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Maxwell Garnett theory for mixtures of anisotropic inclusions:
Application to conducting polymers
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The effective dielectric functionee for a medium of anisotropic inclusions embedded in an isotropic host is
calculated using the Maxwell Garnett approximation. For uniaxial inclusions,ee depends on how well the
inclusions are aligned. We apply this approximation to studyee for a model of quasi-one-dimensional organic
polymers. The polymer is assumed to be made up of small single crystals embedded in an isotropic host of
randomly oriented polymer chains. The host dielectric function is calculated using the effective-medium
approximation~EMA!. The resulting frequency-dependentee(v) closely resembles experiment. Specifically,
Reee(v) is negative over a wide frequency range, while Imee(v) exhibits a broad ‘‘surface plasmon’’ band at
low frequencies, which results from localized electronic excitations within the crystallites. If the host is above
the conductivity percolation threshold, Imee(v) has a low-frequency Drude peak in addition to the surface
plasmon band, and Reee(v) is negative over an even wider frequency range. We also calculate the cubic
nonlinear susceptibilityxe(v) of the polymer, using a nonlinear EMA. At certain frequencies,xe(v) is found
to be strongly enhanced above that of the corresponding single crystals. Our results suggest that the electro-
magnetic properties of conducting polymers can be understood by viewing the material as randomly inhomo-
geneous on a small scale such that the quasistatic limit is applicable.@S0163-1829~97!01537-3#
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I. INTRODUCTION

The Maxwell Garnett~MG! approximation,1 also known
as the Clausius-Mossotti approximation, is one of the m
widely used methods for calculating the bulk dielectric pro
erties of inhomogeneous materials.2,3 It is useful when one of
the components can be considered as a host in which in
sions of the other components are embedded. It involve
exact calculation of the field induced in the uniform host
a single spherical or ellipsoidal inclusion and an approxim
treatment of its distortion by the electrostatic interaction
tween the different inclusions. This distortion is caused
the charge dipoles and higher multipoles induced in the o
inclusions. The induced dipole moments cause the lon
range distortions and their average effect is included in
MG approximation which results in a uniform field inside a
the inclusions. This approach has been extensively used
studying the properties of two-component mixtures in wh
both the host and the inclusions are isotropic materials w
scalar dielectric coefficients. It has also been applied in
study of the Hall effect in inhomogeneous materials, wh
the components have tensor electrical conductivities un
applied magnetic field.4 In this paper, we present a variatio
of this approach which is useful for mixtures where the h
is an isotropic material but the inclusions are made of an
tropic components.

There are many possible locally anisotropic inhomo
neous materials in which the local dielectric coefficient is
tensor. Of these, the most commonly studied are polycrys
line aggregates of a single anisotropic component.5,6 In these
materials the inhomogeneity is provided by the rand
variation of the crystal orientation throughout the syste
560163-1829/97/56~13!/8035~12!/$10.00
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Many of these studies use the effective-medium appr
imation.7 This approximation is based on a self-consiste
procedure in which a grain of one of the components is
sumed to have a convenient shape~usually spherical or el-
lipsoidal! and to be embedded in an effective medium who
properties are determined self-consistently.2,8

In recent years, this approximation has been extensiv
applied to composites involving high-temperature superc
ductors. In single-crystal form, such superconductors
highly anisotropic, having conductivities which are mu
larger in theab plane than in the third direction. For ex
ample, Carret al.9 and Helsing and Helte10 have developed
slightly different EMA’s for mixtures of anisotropic compo
nents such that the principal axes of the conductivity ten
of each ellipsoidal crystallite are degenerate with those of
ellipsoid. They have considered models in which the ani
tropic grains are randomly oriented, thus leading to an i
tropic composite. Walker and Scharnberg11 have used the
model of Ref. 9 to describe the properties of granular sup
conductors. Diaz-Guilera and Tremblay12 considered an
EMA for mixtures of oriented uniaxial ellipsoids~each with
a conductivity matrix degenerate with the axes of the ell
soid! and an isotropic conductor. This approach differs fro
the previous models since in this case the composite itse
anisotropic. Genchev13 applied a similar approach for a mix
ture of many superconducting components, each dis
guished by having a different crystallite shape, and a diff
ent conductivity tensor. An extensive EMA study of th
optical properties of high-Tc superconductors, modeled as
composite of a uniaxial superconductor and an isotropic n
mal conductor, has been carried out by Nohet al. and by
Sulewskiet al.14,15
8035 © 1997 The American Physical Society
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8036 56OHAD LEVY AND DAVID STROUD
All these EMA calculations are particularly appropria
for composites and polycrystals in which the grains of
various components are randomly and symmetrically dist
uted, so that none of the components is identifiable as a
in which the others are preferentially embedded. In this
per, by contrast, we consider a different type of locally a
isotropic inhomogeneous materials, made of anisotropic
clusions which are, indeed, randomly embedded in
homogeneous isotropic host. Because of the asymmetr
the assumed geometry, and the approximation, the result
likely to differ somewhat from the symmetric EMA. Thi
geometrical distinction may be easily understood by not
that the EMA and MG approximations are exact for tw
different microgeometries.3 The EMA becomes exact in
hierarchical geometry where the two components play s
metrical geometric roles.16 In contrast, the MG approach i
exact for a geometry where the entire space is filled w
coated spheres, each with identical ratio of inner to ou
radius, such that one component is the core material~isolated
inclusions! and the other is the coating material~the host!.
We consider an example of the later case, with anisotro
inclusions, in which the direction of the dielectric tensor a
may vary from one inclusion to another. The distribution
these directions significantly influences the bulk effective
electric response of the material and determines its ma
scopic anisotropy properties.

In Sec. II, we present an anisotropic version of the M
approximation for the dielectric tensor of such materials. T
result obtained depends explicitly on the distribution of cr
tal orientations inside the inclusions. In Sec. III, we consid
anisotropic mixtures in which the local dielectric properti
are weakly nonlinear and derive a simple expression for t
bulk effective nonlinearity tensor, valid to first order in th
local nonlinearity.

In Sec. IV, these results are applied to a simple mode
conducting polymers. Heavily doped polymers, such as p
acetylene, polyaniline, and polypyrrole, are quasi-o
dimensional conductors that have attracted considerable
terest since the first discovery of electrical conduction
doped polyacetylene.17 In addition to their interesting con
duction properties, these organic polymers usually exh
relatively large cubic nonlinearity.18,19 Many papers have
discussed possible microscopic mechanisms that may
plain these properties. They include exotic elementary e
tations such as charged solitons20 and bipolarons.21 Typical
samples of these materials are collections of crystalline
mains, inside which the polymer exhibits three-dimensio
order, separated by amorphous regions of the sa
polymer.22,23The crystalline domains are typically;20 Å in
diameter and occupy 20–50 % of the material’s volume.

This picture suggests that an asymmetric MG theory
anisotropic inclusions in an isotropic matrix may be a re
sonable approach to calculate the macroscopic diele
properties of these disordered polymers. In this paper, ra
than discussing microscopic mechanisms, we presen
model that may describe how the macroscopic propertie
such disordered materials are affected by such a microge
etry. The importance of the microgeometry, and in particu
the percolation properties in the presence of inhomogene
disorder, has been recently demonstrated in experiment
conducting doped polyaniline.23 Our description includes an
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explicit connection between the orientational disorder of
crystalline domains, the disorder inside the isotropic host
the macroscopic linear and weakly nonlinear dielectric pr
erties of inhomogeneous conductors.

II. DIELECTRIC RESPONSE OF COMPOSITES
WITH ANISOTROPIC INCLUSIONS

Consider a parallel plate condenser whose plates are l
enough so that edge effects can be neglected. The conde
is filled by a homogeneous medium with a scalar dielec
constanteh in which nonoverlapping spheres with a tens
dielectric coefficientẽs are distributed randomly but uni
formly. The orientation of the dielectric tensor differs fro
inclusion to inclusion, such that

ẽs5RẽRT, ~1!

whereẽ is a diagonal tensor andR is the inclusion dependen
rotation, which in general depends on the three correspo
ing Euler angles. Our aim in this section is to derive
expression for the bulk effective dielectric tensor of this m
ture.

First we consider a single sphereẽs immersed in the hos
eh . A voltage is applied between the condenser plates s
that the volume averaged field in the system isE0 . In this
case, the electric fieldEs and the displacement field
Ds5 ẽsEs inside the inclusion are uniform and satisfy th
exact relation24

Ds12ehEs53ehE0 . ~2!

The induced dipole moment of the sphere is

ps5Vs

Ds2ehEs

4p
5Vs

3eh

4p

ẽs2ehI

ẽs12ehI
E0 , ~3!

whereVs is the volume of the sphere andI is the identity
matrix. In this, and in the subsequent equations, the deno
nators should be understood as representing inverse matr
From this it follows that if the medium contains a few su
spheres, sufficiently far apart for their mutual interactions
be negligible, than the volume averaged polarization in
medium is

^P&[
1

V (
s

ps5 f
3eh

4p K ẽs2ehI

ẽs12ehI L
R

E0 , ~4!

where f is the volume fraction of the inclusions and^&R
denotes an average over the dielectric tensor orientation
side the inclusions.

The bulk effective dielectric tensor can be defined by
ratio between the volume averaged displacement fi
D05^D& and the volume averaged electric fieldE05^E&.
The volume averaged displacement field is easily calcula
by

D05ehE014p^P&5F I 13 f K ẽs2ehI

ẽs12ehI L
R
GehE0 . ~5!

The bulk effective dielectric tensor is therefore
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56 8037MAXWELL GARNETT THEORY FOR MIXTURES OF . . .
ẽe5ehI 13 f ehK ẽs2ehI

ẽs12ehI L
R

. ~6!

This result, ignoring the interaction between the differe
inclusions, is usually called the dilute limit and is valid on
to first order in the volume fraction of the inclusions.

The electrostatic interaction between the inclusions
negligible only in mixtures where their volume fraction
very small. In all other cases it should be taken into acco
when calculating the dielectric properties of the system. T
is most easily done in the MG approximation, where t
average field acting on each inclusion is considered to be
the applied fieldE0 but the well-known Lorentz local field.2

Using this correction, the dipolar interaction between the
clusions is taken into account in an averaged way. A sim
method to calculate this correction, usually referred to as
excluded volume approach, was proposed by Bragg
Pippard.25 The average field acting on an inclusion, in a m
ture that is not too dense, is the average field in the h
mediumEex. The difference betweenEex and E0 is due to
the correlations between positions of different spheres
arise from the prohibition of overlap between them.25 Sub-
stitutingEex for E0 in Eq. ~2!, we find that the field inside the
inclusion satisfies the relation

Ds12ehEs53ehEex. ~7!

The averaged field over the entire system, inside and out
the inclusions, must still beE0 . This leads to a simple rela
tion between the average fields in the host and in the in
sions

f ^Es&1~12 f !Eex5E0 , ~8!

where the angular brackets denote a volume average in
the inclusions. SubstitutingEs from Eq.~7!, we solve forEex
and find

Eex5
E0

~12 f !13 f eh^~ ẽs12ehI !21&R
. ~9!
t
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This result can again be used with Eq.~7! to calculate the
volume averaged polarization

^P&5
f

4p K ẽs2ehI

ẽs12ehI L
R

3ehE0

~12 f !13 f eh^~ ẽs12ehI !21&R
,

~10!

which leads to the bulk effective dielectric tensor

ẽe5ehI 13 f ehK ẽs2ehI

ẽs12ehI L
R

3
1

~12 f !13 f eh^~ ẽs12ehI !21&R
. ~11!

This is the MG result for mixtures of anisotropic inclusion
It depends on the type of anisotropy of the tensorẽ and on
the orientation distribution function of the rotation matric
R. As discussed further below, it is not limited to low co
centrations of inclusions, but instead is appropriate even
high concentrations, provided that the composite has the
sumed geometry~in which a material of one type is embed
ded in an identifiable host material!.

One important example of anisotropic behavior is that
uniaxial materials, where the dielectric coefficient obta
one value along one preferred direction and another valu
all perpendicular directions. The dielectric tensor of such
material can be written as

ẽ5S e' 0 0

0 e' 0

0 0 e i

D , ~12!

in the coordinate system defined by the dielectric axis. Fo
mixture of many such inclusions, embedded in an isotro
host, it is convenient to define the coordinate system s
that the external fieldE0 is applied in the positivez direc-
tion. The rotation matrixR5Ruf now depends only on two
orientation anglesu and f between the principal dielectric
axis and thez axis. In this coordinate system the dielectr
tensor of each inclusion may be written explicitly as
e

ẽs5RufẽRuf
T 5e'I 1aS cos2f sin2u cosf sinf sin2u cosf cosu sinu

cosf sinf sin2u sin2f sin2u sinf cosu sinu

cosf cosu sinu sinf cosu sinu cos2u
D , ~13!

wherea[e'2e i . Substituting this in Eq.~11! and definingd[(e'12eh)(e i2eh), we find an explicit expression for th
bulk effective dielectric tensor, depending on the distribution of the orientation anglesu andf

ẽe5ehI 1
3 f ehÃ

~e'12eh!~e i12eh!
F12 f 1

3 f ehB̃

~e'12eh!~e i12eh!
G21

, ~14!

where

Ã5S d23aeh^cos2u1sin2f sin2u&
3aeh

2
^sin2f sin2u&

3aeh

2
^cosf sin2u&

3aeh

2
^sin2f sin2u& d23aeh^cos2u1cos2f sin2u&

3aeh

2
^sinf sin2u&

3aeh

2
^cosf sin2u&

3aeh

2
^sinf sin2u& d1

3aeh

2
~^cos2u&21!

D
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and

B̃5S e'12eh1a^cos2u1sin2f sin2u& 2
a

2
^sin2f sin2u& 2

a

2
^cosf sin2u&

2
a

2
^sin2f sin2u& e'12eh1a^cos2u1cos2f sin2u& 2

a

2
^sinf sin2u&

2
a

2
^cosf sin2u& 2

a

2
^sinf sin2u&

e'1e i14eh2a^cos2u&
2

D .

The angular brackets denote averaging overu andf of all the inclusions in the mixture.
This result is greatly simplified in cases where these averages can be calculated exactly. Some of these exampl

following.
~1! The dielectric axes of all the inclusions are oriented in the direction of the applied field (u50). The effective dielectric

tensor in this case is

ẽe5S eh1
3 f eh~e'2eh!

~e'2eh!~12 f !13eh
0 0

0 eh1
3 f eh~e'2eh!

~e'2eh!~12 f !13eh
0

0 0 eh1
3 f eh~e i2eh!

~e i2eh!~12 f !13eh

D . ~15!

As expected, this effective dielectric tensor has uniaxial symmetry and its diagonal elements are given by the MG r
isotropic inclusions with dielectric coefficientse' ande i , respectively.

~2! The dielectric axes of all the inclusions are oriented in they direction~u5p/2, f5p/2!. The effective dielectric tenso
is again uniaxial, but with the MG expression fore i inclusions now appearing in they-axis term instead of in thez-axis term:

ẽe5S eh1
3 f eh~e'2eh!

~e'2eh!~12 f !13eh
0 0

0 eh1
3 f eh~e i2eh!

~e i2eh!~12 f !13eh
0

0 0 eh1
3 f eh~e'2eh!

~e'2eh!~12 f !13eh

D . ~16!

A similar result is obtained when all the inclusions are oriented in thex direction~u5p/2, f50!, by exchanging thex-axis
andy-axis terms.

~3! Uniform orientation distribution overu5@0,p# andf5@0,2p#. It is clear that in this case the entire composite sho
be isotropic, with a scalar dielectric coefficient. Carrying out the averaging in Eq.~14! we indeed obtain

ee5eh13 f eh

~e'12eh!~e i2eh!22eh~e i2e'!

~12 f !~e'12eh!~e i12eh!1 f eh~e'12e i16eh!
. ~17!
-
ar
is
th
an
m
n

a
ffi
o
ity
G

e

e is
ese
the
e-

f in-
e

ap-
and
the
the

st,
sim-
Equation~17! is an MG approximation for a volume frac
tion f of randomly oriented spherical crystallites, each ch
acterized by a uniaxial dielectric tensor, embedded in an
tropic host. It is of interest to contrast this result wi
approximations, such as that of Ref. 11, in which the r
domly oriented anisotropic crystallites and the isotropic co
ponent are treated symmetrically. The two approximatio
do indeed differ: for example, that of Ref. 11 will yield
nonzero percolation threshold for dc conductivity at su
ciently high concentration of anisotropic crystallites, pr
vided that all the principal components of the conductiv
tensor of that crystallite are nonzero. By contrast, the M
approximation will always yield a zero dc conductivity of th
-
o-

-
-
s

-
-

composite if the host has zero conductivity, because ther
no percolation. One cannot say, in general, that one of th
approximations is more correct than the other. Instead,
proper choice of an approximation for a given problem d
pends on which geometry better describes the system o
terest. If the geometry is symmetric, the EMA would b
more appropriate. In the case of conducting polymers, it
pears that the asymmetric geometry is more applicable,
we have therefore adopted the MG approximation in
present work. There is no experimental evidence as for
shapesof the polymer inclusions in the materials of intere
thus, rather than making a special assumption, we have
ply taken these grain shapes to be spherical.
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III. WEAK NONLINEARITY OF ANISOTROPIC
COMPOSITES

Quasi-one-dimensional organic polymers sometimes h
a remarkably large cubic nonlinear response in the opt
regime.18,19 Enhanced nonlinear properties have been
subject of intense study in other types of disordered str
tures, e.g., locally isotropic composites consisting of susp
sions of nonlinear material in a linear host and layered
crostructures of alternating nonlinear dielectrics,26–35 where
it has been demonstrated that the microgeometry greatly
tributes to the large effective nonlinearity. The enhancem
is produced by a local field effect. The cubic nonlinearity
related to the fourth moment of the local field distributio
and is therefore sensitive to local field values that may
greatly increased above the applied field by fluctuations
the local dielectric properties.

Zenget al.29 have proposed a method for calculating t
effective weak nonlinearity of locally isotropic disordere
materials, to first order in the nonlinearity. Here we presen
simple generalization of their approach to mixtures of ani
tropic components. We consider an anisotropic material
which the localD and E have a nonlinear relation of th
form

Di5e i j Ej1x i jkl EjEk* El . ~18!

HereDi andEi are thei th Cartesian components ofD and
E, e i j and x i jkl are second-rank and fourth-rank Cartes
tensors, and we use the Einstein convention that repe
indices are summed over. The following analysis is carr
out in the weakly nonlinear regime, i.e., the nonlinear term
assumed to be small compared to the linear term. We
assume thate i j is symmetric, which insures that it can b
diagonalized. For boundary conditions, we consider a sam
of volumeV, bounded by surfaceS, on which the potential
F is specified asF(x)52E0•x. This choice ensures tha
the volume average of the electric field withinV is E0 . The
different elements of the effective dielectric tensoree and the
cubic nonlinear susceptibilityxe of the composite may be
defined by the relation

^Di&5ee; i j E0,i1xe; i jkl E0,jE0,k* E0,l , ~19!

where ^•••& denotes a volume average. Equivalently, t
definition may be written

W[V^D&•E0[V@ee; i j E0,iE0,j1xe; i jkl E0,iE0,jE0,k* E0,l #,
~20!

where we have introduced an energylike functionW from
which ee andxe may be derived.

Note that even though the constitutive relationship~18! is
nonlinear and anisotropic, the local fieldsD andE still sat-
isfy the usual electrostatic equations

¹•D50, ¹3E50. ~21!

From the second of these,E can be expressed as the negat
gradient of a scalar potential,E52¹F. However, F no
longer obeys the Laplace equation, because of the com
cated~and inhomogeneous! constitutive relation.

The total energyW can also be written as an integral ov
the local energy, which is
ve
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W5E $e i j EiEj1x i jkl EiEjEk* El%d
3x[W21W4 . ~22!

It is easy to prove, from the electrostatic equations~18! and
~21! that the definitions~19! and ~20! of the effective prop-
erties are equivalent. The proof follows closely the ana
gous proof for isotropic composites.36 Thus, to determineee
andxe , we need, in principle, only evaluateW for the actual
microstructure of the disordered sample, using Eq.~22!.

Our first step is to show that to first order inx i jkl , just as
in the isotropic case,xe involves the fourth moment of the
electric field in a related linear problem. The local elect
field may be written as

E5Elin1dE, ~23!

where Elin is the electric field that would exist in a linea
medium with the samee i j (x) but with x i jkl (x)50, anddE is
the additional electric field due to the nonlinearity, which
by definition, of at least first order inx i jkl . Sincex i jkl is by
assumption a small perturbation on the linear medium, i
sufficient to calculateW only to first order inx. To this
order, we may neglect the contribution ofdE to the fourth-
order term, since it will only have an effect onW of second
order in thex i jkl ’s. The term involvinge i j may be written

W25E @e i j ~Elin; i1dEi !~Elin; j1dEj !#d
3x. ~24!

That portion ofW2 which is first order indE can be written

dW2
~1!5E @2e i j Elin; idEj #d

3x, ~25!

where we have used the symmetry ofe i j . Writing
dEj52¹ jdF and integrating by parts, we obtain

dW2
~1!52H E @¹ j~e i j Elin; i !dF#d3x

2E ¹ j~e i j Elin; idF!d3xJ . ~26!

But

¹ j~e i j Elin; i !5¹•D lin50, ~27!

where D lin is the displacement vector in the related line
medium, which, like the total displacementD, is divergence
free. The integrand of the second term is the divergence
vector whosej th component ise i j Elin; idF. Using the diver-
gence theorem, we can convert this integral into a surf
integral, which vanishes becausedF50 on S. ThusdW2

(1)

vanishes.
The effective coefficientsee andxe are given, according

to Eq.~20!, by the coefficients ofVE0
2 andVE0

4 in W. Using
the results just proven, we find

ee; i j 5
*e i j Elin; iElin; jd

3x

VE0,iE0,j
~28!

and
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xe; i jkl 5
*x i jkl Elin; iElin; jElin;k* Elin; ld

3x

VE0,iE0,jE0,k* E0,l
. ~29!

Thus, just as in an isotropic composite, bothee andxe can be
expressed~to lowest order in the nonlinearity! in moments of
the electric field in the related linear medium. Hereafter,
drop the subscript ‘‘lin;’’ only linear fields will be discussed
unless otherwise stated. Denoting the eigenvalues ofe i j by e i
and those ofee; i j by ee; i , we write

ee; i5
(aea; i*aEi~x!2d3x

VE0,i
2 , ~30!

whereEi(x) is the field component parallel to thei th princi-
pal axis atx and the sum is taken over all componentsa in
the mixture. Equation~30! implies that

^Ei
2&a

E0,i
2 5

1

pa

]ee; i

]ea; i
, ~31!

where^•••&a denotes a spatial average in theath component
and pa the volume fraction of that component. This is th
analog of a result in isotropic composites,29

^E2&a

E0
2 5

1

pa

]ee

]ea
. ~32!

Considering the nonlinear susceptibility explicitly, w
will assume for convenience that, in the body coordin
system, the elements ofx all vanish exceptx i i j j , with indi-
ces equal in pairs. Then from Eq.~29!, we get

xe; i j 5
(axa; i i j j ^Ei

2uEj u2&a

E0;i
2 uE0; j u2 . ~33!

Next, we write down a simple approximation forxe analo-
gous to the ‘‘nonlinear decoupling approximation’’~NDA!
of isotropic nonlinear composites.29 The NDA is specified by
the assumption that

^Ei
2uEj u2&'^Ei

2&^uEj u2&, ~34!

or, upon using Eqs.~31! and ~33!,

xe,i j 5(
a

xa; i i j j

pa
S ]ee; i

]ea; i
D U]ee; j

]ea; j
U. ~35!

This result is similar to that recently obtained by Stroud37 for
macroscopically isotropic polycrystals of anisotropic mate
als and is closely analogous to the equation

xe5(
a

xa

pa
S ]ee

]ea
D 2

~36!

which specifies the NDA in mixtures of isotropi
components.29

Equation ~35! is useful given an approximation for th
effective dielectric tensor. In our case it can be used toge
with the MG result~14! to calculate different elements of th
effective nonlinearity tensor of the composite.
e

e

-

er

IV. APPLICATION TO CONDUCTING POLYMERS

As mentioned in the Introduction, typical samples of r
cently studied conducting polymers are collections of cr
talline grains separated by regions of amorphous mate
inside which the spatial orientation of the polymer cha
changes randomly and continuously.22,23Such a structure can
be modeled by the MG approach of Sec. II, where the hos
not a simple dielectric but is itself a macroscopically isotr
pic inhomogeneous mixture made of the same anisotro
material as the inclusions. This host may be roughly view
as a polycrystalline collection of anisotropic, randomly o
ented, compact grains much smaller than the spherical in
sions. Its dielectric properties can then be calculated from
principal elements of the local dielectric tensore i and e'

using the well-known effective-medium approximatio
~EMA!. For a locally uniaxial polycrystal, this approxima
tion leads to the simple relation

e i2eh

e i12eh
12

e'2eh

e'12eh
50. ~37!

Solved foreh , this gives

eh5
e'1Ae'

2 18e ie'

4
, ~38!

for the dielectric coefficient of the isotropic effective m
dium. The bulk effective dielectric tensor of the entire sy
tem may now be calculated by substituting this result foreh
in Eq. ~14!.

The EMA of Eq.~38! predicts that the polycrystalline hos
is precisely at the percolation thresholdpc51/3 of the con-
ducting componente i . However, it is well known that this
approximation predicts too high a threshold for isotrop
three-dimensional systems. Thus, it is reasonable to ass
that in real samples the conducting component does pe
late inside the isotropic host. This expected behavior can
mimicked within our model by introducing an effectiv
‘‘volume fraction’’ p higher thanpc51/3 in the effective-
medium expression~37! for eh

p
e i2eh

e i12eh
1~12p!

e'2eh

e'12eh
50. ~39!

In a mixture of two isotropic components,p would be the
volume fraction of the component with dielectric consta
e i . In our model, however, the material is a collection
randomly oriented polymer chains, and the concept of a v
ume fraction has no clear definition. Instead it should
viewed as a measure of the connectivity of the compon
e i . In highly disordered samples, the polymer chains
relatively short. This leads to short continuous paths ofe i ,
only a few of which will connect opposite sides of the ent
system. This low connectivity corresponds to a small va
of p. By contrast, in samples with lower disorder the po
mer chains are longer, on average, and create more exte
continuous paths ofe i . These samples will have relativel
many paths ofe i which span the entire system, and therefo
higher connectivity and a larger effective value ofp. While
the best choice ofp is difficult to fix, we believe that this
equation does describe the real physical behavior of the h
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namely, that it is a random amorphous collection of polym
chains in which there may be infinite connected~percolating!
paths of the polymer in the high-conductivity direction.

A. Linear dielectric response

To illustrate the predicted dielectric behavior for th
simple examples of Sec. II A, we consider a highly simp
fied model of a quasi-one-dimensional conductor. In
high-conductivity direction we assume a Drude metal w
dielectric function

e i~v!512vp
2/@v~v1 i /t!#. ~40!

In the perpendicular direction, we assume simply an insu
tor with

e'~v!51. ~41!

Numerical results for aligned and randomly oriented inc
sions, withvpt530, embedded in a hosteh of Eq. ~38! @or
of Eq. ~39! with p51/3# are shown in Figs. 1 and 2. In Fig

FIG. 1. Real and imaginary parts of the component paralle
the applied field of the effective dielectric tensor for a mixture
aligned inclusions, Eq.~15!. Results are shown forvpt530 in the
metallic direction andf 50.1 ~solid line!, f 50.25~dashed line!, and
f 50.4 ~dash-dotted line!. The dotted line is the corresponding r
sult for a mixture of randomly oriented inclusions, Eq.~17!.
r

e

-

-

1~a! we plot the real part of the parallel component of E
~15! for three different volume fractions of the spherical i
clusions. As the volume fraction of the oriented inclusio
increases the influence of the metallic behavior along th
principal axis becomes more pronounced. This leads to
appearance of a frequency range, belowvp , where the real
part of the dielectric coefficient is negative. This range w
ens, and the dielectric coefficient becomes more negative
the volume fraction increases. The imaginary part, shown
Fig. 1~b!, increases with volume fraction, as the metallic b
havior becomes more important. The results are marke
different for the perpendicular component of Eq.~15!. The
conducting direction plays a much smaller role in this ca
and the real part ofee is never negative. Its trend of chang
as the volume fraction increases, is opposite to that of
parallel component@see Fig. 2~a!#. The imaginary part,
shown in Fig. 2~b!, now decreases with volume fraction, a
the influence of the high conductivity direction becomes le
pronounced.

In mixtures of randomly oriented inclusions and a ho
exactly at the percolation threshold~38!, the bulk effective
dielectric coefficient does not depend on the volume fract
@results for this case are shown for reference in Figs.~1! and
~2! ~dotted lines!#. This can be shown by a direct calculatio
that leads to

o
f

FIG. 2. Real and imaginary parts of the component perpend
lar to the applied field of the effective dielectric tensor of Eq.~15!.
The different curves are as in Fig. 1.
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K ẽs2ehI

ẽs12ehI L
uf

5
~e'12eh!~e i2eh!22eh~e i2e'!

~e'12eh!~e i12eh!

5
1

3

e i2eh

e i12eh
1

2

3

e'2eh

e'12eh
50, ~42!

where the last equality is obtained from Eq.~37!. Substitut-
ing this in Eq.~11! we again getẽe5ehI with eh given by
Eq. ~38!. This result is intuitively obvious, since the colle
tion of randomly oriented inclusions is macroscopica
equivalent to the polycrystalline hosteh of Eq. ~38!. This is
not the case in any mixture where the host is not exactl
the percolation threshold, since the exact equivalence
tween the collection of randomly oriented inclusions and
host no longer holds. In all of these cases, the entire mat
must be isotropic with a scalar bulk effective dielectric c
efficient.

Results for different values of connectivityp, both above
and below the percolation threshold, are shown in Figs

FIG. 3. Real and imaginary parts of the component paralle
the applied field of the effective dielectric tensor for a mixture
aligned inclusions, Eq.~15!. Results are shown forvpt530 in the
metallic direction,f 51/3 andp50.1 ~solid line!, p50.2 ~dotted
line!, p50.33~crosses!, p50.4 ~dashed line!, andp50.5 ~dash-dot
line!. The imaginary part for the two lowest values ofp are indis-
tinguishable from thex axis.
at
e-
e
ial
-

3

and 4. In Fig. 3~a! we plot the real part of the parallel com
ponent of Eq.~15! ~inclusions aligned parallel to the applie
field! for five different values ofp, with the same volume
fraction of the inclusionsf 51/3. The results show a quali
tatively different behavior above and below the percolat
thresholdpc51/3. Belowpc , the real part ofee is positive,
and relatively small, in the entire range of frequencies bel
vp . Abovepc , a zero crossing appears below which Reee is
negative. This zero crossing occurs at higher frequencies
higher values of p.pc ~v/vp50.89 for p50.4 and
v/vp50.93 forp50.5!. This behavior follows qualitatively
experimental results on conducting polymers in which h
conductivity samples exhibit zero crossing and negative Ree
at low frequencies.22,23 Low conductivity samples, on the
other hand, have positive Reee at all frequencies. The imagi
nary part ofee , Fig. 3~b!, increases at low frequencies asp
increases. Imee of low conductivity samplesp,pc is indis-
tinguishable from thex axis at the entire range of frequencie
belowvp . But in high conductivity samples wherep.pc , it
is enhanced at low frequencies by two or three orders
magnitude. Similar behavior is obtained for mixtures of ra
domly oriented inclusions, Fig. 4. As expected, the effects
varying the value ofp are somewhat less significant than
the aligned inclusions case. The range of frequencies

o
f

FIG. 4. Real and imaginary parts of the effective dielectric co
stant for mixtures of randomly oriented inclusions, Eq.~17!. The
different curves are for different values ofp as in Fig. 4.
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56 8043MAXWELL GARNETT THEORY FOR MIXTURES OF . . .
which Reee is negative forp.pc is smaller and the negativ
values obtained are also smaller. The zero crossing point
now v/vp50.31 for p50.4 andv/vp50.48 for p50.5.
The enhancement of Imee at low frequencies is still signifi-
cant but not as large as for aligned inclusions. Even wea
effects, although with the same general trend, are obtaine
mixtures with inclusions aligned perpendicular to the appl
field. This behavior is a result of the reduced importance
the metallic componente i in these cases compared to mi
tures where it is aligned parallel to the field.

In Figs. 3 and 4, Reee of the high conductivity sample
crosses thex axis at a single frequency, below which it
negative. Experimental studies on polyaniline and polyp
role have shown that under certain circumstances Reee may
exhibit three zero crossings instead of one, leading totwo
separate frequency bands where it is negative.22,23 One band
appears at very low frequencies, as in Figs. 3 and 4, and
other at slightly higher frequencies. Between these two ba
Reee is relatively large and positive. These observations s
gest that the metallic behavior of the polymer, along its pr
cipal axis, is somewhat more complicated than the sim
Drude behavior of Eq.~40!.

As a simple model for this behavior, we add to the Dru
dielectric function an additional ‘‘vibrational’’ contribution
at a finite frequencyv0 . This leads to a dielectric coefficien
of the form

e i~v!512
vp

2

v~v1 i /t!
1

vs
2

v0
22v22 igv

, ~43!

where the amplitudevs , the resonant frequencyv0 and the
damping constantg are material dependent constants. Su
stituting thise i , and retaining the polycrystalline host of E
~39!, in Eq. ~14! indeed leads to Reee with three zero cross
ings for all three different distributions of inclusion orient
tions discussed above.

In Figs. 5 and 6 we show results from this model, f
inclusions aligned parallel to the applied field and for ra
domly oriented inclusions. In each plot, the individual curv
represent different values ofp used in Eq.~39! for the host
dielectric function. The two negative Reee bands are clearly
apparent in the high conductivity cases (p.pc51/3). In ad-
dition to the low frequency band of Figs. 3 and 4, we no
get a higher band from the vibrational contribution of E
~43!. Between the bands, Reee attains large positive values i
qualitative agreement with experiments. These bands do
appear in low conductivity samples, where the host is eit
at or belowpc , and Reee never crosses thex axis. The vi-
brational contribution also leads to a local maximum of Imee
at the frequencies of the higher band. As in Figs. 3 and 4,
bands are wider, and Reee is more negative, when the inclu
sions are aligned. Similar, but weaker, behavior is again
tained for inclusions aligned perpendicular to the field. Th
results show that our macroscopically disordered struct
model can easily reproduce the experimentally observed
electric response of conducting polymers.

B. Weak cubic nonlinearity

In this section we apply the results of Secs. II and III
demonstrate that the special microgeometry of conduc
re
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polymers may play an important role in their relatively lar
nonlinear dielectric properties. As shown in Sec. III, the
ements of the effective nonlinearity tensor of anisotro
mixtures can be calculated from the simple relation~35!.
This result may be further simplified for our model of co
ducting polymers, since the disorder in it originates from t
different spatial organization of a single uniaxial compone
in different regions inside the system and not from mixing
few different components. Therefore, in this case, the s
over the different components can be dropped from Eq.~35!
and we are thus left with a simple relation that depends o
on the eigenvalues of the local dielectric tensor

xe; i j 5x i i j j S ]ee; i

]e i
D U]ee; j

]e j
U, ~44!

wherexe is the bulk effective nonlinearity tensor,x is the
anisotropic local nonlinearity tensor, ande i ,e j are eigenval-
ues of the anisotropic local dielectric coefficient. In the e
amples discussed in this paper, these two eigenvalues ae i

and e' . As in Sec. III, it is assumed here that in the bo
coordinate system the elements ofx all vanish exceptx i i j j ,
with indices equal in pairs.

FIG. 5. Real and imaginary parts ofee,i of Eq. ~15!, using Eq.
~43! for e i and Eq.~39! for eh . Results are shown forvpt530,
vs

251, v0
250.05, g50.01, f 51/3 andp51/3 ~solid line!, p50.4

~dashed line!, andp50.5 ~dash-dotted line!.
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To apply this approximation to the examples discussed
Sec. II A, we solve Eq.~14! for ee and compute the specifie
derivatives. Examples are shown for inclusions aligned p
allel ~solid curve! and perpendicular~dashed curve! to the
applied field and for randomly oriented inclusions~dotted
line!. The results for different combinations ofx i i j j , with
volume fractionf 51/3, are shown in Figs. 7–9. In Fig. 7
is assumed that onlyxpar5x i ,iÞ0. Results for the case
where onlyxper5x','Þ0 are shown in Fig. 8, and resul
for xmix5x i ,'Þ0 are shown in Fig. 9. Clearly, whicheve
component ofx is nonzero,xe is substantially enhanced a
appropriate frequencies. In this approximation, the lo
frequency enhancement ofxper in particular is huge. The
physical origin of this enhancement is a large increase
local electric fields at the interface between the inclusio
and the isotropic host. The uniaxial~high-dielectric-constant!
direction predominates in carrying displacement current
side the inclusions. But within the EMA, the host is exac
at the percolation threshold for carrying displacement c
rent. The MG approximation then predicts a large local fi
enhancement in the low-conductivity crystal direction
Therefore,xe , which depends on the fourth power of th
local electric field, is greatly increased. The enhancem
would be larger in systems where the contrast betweene i

FIG. 6. Real and imaginary parts ofee for mixtures of randomly
oriented inclusions, Eq.~17!, with Eq. ~43! for e i and Eq.~39! for
eh . The different lines are for different values ofp as in Fig. 6.
in
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nt

ande' is larger. It would be smaller for examples were t
isotropic host is taken to be above the percolation thresh
@such as in Eq.~39!# and in cases where the contrast betwe
e i ande' is smaller.

V. DISCUSSION

We now consider to what extent our results may be c
sistent with experimental observations on various quasi-o
dimensional conducting polymers. Kohlmanet al.22,23 have
recently studied the dielectric response of polypyrrole a
polyaniline over a broad range of frequencies from the m
crowave to the optical. Many of the observed features clos
resemble those found here. For example, at high frequen
they find that Reee(v) is positive, with a Drude-like fre-
quency dependence. As the frequency is reduced, they
serve a zero crossing followed by a broad frequency rang
which Reee(v) is negative. At still lower frequencies, there
generally a second zero crossing below which Reee(v) is

FIG. 7. Real and imaginary parts of the nonlinearity coefficie
for a mixture where onlyxpar5x i ,iÞ0. Shown are results derive
from the component parallel~solid line! and perpendicular~dashed
line! to the applied field of Eq.~15!, and the dielectric coefficient o
a mixture of randomly oriented inclusions, Eq.~17! ~dotted line!
with a polycrystalline host of Eq.~38!.
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again positive. Finally, at the lowest frequencies studi
Reee(v) shows a behavior which seems to depend on the
conductivity of the polymer: the low-conductivity sample
have a positive dielectric constant, while those with high
conductivity have Reee(v) large and negative.

Our results show similar behavior, and also depend
similar way on the dc conductivity. For example, when w
have a host which is at or below percolation, Reee(v) is
positive at low frequencies, while for an above-percolat
host, Reee(v) is negative over a broad low-frequency rang
in agreement with experiments on polypyrrole a
polyaniline.22,23These results confirm, in agreement with e
periment, that Reee(v) should be strongly dependent on th
microstructure of the polymer system.

Our composite results also exhibit a characteristic br
surface plasmon peak in Imee(v). This peak, which extend
down to very low frequencies, arises in this model from
calized oscillations of the charge carriers in one or a f
crystallites of polymer; the carriers are localized because
the disordered microstructure~which is characterized by a
spatially varying dielectric tensor!. Such a peak is typical o
conducting polymers, where it has been attributed to b
composite effects22,23,38and to Anderson localization.39 The

FIG. 8. Real and imaginary parts of the nonlinearity coefficie
for a mixture where onlyxper5x','Þ0. The different curves are
derived from different effective dielectric coefficients as in Fig.
,
c

t

n

n
,

-

d

-

of

th

present results support the idea that this band in the diele
response may be due simply to the inhomogeneity of
polymer medium, without invoking quantum localization.

The extension of our model to the nonlinear susceptibi
is less easily tested, at present, because thex tensor for
single crystals of conducting polymers may not be known.
addition, our results depend somewhat on the validity of
nonlinear EMA used in Sec. III, which is not well esta
lished. Nevertheless, the model certainly does sugge
mechanism for a largex in conducting polymers. An experi
ment to measure the frequency dependence ofx, and possi-
bly to detect the peaks seen in Figs. 7–9, would be m
desirable.

Finally, we briefly comment on the long-wavelength a
sumption which underlies our treatment of both linear a
nonlinear response in the polycrystal. This assumpt
means that the crystallite size should be small with respec
both the wavelength of the electromagnetic field in the m
dium, and to the electromagnetic skin depth. For wa
lengths of interest~in the visible and below!, this assumption
should be very well satisfied for grains of size smaller th
200–300 Å. In the far infrared, in the most conductin
samples, there might be some absorption arising from e
currents associated with induced magnetic dipoles in

t FIG. 9. Real and imaginary parts of the nonlinearity coefficie
for a mixture where onlyxmix5x i ,'Þ0. The different curves are a
in Fig. 7.
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small particles. These are not included in our quasistatic
proximation which assumes¹3E50 ~see, for example, Ref
3!.

In summary, we have described a Maxwell Garnett
proximation to treatee(v) for a suspension of quasi-one
dimensional crystallites in an isotropic host. The model le
to a macroscopic dielectric behavior which qualitative
agrees with experiments on polypyrrole and polyaniline, a
accounts for the dependence ofee on the static electrica
conductivity. An extension of the model also provides
f
-

,

,

rs

i-
s

p-

-

s

d

mechanism for a large enhancement of the cubic nonlin
susceptibility of conducting polymers.
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