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The effective dielectric functiow, for a medium of anisotropic inclusions embedded in an isotropic host is
calculated using the Maxwell Garnett approximation. For uniaxial inclusiensiepends on how well the
inclusions are aligned. We apply this approximation to stedfor a model of quasi-one-dimensional organic
polymers. The polymer is assumed to be made up of small single crystals embedded in an isotropic host of
randomly oriented polymer chains. The host dielectric function is calculated using the effective-medium
approximation(EMA). The resulting frequency-dependen{w) closely resembles experiment. Specifically,
Ree(w) is negative over a wide frequency range, whileglw) exhibits a broad “surface plasmon” band at
low frequencies, which results from localized electronic excitations within the crystallites. If the host is above
the conductivity percolation threshold, &fw) has a low-frequency Drude peak in addition to the surface
plasmon band, and Rgw) is negative over an even wider frequency range. We also calculate the cubic
nonlinear susceptibility¢(w) of the polymer, using a nonlinear EMA. At certain frequencjpegw) is found
to be strongly enhanced above that of the corresponding single crystals. Our results suggest that the electro-
magnetic properties of conducting polymers can be understood by viewing the material as randomly inhomo-
geneous on a small scale such that the quasistatic limit is appli¢&il&63-18207)01537-3

I. INTRODUCTION Many of these studies use the effective-medium approx-
imation/ This approximation is based on a self-consistent
The Maxwell Garnet{MG) approximatior?, also known  procedure in which a grain of one of the components is as-
as the Clausius-Mossotti approximation, is one of the mossumed to have a convenient shapsually spherical or el-
widely used methods for calculating the bulk dielectric prop-lipsoidal) and to be embedded in an effective medium whose
erties of inhomogeneous materiafélt is useful when one of ~ properties are determined self-consisteRdly.
the components can be considered as a host in which inclu- In recent years, this approximation has been extensively
sions of the other components are embedded. It involves aapplied to composites involving high-temperature supercon-
exact calculation of the field induced in the uniform host byductors. In single-crystal form, such superconductors are
a single spherical or ellipsoidal inclusion and an approximatéighly anisotropic, having conductivities which are much
treatment of its distortion by the electrostatic interaction bedarger in theab plane than in the third direction. For ex-
tween the different inclusions. This distortion is caused byample, Carret al® and Helsing and Helté have developed
the charge dipoles and higher multipoles induced in the otheslightly different EMA’s for mixtures of anisotropic compo-
inclusions. The induced dipole moments cause the longestents such that the principal axes of the conductivity tensor
range distortions and their average effect is included in thef each ellipsoidal crystallite are degenerate with those of the
MG approximation which results in a uniform field inside all ellipsoid. They have considered models in which the aniso-
the inclusions. This approach has been extensively used fdropic grains are randomly oriented, thus leading to an iso-
studying the properties of two-component mixtures in whichtropic composite. Walker and Scharnbérgpave used the
both the host and the inclusions are isotropic materials withmodel of Ref. 9 to describe the properties of granular super-
scalar dielectric coefficients. It has also been applied in theonductors. Diaz-Guilera and Trembtayconsidered an
study of the Hall effect in inhomogeneous materials, whereEMA for mixtures of oriented uniaxial ellipsoidgach with
the components have tensor electrical conductivities undea conductivity matrix degenerate with the axes of the ellip-
applied magnetic field.In this paper, we present a variation soid) and an isotropic conductor. This approach differs from
of this approach which is useful for mixtures where the hosthe previous models since in this case the composite itself is
is an isotropic material but the inclusions are made of anisoanisotropic. Genchév applied a similar approach for a mix-
tropic components. ture of many superconducting components, each distin-
There are many possible locally anisotropic inhomoge-guished by having a different crystallite shape, and a differ-
neous materials in which the local dielectric coefficient is aent conductivity tensor. An extensive EMA study of the
tensor. Of these, the most commonly studied are polycrystabptical properties of higi-. superconductors, modeled as a
line aggregates of a single anisotropic componiénn these  composite of a uniaxial superconductor and an isotropic nor-
materials the inhomogeneity is provided by the randommal conductor, has been carried out by Nethal. and by
variation of the crystal orientation throughout the systemSulewskiet all**®
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All these EMA calculations are particularly appropriate explicit connection between the orientational disorder of the
for composites and polycrystals in which the grains of thecrystalline domains, the disorder inside the isotropic host and
various components are randomly and symmetrically distribthe macroscopic linear and weakly nonlinear dielectric prop-
uted, so that none of the components is identifiable as a hostties of inhomogeneous conductors.
in which the others are preferentially embedded. In this pa-
per, by contrast, we consider a different type of locally an- Il. DIELECTRIC RESPONSE OF COMPOSITES
isotropic inhomogeneous materials, made of anisotropic in- WITH ANISOTROPIC INCLUSIONS

clusions which are, indeed, randomly embedded in a id liel ol q h | |
homogeneous isotropic host. Because of the asymmetry of Consider a parallel plate condenser whose plates are large

the assumed geometry, and the approximation, the results aggqugh so that edge effects can _be neglected. The (_:onder_lser
likely to differ somewhat from the symmetric EMA. This 1S filled by a homogeneous medpm with a sca_lar dieleciric
geometrical distinction may be easily understood by notingCQnStar?teh In vyhmhﬂponoverl_appmg spheres with a tengor
that the EMA and MG approximations are exact for tWOdleIectrlc coefficienteg are distributed randomly but uni-

different microgeometries The EMA becomes exact in a formly. The orientation of the dielectric tensor differs from

hierarchical geometry where the two components play sym'—nCIUSIon to inclusion, such that

metrical geometric role¥ In contrast, the MG approach is
exact for a geometry where the entire space is filled with
coated spheres, each with identical ratio of inner to oute
radius, such that one component is the core matésalated

inclusiong and the other is the coating materighe host.

We consider an example of the later case, with anisotropi
inclusions, in which the direction of the dielectric tensor axis
may vary from one inclusion to another. The distribution of
these directions significantly influences the bulk effective di-

electric response of the material and determines its MAacrqQr -+ the volume averaged field in the systenEjs In this

sc?r?ltggglsl?trvt\)lgy ?(rezg?];tlaersllanisotro ic version of the MGCaSe: the electric fieldeg and the displacement field
L P P D=¢E; inside the inclusion are uniform and satisfy the

approximation for the dielectric tensor of such materials. Theexact relation?

result obtained depends explicitly on the distribution of crys-

tal orientations inside the inclusions. In Sec. lll, we consider

anisotropic mixtures in which the local dielectric properties

are weakly nonlinear and derive a simple expression for theifrhe jnduced dipole moment of the sphere is

bulk effective nonlinearity tensor, valid to first order in the

local nonlinearity. De— €Es
In Sec. IV, these results are applied to a simple model of Ps=Vs =

conducting polymers. Heavily doped polymers, such as poly-

acetylene, polyaniline, and polypyrrole, are quasi-oneyerev is the volume of the sphere ardis the identity
dimensional conductors that have attracted considerable inqatrix. In this. and in the subsequent equations, the denomi-
terest since the first discovery of electrical conduction inpators should be understood as representing inverse matrices.
doped polyacetylen€. In addition to their interesting con-  Erom this it follows that if the medium contains a few such

duction properties, these organic E)golymers usually exhibigpheres, sufficiently far apart for their mutual interactions to
relatively large cubic .nonlmea_nt&ﬁ. Many papers have pe pegiigible, than the volume averaged polarization in the
discussed possible microscopic mechanisms that may €fiedium is

plain these properties. They include exotic elementary exci-

tations such as charged solitéhand bipolarong! Typical 1 36 | Z— el

samples of these materials are collections of crystalline do- (P)=- > ps=f—h <~S—h> Eo, (4)
mains, inside which the polymer exhibits three-dimensional V5 am \est2enl [

order, separated by amorphous regions of the same

polymer?223The crystalline domains are typically20 A in where f is the volume fraction of the inclusions ar{<)|R '
diameter and occupy 20—50 % of the material's volume. denotes an average over the dielectric tensor orientation in-

o ; ide the inclusions.
This picture suggests that an asymmetric MG theory for! ; . . !
anisotropic inclusions in an isotropic matrix may be a rea- | € bulk effective dielectric tensor can be defined by the

sonable approach to calculate the macroscopic dielectrit?t© between the volume averaged d_|spl_acer_nent field
properties of these disordered polymers. In this paper, rathéfo=(D) and the volume averaged electric fiefg=(E).

than discussing microscopic mechanisms, we present 'ghe volume averaged displacement field is easily calculated
the percolation properties in the presence of inhomogeneous

model that may describe how the macroscopic properties dY
€s— €l
|+3f(
est2epl [ o
disorder, has been recently demonstrated in experiments on

such disordered materials are affected by such a microgeom-
conducting doped polyanilir€.Our description includes an The bulk effective dielectric tensor is therefore

€s=ReR", (1)

(vheree is a diagonal tensor arlis the inclusion dependent
rotation, which in general depends on the three correspond-
ing Euler angles. Our aim in this section is to derive an
%xpression for the bulk effective dielectric tensor of this mix-
First we consider a single sphéggimmersed in the host
€,. A voltage is applied between the condenser plates such

DS+ ZEhES:3EhE0. (2)

SEh ’ES_Ghl E 3
4 SAxegt2e,l ®

etry. The importance of the microgeometry, and in particular Do=€nEq+4m(P) = eEo. (5)
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_ el This result can again be used with Ed) to calculate the
€e=€pl +3fe{ =———) . (6)  volume averaged polarization
ES+ 26h| R
. . . . . . f €s— €l E
This result, ignoring the interaction between the different (py= — <~6S €h > 3eno —
inclusions, is usually called the dilute limit and is valid only 4 \est2enl | (1—F ) +3fen((est2enl) r

to first order in the volume fraction of the inclusions. (10
The electrostatic interaction between the inclusions isyhich leads to the bulk effective dielectric tensor

negligible only in mixtures where their volume fraction is -

very small. In all other cases it should be taken into account T el +3fen| =5 €nl

when calculating the dielectric properties of the system. This e =h "\&+ 26/

is most easily done in the MG approximation, where the

average field acting on each inclusion is considered to be not 5 1

the applied fieldE, but the well-known Lorentz local fielél. (1—f )+3fep((€st+2€l) Hr'

Using this correction, the dipolar interaction between the in'This is the MG result for mixtures of anisotropic inclusions

clusions is taken into account ir_1 an averaged way. A simple‘lzt depends on the type of anisotropy of the terié@nd on '

method to calculate this correction, usually referred to as thg,e grientation distribution function of the rotation matrices

e>_<c|ude95 volume approach, was proposed by Bragg anfh as discussed further below, it is not limited to low con-

Pippard.” The average field acting on an inclusion, in a mix- centrations of inclusions, but instead is appropriate even at

ture that is not too dense, is the average field in the hostigh concentrations, provided that the composite has the as-

mediumE,,. The difference betweeBe, andE, is due o sumed geometr(in which a material of one type is embed-

the correlations between positions of different spheres thaded in an identifiable host material

arise from the prohibition of overlap between théhSub- One important example of anisotropic behavior is that of

stituting E,, for Eq in Eq. (2), we find that the field inside the uniaxial materials, where the dielectric coefficient obtains

inclusion satisfies the relation one value along one preferred direction and another value in

all perpendicular directions. The dielectric tensor of such a
Ds+2€enEs=3€nEey. (1) material can be written as

(11)

The averaged field over the entire system, inside and outside e. 0 O
. . . . . 1
the inclusions, must still b&;. This leads to a simple rela- -
tion between the average fields in the host and in the inclu- e=| 0 e O], (12)
SIOﬂS 0 0 €)

f(EQ)+(1—f )Ee=Eo, (8) in_the coordinate system defi_ned by the dielec_tric a>§is. For_a
mixture of many such inclusions, embedded in an isotropic
where the angular brackets denote a volume average insiggst, it is convenient to define the coordinate system such
the inclusions. Substitutings from Eq.(7), we solve forEe,  that the external fieldE, is applied in the positive direc-
and find tion. The rotation matrbd®= R, now depends only on two
orientation angle®) and ¢ between the principal dielectric

Eox= E(fv ——. (99  axis and thez axis. In this coordinate system the dielectric
(1—f)+3fen((est26enl) Hr tensor of each inclusion may be written explicitly as
|
cog ¢ sirto cosp sing sirfd cosp cosd sing
€=RygeR,=€ | +a| cosp sing sSife  sirf¢ sirfe sing cosd sind | | (13

cosp cos sind  sing cos sind  cos 6

wherea=e¢, — ¢,. Substituting this in Eq(11) and definingé= (e, +2¢,)(€,— €,), we find an explicit expression for the
bulk effective dielectric tensor, depending on the distribution of the orientation afged ¢

-1

~ | 3f6h’A’ 1 f 3f€h§ 14
€e™ ¢h +(El+2€h)(éu+26h) B +(€L+26h)(€”+26h) ' (14)
where
. . 3ae, . ) 3ae; .
85— 3aen{CoS O+ Ssirf ¢ sirfg) —5—(sin2p Sir? 6) —5—(cosp sin2g)
~ 3a’fh . . . 3a’6h . .
A=| —5—(sin2p Sha) 85— 3aey(cog 0+ cog ¢ sirt o) 5> (sing sin2o)
3a’€h . 3aeh i i 3a6h
—F—(CO Sin —F(SINg SIn COS —
- (cosp sin20) 1 (sing sin20) o+ 220 (cos@) - 1)
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and
€, +2en+ a{COSLO+ St ¢ sirfh) — %(sin2¢ Sirf6) - g<cos¢ sin29)
B=| - §<sin2¢ Sir6) €, +2en+ a{cofh+cogp sirth) — g<sin¢ sin26)
a _ a _ €, + €+ 4e,— a{cosd)
- E(co&;ﬁ sin26) - E(sm¢ sin24) 5

The angular brackets denote averaging a%end ¢ of all the inclusions in the mixture.

This result is greatly simplified in cases where these averages can be calculated exactly. Some of these examples are the
following.

(1) The dielectric axes of all the inclusions are oriented in the direction of the applied fiel@). The effective dielectric
tensor in this case is

3fen(e —€n)

0 0
et e e (1T )+ 3er
_ 3fen(e, —€p)
Ce €h (€, —€,)(1—f )+3¢, ) (15)
0 0 3fen(e—€n)

Tt le—en(1—T )+ 36

As expected, this effective dielectric tensor has uniaxial symmetry and its diagonal elements are given by the MG result for
isotropic inclusions with dielectric coefficients ande, respectively.

(2) The dielectric axes of all the inclusions are oriented inytltirection (6= 7/2, ¢= w/2). The effective dielectric tensor
is again uniaxial, but with the MG expression fgrinclusions now appearing in theaxis term instead of in the-axis term:

3fen(e, —€n)

(€, —ep)(1—1 )+ 3¢, 0 0

Eh+

- 3fen(e—€n)
T (g—en)(1—f )+ 36,

€= 0 0 . (16)
3fen(e, —€p)
€t (€, —ep)(1—1 )+ 3¢,

A similar result is obtained when all the inclusions are oriented inxth@ection (6= w/2, ¢=0), by exchanging th&-axis
andy-axis terms.

(3) Uniform orientation distribution oveé=[0,7] and ¢=[0,27]. It is clear that in this case the entire composite should
be isotropic, with a scalar dielectric coefficient. Carrying out the averaging if1Bywe indeed obtain

0 0

(€. +2€n) (€~ €n) —2€n(e—€,)
(1—f )(e, +2€,)(€+2€n) +Ten(e, +2€+66€,)

€.=€,+ 3f ey

17

Equation(17) is an MG approximation for a volume frac- composite if the host has zero conductivity, because there is
tion f of randomly oriented spherical crystallites, each charho percolation. One cannot say, in general, that one of these
acterized by a uniaxial dielectric tensor, embedded in an iscapproximations is more correct than the other. Instead, the
tropic host. It is of interest to contrast this result with proper choice of an approximation for a given problem de-
approximations, such as that of Ref. 11, in which the ran{pends on which geometry better describes the system of in-
domly oriented anisotropic crystallites and the isotropic com+terest. If the geometry is symmetric, the EMA would be
ponent are treated symmetrically. The two approximationsnore appropriate. In the case of conducting polymers, it ap-
do indeed differ: for example, that of Ref. 11 will yield a pears that the asymmetric geometry is more applicable, and
nonzero percolation threshold for dc conductivity at suffi-we have therefore adopted the MG approximation in the
ciently high concentration of anisotropic crystallites, pro-present work. There is no experimental evidence as for the
vided that all the principal components of the conductivity shapesof the polymer inclusions in the materials of interest,
tensor of that crystallite are nonzero. By contrast, the MGthus, rather than making a special assumption, we have sim-
approximation will always yield a zero dc conductivity of the ply taken these grain shapes to be spherical.
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11l. WEAK NONLINEARITY OF ANISOTROPIC

Quasi-one-dimensional organic polymers sometimes hayv

a remarkably large cubic nonlinear response in the optic 21) that the definitiong19) and (20) of the effective prop-

. 18,19 ; ;
regime. _Enhanced no_nlmear properties _have been th erties are equivalent. The proof follows closely the analo-
subject of intense study in other types of disordered struc: . . . .

ous proof for isotropic composité8 Thus, to determine,

tures, e.g., locally isotropic composites consisting of susper'lgnd we need. in princinle. onlv evaluat for the actual
sions of nonlinear material in a linear host and layered mi- Xe: NP p'e, only

crostructures of alternating nonlinear dielectd®s>® where mlcrostr_ucture of the disordered sa_lmple, using (e@'

it has been demonstrated that the microgeometry greatly cop- OUr fIrSt Step is to show that to first order fyq , just as
tributes to the large effective nonlinearity. The enhancemen! the' |sc')trop.|c casexe mvplves the fourth moment of the'
is produced by a local field effect. The cubic nonlinearity ise_lectnc field in a related linear problem. The local electric
related to the fourth moment of the local field distribution, field may be written as

and is therefore sensitive to local field values that may be
greatly increased above the applied field by fluctuations in

the local dielectric properties. _ where Ej,, is the electric field that would exist in a linear
Zenget al”” have proposed a method for calculating the medium with the same;; (x) but with y;j (X) =0, andJE is
effective weak nonlinearity of locally isotropic disordered the additional electric field due to the nonlinearity, which is,
materials, to first order in the nonlinearity. Here we present & gefinition, of at least first order iRijki - Sinceyjjy is by
simple generalization of their approach to mixtures of anisoyssymption a small perturbation on the linear medium, it is
tropic components. We consider an anisotropic material, iy gficient to calculatéW only to first order iny. To this
which the localD and E have a nonlinear relation of the 5qer we may neglect the contribution 6 to the fourth-
form order term, since it will only have an effect &M of second

order in theyij's. The term involvinge;; may be written

fis easy to prove, from the electrostatic equati¢h®) and

E:Elin+ 5E, (23)

D|:E|]EJ+X|JK|E]E:E| (18)

HereD; andE; are theith Cartesian components &f and

E, €; and xjjq are second-rank and fourth-rank Cartesian
tensors, and we use the Einstein convention that repeated ] o ] ]
indices are summed over. The following analysis is carried! Nat portion ofW, which is first order inSE can be written
out in the weakly nonlinear regime, i.e., the nonlinear term is

assumed to be small compared to the linear term. We also 5W(1):f [2€E;p OE;]d%x (25)
assume thak;; is symmetric, which insures that it can be 2 WA

diagonalized. For boundary conditions, we consider a sample .
of volumeV, bounded by surfac8, on which the potential wheie we have .used Fhe symmetry @f; . _Wntmg
® is specified agb(x)=—E,-x. This choice ensures that dE;=—V,;6® and integrating by parts, we obtain

the volume average of the electric field withihis Ey. The

different elements of the effective dielectric tenggand the 6W(21):2[ f [V,(e&j E"n;i)g@]dsx

cubic nonlinear susceptibility, of the composite may be

defined by the relation

szf [ € (Ejini + OB (Ejin:j+ SEp 1A, (24)

. _f Vj(fijElin;ié(I))dSX . (26)
(Di)= €c;ijEojt Xe;ijki EojE0kEo » (19
where (---) denotes a volume average. Equivalently, thisBut
definition may be written
Vi(€ijEijin;i) =V -Djjn =0, (27)

W=V(D)Ey=V[ €xi{EoiEo; + Xe:iixi EoiEoi EXEal]s
(D) Bo=Vl € EoiBo; + Xeiia Eoi Boi By o,|](20) where Dy, is the displacement vector in the related linear

medium, which, like the total displacemdnt is divergence

where we have introduced an energylike functéhfrom  free. The integrand of the second term is the divergence of a
which e, and y, may be derived. vector whosgjth component ig;; Ej,,; 6. Using the diver-

Note that even though the constitutive relationstli) is  gence theorem, we can convert this integral into a surface
nonlinear and anisotropic, the local fielBsandE still sat- integral, which vanishes becaus® =0 onS. Thus SWS"
isfy the usual electrostatic equations vanishes.

The effective coefficientg, and y, are given, according
to Eq.(20), by the coefficients o E3 andVE] in W. Using
From the second of thesE,can be expressed as the negativethe results just proven, we find
gradient of a scalar potentiaE=—V®. However,® no
longer obeys the Laplace equation, because of the compli- feijE,in;iE”n;jd3x
cated(and inhomogeneolgonstitutive relation. €eiij :W (28)

The total energyV can also be written as an integral over o
the local energy, which is and

V.D=0, VXE=0. (22)
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I Xijki Eiin: i Eiin: | Effn: kEin:1 03X
VEg;Eo;EokEo)

Xesijkl = (29

Thus, just as in an isotropic composite, bethandy, can be
expressedto lowest order in the nonlinearjtyn moments of
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IV. APPLICATION TO CONDUCTING POLYMERS

As mentioned in the Introduction, typical samples of re-
cently studied conducting polymers are collections of crys-
talline grains separated by regions of amorphous material,
inside which the spatial orientation of the polymer chains

the electric field in the related linear medium. Hereafter, Wechanges randomly and continuou$f?3Such a structure can
drop the subscript “lin;"” only linear fields will be discussed, pe modeled by the MG approach of Sec. Il, where the host is

unless otherwise stated. Denoting the eigenvalues ly «;
and those ofj; by €, we write

_ Eczea;ifaEi(X)zd:sx
a VEg; ’

(30

€eij

whereE;(x) is the field component parallel to thth princi-
pal axis atx and the sum is taken over all componeats
the mixture. Equatiori30) implies that

<Ei2>a_ 1 afe;i
Eoyi Pa aea;i ,

(31)

where(-- -}, denotes a spatial average in #ah component

not a simple dielectric but is itself a macroscopically isotro-
pic inhomogeneous mixture made of the same anisotropic
material as the inclusions. This host may be roughly viewed
as a polycrystalline collection of anisotropic, randomly ori-
ented, compact grains much smaller than the spherical inclu-
sions. Its dielectric properties can then be calculated from the
principal elements of the local dielectric tensgrand e,
using the well-known effective-medium approximation
(EMA). For a locally uniaxial polycrystal, this approxima-
tion leads to the simple relation

€|~ €n € — €p

and p,, the volume fraction of that component. This is the Solved forep, this gives

analog of a result in isotropic composités,

<E2>a_ 1 de.
ES P, de,’

(32

Considering the nonlinear susceptibility explicitly,

€+ 2€p €, +2¢ =0 (37)
€ + \/ef+86uq
e(p=—""7—"— (38

4 ’

for the dielectric coefficient of the isotropic effective me-
dium. The bulk effective dielectric tensor of the entire sys-

W€ tem may now be calculated by substituting this resultepr

will assume for convenience that, in the body coordinate, Eq. (14).

system, the elements gfall vanish excepl;j; , with indi-
ces equal in pairs. Then from E®9), we get

2aXa;iijj<Ei2|Ej|2>a
Eé;i|EO;j|2

Xeiij = (33

Next, we write down a simple approximation fgt, analo-
gous to the “nonlinear decoupling approximatioiRIDA)
of isotropic nonlinear composité& The NDA is specified by
the assumption that

(EF[Ej|%)~(EPXIE|®), (34
or, upon using Eqs(31) and(33),
N Xaiijj [ 9 Jee|
XE,IJ B 20; Pa ( &Ea;i) &Ea;j| . (35)

This result is similar to that recently obtained by Strofudr

The EMA of Eq.(38) predicts that the polycrystalline host
is precisely at the percolation threshqid=1/3 of the con-
ducting componeng;. However, it is well known that this
approximation predicts too high a threshold for isotropic
three-dimensional systems. Thus, it is reasonable to assume
that in real samples the conducting component does perco-
late inside the isotropic host. This expected behavior can be
mimicked within our model by introducing an effective
“volume fraction” p higher thanp.=1/3 in the effective-
medium expressiofB7) for e,

€|~ €n €~ €p

€H+2&'h +(1_p)

=0.

€ +2e, (39

p
In a mixture of two isotropic componentp, would be the
volume fraction of the component with dielectric constant
€. In our model, however, the material is a collection of
randomly oriented polymer chains, and the concept of a vol-
ume fraction has no clear definition. Instead it should be

macroscopically isotropic polycrystals of anisotropic materi-viewed as a measure of the connectivity of the component

als and is closely analogous to the equation

Xe=2 &(E)Z

| 5 (36)

€. In highly disordered samples, the polymer chains are
relatively short. This leads to short continuous paths,qf
only a few of which will connect opposite sides of the entire
system. This low connectivity corresponds to a small value
of p. By contrast, in samples with lower disorder the poly-

which specifies the NDA in mixtures of isotropic mer chains are longer, on average, and create more extended

component$®

continuous paths o¢,. These samples will have relatively

Equation (35) is useful given an approximation for the many paths ok, which span the entire system, and therefore
effective dielectric tensor. In our case it can be used togethdrigher connectivity and a larger effective valuepfWhile
with the MG result(14) to calculate different elements of the the best choice op is difficult to fix, we believe that this

effective nonlinearity tensor of the composite.

equation does describe the real physical behavior of the host,
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70

e,par

Re

Im €
e,par
Im €
e,per

0.8 0.9 (b) ! oo

(b)

FIG. 2. Real and imaginary parts of the component perpendicu-
to the applied field of the effective dielectric tensor of ELp).
The different curves are as in Fig. 1.

FIG. 1. Real and imaginary parts of the component parallel toIar
the applied field of the effective dielectric tensor for a mixture of
aligned inclusions, Eq15). Results are shown fap,7=30 in the

metallic direction and =0.1(solid line), f=0.25(dashed ling and 1(a) we plot the real part of the parallel component of Eq.
f=0.4 (dash-dotted line The dotted line is the corresponding re- (15) for three different volume fractions of the spherical in-
sult for a mixture of randomly oriented inclusions, Ef7). clusions. As the volume fraction of the oriented inclusions
increases the influence of the metallic behavior along their
namely, that it is a random amorphous collection of polymerprincipal axis becomes more pronounced. This leads to the
chains in which there may be infinite connectpércolating  appearance of a frequency range, beloy, where the real

paths of the polymer in the high-conductivity direction. part of the dielectric coefficient is negative. This range wid-
ens, and the dielectric coefficient becomes more negative, as
A. Linear dielectric response the volume fraction increases. The imaginary part, shown in

Fig. 1(b), increases with volume fraction, as the metallic be-
To illustrate the predicted dielectric behavior for the hayvior becomes more important. The results are markedly
simple examples of Sec. Il A, we cc_)nS|der a highly simpli- gitferent for the perpendicular component of E@5). The
fied model of a quasi-one-dimensional conductor. In thecongucting direction plays a much smaller role in this case
high-conductivity direction we assume a Drude metal withand the real part of, is never negative. Its trend of change,
dielectric function as the volume fraction increases, is opposite to that of the
parallel componenfsee Fig. 2a)]. The imaginary part,

6ll(w):1_wr2)/[“’(“’+'/7)]' (40 shown in Fig. 2b), now decreases with volume fraction, as
In the perpendicular direction, we assume simply an insulathe influence of the high conductivity direction becomes less
tor with pronounced.
In mixtures of randomly oriented inclusions and a host
e (w)=1. (41)  exactly at the percolation thresho(d@8), the bulk effective

dielectric coefficient does not depend on the volume fraction
Numerical results for aligned and randomly oriented inclu-[results for this case are shown for reference in Ritjsand
sions, withw,7=30, embedded in a host, of Eq. (38) [or  (2) (dotted line$]. This can be shown by a direct calculation
of Eq. (39) with p=1/3] are shown in Figs. 1 and 2. In Fig. that leads to
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FIG. 3. Real and imaginary parts of the component parallel to FIG. 4. Real and imaginary parts of the effective dielectric con-
the applied field of the effective dielectric tensor for a mixture of stant for mixtures of randomly oriented inclusions, E#j7). The
aligned inclusions, Eq15). Results are shown fap,7=30 in the  different curves are for different values pfas in Fig. 4.
metallic direction,f=1/3 andp=0.1 (solid line), p=0.2 (dotted
line), p=0.33(crossel p= 0.4 (dashed ling andp=0.5 (dash-dot
line). The imaginary part for the two lowest values pfare indis-
tinguishable from the axis.

and 4. In Fig. 8a) we plot the real part of the parallel com-
ponent of Eq(15) (inclusions aligned parallel to the applied
field) for five different values ofp, with the same volume
fraction of the inclusiond =1/3. The results show a quali-
tatively different behavior above and below the percolation
thresholdp.=1/3. Belowp,, the real part ok, is positive,
and relatively small, in the entire range of frequencies below
w,. Abovep., a zero crossing appears below whicheRie
negative. This zero crossing occurs at higher frequencies for
higher values of p>p. (0/w,=0.89 for p=0.4 and
ol w,=0.93 forp=0.5). This behavior follows qualitatively
where the last equality is obtained from E§7). Substitut- experimental results on conducting polymers in which high
ing this in Eq.(11) we again gef.=¢€,l with €, given by  conductivity samples exhibit zero crossing and negative, Re
Eq. (38). This result is intuitively obvious, since the collec- at low frequencie$®?® Low conductivity samples, on the
tion of randomly oriented inclusions is macroscopically other hand, have positive Reat all frequencies. The imagi-
equivalent to the polycrystalline host, of Eq. (38). Thisis  nary part ofe,, Fig. 3b), increases at low frequencies jas
not the case in any mixture where the host is not exactly aincreases. Irg of low conductivity samplep<p. is indis-
the percolation threshold, since the exact equivalence bdinguishable from the& axis at the entire range of frequencies
tween the collection of randomly oriented inclusions and thebelow w, . But in high conductivity samples whepe>p,, it
host no longer holds. In all of these cases, the entire materiagd enhanced at low frequencies by two or three orders of
must be isotropic with a scalar bulk effective dielectric co- magnitude. Similar behavior is obtained for mixtures of ran-
efficient. domly oriented inclusions, Fig. 4. As expected, the effects of
Results for different values of connectivipy both above varying the value op are somewhat less significant than in
and below the percolation threshold, are shown in Figs. 3he aligned inclusions case. The range of frequencies at

€s— el :(EL+2€h)(€H—Eh)—ZEh(EH—GL)
€t 26l ” (e, +2€,)(€+2€p)
1 g—en
N § E||+26h

2 € —e€p

_0,

3 € +2e, (“42)
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which Ree, is negative fop>p. is smaller and the negative
values obtained are also smaller. The zero crossing points ar
now w/w,=0.31 for p=0.4 and w/w,=0.48 for p=0.5.

The enhancement of leg at low frequencies is still signifi-
cant but not as large as for aligned inclusions. Even weakel
effects, although with the same general trend, are obtained ir
mixtures with inclusions aligned perpendicular to the applied

field. This behavior is a result of the reduced importance of *
& -150F

the metallic componenrg; in these cases compared to mix-
tures where it is aligned parallel to the field.

In Figs. 3 and 4, Re of the high conductivity samples
crosses thex axis at a single frequency, below which it is
negative. Experimental studies on polyaniline and polypyr-
role have shown that under certain circumstances, Ray
exhibit three zero crossings instead of one, leadingtwm
separate frequency bands where it is neg&h?One band
appears at very low frequencies, as in Figs. 3 and 4, and tht
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other at slightly higher frequencies. Between these two bands
Ree, is relatively large and positive. These observations sug-
gest that the metallic behavior of the polymer, along its prin-
cipal axis, is somewhat more complicated than the simple
Drude behavior of Eq40).

As a simple model for this behavior, we add to the Drude
dielectric function an additional “vibrational” contribution  .°
at a finite frequencyg. This leads to a dielectric coefficient £ !
of the form !

1000}
800}
600
400}

2 2

-1 wp Wg
ale)=1= i *

(43

wi—w’—iyw’ i

0.45

where the amplitude, the resonant frequenay, and the 056 o1 05

damping constany are material dependent constants. Sub- (®)
stituting thise;, and retaining the polycrystalline host of Eq.
(39), in Eq. (14) indeed leads to Rg with three zero cross- FIG. 5. Real and imaginary parts ef of Eq. (15), using Eq.
ings for all three different distributions of inclusion orienta- (43) for ¢, and Eq.(39) for €,. Results are shown fop,7=30,
tions discussed above. a)gzl, a)(Z)ZO.OS, y=0.01, f=1/3 andp=1/3 (solid line), p=0.4

In Figs. 5 and 6 we show results from this model, for (dashed ling andp=0.5 (dash-dotted ling
inclusions aligned parallel to the applied field and for ran-
domly oriented inclusions. In each plot, the individual curvesPolymers may play an important role in their relatively large
represent different values @f used in Eq.(39) for the host ~ nonlinear dielectric properties. As shown in Sec. lll, the el-
dielectric function. The two negative Rebands are clearly ements of the effective nonlinearity tensor of anisotropic
apparent in the high conductivity casgsXp.=1/3). In ad-  Mixtures can be calculated_fror_n_ the simple relati@5).
dition to the low frequency band of Figs. 3 and 4, we now T his result may be further simplified for our model of con-
get a higher band from the vibrational contribution of Eq.ducting polymers, since the disorder in it originates from the
(43). Between the bands, Reattains large positive values in different spatial organization of a single uniaxial component
qualitative agreement with experiments. These bands do nét different regions inside the system and not from mixing a
appear in low conductivity samples, where the host is eithefew different components. Therefore, in this case, the sum
at or belowp., and Re, never crosses the axis. The vi-  Over the different components can be dropped from(E8).
brational contribution also leads to a local maximum ogjm @nd we are thus left with a simple relation that depends only
at the frequencies of the higher band. As in Figs. 3 and 4, th@n the eigenvalues of the local dielectric tensor
bands are wider, and Rgis more negative, when the inclu-
sions are aligned. Similar, but weaker, behavior is again ob- ‘9€e;i)
tained for inclusions aligned perpendicular to the field. These JE
results show that our macroscopically disordered structural ) ] ) ] ]
model can easily reproduce the experimentally observed divhere x. is the bulk effective nonlinearity tenso; is the

electric response of conducting polymers. anisotropic local nonlinearity tensor, aeg,¢; are eigenval-
ues of the anisotropic local dielectric coefficient. In the ex-

amples discussed in this paper, these two eigenvalues, are
ande, . As in Sec. lll, it is assumed here that in the body

In this section we apply the results of Secs. Il and Il tocoordinate system the elementsyoll vanish excep; ,
demonstrate that the special microgeometry of conductingvith indices equal in pairs.

&Ee;j
076']'

; (44)

Xe;ij:Xiijj(

B. Weak cubic nonlinearity
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FIG. 6. Real and imaginary parts ef for mixtures of randomly

oriented inclusions, Eq17), with Eq. (43) for ¢, and Eq.(39) for
€,. The different lines are for different values pfas in Fig. 6.

FIG. 7. Real and imaginary parts of the nonlinearity coefficient
for a mixture where onlyyp,= x;,,# 0. Shown are results derived
from the component parallésolid line) and perpendiculafdashed

_ . . . _line) to the applied field of Eq(15), and the dielectric coefficient of
To apply this approximation to the examples discussed ira mixture of randomly oriented inclusions, E.7) (dotted ling

Sec. Il A, we solve Eq(14) for €, and compute the specified with a polycrystalline host of Eq:38).
derivatives. Examples are shown for inclusions aligned par-

allel (solid curve and perpendiculafdashed curveto the .
applied field and for randomly oriented inclusiofsotted ande, is larger. It would be smaller for examples were the

line). The results for different combinations gf;: , with isotropic host is taken to be above the percolation threshold
volu.me fractionf =1/3, are shown in Figs. 7—9.”iJn,Fig. 7 it [such as i'.ﬁ' Eq(39] and in cases where the contrast between
is assumed that only,,=x,,#0. Results for the case €I ande, is smaller.

where only x,e= x, . #0 are shown in Fig. 8, and results

for xmix=xy..#0 are shown in Fig. 9. Clearly, whichever

component ofy is nonzero,y, is substantially enhanced at V. DISCUSSION
appropriate frequencies. In this approximation, the low- _
frequency enhancement qf,e, in particular is huge. The We now consider to what extent our results may be con-

physical origin of this enhancement is a large increase isistent with experimental observations on various quasi-one-
local electric fields at the interface between the inclusionglimensional conducting polymers. Kohimahal??2 have

and the isotropic host. The uniaxigligh-dielectric-constaipt recently studied the dielectric response of polypyrrole and
direction predominates in carrying displacement current inpolyaniline over a broad range of frequencies from the mi-
side the inclusions. But within the EMA, the host is exactly crowave to the optical. Many of the observed features closely
at the percolation threshold for carrying displacement curfesemble those found here. For example, at high frequencies,
rent. The MG approximation then predicts a large local fieldthey find that Refw) is positive, with a Drude-like fre-
enhancement in the low-conductivity crystal directions.quency dependence. As the frequency is reduced, they ob-
Therefore, x., which depends on the fourth power of the serve a zero crossing followed by a broad frequency range in
local electric field, is greatly increased. The enhancemenwhich Res(w) is negative. At still lower frequencies, there is
would be larger in systems where the contrast betwgen generally a second zero crossing below whicheRe) is
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FIG. 9. Real and imaginary parts of the nonlinearity coefficient

FIG. 8. Real and imaginary parts of the nonlinearity coefficient , ]
for a mixture where onlyy,x= x;. . #0. The different curves are as

for a mixture where onlyy,e=x, 1 #0. The different curves are .~ ©
derived from different effective dielectric coefficients as in Fig. 7. '" Fig. 7.

present results support the idea that this band in the dielectric

again positive. Finally, at the lowest frequencies Studiedresponse may be due simply to the inhomogeneity of the
Ree(w) shows a behavior which seems to depend on the dpolymer medium, without invoking quantum localization.
conductivity of the polymer: the low-conductivity samples  The extension of our model to the nonlinear susceptibility
have a positive dielectric constant, while those with highesis less easily tested, at present, because thtensor for
conductivity have Rey(w) large and negative. single crystals of conducting polymers may not be known. In

Our results show similar behavior, and also depend iraddition, our results depend somewhat on the validity of the
similar way on the dc conductivity. For example, when wenonlinear EMA used in Sec. Ill, which is not well estab-
have a host which is at or below percolation,eRe) is  lished. Nevertheless, the model certainly does suggest a
positive at low frequencies, while for an above-percolationmechanism for a largg in conducting polymers. An experi-
host, Re(w) is negative over a broad low-frequency range,ment to measure the frequency dependencg, @nd possi-
in agreement with experiments on polypyrrole andbly to detect the peaks seen in Figs. 7-9, would be most
polyaniline??23These results confirm, in agreement with ex- desirable.
periment, that Re(w) should be strongly dependent on the  Finally, we briefly comment on the long-wavelength as-
microstructure of the polymer system. sumption which underlies our treatment of both linear and

Our composite results also exhibit a characteristic broaghonlinear response in the polycrystal. This assumption
surface plasmon peak in kx{w). This peak, which extends means that the crystallite size should be small with respect to
down to very low frequencies, arises in this model from lo-both the wavelength of the electromagnetic field in the me-
calized oscillations of the charge carriers in one or a fewdium, and to the electromagnetic skin depth. For wave-
crystallites of polymer; the carriers are localized because oengths of interestin the visible and beloyy this assumption
the disordered microstructur@vhich is characterized by a should be very well satisfied for grains of size smaller than
spatially varying dielectric tensprSuch a peak is typical of 200-300 A. In the far infrared, in the most conducting
conducting polymers, where it has been attributed to botlsamples, there might be some absorption arising from eddy
composite effect®?*38and to Anderson localizatio. The  currents associated with induced magnetic dipoles in the
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small particles. These are not included in our quasistatic apnechanism for a large enhancement of the cubic nonlinear

proximation which assumésx E=0 (see, for example, Ref.
3).

In summary, we have described a Maxwell Garnett ap-

proximation to treate.(w) for a suspension of quasi-one-

susceptibility of conducting polymers.
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