 8067ELECTRIC-FIELD FLUCTUATIONS IN RANDOM . . .
among inclusions is more likely due to our configurati
generating process. A second reason is that even if we c
calculate the density at the corners with more accuracy,
still unlikely to change the field distribution in the who
composite vastly~this will certainly change the line of ob
served maximum value in the table, however!. This is be-
cause the corners are rare and the chance of our sam
position~where we calculate the local field! lying very close
to one of them is very small. While the corner effect is n
strong enough to be seen on the local field distribution figu
we should also notice that the combined effect of the corn
is certainly not negligible as far as the effective dielect
constant is concerned. Indeed, we do see a stronger influ
on the effective dielectric constant due to the presence of
corners from the data in the table.

C. Needles

Here we present our calculations for random distributio
of needles in a matrix for various phase dielectric const
ratios. In the case that the inclusions have a very small
electric constant compared to that of the matrix phase,
mimic materials with cracklike flaws. Figure 7 displays
typical configuration of our composite material with 6
needle-shaped inclusions. The needles are randomly pl
and randomly oriented. The generation of the configurati
for randomly distributed needles is similar to that f
squares. Specifically, we first generate a random distribu
of disks of diameterd and then place a needle~of lengthd)
with random orientation within each disk. As noted earli
each needle is actually a very slender ellipse with an as
ratio of 50.0.~In the figure, the aspect ratio is only 10.0.!

Our results on the field distributions for the case
needles are summarized in Fig. 8 and columns 5–7 of Ta
II. The needle volume fraction is merely 0.012 and thr

FIG. 7. A typical realization of randomly dispersed need
shaped inclusions. The length of the needle isb. Aspect ratio here is
10. Our field distribution calculations are based on an aspect rat
50, however. Note that the figure does not reflect the perio
boundary conditions used in the calculations.
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different needle-matrix dielectric constant ratios were ch
sen:e2 /e155.0, 100.0, and 0.001. The last case mimics
case of cracks. From Fig. 8, we see that the field distribut
for needles becomes single peaked, especially for the ca
which e2 /e155.0, where it becomesd-function-like with its
top being cut off in the figure. The reason that the other p
disappears is simply because the needle phase volume
tion is sufficiently small such that the probability of samplin
in the needle phase is very small. Notice that the peaks
e2 /e155.0 ~solid line! ande2 /e15100.0~dotted line! lie to
the right ofEx(r )/E051.0. And the peak for the crack cas
e2 /e150.001~dashed line! lies to the left ofEx(r )/E051.0.
This is because in the first two cases, the inclusion phase
a higher dielectric constant, and in the last case, the diele
constant of the needles is lower than that of the mat
which confirms our earlier suggestions. Although we do n
see strong field fluctuations from the plots of the probabi
density functions, a close examination of the moment dat
Table II shows us that needles give rise to very high mom
values, even though they occupy a small fraction of
space. Disks~or squares! at the same value of dielectric con
stant ratioe2 /e1 require a much higher volume fraction t
achieve similar values of the moments. We were able
capture the high-field behavior due to sharp ends in
needle case~unlike the instance of squares! for two reasons.
First, the influence of the sharp ends of the needles is st
ger than the influence of the corners of the squares. Sec
we assume that each needle is actually a very slender el
whose boundary is smooth and is numerically more tracta

IV. CONCLUSIONS

In this paper, we studied the local-field distributions f
continuum~off-lattice! models of random dielectric compos
ites. We considered three different two-dimensional disp
sions in which the inclusions were either~i! circular disks,
~ii ! squares, or~iii ! needles. The fluctuations were quantifie
in two ways: by computing the probability density functio
associated with the electric field and by computing the m
ments of the field. We showed that in general the probabi

FIG. 8. The probability density functionf „Ex(r )/E0… vs
Ex(r )/E0 for dispersions of randomly distributed needles with th
representative particle to matrix dielectric constant ratios.
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density function for disks and squares exhibits a double-p
character, similar to lattice models. Not surprisingly, the
fore, the variance or second moment of the field is gener
inadequate in characterizing the field fluctuations in the co
posite. In the case of a dilute concentration of needles,
probability density function is a singly-peaked one, but t
higher-order moments are appreciably larger for needles
for either disks or squares.
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