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In this paper the first-principles generalized pseudopotential th@®f) of transition-metal interatomic
potentialgdJ. A. Moriarty, Phys. Rev. B8, 3199(1988] is extended t&\B binary compounds and alloys. For
general transition-metdlTM) systems, the GPT total-energy functional involves a volume term, central-force
pair potentials, and angular-force multi-ion potentials, which are both voluie and concentrationx)
dependent and include ap, sp-d, andd-d interactions within local density-functional quantum mechanics.
The formalism is developed here in detail for intermetallic systems whei® a simple metal an® is a
transition metal and applied to the prominent special case of the transition-metal aluminigkl TM where
sp-d hybridization is especially important. Emphasis is given to the aluminum-rettoiBary systems for
x<0.30, which appear to be well described at the pair-potential level without angular forces and for which the
present GPT potentials can be used directly in atomistic simulations. Volume terms and pair potentials for all
of the 3d aluminides have been calculated and their behavior with atomic nurfiheandx is elaborated
through illustrative applications to the cohesive and structural trends acrossitherigs. More extensive
applications to the Co-Al and Ni-Al phase diagrams will be given elsewli&@163-18207)03938-6

I. INTRODUCTION ments and all quantities may be evaluated directly from first
principles without any external input. For an elemental bulk
For sp-bonded compounds and alloys, the fundamentatransition metal, the GPT provides a rigorous expansion of
theory of bulk interatomic potentials has been well devel-the total energy in the fort
oped from rigorous plane-wave pseudopotential expansions
and successfully applied to obtain both solid and liquid prop- 1o .
erties, including the structural phase diagrams of simple- Ewof(R1, ... RN)=NE(2)+ 5% va(ij)
metal intermetallic systemsA corresponding first-principles

theory ford- and sp-d-bonded transition-metal intermetal- 1o . 1 , .

lics has heretofore been lacking, although there have been * Ei,,z,k va(ijk)+ ﬂi,j%J v4(ijkl),
encouraging successes with simplified semiempirical ap- )
proaches, especially for the structurally complex transition-

metal(TM) aluminides’* In addition, a number of important whereR,, .. . Ry denotes the positions on theions in the
aspects of structural phase Stablllty in TM aluminide Com-metaLQ is the atomic V0|ume, and the prime on each sum
pounds and alloys have been illuminated recentlyalidni-  over ion positions excludes all self-interaction terms where

tio electronic-structure calculatiohd within the local-  two indices are equal. The leading volume term in this ex-
density approximatiofLDA) of density-functional theory. pansionE,, as well as the two-, three-, and four-ion inter-
At the same time, the essential groundwork has been laid fasitomic potentials,, vy, andv, are volume dependent but
an ab initio approach to interatomic potentials in TM inter- structure independerjuantities and thusransferableto all
metallics with the development of generalized pseudopoterbulk ion configurations. At constant volunie, the radial-
tial theory (GPT), which provides a fundamental basis for force pair potentiab, is a one-dimensional function of the
such potentials in elemental simple and transition metalgon-ion separation distand®; = |R; — R

within the same LDA framework’~12 The purpose of this

paper is to extend the GPT B binary transition-metal voij)=v2(Rij ;1 ), (2
systems, with an emphasis on obtaining first-principles inter-
atomic potentials for the TM aluminides. while the angular-force triplet potential; and quadruplet

In the GPT a mixed basis set of plane waves and localizeg@otentialv , are, respectively, the three- and six-dimensional
d states is used to expand the electron density and total eftinctions
ergy of a TM system in terms of weadp pseudopotential,
sp-d hybridization, andd-d tight-binding matrix elements. v3(ijk)=v3(Rij ,Rjk,Rki; Q) 3
In a real-space formulation, the derived interatomic poten-
tials become well-defined functionals of these matrix ele-and
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v4(ijkD)=v4(Rij ,Rik ,Rit , Rii ,Ryi Ry 1 Q). (4) and five independent four-ion quadruplet potentials

The nature of these functionals is complex and reflects the D4 RRA JAAAB
material-dependent electronic band structure of the metal in- 4

cluding the effects of partiald-band filling and self- |n addition, self-consistent electron-density constraints must
consistent electron screening. Detailed expressions and calow be satisfied, which link thep valencesZ, andZg with
culated results for thed®and 4d transition metals are given the d-band occupationg4 andZ§ as functions of both vol-

in Ref. 12. As in the case afp-bonded simple metals, where yme and concentration. The general case is consequently
angular forces become unimportant, the pseudopotential quite complicated and requires the complete specification of
contributions to the total energy are retained only to the pairtwo sets of localized states for the two constituents and the
potential level, i.e., folE,, andv,. Thus the multi-ion po-  calculation of all appropriatd-d cross terms. While there is
tentialsv s andv, reflectsp-d hybridization andd-d tight-  no difficulty in setting up the formalism for this case, as yet
binding contributions and the angular forces for transitionthe corresponding computational capability does not exist.
metals are a direct result of thesestate interactions. In  We shall therefore narrow our focus to the formally simpler
general, both the pair potential, and the multi-ion poten- case of amAB intermetallic system where th& component
tialsv; andv, are long ranged with aysmptotic Friedel-like js simple metal, with fixe@, andZQ, and theB compo-
oscillations arising fronsp-d hybridization as well as elec- nent is a transition metal, with variab®; and Z2. In the

tron screening. The sign and amplitude of the potentials &gyt of the elemental GPT, we retain only the pair potentials
short range, on the other hand, strongly reftettand filling, U/ZAA U/ZAB andeB and the multi-ion potentialsSBB and
with typically_l_jz attractive,vg repulsi\_/e, and)4_oscillatory. U?BBB in this case. Moreover, we may anticipate that for
int;-rs]iemtr?grs;g(r)rrr]]-sn}ﬁt?rLeGsp-I(-acIi?arIn;ZI;Se? Orfeig'rg/ {gigls (l(::]/vr; sufficiently smallx the latter remaining multi-ion potentials

¢ fill dpd bands en ntpr din or nd P ttryn itip ?](Nill also be negligible and a good description of the system
0 em 1 ands encountered In pre- and post-ransition.,, e gpiained at the pair-potential level without angular
metals.” " This includes the limiting simple-metal case ap- forces
propriate to aluminum. In the transition-metal limit, self- s

. . . ) The prototype systems to which the present formalism
consistent electron-density constraints establish the balan% : ”» o
. lies are the transition-metal aluminides .,/ _,. The
between thesp-band occupation per atom or valen€eand Ppp X X

the d-band i torfd ting i ial aluminides are both of technological interest as high-
€ d-band occupation per alomy, resuiting in partia temperature structural materials with desirable mechanical
d-band filling and the multi-iord-state interactions. In the

. - N roperties and of basic scientific interest because of the com-
simple-metal limit, on the other hand, is fixed by the brop

hemical val f the el . ; 0 or 10 plex phases these materials form and their intimate connec-
chemical valence o the e emenF In ql_JeSt'ﬁG’_’ ortYas ton to quasicrystals. With regard to mechanical properties,
appropriate, and thesp-d hybridization andd-d tight-

. . X - . . LDA electronic-structure methods have been applie@ 2o
binding interactions become negligible. Any remaining compounds to calculate the elastic moduli of C4REf. 13

d-state contributions are absorbed into the nonlocal pseudgyq point-defect properties of FeAl and Niiwhile em-
potential, and the simple-metal GPT, which is carried to thepirical embedded-atom-meth@BAM) potentials have been

level of v, in Eq. (1), becomes a refined version of the con- ;seq for more general studies of defects in Ti-Al and Ni-Al
ventional plane-wave pseudopotential perturbation th&ory. compounds, including calculations of vacancies, grain

For transition-metal compounds and alloys, one may,,nqaries, and dislocatios:t’ With regard to complex

rgadily anticipate the broad features a muIticomp(_)nent eXterbhases, semiempirical pair potentials, based on model
sion of the GPT must accommodate. We specifically conggedopotential and hybridization interactions, have helped
sider anAB binary system with concentrationg = NA/N of o explain the appearance of some of these phases in
A metal atoms andg=Ng/N of B metal atoms and intro- - 51yminum-rich system&2 while semiempirical tight-binding

duce the single concentration variable (TB) potentials have been used to study the structure of cor-
responding liquid alloy$® Unlike the EAM and TB poten-

tials, however, the pair potentials contain the expected long-
From general considerations, one can expect that both th@nged oscillatory tails, which are really essential to account

AABB ABBB , BBBB
Wy WUy U4 9

x=cg=1—cCp. (5)

volume term and the interatomic potentials in E#j) will for the complex aluminide phases in the solid.
become concentration dependent as well as volume depen- The semiempirical aluminide pair potentfafsare also
dent. Thus, for example, qualitatively similar to the present GPT pair potentials and
may be viewed as a highly simplified version of the latter.
Evol(2) = Eyai(2,X) (6)  The former potentials were most completely developed by

Phillips et al® in the case of Co-Al for application to the
dent variables. The appropriate multiplicity of interatomic aluminum-rich phase diagram. These potentials are based on

potentials must also be accommodated, so that in genergl two-parameter local pseudapotential treatment qfstpe
there are three independent two-ion pair potentials interactions and a three-parameter model Hamiltonian treat-

ment of thesp-d hybridization that neglects nonorthogonal-
ity effects. No attempt was made, however, to treat direct
d-d interactions, the volume and concentration dependence
four independent three-ion triplet potentials of the potentials, nor self-consistent electron screening. In
contrast, the present first-principles GPT explicitly includes

AAA ~ AAB ABB  BBB 2 . .
Uz3—V3z Uz Uz U3 (8 the additional features of nonlocal pseudopotentials and di-

in a binary intermetallic system, with andx as indepen-

AA _AB _ BB
VU5 U Uy, (7)
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rectd-d interactions, as well as full treatments yf-d hy- 2.8 — .
bridization, self-consistent electron screening, and the vol- I
ume and concentration dependence of the total energy. We
expect, therefore, that a wide variety of aluminide properties 247
can eventually be treated with the GPT, including defects,
structural phase stability, lattice vibrations, melting, and lig-
uid structure. More generally, the GPT pair potentials should
be readily applicable to both static and dynamic simulations ]
of materials properties. 1.6 =.BukTM:x=1.0 e
The outline of this paper is as follows. In Sec. Il we first IR e ]
establish the self-consistent electron-density constraints that
must be satisfied by oukB intermetallic system and apply “l S8 Ti V Cr Mn Fe Co Ni Cu
these conditions to thed3aluminides. Next in Sec. Il we : : : :
outline the formalism for the GPT interatomic potentials and
use this formalism to calculated3aluminide potentials as a
function of atomic number, volume, and concentration. Then 5 1 Transition-metal valencZg for the 3 aluminides
in Sec. IV we use the calculated potentials to address they A, in thex=1 andx=0 concentration limits.
basic cohesive and structural trends across the&ies and
thereby demonstrate the promise of the GPT for a|Umi”idTonent, as given by Eq#66)—(68) of Ref. 12. These condi-

phase diagrams. We conclude in Sec. V, with additionaljons Jink Zg and Zg: through the Fermi levekr and the
technical details on the GPT formalism given in the Appen-,_ » phase shifts,

Z:TMAIL

Dilute alloy: x = 0.0
20

Valence

20 22 24 26 28 30
Atomic number

associated with th® site and can be

dix. written
Il. SELF-CONSISTENT ELECTRON-DENSITY B 10
CONSTRAINTS Zg=—y(€F), (13
To extend the GPT formalism to binary intermetallics, ) 2 213
; i i hc ([ 37Z
one must first ensure that the basic conditions of electron- 6 :_( ) (14)
density continuity are satisfied. For a given average atomic F2aml Q '

volume (), the zeroth-ordesp electron density of the sys-

tem isZ/Q), whereZ is the concentration-weighted averageWhICh can also be expressed in the familiar form

Z=k,‘°§Q/37-r2, where kg is the corresponding Fermi wave

Z=CpZa+CpZg=(1-X)Zp+XZg, (10  number, and
with Z, and Zg the respectivesp valences of theA and B Zg+23=25-28, (15
components. It is also useful to define individual atomic vol- B . . 5 .
umesQ, andQg such that where Z; is the atomic number and; is the number of
inner-core electrons of tB-metal ion. The Fermi energsk
Q=cpQat+cegpg=(1—X)Qp+x0p (11)  and the phase shilf, both depend on the intermetallic en-

vironment, siZg andzg’ will be shifted away from their bulk

values. For given values dR, x and Z,, Egs.(10)—(15)
ZI0=Z,10,=Z5/5. (12) _represent seven equa}tions in seven unknowns and must be

iterated numerically, via thA- andB-metal pseudoatoms, to
In analogy with the elemental GPT, the parameter pairsachieve a self-consistent solution. An efficient strategy to
Z,,Q0 5 andZg,Qp define zeroth-order pseudoatoms for theaccomplish this is discussed in the Appendix, together with
A and B components, respectively. These pseudoatoms arechnical details on how the pseudoatom calculation is modi-
self-consistenA- and B-metal ions that have been neutral- fied in the binary intermetallic case. The primary modifica-
ized by the common uniform electron gas and establish propion concerns the common location of the zero of energy at
erly shifted inner-core and-state energy levels and corre- the valence-band minimum, which becomes concentration
sponding basis functions that are needed in the full GPTependent in the alloy. We also now use the very accurate
formalism. Physically, one may think of the- andB-metal  exchange-correlation parametrization of Voskball® in
pseudoatoms as being expanded or contracted from their ghlace of the Hedin-Lundqvist parametrizatiBased in Refs.
emental bulk sizes to ensure that E2) is satisfied. For 10-12.
nontransition-metal systems, whe#, and Zg are fixed Figures 1 and 2 illustrate the calculated change&giand
guantities, it is, of course, a simple matter to satisfy Eqs{g, respectively, for the @ TM aluminides in going from
(10)—(12) directly. In transition-metal systems, on the otherthe bulk transition-metak=1 limit to the aluminum-rich
hand, wher&Z, and/orZg are volume and concentration de- dilute-alloy x=0 limit. These results have been obtained at
pendent, the situation is considerably more complex. For théhe observed equilibrium volume$)= Q) of the 3d metals
case of primary interest in this paper, whées a simple for x=1 and of Al forx=0. Quantitative values are listed in
metal andB is a transition metal, one must simultaneously Table | and calculational details are discussed in the Appen-
satisfy the equilibrium conditions between thp valenceZg dix. In the bulk transition metalsZg~1.5 across the @
andd-electron occupation numbé&; for the B-metal com-  series. Bulk aluminum, on the other hand, with=3 has a

and
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180 . . : — where Z3 is Zg evaluated ak=0, Z3=3, andQ3=112.0
. Q.- TM Al a.u. (16.60 &), the observed equilibrium volume of Al.
160 % B T Physically, this result is, apart from the replacemenZgf
T 140t BUKTM: x = 1.0 j with .ZO, equivalent to the condition of congtant electron
& - 'y densityZ/Q), as was suggested by Philligs al.”° as an ap-
2 120 " 1 propriate criterion for Co-Al phases. Equati¢h6) can be
2 ] applied more generally, however, and is sometimes useful in
o 1007 ‘u, ] the rangex< 0.30.
5 80 - e a Finally, it should be pointed out that while our description
< Dilute alloy: X = 0.0 *~—e._. of the zeroth-order electron density in TM compounds and
60 . alloys is internally consistent, any definition of a transition-
Sc Ti V Cr Mn Fe Co Ni Cu metal valenceZg in a condensed-matter system is method
400 . " 2 - 20 dependent and consequently not entirely unique. In fact, this

subject has historically been approached in a rather different
way for many aluminum-rich TM aluminides. These systems
FIG. 2. Transition-metal atomic volum@g for the 3 alu- have often been treated as classic Hume-Rothery alloys
minides TMAI,;_, in thex=1 andx=0 concentration limits. whose stability is presumed to arise from the interaction of a
set of dominant Bragg reflection planes with a nearly-free-

considerably highes p electron density than any of the tran- electron Fermi surface. In this context, an effective
sition metals. When a transition metal is added to aluminumyansition-metal valencg can be defined, in our notation,

therefore, we expecZg to rise and/or()g to decrease in gg
order to create a higher density. As shown in Figs. 1 and 2,
both of these changes actually occuk&t0O, with the biggest
guantitative impact on the left-hand side of thd 3eries
where Zg>2 for Sc through Mn andlg is dramatically where Zeﬁ:(kgﬁ)sﬂo/?m,z is the number of valence elec-

reduced for S.C. and.T|. More generally, the mcre_aségnn trons contained within a free-electron Fermi sphere of radius
the TM aluminides is balanced by a corresponding decrease:

B L ; . = £ just touching the Bragg planes in question. TS is
inZq, WB'Ch ('jn “?m IS p[jOVIdﬁ? by.th?hTM”bands fsing in equated taK/2, which is one-half the magnitude of the re-
energy, broadening, and unfifing in the afloy. ciprocal lattice vector defining these planes. This approach

While the volume() and concentratior are independent has been developed by Rayfand by others. It leads to the
variables, there is, of course, a high correlation between

and theequilibrium volume (), observed in alloys and com- interesting prediction of negative values Eﬁﬂ typically in

ounds. Approximate relations linkinQ, and x are often the range—1 to 3, and thus to the concept of a negative
b - APP 0 effective TM valence in these alloys. The apparent contra-

useful for preliminary calculations or in cases where data on iction between suckarge and neqativaralues ofze" and
particular phases do not exist. We mention here one suc " g 9 . B °
relation that is appropriate to the aluminides on theourlarge and po§|t|ve/alues OfZg can be readily exp_Iamed,
aluminum-rich end wheret is small. This relation derives however. For this one must take into account the important

f Eq. (11 i imple Tavior-seri ion fole of the TMd states on the electronic structure of these
argcznutxqu) %(?t?/ng] ?h:l;mr:ginat;)rincgle Cai)éé)(rzs%)e;;xpef\grs on systems. This role has recently been discussed by Trambly
smallx. and then using Eq12): A A de Laissardiee et al® on the basis of LDA calculations,

which are, in fact, commensurate with our GPT treatment, as
90:[1_(1_zg/zg)x]90, (16) demonstrated in Sec. IV below. These studies confirm that
there is a substantial contribution to the electronic structure
TABLE I. Valences and atomic volumes for thel &luminides  from the TMd states and, in particular, near the Fermi level
TM,Al; _, in thex=1 andx= 0 concentration limits, with volumes sp-d hybridization contributes to the formation of more
ina.u. For ALZ,=3 at allx and(2,=112.0 a.u. ak=0. Atx=1,  complex pseudogaps in the density of states than envisaged
Z=Zg and()=0g; atx=0,Z=Z, and}=0Q,. For conversion in a simple Hume-Rothery model. This has the effect of blur-
of volumes to & units, (A% =0.148 18 ((a.u). ring the meaning ofz®" in Eq. (17), so that there is no
precise quantitative relationship betweléff andK. Quali-

Atomic number

Zg§'x=2°"-Z,(1-x), (17)

™ . X(;l 0 . x=0 o tatively at least, Fried&t has argued tha®™>K/2, which is

B B A B B significant because at small Z&" is clearly very sensitive to
Sc 1.616 168.7 313.2 2.190 81.74 k. For example, ax=0.2 an increase of less than 10% in
Ti 1.515 119.2 236.0 2.408 89.87 k" is needed to increasgy" by +4. Moreover, there is no
\Y; 1.424 93.23 196.4 2.339 87.34  theoretical or experimental evidence for the large transfer of
Cr 1.410 80.94 172.3 2.196 81.99 electrons fromsp states to TMd states implied by a large
Mn 1.482 83.16 168.3 2.047 76.42 negative TM valence, although as pointed out by Trambly de
Fe 1.472 79.47 162.0 1.912 71.34 Laissardiee et al.there are extrap states induced below the
Co 1.461 75.10 154.2 1.800 67.19 Fermi level bysp-d hybridization that could accommodate
Ni 1.484 73.82 149.3 1.733 64.60 the transfer. At the same time, the presence of such states
Cu 1.651 79.68 144.8 1.805 67.37 further indicates thaZ®" in Eq. (17) is not accounting for the

entiresp valence population, as is the case in the definitions
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of Z and Zg in the GPT. Consequently, one fully expects a constant that determines the zero of energy. The quantity

Z>7°" and, depending on the value bﬁﬁ chosen, either
Ze>78" or Zg>278".
lll. GPT INTERATOMIC POTENTIALS

The real-space total-energy functional of a gen&8l
intermetallic system can be written

E'[Ot(Rl! L !RN):NEVO|(Q!X)
1 )
5 2 2 vBP(RIQX)
24,6=A8 1]
(18)
where by symmetry; —u2 in the two-ion contributions

Wp4(K) is an appropriate plane-wave pseudopotential matrix
element for component, as defined in the Appendix, and
ESO| is the transition-metadl-state contribution

10 (er
El= 2 e EP) - | ToErdE, (24

whereE"OI B is the volume component of tH&metald-state
energyEd , which denotes the position of tliebands in the
alloy. The quantityE2°™*(Z ) is the binding energy of the
Z, s andp valence electrons in the free atom, whidg¢, is

the preparation energy required to take the transition-metal
free atom from its ground state to the same configuration
employed in the alloy with valencgz . The remaining band-

and the ellipsis represents three- and four-ion contribution§tructure energiesES in Eq. (20) andE5” and 6E, in Eq.
that are generalized similarly. Here it is understood thaf19) arise mostly from higher-order pseudopotentlal and hy-

Rij=|Ri{a}—R;{B}|, so that the sums overandj are only
over sites occupied by the atomic speciesind 3, respec-

bridization contributions and are discussed in the Appendix.
As was demonstrated in Ref. 1Ep alone already pro-

tively. In this section we discuss the specific forms the vol-vides a good description of the equmbrlum cohesive energy

ume termE,, and interatomic potenuals ,
whenA is a simple metal an® is a transition metal.

The volume ternE,, is most readily expressed as a seriessuch as Al, whereSE} and

etc., assume Of pure transition metals in the=1 limit. This is somewhat

less true, however, oEP3A

con for polyvalent simple metals

E5” together contribute about

of contributions that are explicitly linear or quadratic in the one-third of the coheswe energy in tke=0 limit. In gen-

concentration variables, andcg:
Evoi=CaE}+ CgEB+ C2ES A+ CaACRELB+ CEEEE+ SE,
=(1—-X)EP+xEP+ (1—x)2E5+ (1— x)XE5®
+Xx2E3B+ 6E 0, (19

where all energie&{ andE5?, with «,8=A or B, retain a

volume dependence and an additional implicit concentratlonvz ArQ.x)=
dependence andE,,, is a small residual contribution with a

more complex concentration dependence. Each linear com-
ponentE] may be further broken down into a large pseudoa-where Z

tom cohesive-energy contributioBbS, as introduced for

eral, one needs full calculations &f;, including both the
volume and structural contributions, to adequately describe
the cohesive energy, equilibrium volume, and heat of forma-
tion in TM,Al; _, compounds and alloys.

The AA or simple-metal pair potential has the familiar
form of a screened Coulomb potential

sin(qr)
)qu

(25

(Zxe)?[ 2 (= _,,
. 1—;fo Fa’(g;Q,

* is an effective valence andly” is a normalized
energy-wave-number characteristic that embodies detailed

the elemental metal in Ref. 12, and a smaller band-structurelectronic band-structure effects in the alloy including the

contribution 5E7 :

E{=ERf+ SES. (20
For the simple-metah component,
paA_ 20 A atomA
Ecoh Efe (2,”.)3 Kk Wpa(k)dk_Ebmd (Zn), (21
F

while for the transition-metaB component,

EpaB

20}
o = Et Elort 3 fk<k wpd k) dk—E5*(Zs)
F

+E (22

prep-
HereEg is the free-electron energy of component

3
E==Z,ertZ, €4~

5 (23

3 2Ipa ’
g(zae) IRws*+2ZVo,

self-consistent electron screening. The quarfiy is given
by

2

AA/ . _ AA/ .
I:N (q1va)_ 2 (Z*e)2Fss(qu!X)l (26)
where, in the general case,
20 we(k,q)wP(k,q)
F28(q;Q f dk
(@:0.0= (27)°% Ju<ke €k €kiq
2me?()
- q {[1 G(q ]nscr(q)n r(q)
+G(q)NSH(ANG(a)}, (27)
with = B=A in Eq. (26). Here the quantities
a)=(k+qlw[k) (28)

wheree,, is the exchange and correlation energy of the freeare plane-wave matrix elements of the self-consistently
electron gasRys is the Wigner-Seitz radius corresponding screened atomic pseudopotential for componant The

to the atomic volumél, [i.e., Q,=4m(Ry9) /3], andV{ is

quantityG(q) is the exchange-correlation functional defined
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10 T T T
AA.
sl v,* Co Al |
5 5
gE: 6 | x=0.0 i £
B x=0.25 ©
k< =
o 4 x =0.50 Q.
2 g
oy x=1.0 o
8 s
S 2+t i S
g &
0
-2 1 L L L | L L I ¢ . I L \
5 6 7 8 9 10 4 5 6 7 8 9 10
Distance r (a.u.) Distance r (a.u.)
. _ _ . AB
FIG. 3. The Al-Al pair potentiab5” in Ca,Al;_, at four values FIG. 4. The Co-Al pair potentiab,~ in CoAl;_, under the

of concentratiorx. In each case, the potential is evaluated at theS&me conditions as in Fig. 3.
observed or estimated equilibrium atomic volufig.

ZxZte? 2 (=
in Ref. 10. As in Ref. 12, we use the analytic expression forvé\B(r;Q’X): [1_ ;Jo FQB(q;Q,x) daj,
G(q) developed by Ichimaru and Itsuffi,except thaiG is (30)
now referenced to the exchange-correlation energy of Vosko,
et al'® rather than that of Hedin and LundqVides done \hereFA® is given by
previously. The quantitiesg,, and ng,, are screening and
orthogonalization-hole contributions to the electron density 2
from componentr. In real space, the orthogonalization-hole FQB(q;Q,x): -
density ng;, represents a depletion of electron density from
the core region of each site. The corresponding effective
valenceZ? is defined to exactly compensate this depletion:

sin(qr)
q

W[FQSB(QMMH FA(a:Q,%)],
(31)

with F£2 given by Eq.(27) for a=A and 8=B and with

. o A(k,q)hTy(k,
za:za—f ng(r)dr, (29) F?c?(q;ﬂ’ﬂ:@zgsfw (ekq_)eil( q)dk. 32
+q

with «=A in Egs.(25) and(26). Additional technical details The quantityh, represents a directp-d hybridization in-
concerning the above equations are given in the Appendix.teraction that is given in the Appendix. This contribution,
The behavior obéA is illustrated in Fig. 3 for CQAl; _ plus the indirect hybridization contributions througﬁr and
at various concentrations. In each case the potential has ng,, have a large impact on the shape and magnitude of the
been evaluated at either the observed or estimated equilibajr potentiab’é\B. This is illustrated in Fig. 4, Wher@g\Bfor
rium volumeQ,. At x=0, v5” is the pair potential for pure CqAl, , is plotted at the same concentrationas in Fig. 3.
elemental Al. This result displays the characteristic featureghe characteristic features ogB are a large attractive po-
of a repulsive shoulder at near-neighbor distances and a@ntial well near 4.5 a.u2.4 A) and a long-range oscillatory
oscillatory structure beginning at intermediate distancesstructure that is in phase with but of larger magnitude than
which become the usual Friedel oscillations at long rangeynat of v5”. The concentration dependencewdf® is also
For x=0.25, the potential is almost unchanged.and this reVery similar to that ofvéA, with very little effect on the
flects the near constancy of the electron dengitfo for  oseniial for smallx, but a deepening of the potential well
smallx. Even forx=0.5 the potential is only modestly af- .4 a1 expansion of the oscillatory fieldxat 1.

fected, with a slightly more repulsive shoulder and con-— gjnay “the BB or transition-metal pair potential has the
tracted oscillations reflecting a somewhat higher electro

density. Atx=1, however, the repulsive shoulder has devel-

oped into a clear local minimum in the potential and the . 2 )

oscillatory field has been pushed out to larger distances. This_gs (Zge) [1_ EIQCFBB sin(qr)
N

behavior is a direct consequence of the large atomic volume"2 (r;Q,x)= CHIRY q dg

Q4 that Al is forced to assume in this limit, as was discussed .

above. +vg (r;4,X), (33
The AB pair potential between the simple- and transition-

metal components has the form whereF¢P is given by



56 FIRST-PRINCIPLES INTERATOMIC POTENTIALS FR. .. 7911

20

10

Two-ion potential (mRy)
>

Two-ion potential (mRy)
o

20 |
10 b

30 -

a0l 20 b

Distance r (a.u.)

Distance r (a.u.)

FIG. 5. The Co-Co pair potential5® in CaAl,_, under the
same conditions as in Fig. 3.

FIG. 6. The Al-Al potentialv5”, the Co-Al potentiab5®, and
the Co-Co potentiab5® for Co Al,_, at a concentration=0.25.

2

Q
)z[Fst(q;Q,x)+2F§§(q;Q,x)

BB/ . __

+FB8(q;0,%)], (34)

with FA2 given by Eq.(27) for a= =B, F2{ given by Eq.
(32) with A replaced byB, and

FE8(q;0,%)

h8(k
24 f 21(k.9) dk. (35)

2m)®) e~ €k+q

Here hg’l represents a second, relatgptd hybridization in-

v3BBB At longer rangeyp 58 develops a qualitatively similar
oscillatory structure t@5® but with larger-amplitude oscil-
lations. The concentration dependenceuéiB is also very
similar to that of bothy5® andv5™.

Thevy™ Al-Al, v5® Co-Al, andv5® Co-Co potentials are
compared ak=0.25 in Fig. 6. The increase in energy scale
in going fromv5” to v5® to v3° is typical of the central
transition metals. The variation ef5® with atomic number
in the pure 3l transition metals is illustrated in Fig. 14 of
Ref. 12. At the ends of the series in Sc and N2 at short
range is substantially reduced in magnitude and becomes

teraction that is also defined in the Appendix. The potentiatomparable t@5®, while in the extreme limit of Cu all three
vEB has the same formal structure as the result for pure trampotentials are reduced to the same energy scalgz’*és At
sition metals. The additional overlap potent@B contains  the same time, the first minimum 'ufﬁB for Sc, Ni, and Cu

all directd-d interactions between ions and is given by Eq.also moves outward to the vicinity of a bulk nearest-neighbor

(15432) of Ref. 12. Thed-state band-structure component of distance and in G@\l, _, the first minimum in bothy5® and
v has the form v58 is raised to positive energy, as shown in Fig. &&t0.
The variation ofv5® with atomic number in the @ alu-

vIBB(R; ;Q,x)

) o 25
™ 0 20 |
2 F 1 2 &
=——Im fo T[T, T+ 3 (T;;Tj)%+---1dE, (36) T st
«©
whereT;; is the energy dependentx® d-state matrix that ‘§ 10 L
couples sites andj, as defined in Eq(90) of Ref. 12. This ]
component embodies a significant bonding contribution aris- § 5|
ing from the partially filledd bands and leads to a strongly g
attractive pair potentiaﬂz?B at short range, as illustrated in =
Fig. 5 for CqAl,_,. Although a very deep potential well 0
develops in5® below 4 a.u(2.1 A) for CaAl, _, and other
central-transition-metal systenfs.g., see Fig. 14 of Ref. 1,2 -5 . ' . . . . T
this well is not actually physically accessible. At small 3 4 5 6 7 8 9 10

TM near-neighbor distances are sufficiently large so as to
avoid the short-ranged part of® entirely, while at largex,
the attractive well ofu5® is compensated for by repulsive
multi-ion interactions at short range arising frar§®® and

Distance r (a.u.)

FIG. 7. The Al-Al potentialv5”, the Cu-Al potentiab5®, and
the Cu-Cu potential 52 for CuAl; _, in the dilute alloyx=0 limit.
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e %
g 10§ . FIG. 9. Volume dependence of the cohesive endtgy, for
i yad monoclinic ALCo, obtained both with and without relaxation of its
22-atom unit cell. Symbols represent calculated points, while the
0 solid and dashed lines are analytic fits to these results.
illustrated in Fig. 18 of Ref. 12. This behavior is made com-
-10 - plex by thesp-d hybridization, which introduces significant
oscillatory structure into the potential. For the separations
Rij=Rjx=1.8Rws shown in the figurey 5BB is largely repul-
20 - sive for the central transitions metals but attractive for Sc and
for the late members of the series. At somewhat shorter sepa-
N rations, where the diread-d interactions dominatey5°®

tends to become more repulsive in nature, especially for the
central transition metals.

4 5 6 7 8 9 10
Distance r (a.u.)

FIG. 8. The TM-Al potentialv,® across the & series for
TM,AIl;_, aluminides in the dilute allox=0 limit. (a) Sc, Ti, V,
and Cr;(b) Mn, Fe, Co, and Ni.

IV. TRENDS IN COHESION AND STRUCTURE

In this section we consider a few illustrative applications
of the above GPT formalism to the problems of cohesion and
minides from Sc to Ni is illustrated in Fig. 8 at=0. Note  structure in the @ aluminides. Our primary intent here is to
that the position of the first minimum in this potential demonstrate the expected capabilities and promise of the
steadily decreases in distance across the series from abdbeory in these areas. We plan to provide more extensive
5.8 a.u.(3.1 A) in Sc to about 4.5 a.u2.4 A) in Ni. This tests of the Co-Al and Ni-Al pair potentials elsewhere, where
clear trend has important structural consequences for smallthe structural phase diagrams of these materials will be con-
compounds and alloys, as we will discuss in Sec. IV. sidered in detail.

As with the transition-metal pair potentiaEB, the multi- At the pair potential level, the present theory can provide
ion potentialsvgBB and UEBBB have identical formal struc- reliable estimates of the cohesive properties of transition-
ture to those in the pure metal. These latter potentials aréetal aluminides for concentrations<0.30. We expect
dominated by theid-state components and are approximatedsuch calculations, in fact, to be similar in quality to full LDA
in the GPT by the multi-ion generalizations of 8%, as  electronic-structure results. At the same time, the simplified
given by Eqs(106) and(107) of Ref. 12. In the applications GPT total-energy functional18) permits one to consider
discussed beIovwEBB is calculated in the form complex structures without _d|ff|culty, m_cludmg the full re-

laxation of all internal coordinates. We illustrate these capa-
bilities here by considering the cohesive properties gCa&)
in its observed monoclinic phase with 22 atoms per prima-
tive unit cell and corresponding t0=0.1818. In Fig. 9 we
have plotted the volume dependence of the cohesive energy,
E.on= Eiot/N both with and without relaxation of all atomic
positions in the unit cell. Relaxation, which is accomplished
through a conjugate-gradient method to be described else-
where, lowers the energy by about 0.01-0.02 eV/atom near
which is truncated at fourth order in tffg, . The behavior of  equilibrium. In calculating the pair-potential contributions to
v5®® across the @ series for the pure transition metals is E, in Eq. (18), we have dealt with the long-range Friedel

BBB
vy (R,

2 €F

Rjk lei ;Q,X): ; Im Jo Tr[TijTJ‘kai
+TikajTji _(TijTjiTikai
+TJkaJTJITIJ
+ ThiTik Tk Tj) JdE, (37)
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TABLE Il. Cohesive properties of monoclinic §Co, with 22 T ' ' y 7 T ' '
atoms per unit cell. 48 -
LMTO-ASA? GPT GPT g
unrelaxed unrelaxed relaxed Experiment % 44 1
|Ecorl (V) 4.35 4.36 3.95 3 I
AH (eV) —0.46 -031 -032 —-03rF 2 40f 1
Qeq (@) 96.2 96.5 96.9 102%2 2
B (Mban) 1.08 1.19 1.05 @ I ]
S 36
*Reference 8. © _ )
bInferred from measured values &H, ESS,, andE%., via Eq.(38). an | Sc T V Cr Mn Fe Co Ni
‘Reference 24. T 21 22 23 24 25 26 27 28
YReference 25. Atomic number

tails of the potentialszg'g by everywhere imposing a cutoff FIG. 10. Trends in the cohesive energy af 8ansition-metal

at a distance of 8.8%,s, whereRys is the Wigner-Seitz trialuminides AETM corresponding tx=0.25. The theoretical re-
radius corresponding ,to the atomic volum@ [i.e sults refer to the lowest-energy structures displayed in Fig. 11,

Q:47TR3VS/3]' This procedure provides adequate conver-Wh”e the experimental results derive from the measured heats of

gence and a smooth volume dependencEg. The same formation and the cohesive energies of the elemental metals.
procedure has also been used in all remaining calculations ith what is ob d in ds:
discussed below, except as noted commensurate with what is observed in; M\l compounds:
¥ o - . Al;ScisL1,, Al;Ti and AV are DO0,,, although with non-
The calculated equilibrium cohesive properties o§@d, ideal c/a ratios, and ANi is DO,. In the cases of ACr
are tabulated in Table Il and compared with experirffent and AkMn triall,Jminides do not fléfm while in the cases of
and also with previous LDA calculations obtained from theAI Fe and AiCo more complex n(;nstoichiometric Struc
linear muffin-tin orbital (LMTO) method in the atomic- turses are found neat=0.25 F,)As \’/viII be shown elsewhere
sphere approximatiotASA) for the observedunrelaxed o e . . ’
structure® Listed are the cohesive ener@y,; the heat of DO0,; is indeed energetically competitive with these latter

formationAH, as calculated fronk,, and the cohesive en- structures. _Th.e predicted coheswe energies shovy a more

ergies of Co and Al via the relation modest variation across thed3ser_|es th_h values in th_e
range 3.6—4.6 eV for all of the trialuminides. For the five

AH=E —~XE®— (1—x)EA - (3g)  Systems where experimental heat-of-formation data exist, the

con cohr inferred cohesive energidsia Eq. (38) with ECS, replaced

the equilibrium atomic voluméle,; and the bulk modulus by EJM] are all near 4.0 eV.

B. The agreement between theory and experiment is good, The structural trends illustrated in Fig. 11 for the 8i-

and for the fully relaxed GPT calculations, the equilibrium gjuminides can be understood in terms of the contributions
volume is obtained to within about 5% of the observed valuefrom the individual interatomic potentials. In particular, we
The very close agreement obtained for the heat of formatiopave investigated in detail the subtle competition between

AH, on the other hand, may be somewhat fortuitous. Thighe L1, and DO,, structures for the early members of the
guantity depends significantly on the value of the transition-

metal cohesive enerdy’S, used for pure Co in Eq38). We 0.6
have calculated this quantity at the pair-potential level, as
done for the other contributions, but this leads to an overes-
timate of its magnitude. We expect that the net effect of the
neglected multi-ion contributions would be to lower the
magnitude ofESS, and consequently raise the magnitude of
AH. This expectation is also consistent with the larger mag-
nitude of AH obtained in the LMTO-ASA calculations.

We have also examined the cohesive and structural trends
across the 8 series in the special case of the transition-metal
trialuminides ALTM corresponding tox=0.25. These re-
sults are plotted in Figs. 10 and 11. Here we have considered
five candidate structures: cubid , with four atoms per pri-
mative unit cell, tetragondd 0,, with four atoms per cell and
an idealc/a ratio of 2.0, cubid 05 with four atoms per cell,
cubic A5 with eight atoms per cell, and orthorhomhix®, ;
with 16 atoms per cell. Among these five structures, the pre-
dicted structural sequence across thal Zeries is
L1,—D0,,—DO0;; and the lowest-energy structure in each  FIG. 11. Calculated structural trends among five candidate
case has been used to calculate the cohesive elfgggyn structures in the & transition-metal trialuminides ATM, corre-
Fig. 10. The predicted sequence of structures is generallyponding tox=0.25.

04

0.2

0.0

Energy relative to L1 2 (eV/atom)

| Sc Ti V Cr Mn Fe Co Ni

-06 1 1 1 1 1 1 1 1
21 22 283 24 25 26 27 28

Atomic humber
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0.2 T T T T T T T
0.10 r 7
DO,, (2.0) - L1,: Al,TM . DO,, (2.23) - L1,: AL, TM
v,e 0.05 1
01 . -
/o/'——_' £ 0.00
L
T .. S 005 .
E e . a S 0.05
g oo BTN T > -0.10 ]
o v BB a3 L v, g F
3 8 TR 5 0151 1
5] N I
a 011 Sy BB 1 -0.20 [ 1
N2 F i
\~\~ -0.25 Sc Ti V i
- i 1 1
02 | 21 22 23
’ Sc Ti \Y Cr Atomic number
29 20 23 24 FIG. 14. Calculated DO,,-L1, energy difference, with

c/a=2.23 in theDO0,, structure, for A}Sc, ALTi, and ALV, as

obtained from the present GPT interatomic potentigi§+v5E8

FIG. 12. Two- and three-ion potential contributions to the and from the band-theory results of Ref. 4.
DO0,,-L1, energy difference for the earlyd3ransition-metal trialu-

minides, ALTM. Herec/a=2.0 for the D@, structure. mated with the GPT potentials, so that additional, neglected
e N multi-ion contributions may be of importance here as well.
serie$” and also the overall competition between the close- Experimentally, both AlTi and ALV are observed to

packedL 1, and DOy structures and the opir;-packB@Bll form in aDO,, structure with a higher than ideala axial

. . A B

structure. Figure 12 displays both tog s vp -, ando; ratio near 2.23. This distortion is necessary, in fact, to make
two-ion potential contributions included in Fig. 11 and alsope DO0,,L1, energy difference negative in the case of
the additionabb3°® three-ion contribution to th®0,,-L1, Al;Ti, as shown by the LDA calculations of Carlsson and
energy difference for the first fourdtrialuminides, with  \iaschted The real-space explanation of a higha ratio in
c/a=2.0 for theDO,;, structure as above. At the pair poéen- terms of the GPT interatomic potentials is a more subtle
tial level, it is seen that the transition-metal potentgl matter, however. The transition-metal potentia® and
drives the calculated.1,—DO0,, trend shown in Fig. 11, »BBB poth favor this distortion. but™* and o8 oppose it
while v5” has little effect and)5® opposes the trend, favor- _3 2 2 OPP :

2 2 ’ and they do so to the extent that the obse&g, structure

ing theL1, structure for all the trialuminides. The effect of . . . . -
: o . BBB : is not explained at this level of description. Nonetheless, it is
the three-ion transition-metal potentia§®® is to favor the

DO0,, structure in AfTi and AlV but the L1, structure in vggalntere-stln-g to note that if one considers .onlyzlz}?@ an_d
Al,Cr. The sum of all four calculated contributions is dis- V3  contributions to thed0,,L1, energy difference with

played in Fig. 13 and compared with the LDA band theory¢/@=2.23, one obtains both the correct trend in the early
calculations of Carlsson and MescHtér Al Sc, ALTi, and ~ trialuminides and quantitative agreement with the LDA
Al,V. There is quantitative agreement for /&, but the band-theory results for ATi and AV, as shown in Fig. 14.

magnitude of the_1,—D0,, trend is apparently underesti- This suggests that the unfavorable contributions frefft
and u’;B may be largely canceled by neglected higher-order

Atomic number

015 , . , potential contributions from5”®, v4®8, etc. It remains to
A . DO, (2.0)- L1.: ALTM be seen, however, wh.ether or not this cancellation can actu-
0.10 | 2 2 "Ts _ ally be demonstrated in practice.
While theL1,—DO0,, trend in the early trialuminides is
T oosf ] driven by transition-metal interactions througl® and
g A A v3BB it is the pair potentiab5® that is largely responsible
T 0.00 for the overall trend of relatively close-packed, andDO,,
= \. structures at the beginning of thel 3eries and more open-
S .0.05 1 packed structures such B®,, towards the end of the series.
- Band theory ™. 1 In particular, the appearance of tB,; structure is highly
-0.10 . 1 correlated with the movement of the first deep potential
Sc Ti v minimum inv5® (see Fig. 8 from a positionr ni,>1.7Rws
-0.15 2'1 2’2 2'3 for the first four members of the series to a position

r min<1.7Rys for the last four members. This is quantified in
Fig. 15. As shown in that figure, th&B nearest neighbors
FIG. 13. Calculated>0,,-L 1, energy difference, wite/a=2.0  for the idealD0,; structure are located at 18}s while the
in the DO,, structure, for A{Sc, AlL;Ti, and ALV, as obtained from nearest neighbors for the obsernv@@,; structure are clus-
the present GPT interatomic potentials and from the band-theorfered near 1Bys. For convenience, the values nf;, dis-
results of Ref. 4. Here5” denotes the sum afy”, v5®, andv5®.  played in Fig. 15 are actually those obtained from xie0

Atomic number
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Number of neighbors case where th8 component is either a series-end transition
o 1 2 3 4 5 6 7 8 metal (e.g., Ca or Zi with an empty or filledd band, or
2.0 . . . . . . . another simple metdle.g., Mg. Such systems can be well
treated at the pair-potential level for all concentrations
N, More difficult extensions are to high-concentration
191 1 transition-metal aluminides and tbbonded systems where
N the A component is also a transition metal. In general, such
=, DO systems will require a direct account of the additiom‘@‘B,
1.8 f-- ‘\ 2 v528, etc. multi-ion interactions, which have not been been
treated here. With regard to the aluminides, important special
= cases include TiAl, NiAl, and NAI. In some of these sys-
in' Vo tems, it may be possible to fold down the multi-ion interac-
DO ' tions into effective pair contributions that can be added to
D Sm ] v5° andv5®.
Sy
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ted are(i) the position of the first minimum,, in the potentiab,®

(solid pointg, referred to the lower horizontal scale, afid the APPENDIX

number and position of thé\B nearest neighbors for thB0,,

(solid line) andDO0,, (dashed linesstructures, referred to the upper  In this appendix we elaborate additional technical details

horizontal scale. Positions are in unitsRfs. about the GPT formalism for binary intermetallic systems.

We begin with the A- and B-component zeroth-order
potentials shown in Fig. 8; the values for the 0.25 poten- pseudoatoms and the determination of the zero-of-energy

Relative position /R,
/

Atomic number

tials should not be substantially different. constantV(, which couples the two pseudoatoms. The con-
struction of the a-component pseudoatom and the self-
V. CONCLUSIONS consistent potential 5, and related quantities defining it are

formally the same as for the pure metal. In particular, Egs.

We have achieved in this paper a first-principles general(79)—(82) of Ref. 12 are the principal defining equations for
ized pseudopotential theory of interatomic potentials forthe transition-metaB component. Within this basic pseudoa-
sp-d-bondedAB intermetallic compounds and alloys where tom scheme, the only variable quantity is the logarithmic
A is a simple metal an@ is a transition metal. The theory derivativeD%, which serves as a boundary condition on the
explicitly provides for anab initio LDA treatment of the  |ocalizedd statesg?. In all applications discussed here, we
volume termE,q, the central-force pair potential$”, v3®,  ilize the nominal choic®? = — 3, which identifiesE "B
andv5®, and the angular-force multi-ion potential§®® and 55 the center of the bands.2 '

BBBB ; ; ; ;
vg I the total-energy functional, including the full vol- - 1o geterminev;, we first define an average pseudopoten-
ume and concentration dependence of all quantities. Succesgy) W, With diagonal plane-wave matrix elements

ful application of the formalism has been made to the
aluminum-rich transition-metal aluminides where the volume (K|wpd k)= CA<k|Wﬁa| k)+ CB<k|Wg’a| k), (A1)
term and pair potentials dominate the energetics. At the pair-
potential level of description, the cohesive and structuralvhere theA- and B-component pseudopotentials are given
properties are mostly well described fo0.30, although by
some structural subtleties may require multi-ion contribu-
tions for a proper explanation, as appears to be the case with N , N o ra
the distortedDO0,, structure occurring in the early trialu- Fk|Wpa|k>:<k|Up4k>_V0+§C: (ex—E) (K[ o) ¢ lK),
minides. More generally, we expect the present GPT pair (A2)
potentials to be applicable to static and dynamic simulations
of structural, thermodynamic, and mechanical properties ofith «=A or B. The quantity¢_ is an «-component core
complex systems, both ordered and disordered. This includegate, whiIeE‘C’O"“ is the volume component of the corre-
nonstoichiometric solid phases with 100 or more atoms andponding core energy
10% or more vacancies in the unit cell, as occur in the Co-Al
phase diagram. We shall explicitly treat such phases else- B “=ER* — (| Vunil 68) — Vo, (A3)
where.

Further extensions of the present GPT formalism are alswhere ES*“ is the core eigenvalue of the-component
possible. One implicit extension, which is already treated bypseudoatom and the additional free-electron-gas potential
our computer codes but has not been discussed here, is to th¥ ;s is defined in Ref. 12. Thi&=0 condition
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n

(0]wpqd0)=0 (A4)

1 . {; Uli+qdvék
places the zero of energy at the bottom of the valence bands 18 (k q)=— = |m f F
in the full intermetallic system. Using this condition in Eq. nm 0 (E-EBYNE—¢)™

(A1) and solving forV; yields the result (A11)
_CA<0|Wﬁa| 0>O+CB<0|W§a| 0% wheren andm are integers ané&, is the complex and en-

= , (A5) ergy dependend-state resonance position
®" 1-ca(0[pZ]0) — ca(0lpc|0)

B__ vol,B vol,B
where p¢ is the a-component core projection operator E/=Eq " +Tqq(E). (A12)

e ¢} c| and The termsvy . o4 andv g, can be expressed in terms of plane-
" a , a wave d-state nonorthogonality and hybridization matrix ele-
in which the dependence ory, is removed from(0|wy,|0). ,
The simple-metalA pseudoatom is coupled to the Ukd
transition-metalB pseudoatom only indirectly through its
volume O, and does not otherwise depend on the zero-of

energy constar¥/,. The B pseudoatom, on the other hand, in Eq. (A11) givesh?l appearing in Eq(32) for F,SAdB, while

is coupled to theéA pseudoatom through both its volurfi, the choicen=2. m=1 aivesh®. appearind in Ea(35) for
and its valenc&g, which depend directly oN. The latter  _gg ! ’ giveshy, appearing in Eq(35)
. . . dd .
ge%ert]denp € cozn;esuthrou%h Efg; (13)(6\5/:5? tr}eRpr;ai(; ‘}h'ﬁ Using the above quantities, one can write out the remain-
2 GEterminings, - Ismg as- fan of ket. ol B ing components ok, defined in Eqs(19) and(20). First,
can be written directly in terms of thé-state energyey SE takes the form

and hence/:

=—(E-Ey"®)(klo) —(klAvl03),  (A13)

where A, is the volume component of thé-state hybrid-
ization potentiald defined in Ref. 12. The choige=m=1

1
BT =Eqnt 5(Zxe)?

1.8 wa
— = FQA(q;Q,x)dql
RQ,S 7Jo

2
78— — —Im % In[eg—E"B-TYB(er)], (A7)
(Al9)
here
W for the simple-metaA component and

EyB=ERPE— (8| 0Vl 05) — V§ (A8)

1B | 5EB:EB+1(z*e)2 18 2 “FE8(q:0,x)d
and I'yy® is the volume component of thd-state self- R M I g:22,x)dq

energy, as defined in Ref. 12. Consequently, an efficient

strategy to calculate theA and B pseudoatoms self- 1 er [F‘é‘(’}B(E)]?
consistently for a given volum@ and concentration is as + —Imf > —= B2 dE (A15)
follows ™ Jo @ (BB

(i) Choose a trial value fof) 5 and calculate thé pseudoa- for the transition-metaB component. Her&%, for a=A or

. . A A
tom. This determines values f¢0|wp]0)o and (0[pc|0) B s the self-energy of the orthogonalization hole, as defined

e“ntering Eq(AS5) for Vs in Eq. (50) of Ref. 11. The additional energi&s# are given
(i) EvaluateQg from Eq.(11) and calculate th® pseudoa- by the expressions

tom, assumingZ/Q)=Zg/Qg in Eq. (14). This determines
values forVy, 28, Zg, andec.

2Q
(iii) Iterate (i) and (i) until the conditionZ,/Qx=Zg/Qg E5A= 2 f pe(kowhy(k)dk
is satisfied. When this condition is satisfied, the assumption T k<ke
in (i) is also exactly true.. _ - &ZFQA(O;Q,X)
We next turn to the intermetallic total energy and the +(z’;\e)25a—q2, (A16)

various contributions to the volume tefy, and pair poten-
tiaISU‘z"*’3 defined in Eqs(19)—(35). In Eqgs.(21) and(22) for

pa i 20
Ecoh we employ the notation EAB f k [p@(k)wga(k)+w§a(k)p§(k)]dk
F

2 7 2m3 )<
wa(k)=(k|wik) (A9)

2Q)
A B A B
for a=A andB. In the equations below we similarly write - (277)?’f [Woek)ha2(k,0)+pe(k)hay(k,0) Jdk

kKY=(k k d
Wpd(K)=(k|wpdk) an (7572 Z_W&ZFQB(O;Q’X) (A17)
pE (k)= (K[ pE[K)- (A10) ST

We also define the generap-d hybridization interaction and



20
BB_ B B
E> = 2n7 fk<kac(k)Wpa(k)dk

20
+—(27,)3f [whi K)hE(k,0)+pE(k)hFy(k,0)

FPFRY(0;0,%)

1,.B * 227 N T

+ 3 h3a(k,0)Jdk+(Z5e)’ B
(A18)

The final correction term in Eq19) can be expressed as

1
OB yo=— EWpa(kF) OZpands (A19)
where
Cepol €r)py( €F)
OZ and= Wod K , A20
band™Wpdl F)PO(EF)"‘CBPd(fF) (A20)

with po(eg) and py(eg) the free-electron and-state densi-
ties of states at the Fermi level, respectively.

Finally, we discuss the screening and orthogonalizationself-consistently.
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while the transition-metaB-component screening density is
given by

4

wB(k,q)
nSBC|(q): (277)3

dk+

k<kp €k~ €k+q

4

(277)3J

In these equationw“(k,q) is the matrix element

h8(k,
11(k,Q) dk.

€k €k+q
(A22)

<k+QIW“|k>:<k+QIvalk>+§ (ex—E)(k+al 4¢)

x(pclk) (A23)

for a=A or B. Herev” andv® are theA- andB-component
self-consistent atomic potentials, which in turn depend on
ni, and ng,, respectively. In each case, one can use the
generalized Poisson equati88) of Ref. 11 to express® in
terms of ng,, and thereby eliminate“ and solve forng,
The  simple-metal, A-component

hole components of the valence electron density, which diprthogonalization-hole density contains only inner-core con-

rectly enter Eq. (27) for Fgf. The simple-metal,
A-component screening density can be written

4

wA(k,q)
ném(q): (277)3 dk

k<kg €k~ €k+q

, (A21)

tributions arising frompﬁ and can be calculated from Eg.
(132 of Ref. 12. The transition-metal B-component
orthogonalization-hole density has both inner-core contribu-
tions fromp® andsp-d hybridization contributions from

and can be calculated from E{.31) of Ref. 12.
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