
PHYSICAL REVIEW B 1 OCTOBER 1997-IVOLUME 56, NUMBER 13
Electronic properties of two- and three-dimensional quasicrystalline model systems
in a magnetic field
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Institut für Theoretische Physik, Otto-von-Guericke-Universita¨t Magdeburg, Postschließfach 4120, 39016 Magdeburg, Germany

~Received 5 November 1996; revised manuscript received 4 June 1997!

The density of states as a function of the magnetic field and the magnetoconductance of two- and three-
dimensional quasicrystalline model systems are calculated in a simple tight-binding description. The zero-field
spectra are known to show a very complicated spiky structure with many small gaps. A magnetic field leads to
a more uniform distribution of the states. Correspondingly, the energy regions showing finite values for the
magnetoconductance as a function of the Fermi energy become larger with a growing field. The investigation
of the high-field behavior uncovers an interesting structure of the spectra quasiperiodic with the field. This
quasiperiod can be explained as a simple interference of periods in the incommensurable ratio of the areas
perpendicular to the flux contained in the cluster.@S0163-1829~97!00237-3#
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I. INTRODUCTION

Since the discovery of quasicrystals many authors fo
experimentally very exotic behavior of some of their phy
cal properties.1,2 They show, for instance, a very low electr
cal conductance depending strongly on the composition.3 In
theoretical studies simple model systems were used to
the origin of these properties in the quasicrystalli
structure.4–13 A well investigated one-dimensional model—
the Fibonacci chain—has a singular continuous spectrum
the corresponding wave functions are neither exponenti
localized nor extended but critical.4 An example of a two-
dimensional quasicrystal is the Penrose lattice. Most of
wave functions are believed to be critical too, but so
highly degenerated strongly localized states, so-called c
fined states, have been found.4–9,15In a tight-binding picture
the conductance as a function of the Fermi energy sh
very strong fluctuations and even energy ranges having
conductance.10 This can be explained by a very irregul
distribution of the states contributing to the conductan
First calculations for a three-dimensional icosahedral mo
system exhibit qualitatively the same behavior.6 Some work
has been done introducing a magnetic field to quasicrys
line model systems.15,16 Very interesting properties hav
been found, for instance, a quasiperiodic structure in
magnetic-field dependence of the spectrum for the Pen
lattice.16

We present some more systematic theoretical invest
tions of electronic properties of two- and three-dimensio
quasicrystals in a magnetic field comparing the results o
few simple but significant example models. First we intr
duce the model systems. The next sections give an overv
of our results for the magnetoconductance based on the
sity of states. A further section deals with the detailed inv
tigation of the spectra as a function of the magnetic fie
The quasiperiodic repetition of significant structure eleme
in the spectra with increasing field can be explained a
simple interference of periods in the ratio of the areas p
pendicular to the flux contained in the cluster. To show th
we perform a Fourier analysis for the plots of some selec
560163-1829/97/56~13!/8026~6!/$10.00
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eigenvalues as a function of the magnetic field. We find o
very few frequencies in the positions of the areas in the c
ter. Finally we draw some conclusions.

II. MODEL

We used a very simple standard model describing o
the quasicrystalline structure but no other physical effects
real materials~see, for instance, Ref. 4!. The main features
are to use mesoscopic clusters at zero temperature b
small enough to avoid inelastic scattering, lattices in a tig
binding approximation withs-like atom functions localized
at the lattice sites and open boundary conditions. To ca
late the conductance we have to add an external electric
in the linear-response approximation.10 Charged particles are
spinless and noninteracting electrons. Two leads of un
turbed material being infinitely long but of finite width an
outside of the magnetic field serve as electronic reservo
The calculation is done via the Landauer formu
G5(e2/h) t̂ t̂1, wheret̂ is the transmission matrix of states o
the undisturbed lead, scattered elastically at the quasicry
line cluster.

A. Hamiltonian in a magnetic field

The HamiltonianH describing a quasicrystalline cluste
reads in the tight-binding representation

H5(
i j

Vi j u i &^ j u i , j NN ~1!

with the transfer integrals between the next-neighbor sitei
and j without a magnetic field

Vi j 5E drWf i* ~rW2RW i !Hf j~rW2RW j ![Vi j ~0!51, ~2!

f j (rW2RW j ) denotes thes-like atom function at lattice sitej .
The introduction of a magnetic field is done b

H(pW )→H(pW 2eAW ) with the vector potentialAW belonging to
the magnetic fieldBW 5BeW z . The atom function at sitej in the
magnetic field is14
8026 © 1997 The American Physical Society
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56 8027ELECTRONIC PROPERTIES OF TWO- AND THREE- . . .
f i~rW,RW i ,B!5x i~rW2RW i ,B!e~ ie/\!AW ~rW !RW i,

x i~rW2RW i ,B!'x i~rW2RW i ! ~3!

with the elementary chargee and Planck’s constant\. The
approximation neglects the shrinking of the wave function
very strong magnetic fields. The integrals of the transfer
ergy ~2! in the field get the form

Vi j ~B!5E drWe~ ie/\!AW ~rW !~RW j 2RW i !x i* ~rW2RW i !Hx j~rW2RW j !

'ei ~e/2\!AW ~RW i1RW j !~RW j 2RW i !. ~4!

This approximation is valid for overlap function
x i* (rW2RW i)Hx j (rW2RW j ) localized midway between sitei and
j .

In the following we use the Landau gaug
AW (rW)52yBeW x . Then the transfer energy~4! becomes

Vi j ~B!5eib~xi2xj !~yi1yj !, b[
eB

2\
→ba0

25
F

2F0
. ~5!

HereF05h/2e is the flux quantum andF5pa0
2B is the flux

at the fieldB through an areapa0
2 with a0[1 the lattice

constant. Sob denotes the value of the magnetic flux throu
the elementary cells of the lattice in units ofF0 , that is,b
measures the strength of the magnetic field in a dimens
less form.

B. Two- and three-dimensional quasicrystalline clusters

The most investigated two-dimensional quasiperio
structure is the Penrose lattice. Its prototiles are two sort
rhombuses. We use it in two ways. The first one is to se
atom at every vertex point to get the so-called vertex mo
~PVM!. The second model is the center model~PCM! with
one atom lying in the center of each rhombus. Both mod
have several interesting opposite features, well summar
in Ref. 4. The coordination number of the PVM varies fro
3 to 7 for the several vertex stars and the model is bipar
As a consequence the density of states has to be symm
aroundE50 in a band of27,E,7. The PCM has a uni-
form coordination number of 4 at every site and is not bip
tite leading to an asymmetric density of states~DOS!.

A three-dimensional model with similar features is t
model described by Danzer17 which may serve as a mode
for real icosahedral quasicrystals of high quality such as
Pd-Mn or Al-Cu-Fe. It has several tetrahedra as prototi
Again we can define a vertex model~IVM ! with atoms at the
edges of the tetrahedra and a center model~ICM! with an
atom situated in the middle of each tetrahedron.6 Also for the
icosahedral system the center model has a uniform coord
tion number of 4, while this for the IVM varies up to 62. Bu
in opposition to the Penrose lattice, the ICM is bipartite b
not the IVM.

We calculated some electronic properties for one exam
of each of these 4 models. Specifically we used a piece
Penrose-8/5-approximate having 473 sites for the PVM
378 sites for the PCM for the two-dimensional calculatio
and a triacontahedron-shaped cluster of the Danzer mod
the third deflation level having 1069 sites for the IVM an
-
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4320 sites for the ICM for the three-dimensional one. In t
following sections we show the results and compare it
several models.

III. DENSITY OF STATES AND
MAGNETOCONDUCTANCE

The density of states~DOS! in quasicrystalline systems i
known to show a very irregular structure with energy regio
containing clusters of discrete states and other regions
ing no or just a few isolated states. This behavior is prov
even analytically for the one-dimensional quasicrystalline
bonacci chain, where the DOS forms a cantor-set-like fra
structure.4 The DOS for two-4,5 and three-dimensional6 qua-
sicrystalline models seems to be more complicated bu
fractal structure. Calculating the conductance of the sa
systems as a function of the Fermi energy as a parameter
finds that the complicated structure of the DOS is recover
That is, the system shows conductivity only in a small s
rounding region of any state. If there is another state in t
region, a conducting band arises. Certainly, the width of t
region depends on the size of the finite cluster. It becom
smaller with increasing size. But computational results s
gest that the additional states of a larger system are
arranged in many small clusters rather than showing a
form distribution over the whole energy range, leading
very spiky DOS and conductance plots. Formation of w
energy bands as in periodic systems cannot be observed

Now we introduce a magnetic field to our quasicrystalli
models and calculate the DOS and the conductance ag
We find, that an increasing strength of the magnetic fi
leads to a more uniform distribution of states. In Fig. 1 t
integrated DOS in a magnetic field of strengthb50.5 ~graph
b! is compared to that without a field~graph a! for some of

FIG. 1. Integrated density of states of~A! PVM, ~B! PCM, ~C!
IVM: ~a! without a magnetic fieldb50 and~b! in a field b50.5,
the lower axis of energy is valid for~A! and ~B!, the upper one is
valid for ~C!.
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8028 56H. SCHWABE, G. KASNER, AND H. BO¨ TTGER
our model systems. Generally, the curves in the field
much smoother, more linear, and get smaller steps. Addit
ally, for the PVM ~graphs A! it is seen that the high degen
eracy of the confined states atE50 also occur in the field.
This is not the case for the PCM~graphs B! at E52 and, not
to be seen so clearly, for the IVM~graphs C! at E50. We
will return to this point later.

Corresponding to the uniform distribution of states w
also find much smoother conductance plots. That is, the
solute value of the highest peaks in the plot become lo
but there arise larger conducting energy regions. As an
ample, for the development of the conductance in a magn
field, we show the plot for the IVM in Fig. 2, without a
magnetic field in graph~a! and in a field of strengthb50.5
in graph~b!.

The behavior of the DOS and the conductance in a m
netic field can be regarded as being very similar to the
havior of eigenstates in fractal lattices.18 There a magnetic
field leads to a spread of highly degenerated localized st
to new extended states because of the broken structural
metry due to the field. In the case of our models, we have
degenerated but some clusters of very closely distribu
states at several energy regions without a field. An excep
are some highly degenerated so-called confined states b
strongly localized at distinct local environments in the qua
lattice. We found them in three of our four models on integ
energy values, but not in the ICM. The total number of sta
is fixed, so a ‘‘spreading’’ means a more uniform distrib
tion here, rather then new states. Whether the states ar
calized or extended cannot be determined because of
small size of the cluster. That is, there is no well-defin
localization length. An interesting fact is that we observe
true spreading mechanism for the confined states as
pected, but not in the bipartite PVM. In this model the co
fined states turned out to be absolutely stable against e
very high magnetic fields, in the sense that their amplitu

FIG. 2. Conductance as a function of the Fermi energy for
IVM: ~a! without a magnetic fieldb50 and~b! in a field of strength
b50.5.
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remain zero at the sites not yet occupied without a field
follows that a field does not cause a breaking of any str
tural symmetry in this case. Generally, confined states
bipartite models are reported as stable,4,6–8,16 while that in
the nonbipartite models vanish quickly with any disturban
of the structure or in a field.8,15

IV. SPECTRA IN A MAGNETIC FIELD

A very interesting development of the spectrum of t
PVM for a growing magnetic field is reported in Ref. 16. L
us define that ‘‘plot a spectrum’’ means to make a point at
energy value if there is a state. Then a plot of the calcula
spectrum against the magnetic field strengthb uncovers a
complicated structure similar to the fractal butterfly-shap
graph introduced by Hofstadter19 for the square lattice, bu
showing a quasiperiodically repetition of structure elemen
forming a Fibonacci chain for the PVM. A similar behavio
was found for the superconducting transition temperature
a function of the applied magnetic field in artificial quasi
eriodically arranged systems.20 The interpretation of the clea
structure in Ref. 16 was the assumption of Landau band
mation in the PVM, as known for the square lattice. W
found a somewhat different behavior investigating the ot
models. To be sure, we discovered a quasiperiodic struc
for the width of the band for the ICM, too. But for ou
nonbipartite models it is the position of the band rather th
its width that changes quasiperiodically. Additionally, a cle
structure within the band could be seen only for the PV
Here, we denote a band as a region between the lowest
the highest eigenvalue.

To analyze this behavior we limit our investigations to t
eigenvalues at the band edge. Let us start with the PV
Because this model is bipartite, we only have to look at
lowest eigenvaluee(b). It is plotted as a function of the
magnetic field in curve~a! of Fig. 3. One can see the typica
quasiperiodic Fibonacci chain structure in the repetition
peaks and dips as reported in Ref. 8. Because the hig
eigenvalue is mirror symmetric to the lowest one, this me
that the width of the band changes quasiperiodically with
magnetic field. As it is shown by the plot of the simp
function f PVM(b)5@A cos(2Ab)1B cos(2Bb)#/(A1B) in

e

FIG. 3. ~a! Lowest eigenvalue of the finite PVM as a function
the magnetic field. ~b! f PVM(b)5@A cos(2Ab)1B cos(2Bb)]/
(A1B).
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56 8029ELECTRONIC PROPERTIES OF TWO- AND THREE- . . .
curve ~b! in Fig. 3, this structure can be declared by t
incommensurable ratios of the areasA andB of closed loops
perpendicular to the flux in the PVM. HereA5sin(2/5p)
andB5sin(1/5p) are the areas of thick and thin rhombus
in the PVM having the golden ratioA/B5t5@A(5)11]/2.
Also the ratio of the number of rhombuses isA/B5t. This
simple interference function of the cosine of both areas in
weighted ratio of their occurrence in the model is astoni
ingly similar to the curve ofe(b).

A more complicated structure was found for the plot
the lowest eigenvalue as a function of the magnetic field
the PCM. Additionally, we found a very similar appearan
of the plot for the lowest and the highest eigenvalue in t
nonbipartite model, that is, peaks of the highest eigenva
correspond to dips of the lowest one and vice versa. It
lows for the band a shift value changing quasiperiodica
with the magnetic field, while the width of the band is nea
fixed. It is plotted in the lower part of Fig. 4.

A similar behavior could be found for the IVM, which i
also nonbipartite. But only the main peaks in the lowest
genvalue have corresponding dips in the highest one and
amplitude is smaller, to be seen in the upper part of Fig
That is, the picture of a fixed bandwidth is only valid as
rough approximation. We have to leave the explanation
the special behavior of nonbipartite models to later inve
gations.

Suggested by the very similarity of curves~a! and ~b! in
Fig. 3 for the PVM, as described above, we extend this
proach to other quasicrystalline systems by calculating
Fourier transform of the functionse(b) being the lowest or
highest eigenvalue as a function of the magnetic fieldb for
the several models as

FIG. 4. ~a! Lowest and~b! highest eigenvalue of the nonbiparti
models PCM and IVM as a function of the magnetic fieldb.
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0
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dbe~b!exp~ iKb !U. ~6!

If e(b) contains only some discrete frequenciesK, we must
find d-like peaks in the plot ofẽ(K) at these values.

To explain this method we start with a simple finite clu
ter of a square lattice applying open boundary conditions
magnetic field with the lattice constanta51. Solving the
arising Harper equation

@eg12 cos~2yb1kg!#xg~y!1xg~y11!1xg~y21!50
~7!

and plotting the eigenenergyeg(b) of this model in the way
described above one gets the well-known butterfly-sha
graph introduced by Hofstadter.19 Again, we only want to
investigate the development of the smallest eigenvalue in
magnetic field. The graph is periodic in the magnetic fieldb
with the period of 2p. This can easily be understood noticin
thatb enters the Harper equation via the phase of the tran
energy~5! multiplied by A being the size of the areas con
tained in the cluster. So a period of 2p divided by the area
size is expected in the graph. These areas are uniform in
square lattice and of sizeA51. The physical meaning of this
behavior is the quantization of the flux through an area i
cluster. With open boundaries there is not a condition
choose only distinct magnetic field valuesb. But neverthe-
less we find peaks in the graph of the eigenvalues as a f
tion of the magnetic field at values satisfying the condition
integer flux quanta per area. It can easily be understood
also magnetic field values of, e.g., half of that size sati
such a condition. Then the flux through the area of t
squares of the lattice has an integer value. So we find pe
also at 2p/2, 2p/3, 2p* 2/3, and so on.

Only the period of 2p and all its subharmonicsn* 2p are
contained in the Fourier transformẽ(K) of the eigenvalue as
a function of the magnetic field, that we calculated as
example for a cluster of 20320 atoms. It is suggested by th
amplitude, that rectangular areas are preferred by the ‘‘re
nance’’ of the flux at the lattice areas. The largest peak is
one at the smallest possible area, the elementary squa
the lattice. The amplitude of areas formed by linear chains
squares is decreasing with increasing length. The pea
n55 has already nearly no amplitude. But there seems to
additional contributions to the amplitude values by rectan
lar areas of squares. So there are relatively high peak
n54[232, n56[233, n58[234, and especially at
n512[236 or 334 because of two possible rectangul
areas both having contributing ‘‘resonances.’’

As shown already in the graphe(b) for the PVM itself, it
can be nearly recovered similarly, as described for the squ
lattice, by interference of only two simple cosine waves
the two frequencies belonging to the areas of fat and t
rhombusesA andB in the ratio of the relative distribution in
the lattice. Indeed we find that the corresponding peaks
clearly the largest and in the correct ratio in the Four
transformẽ(K) of the lowest eigenvalue as a function of th
magnetic field for the PVM, Fig. 5. But additionally there a
smaller peaks lying at sums and also differences of the a
A and/orB as in the square lattice. Note that difference pea
are not distinguished in the square lattice. Again the mag
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8030 56H. SCHWABE, G. KASNER, AND H. BO¨ TTGER
tude of the subharmonic peaks decreases with the numb
included areas in the sum, that is, with higher indices. B
some peaks are unexpectedly small, as for instance, 2A com-
pared to the line 3A,4A,5A. We suppose these area comb
nations are rare in the cluster or have other reasons to be
very important.

Because of the incommensurable proportion ofA and B
peaks are densely distributed on theK axis. Particularly,
peaks with higher indices do not lie necessarily at hig
values ofK, in contrast to the case of the square latti
Instead the distribution of high and low peaks shows
fractal-like behavior. Because the PVM is bipartite, the hig
est eigenvalue as a function of the magnetic field must be
negative of the smallest one and so the absolute value o
Fourier transform has to be identical.

The very dominant magnitude of the main peaks belo
ing to the basic rhombuses of the Penrose lattice sugg
that the subharmonics do not play such an important rol
this case. Note that we used a logarithmic scale in Fig. 5.
assume that it saves the formation of Landau bands in
PVM as a nearly nondisturbed interference of that of o
two periodic systems with lattice constantsA andB, respec-
tively. This behavior cannot be found for the other mod
systems to which we now turn.

We test the behavior of the nonbipartite PCM. First,
have to know the occurring areas and the relative distribu
in the Penrose lattice. The lattice consists of seven ve
starsA,B, . . . ,G ~Ref. 8! and every one of them is related
a distinct polygonal area of the PCM as shown in Fig. 6
thegray shaded areas.

FIG. 5. Fourier transformẽ(K) of the lowest eigenvalue as
function of the magnetic field in the PVM in logarithmic represe
tation, main peaks are labeled with the areas of resonance.
of
t

ot

r
.
a
-
e

he

-
sts
in
e

he
y

l

n
x

y

The number of edges is equal to the coordination numb
of the vertex star. In Table I it is listed together with th
relative distributionD1 ,D2, . . . ,D7 in the Penrose lattice
and the sizeA1 ,A2, . . . ,A7 of the related areas, both as a
absolute value for a chosen lattice constant ofa51 and rela-
tive to the smallest existing area connected with vertex s
D.

Note, that the vertex starA here is the summary of the
fivefold vertex starsS andS5 ~Ref. 21! both occurring in the
Penrose lattice, arising from different vertex classes but ha
ing the same shape and size. Here only geometric proper
enter our meditation.

The Fourier spectrum of the functionf PCM(b)
5( j 51

7 D j cos(Ajb) defined analog tof PVM(b) @note, that
( j 51

7 D j51 ~Ref. 8!# is plotted as curve~b! in Fig. 7. The
comparison with the Fourier analysis of the smallest eige
value of the PCM, plotted with a logarithmic scale in curv
~a!, shows that the resonances of the two smallest areasA4

and A2 are recovered exactly in the correct magnitude a
ratio. The third largest areaA5 leads to a peak of around 50%
of the amplitude as suggested by its relative distribution
the lattice. The most remarkable behavior is the peak belon
ing to A3 . The amplitude does not even reach 5% of i
distribution although it is with about 23% the second mo
frequent vertex star in the lattice. The peaks of the larg
vertex starsA, F, andG can be found in the Fourier spec-
trum with about 20% of the expected amplitude. But all the
areas are relatively rare distributed in the lattice. That mea
the resonance of the large areas in a magnetic field does
play any important role here.

FIG. 6. Allowed vertex stars in the Penrose lattice, the gra
shaded areas are the assigned areas in the PCM.
in the

.644
TABLE I. Distribution and the corresponding areas in the center model of the allowed vertex stars
Penrose lattice Fig. 6.

Number of the vertex star 1 2 3 4 5 6 7
Label of the vertex star A B C D E F G
Coordination number 5 3 5 3 4 7 6
Distribution in the lattice t26 t22 t23 t24 t25 t26 t27

After Ref. 8 5.57 38.20 23.61 14.59 9.02 5.57 3.44
Corresponding area in the center model 3.112 0.623 2.637 0.532 1.721 4.176 3
Relative to the smallest one~vertex 4! in % 585 117 496 100 324 785 685
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56 8031ELECTRONIC PROPERTIES OF TWO- AND THREE- . . .
Again subharmonics at sums and differences of the m
peaks can be found in the spectrum. Because of the s
basic areas in the cluster there are many more possibilitie
get resonant areas compared to the case of the PVM. In
some peaks atK values corresponding to sums of even mo
than two areas are higher than other basic area peaks,
B1C2D. This indicates a strong mixing of states. The fo
mation of clear Landau bands should be prevented in
case.

Note that the Fourier analyses of the lowest and the la
est eigenvalue for this model are almost identical althou
the model is not bipartite, in correspondence with the si
larity of curve ~a! and ~b! in the lower part of Fig. 4. Our
second nonbipartite system is the IVM. Remember, that
also found very similar functions for the lowest and the hig
est eigenvalue in dependence on the magnetic field. Bu
contrast to the PCM, only the main peaks of graph~a! in the
upper part of Fig. 4 for the lowest eigenvalue could be fou

FIG. 7. ~a! Fourier transformẽ(K) of the lowest eigenvalue as
function of the magnetic field in the PCM in logarithmic represe
tation, main peaks are labeled with the areas of resonance.~b! Fou-
rier transform off PCM(b)5( j 51

7 D j cos(Ajb).
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also in that for the highest one~b!. Investigating the Fourier
transform of both functions, this behavior is underline
There are some peaks inẽ(K) for the lowest eigenvalue
which cannot be found for the highest one. On the ot
hand, all the peaks ofẽ(K) for the highest eigenvalue als
exist for the lowest one.

The investigation whether the concrete structure of
peaks conforms with areas in the cluster is omitted for
three-dimensional IVM. There is a very large number
various areas in the Danzer model. Moreover because of
eral angles to the relevantz axis of every area according t
the direction of the magnetic-field vector, the number of
fective areas perpendicular to the magnetic flux is ev
larger. Here we only mention that we find again only som
discrete frequencies with significant amplitudes suggestin
fixed set of resonant areas in the cluster.

V. CONCLUSIONS

We have investigated magnetic spectra and the mag
conductance of finite two- and three-dimensional quasicr
talline model systems in a tight-binding description. Gen
ally, there is a trend of the eigenstates to get a more unifo
distribution over the whole energy band with increasi
magnetic field. Correspondingly, the very small Fermi e
ergy regions of the clusters showing finite conductance w
out a field become wider in an increasing field. The width
the band in the bipartite models, respectively, the position
the nonbipartite models changes quasiperiodically with
magnetic-field strength. This is due to incommensurate ra
of areas perpendicular to the flux inside the quasicrystal
lattice. We can find a clear structure of the spectra inside
band only for the PVM. That means the formation of Land
bands described in Ref. 16 seems to be due to the fact
the PVM consists only of two types of areas perpendicula
the flux. So it can be regarded as an ideal binary lattice
disturbed enough to destroy the Landau bands of the sq
lattice. With every additional structural unit they vanis
more and more. Because the band limits the region of
Fermi energy where the cluster can show finite conductan
the magnetoconductance near the band edge has to be s
tive to the concrete structure of the quasicrystal.
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