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Electronic properties of two- and three-dimensional quasicrystalline model systems
in a magnetic field
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The density of states as a function of the magnetic field and the magnetoconductance of two- and three-
dimensional quasicrystalline model systems are calculated in a simple tight-binding description. The zero-field
spectra are known to show a very complicated spiky structure with many small gaps. A magnetic field leads to
a more uniform distribution of the states. Correspondingly, the energy regions showing finite values for the
magnetoconductance as a function of the Fermi energy become larger with a growing field. The investigation
of the high-field behavior uncovers an interesting structure of the spectra quasiperiodic with the field. This
quasiperiod can be explained as a simple interference of periods in the incommensurable ratio of the areas
perpendicular to the flux contained in the clusf&0163-18207)00237-3

I. INTRODUCTION eigenvalues as a function of the magnetic field. We find only
very few frequencies in the positions of the areas in the clus-
Since the discovery of quasicrystals many authors founder. Finally we draw some conclusions.
experimentally very exotic behavior of some of their physi-
cal properties:2 They show, for instance, a very low electri- Il. MODEL
cal conductance depending strongly on the composttion.
theoretical studies simple model systems were used to fing,]

the ongmlsof these properties in 'the quasmrystallmereal materialg(see, for instance, Ref)4The main features
struct.ure. A We_" mvesﬂga?ed one-dlmensmnal model— are to use mesoscopic clusters at zero temperature being
the Fibonacci chain—has a singular continuous spectrum ang | enough to avoid inelastic scattering, lattices in a tight-
the c_orrespondlng wave f“”Ct_'(_’”S are neither eXp‘mem'a"lﬁinding approximation witts-like atom functions localized
localized nor extended but critichlAn example of a two- 4t the |attice sites and open boundary conditions. To calcu-
dimensional quasicrystal is the Penrose lattice. Most of theate the conductance we have to add an external electric field
wave functions are believed to be critical too, but SOMEn the |inear-response approximati@rﬁharged partic]es are
highly degenerated strongly localized states, so-called corspinless and noninteracting electrons. Two leads of undis-
fined states, have been foutd:**In a tight-binding picture  turbed material being infinitely long but of finite width and
the conductance as a function of the Fermi energy showsutside of the magnetic field serve as electronic reservoirs.
very strong fluctuations and even energy ranges having zefbhe calculation is done via the Landauer formula
conductancé® This can be explained by a very irregular I'=(e?/h)tt", wheret is the transmission matrix of states of
distribution of the states contributing to the conductancethe undisturbed lead, scattered elastically at the quasicrystal-
First calculations for a three-dimensional icosahedral moddine cluster.
system exhibit qualitatively the same behafi®ome work
has been done introducing a magnetic field to quasicrystal- A. Hamiltonian in a magnetic field
line model syste_méffvlf’ Very interesting properties have  the HamiltonianH describing a quasicrystalline cluster
been fo_unq, for instance, a quasiperiodic structure in thea,4s in the tight-binding representation
magnetic-field dependence of the spectrum for the Penrose
lattice X o

We present some more systematic theoretical investiga- H=2 VyliXjl i.j NN (1)
tions of electronic properties of two- and three-dimensional N
guasicrystals in a magnetic field comparing the results of avith the transfer integrals between the next-neighbor sites
few simple but significant example models. First we intro-andj without a magnetic field
duce the model systems. The next sections give an overview
of our results for the magnetoconductance based on the den- o 2ok B (FP_BY=V..(0) —
sity of states. A further section deals with the detailed inves- Vi _f dréf (F-ROH$,(F-Ry)=Vv,(0)=1, (2
tigation of the spectra as a function of the magnetic field., . - . . . ..
The quasiperiodic repetition of significant structure element§z’i(r - Ri.) denote; thes-like atom funptlon at Ia_tt|ce Sitg.
in the spectra with increasing field can be explained as a The |ntroduE:t|on of a magnetic f|eld isdone by
simple interference of periods in the ratio of the areas perH(P)—H(p—eA) with the vector potentiah belonging to
pendicular to the flux contained in the cluster. To show thisthe magnetic field=B&,. The atom function at sitgin the
we perform a Fourier analysis for the plots of some selectedhagnetic field i&*

We used a very simple standard model describing only
e quasicrystalline structure but no other physical effects of
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$i(F.RB)=xi(F—R; ,B)ele/MADR,

xi(F—R;,B)~xi(F—R)) 3)

with the elementary charge and Planck’s constanit. The
approximation neglects the shrinking of the wave function in
very strong magnetic fields. The integrals of the transfer en
ergy (2) in the field get the form

Vi (8)= [ et AN Ry (7 Ry (- R)

%ei(e/2h)&(§i+§j)(§j—§i)_ 4)

integrated density of states

This approximation is valid for overlap functions
XF(r—R)Hx;(r—R;) localized midway between sifeand

j.
In the following we use the Landau gauge

A(r)=—yBe,. Then the transfer energy) becomes

0_|||||

1
4 3 2 0 1 2 3 4
ib(x; = X0 (i +Y1) _eB , @ -6 <13 -0 -7 -4 -1 2 5 8

Vij(B):e Co b=ﬁ_>baO:2CI)0 (5) energy[units of V;;(0), eqn. (2)]
Here®,=h/2e is the flux quantum an@® = 7a3B is the flux FIG. 1. Integrated density of states @) PVM, (B) PCM, (C)

at the fieldB through an arearaj with ag=1 the lattice VM: (&) without a magnetic field=0 and(b) in a fieldb=0.5,
constant. St denotes the value of the magnetic flux throughthe lower axis of energy is valid fdA) and(B), the upper one is
the elementary cells of the lattice in units &, that is,b  Valid for (C).

measures the strength of the magnetic field in a dimension- . . )
less form. 4320 sites for the ICM for the three-dimensional one. In the

following sections we show the results and compare it for
. : . . several models.

B. Two- and three-dimensional quasicrystalline clusters

The most investigated two-dimensional quasiperiodic
structure is the Penrose lattice. Its prototiles are two sorts of
rhombuses. We use it in two ways. The first one is to set an
atom at every vertex point to get the so-called vertex model The density of statedO9) in quasicrystalline systems is
(PVM). The second model is the center mo¢eCM) with known to show a very irregular structure with energy regions
one atom lying in the center of each rhombus. Both modelgontaining clusters of discrete states and other regions hav-
have several interesting opposite features, well summarizeidg no or just a few isolated states. This behavior is proven
in Ref. 4. The coordination number of the PVM varies from even analytically for the one-dimensional quasicrystalline Fi-
3 to 7 for the several vertex stars and the model is bipartitebonacci chain, where the DOS forms a cantor-set-like fractal
As a consequence the density of states has to be symmetstructure’ The DOS for two*® and three-dimensiorfagua-
aroundE=0 in a band of-7<E<7. The PCM has a uni- sicrystalline models seems to be more complicated but of
form coordination number of 4 at every site and is not biparfractal structure. Calculating the conductance of the same
tite leading to an asymmetric density of sta(B09). systems as a function of the Fermi energy as a parameter one

A three-dimensional model with similar features is thefinds that the complicated structure of the DOS is recovered.
model described by DanZérwhich may serve as a model That is, the system shows conductivity only in a small sur-
for real icosahedral quasicrystals of high quality such as Altounding region of any state. If there is another state in this
Pd-Mn or Al-Cu-Fe. It has several tetrahedra as prototilestegion, a conducting band arises. Certainly, the width of this
Again we can define a vertex mod&/M ) with atoms at the region depends on the size of the finite cluster. It becomes
edges of the tetrahedra and a center mqteM) with an ~ smaller with increasing size. But computational results sug-
atom situated in the middle of each tetrahedtdtso for the  gest that the additional states of a larger system are also
icosahedral system the center model has a uniform coordinaranged in many small clusters rather than showing a uni-
tion number of 4, while this for the IVM varies up to 62. But form distribution over the whole energy range, leading to
in opposition to the Penrose lattice, the ICM is bipartite butvery spiky DOS and conductance plots. Formation of wide
not the IVM. energy bands as in periodic systems cannot be observed.

We calculated some electronic properties for one example Now we introduce a magnetic field to our quasicrystalline
of each of these 4 models. Specifically we used a piece of emodels and calculate the DOS and the conductance again.
Penrose-8/5-approximate having 473 sites for the PVM and#lVe find, that an increasing strength of the magnetic field
378 sites for the PCM for the two-dimensional calculationsleads to a more uniform distribution of states. In Fig. 1 the
and a triacontahedron-shaped cluster of the Danzer model integrated DOS in a magnetic field of strengjtk 0.5 (graph
the third deflation level having 1069 sites for the IVM and b) is compared to that without a fiel@graph a for some of

Ill. DENSITY OF STATES AND
MAGNETOCONDUCTANCE
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FIG. 3. (a) Lowest eigenvalue of the finite PVM as a function of
the magnetic field. (b) fpym(b)=[A cos(2b)+B cos(Bh)]/
(A+B).
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remain zero at the sites not yet occupied without a field. It
Fermi energy follows that a field does not cause a breaking of any struc-
tural symmetry in this case. Generally, confined states in
ipartite models are reported as stabie®while that in

the nonbipartite models vanish quickly with any disturbance

of the structure or in a fiel&t!®
our model systems. Generally, the curves in the field are

FIG. 2. Conductance as a function of the Fermi energy for th
IVM: (@) without a magnetic fielth=0 and(b) in a field of strength
b=0.5.

much smoother, more linear, and get smaller steps. Addition-
’ 1 : IV. SPECTRA IN A MAGNETIC FIELD
ally, for the PVM (graphs A it is seen that the high degen-
eracy of the confined states Bt=0 also occur in the field. A very interesting development of the spectrum of the

This is not the case for the PCidraphs B atE=2 and, not PVM for a growing magnetic field is reported in Ref. 16. Let
to be seen so clearly, for the IVNgraphs ¢ at E=0. We  us define that “plot a spectrum” means to make a point at an
will return to this point later. energy value if there is a state. Then a plot of the calculated
Corresponding to the uniform distribution of states wespectrum against the magnetic field strengthuncovers a
also find much smoother conductance plots. That is, the alsomplicated structure similar to the fractal butterfly-shaped
solute value of the highest peaks in the plot become lowegraph introduced by Hofstadt&rfor the square lattice, but
but there arise larger conducting energy regions. As an exshowing a quasiperiodically repetition of structure elements,
ample, for the development of the conductance in a magnetitorming a Fibonacci chain for the PVM. A similar behavior
field, we show the plot for the IVM in Fig. 2, without a was found for the superconducting transition temperature as
magnetic field in grapléa) and in a field of strength=0.5  a function of the applied magnetic field in artificial quasip-
in graph(b). eriodically arranged system$The interpretation of the clear
The behavior of the DOS and the conductance in a magstructure in Ref. 16 was the assumption of Landau band for-
netic field can be regarded as being very similar to the bemation in the PVM, as known for the square lattice. We
havior of eigenstates in fractal lattictsThere a magnetic found a somewhat different behavior investigating the other
field leads to a spread of highly degenerated localized statgsodels. To be sure, we discovered a quasiperiodic structure
to new extended states because of the broken structural syrfer the width of the band for the ICM, too. But for our
metry due to the field. In the case of our models, we have natonbipartite models it is the position of the band rather than
degenerated but some clusters of very closely distributeits width that changes quasiperiodically. Additionally, a clear
states at several energy regions without a field. An exceptioatructure within the band could be seen only for the PVM.
are some highly degenerated so-called confined states beihtgre, we denote a band as a region between the lowest and
strongly localized at distinct local environments in the quasithe highest eigenvalue.
lattice. We found them in three of our four models on integer To analyze this behavior we limit our investigations to the
energy values, but not in the ICM. The total number of stategigenvalues at the band edge. Let us start with the PVM.
is fixed, so a “spreading” means a more uniform distribu- Because this model is bipartite, we only have to look at the
tion here, rather then new states. Whether the states are Iwest eigenvalues(b). It is plotted as a function of the
calized or extended cannot be determined because of tleagnetic field in curvéa) of Fig. 3. One can see the typical
small size of the cluster. That is, there is no well-definedquasiperiodic Fibonacci chain structure in the repetition of
localization length. An interesting fact is that we observed goeaks and dips as reported in Ref. 8. Because the highest
true spreading mechanism for the confined states as ewigenvalue is mirror symmetric to the lowest one, this means
pected, but not in the bipartite PVM. In this model the con-that the width of the band changes quasiperiodically with the
fined states turned out to be absolutely stable against evenagnetic field. As it is shown by the plot of the simple
very high magnetic fields, in the sense that their amplitudegunction fpyy(b)=[A cos(Ab)+B cos(Bhb)J/(A+B) in
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. T T T M Z(K):fowdbe(b)exﬂiKb)’- (6)

S R I . If e(b) contains only some discrete frequendieswe must
n find &like peaks in the plot oE(K) at these values.
-10 To explain this method we start with a simple finite clus-
ter of a square lattice applying open boundary conditions in a
12 - magnetic field with the lattice constaat=1. Solving the

arising Harper equation

energy[units of V;;(0), eqn. (2)]

-4 a -
IVM [67+ 2 COE{Zyb‘*‘ ky)]Xy(y) + Xy(y+ 1) + Xy(y_ 1) = 0(7)
= 1 1 1 -
PoM and plotting the eigenenergy,(b) of this model in the way
350 ‘ Ay described above one gets the well-known butterfly-shaped
graph introduced by Hofstadtét.Again, we only want to
3 b 7] investigate the development of the smallest eigenvalue in the
Y magnetic field. The graph is periodic in the magnetic field
-3 ] with the period of 2r. This can easily be understood noticing
us ‘ thatb enters the Harper equation via the phase of the transfer

energy(5) multiplied by A being the size of the areas con-
tained in the cluster. So a period ofrdlivided by the area
0 100 200 300 400 size is expected in the graph. These areas are uniform in the
square lattice and of siz&=1. The physical meaning of this
behavior is the quantization of the flux through an area in a
cluster. With open boundaries there is not a condition to
choose only distinct magnetic field valubs But neverthe-
less we find peaks in the graph of the eigenvalues as a func-
o ) tion of the magnetic field at values satisfying the condition of
curve (b) in Fig. 3, this structure can be declared by thejnteger flux quanta per area. It can easily be understood that
incommensurable ratios of the areaandB of closed loops  also magnetic field values of, e.g., half of that size satisfy
perpendicular to the flux in the PVM. Hew=sin(2/57)  such a condition. Then the flux through the area of two
andB=sin(1/57) are the areas of thick and thin rhombusessquares of the lattice has an integer value. So we find peaks
in the PVM having the golden ratia/B=7=[\/(5)+1]/2.  also at 27/2, 2m/3, 27+ 2/3, and so on.
Also the ratio of the number of rhombusesAsB= 7. This Only the period of 2r and all its subharmonias+ 27 are
simple interference function of the cosine of both areas in the€ontained in the Fourier transforafK) of the eigenvalue as
weighted ratio of their occurrence in the model is astonisha function of the magnetic field, that we calculated as an
ingly similar to the curve ok(b). example for a cluster of 2020 atoms. It is suggested by the

A more complicated structure was found for the plot of amplitude, that rectangular areas are preferred by the “reso-
the lowest eigenvalue as a function of the magnetic field fonance” of the flux at the lattice areas. The largest peak is the
the PCM. Additionally, we found a very similar appearanceone at the smallest possible area, the elementary square of
of the plot for the lowest and the highest eigenvalue in thighe lattice. The amplitude of areas formed by linear chains of
nonbipartite model, that is, peaks of the highest eigenvalusquares is decreasing with increasing length. The peak at
correspond to dips of the lowest one and vice versa. It foln=>5 has already nearly no amplitude. But there seems to be
lows for the band a shift value changing quasiperiodicallyadditional contributions to the amplitude values by rectangu-
with the magnetic field, while the width of the band is nearlylar areas of squares. So there are relatively high peaks at
fixed. It is plotted in the lower part of Fig. 4. Nn=4=2x2, n=6=2x%x3, n=8=2x4, and especially at

A similar behavior could be found for the IVM, which is n=12=2x6 or 3x4 because of two possible rectangular
also nonbipartite. But only the main peaks in the lowest ei-areas both having contributing “resonances.”
genvalue have corresponding dips in the highest one and the As shown already in the grapd{b) for the PVM itself, it
amplitude is smaller, to be seen in the upper part of Fig. 4can be nearly recovered similarly, as described for the square
That is, the picture of a fixed bandwidth is only valid as alattice, by interference of only two simple cosine waves of
rough approximation. We have to leave the explanation fothe two frequencies belonging to the areas of fat and thin
the special behavior of nonbipartite models to later investithombuses\ andB in the ratio of the relative distribution in
gations. the lattice. Indeed we find that the corresponding peaks are

Suggested by the very similarity of curvé® and (b) in clearly the largest and in the correct ratio in the Fourier
Fig. 3 for the PVM, as described above, we extend this aptransforme(K) of the lowest eigenvalue as a function of the
proach to other quasicrystalline systems by calculating thenagnetic field for the PVM, Fig. 5. But additionally there are
Fourier transform of the functions(b) being the lowest or smaller peaks lying at sums and also differences of the areas
highest eigenvalue as a function of the magnetic fielidr A and/orB as in the square lattice. Note that difference peaks
the several models as are not distinguished in the square lattice. Again the magni-

magnetic field b

FIG. 4. (a) Lowest andb) highest eigenvalue of the nonbipartite
models PCM and IVM as a function of the magnetic field
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FIG. 6. Allowed vertex stars in the Penrose lattice, the gray

FIG. 5. Fourier transforme(K) of the lowest eigenvalue as a . .
un (K) W 1genvaly shaded areas are the assigned areas in the PCM.

function of the magnetic field in the PVM in logarithmic represen-
tation, main peaks are labeled with the areas of resonance.
The number of edges is equal to the coordination number

tude of the subharmonic peaks decreases with the number 8f the vertex star. In Table | it is listed together with the
included areas in the sum, that is, with higher indices. Bufelative distributionD,D,, ...,D7 in the Penrose lattice
some peaks are unexpectedly small, as for instankeain-  and the sizeA; A, ... A; of the related areas, both as an
pared to the line 8,4A,5A. We suppose these area combi- absolute value for a chosen lattice constaraefl and rela-
nations are rare in the cluster or have other reasons to be ntive to the smallest existing area connected with vertex star
very important. D.

Because of the incommensurable proportionAc&nd B Note, that the vertex stak here is the summary of the
peaks are densely distributed on tHeaxis. Particularly, fivefold vertex starsS andS5 (Ref. 21) both occurring in the
peaks with higher indices do not lie necessarily at higheiPenrose lattice, arising from different vertex classes but hav-
values ofK, in contrast to the case of the square Iattice.ing the same shape and size. Here only geometric properties
Instead the distribution of high and low peaks shows aenter our meditation.
fractal-like behavior. Because the PVM is bipartite, the high-  The Fourier spectrum of the functionfpcy(b)
est elgenvalue as a function of the magnetic field must be tthJ?:le cos@\b) defined analog tofpyy(b) [note, that
negative of the smallest one and so the absolute value of th§j7:le:1 (Ref. 8] is plotted as curveb) in Fig. 7. The

Fourier transform has to be identical. mparison with the Fourier analvsis of the smallest eigen
The very dominant magnitude of the main peaks belongp0 pariso € rouner analysis ot tne smallest eigen-
lue of the PCM, plotted with a logarithmic scale in curve

ing to the basic rhombuses of the Penrose lattice sugges
that the subharmonics do not play such an important role in®- Shows that the resonances of the two smallest akgas

this case. Note that we used a logarithmic scale in Fig. 5. W&nd A, are recovered exactly in the correct magnitude and
assume that it saves the formation of Landau bands in thEatio. The third largest areds leads to a peak of around 50%
PVM as a nearly nondisturbed interference of that of onlyof the amplitude as suggested by its relative distribution in
two periodic systems with lattice constaitsandB, respec- the lattice. The most remarkable behavior is the peak belong-
tively. This behavior cannot be found for the other modeling to A;. The amplitude does not even reach 5% of its
systems to which we now turn. distribution although it is with about 23% the second most
We test the behavior of the nonbipartite PCM. First, wefrequent vertex star in the lattice. The peaks of the larger
have to know the occurring areas and the relative distributiowertex starsA, F, andG can be found in the Fourier spec-
in the Penrose lattice. The lattice consists of seven vertettum with about 20% of the expected amplitude. But all these

starsA,B, ... ,G (Ref. 8 and every one of them is related to areas are relatively rare distributed in the lattice. That means
a distinct polygonal area of the PCM as shown in Fig. 6 bythe resonance of the large areas in a magnetic field does not
thegray shaded areas. play any important role here.

TABLE I. Distribution and the corresponding areas in the center model of the allowed vertex stars in the
Penrose lattice Fig. 6.

Number of the vertex star 1 2 3 4 5 6 7

Label of the vertex star A B C D E F G
Coordination humber 5 3 5 3 4 7 6
Distribution in the lattice 8 2 3 4 7 8 7

After Ref. 8 5,57 38.20 23.61 1459 9.02 5.57 3.44
Corresponding area in the center model 3.112 0.623 2.637 0.532 1.721 4.176 3.644

Relative to the smallest orgertex 4 in % 585 117 496 100 324 785 685
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also in that for the highest or(b). Investigating the Fourier
transform of both functions, this behavior is underlined.

0.1 o There are some peaks #¥(K) for the lowest eigenvalue
D l which cannot be found for the highest one. On the other

|7 Booe F hand, all the peaks of(K) for the highest eigenvalue also

exist for the lowest one.

The investigation whether the concrete structure of the
peaks conforms with areas in the cluster is omitted for the

o a .9 a three-dimensional IVM. There is a very large number of
od gg Q S8 0 a8 various areas in the Danzer model. Moreover because of sev-
< G Foud eral angles to the relevaamtaxis of every area according to
2 | the direction of the magnetic-field vector, the number of ef-
fective areas perpendicular to the magnetic flux is even
l larger. Here we only mention that we find again only some
discrete frequencies with significant amplitudes suggesting a
fixed set of resonant areas in the cluster.
| | I
3 4 5 6

V. CONCLUSIONS

We have investigated magnetic spectra and the magneto
conductance of finite two- and three-dimensional quasicrys-
talline model systems in a tight-binding description. Gener-
ally, there is a trend of the eigenstates to get a more uniform
distribution over the whole energy band with increasing

Again subharmonics at sums and differences of the maimagnetic field. Correspondingly, the very small Fermi en-
peaks can be found in the spectrum. Because of the sevamgy regions of the clusters showing finite conductance with-
basic areas in the cluster there are many more possibilities tut a field become wider in an increasing field. The width of
get resonant areas compared to the case of the PVM. Indedide band in the bipartite models, respectively, the position in
some peaks & values corresponding to sums of even morethe nonbipartite models changes quasiperiodically with the
than two areas are higher than other basic area peaks, e.gragnetic-field strength. This is due to incommensurate ratios
B+ C—D. This indicates a strong mixing of states. The for- of areas perpendicular to the flux inside the quasicrystalline
mation of clear Landau bands should be prevented in thitattice. We can find a clear structure of the spectra inside the
case. band only for the PVM. That means the formation of Landau

Note that the Fourier analyses of the lowest and the largbands described in Ref. 16 seems to be due to the fact that
est eigenvalue for this model are almost identical althouglthe PVM consists only of two types of areas perpendicular to
the model is not bipartite, in correspondence with the simithe flux. So it can be regarded as an ideal binary lattice not
larity of curve (a) and (b) in the lower part of Fig. 4. Our disturbed enough to destroy the Landau bands of the square
second nonbipartite system is the IVM. Remember, that wéattice. With every additional structural unit they vanish
also found very similar functions for the lowest and the high-more and more. Because the band limits the region of the
est eigenvalue in dependence on the magnetic field. But ifermi energy where the cluster can show finite conductance,
contrast to the PCM, only the main peaks of gréaghin the  the magnetoconductance near the band edge has to be sensi-
upper part of Fig. 4 for the lowest eigenvalue could be foundive to the concrete structure of the quasicrystal.

FIG. 7. (a) Fourier transforme(K) of the lowest eigenvalue as a
function of the magnetic field in the PCM in logarithmic represen-
tation, main peaks are labeled with the areas of resonéncEou-
rier transform off pcp(b) :E]?:le cos@b).

1D. P. DiVincenco and P. J. Steinhar@uasicrystals The State of 11K. Ueda and H. Tsunetsugu, Phys. Rev. LB8, 1272(1987).

the Art(World Scientific, Singapore, 1991 125, Yamamoto and T. Fujiwara, Phys. Rev5B 8841(1995.
2K. H. Kuo and T. Ninomiya,Quasicrystals(World Scientific, ~ 3Y. Jian, Z. Phys. B88, 141 (1992.

Singapore, 1991 14H. Bottger and V. v. Bryksin,Hopping Conduction in Solids
3p, Lindqvist, P. Lanco, C. Berger, A. G. M. Jansen, and F. Cyrot- (Akademie-Verlag, Berlin, 1985

Lackmann, Phys. Rev. B1, 4796(1995. 15M. Arai, T. Tokihiro, and T. Fujiwara, J. Phys. Soc. JpB, 1642
4H, Tsunetsugu, T. Fujiwara, K. Ueda, and T. Tokihiro, Phys. Rev. (1987.

B 43, 8879(1991). 16T, Hatakeyama and H. Kamimura, J. Phys. Soc. K&.260
5T. Fujiwara, QuasicrystalsgRef. 2, p, 294. (1989.
8G. Kasner, H. Schwabe, and H. @ger, Phys. Rev. B1, 10 454  7L. Danzer, Disc. Math76, 1 (1989.

(1995. 8% R. Wang, Phys. Rev. B3, 12 035(1996.
T. Rieth and M. Schreiber, Phys. Rev.3, 15 827(1995. 19D, R. Hofstadter, Phys. Rev. B4, 2239(1976.
8T. Odagaki, Solid State CommuB0, 693 (1986. 20A. Behrooz, M. J. Burns, H. Deckman, D. Levine, B. Whitehead,
°T.C. Choy, Phys. Rev. B5, 1456(1987). and P. M. Chaikin, Phys. Rev. Leti7, 368 (1986.

04, Tsunetsugu and K. Ueda, Phys. Rev4® 8892(1991). 2IN. G. de Bruijn, Mathematics 84, 39 (1981).



