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Analytic periodic solutions for domain-wall motion
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We apply multiple time scales to the study of the domain-wall motion for some anisotropic magnetics with
uniaxial magnetic anisotropy. Analytic periodic solutions were obtained. We also investigated the stability of
the periodic solutions. The periodic windows found are in good agreement with experimental and numerical
results.[S0163-182807)06925-1

. INTRODUCTION 2uo(1+ a?) d2x+ 87 ol s 16d|§) dx
T 2A a2 3| gt
In the last few years the investigation of micromagnetics 7A dt [71a ™p | dt
has increased in importance. This is because of miniaturiza- 26H s . [2mX
tion and high-density data storage. Recently, some sttidies + 7 sin ——| =2IH coswt, ()]

addressed the problem of domain-wall motion. The present
study develops analytical methods and provides an analytic

| . . . . .
solution of that problem. Whered is the thickness of the magnetic material anid the

electrical resistivity of the magnetic material. We will make
the usual notatict® M, K, R, andB for the corresponding

IIl. MODEL coefficients of Eq(3) in this order.

The starting point is the Landau-Lifshitand Gilbert
equation of the magnetic spin system dynamics, 1. ANALYTIC SOLUTION

di @ di Equation(3) is equivalent to the nonauthonoumous sys-
a:_y(IXHHE X5t @D tem of equations

wherel is the magnetization vectol, is the saturation mag-

netization,H is the external magnetic field|s the time,yis % =u

the gyromagnetic constant, aads the Gilbert damping co- dt 2

efficient.

Following SloczewsKi we study the behavior of the an- du, K R 2mu; B
isotropic magnetics with uniaxial magnetic anisotropy in the G wmYw sin T + m coswt. 4

z-axis direction. The Bloch wall plane is infinite and parallel

to thezy plane. An external magnetic field is applied in the i o i )
direction of thez axis, and the domain wall moves in the To find the periodic solutions we use the averaging method

direction of thex axis. It is also assumed that the angle ProPosed by Krylov and BogoliuboV.It is assumed that the

measured from thg axis in theyz plane (the precession periodic solution can be described by the equations
angle is small. These requirements are satisfied for samples

with the values of material parameters indicated in Table | u;=a(t)cog wt+ ¢(t)],

and with the amplitude of the magnetic external field smaller
than about a few hundred A/m. Having all of this in mind,

i ) > =— i + .
using Eq.(1), the equation of the Bloch wall motion is U2 wa(hsifot+e(t)] ®
2po(1+a?) d®  Bmuglsar dx Substituting Eqs(5) into Egs.(4), one obtains the differen-
+———=2IH 2 [ i i :
By T 1A dt sH, (2)  tial equations of the amplitude and phase:
where x is the coordinate of the domain wally, is the TABLE |. Material parameters and coefficients.
permeability of the vacuum, andl is the parameter of the
width of magnetic domain wall. The second term on theSaturation magnetization 1,=0.46 (W b/nf)
left-hand side of Eq(2) is due to damping. Coercitive force H.=0.29 (A/m)
A major modification was made in order to consider Wavelength of the internal stress  1=1 (um)
new features. Eddy current damping is considered and aRrequency f=2 (MHz)
energy associated with restoring forces. This term is as-Mass of domain wall M=1.66x10"° (kg/m?)
sumed in the form of sine wave with wavelengttiue to the  pamping coefficient K=7.8x10"2 (kg/snf)
particular form of the internal stress considered. Equai®n Restitution coefficient R=0.2668 (kg/m

has the final form
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FIG. 1. Graph of the Bessel function of the first kind, labeled 1,

and the graph of the right-hand side of Egg), labeled 2, for some
particular values of normalized steady-state variagle

d
d—?= v a sirf wt+ ¢(t)]
R [27 .
+ Mo sin T a cog wt+ @(t)]|siM wt+ ¢(1)]
- m Sir{wH— go(t)]COSwt,
de .
Gt v Sintet+e(t)]cog wi+e(t)]
R (27
Mo sin T a cog wt+ ¢(t)] |cog wt+ ¢(1)]
~ Mg Cofot+e(t)]cosmt. (6)

Averaging Eqs.(6) over a period of the external magnetic
field results in

da K B

dat. 2M 27 2Me O
dgo_ R 3 2ma B 7
dt- Moa T /T 2Mwa SO @)

whereJ;(x) is the Bessel function of the first kingee the
AppendiX. The steady-state solutions of E¢g) are

TABLE II. Zeros of the Bessel function of the first kind and
corresponding values of the external magnetic field.

Xo H (A/m) B (kg/ms)
3.83171 0.14277 0.13334
7.01559 0.26139 0.24414
10.17350 0.37905 0.35404
13.3237 0.49643 0.46367
16.4706 0.61368 0.67318
19.6159 0.73087 0.68263
22.7601 0.84802 0.79205
25.9037 0.96515 0.90144
29.0468 1.08226 1.01083
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FIG. 2. Change of sign of the function indicating the change of
the stability of the periodic solution.

) Ko
S|n(,00: - F ao,
2R 2mag
Cospo=—7J1| —— |, 8
B |
or in a more useful form
J1(2o) =+ Bo\ agH?~ 75,
2R
COSpo="5" J1(2o), 9

whereay and ¢q are the steady-state amplitude and phase,
Bo=KflI2R, ay=2l,/Kfl, and f is the frequency of the
applied external magnetic field. The usual parameters for the
model are given in the Table I.

Instead of solving the transcendental equati{Bg), we
prefer to extract as much information as possible from a
qualitative approach. To do that, we have represented in the
same picture the graphs of the left-hand sitlee Bessel
function of the first kingl and the right-hand side of E¢Qa)
in Fig. 1. Due to the symmetry of the solution, we consider
here only the positive domain. Table Il indicates the zeros of
the Bessel function and corresponding values of the mag-
netic field and of theB coefficient.

According to Fig. 1 forz, less than the first zero of the
Bessel function there is only one intersection point of the
two graphs and therefore only one allowed steady state. In-
creasingz, it is possible to find three or two or only one
steady state and so on. Then we may conclude that one bi-
furcation point is located ned@=0.244 14(see Table Il and
Fig. 2), another bifurcation point is ned=0.354 04, the
next bifurcation point is arounB=0.463 67, and so on. Our

TABLE IIl. Stability range of the periodic solution in the linear
approximation.

Xo H bifurcation (A/M) B=2HI, (kg/msz)
1.87466 0.34472 0.31714
3.73682 0.14312 0.13167
5.54368 0.28735 0.26436
6.70043 0.25940 0.23864
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theoretical study is in good agreement with previously re-whereJ;(x) is the first derivative of the Bessel function of

ported results:*> As examples, Refs. 4 and 5 reported bifur- the first kind. From Eq(10) it is now possible to obtain the
cation and period-doubling scenarios for first transition toeigenvalues
chaotic motion forB=0.255. The next bifurcation point is,

according to Refs. 4 and 5, &=0.389. Previous studies R \/ Kfl\2  J1(20)J1(20)

numerically demonstrated that periodic motion is allowed, Ma=20 VIR B (11)
and here we obtain analytical expressions of the periodic . ) o )
solution. The graph of the function under the radical sign is shown in

This formulation also enables us to derive some importanfig. 2. Table Ill indicates the zeros of the function in Fig. 2.
conclusions about the stability of the periodic solution. The
traditional way to study the stability of the periodic solution IV. CONCLUSIONS
is based on the monodromy matfixHere we will try to . o
avoid the complicated numerical evaluations required by this For the problem of domain-wall motion in an external

method. To this purpose let us observe that the JacobiaWagnetiC field, we found analytic expressions of periodic
matrix of Eqs.(7) is solutions. The predictions of our theory are compared with

new numerical and existing numerical data and with experi-

K R 2mag ment. The agreement is quit satisfactory.
B oM " Mw 1T
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APPENDIX

In this appendix we shall briefly discuss the averaging procedure that enables us to obtain the (&atibissstraight-
forward to show that

. 1 . sing COSp
si(wt+ @)= > sin(wt + ¢)coswt= — cof wt+ ¢)coswt = — (A1)
Let us define
. (27X
A;=sin(wt+ go)sm( I_) (A2a)
[ 2mXx
A,=coq wt+ <p)5|n(|—). (A2Db)

It is convenient for further evaluations for us to remember that

*° 2p+1
siz cog -+ <p)]:p§=)o VP oy coSP 0+ )
» 2p+l 2p+1

z o _
= pgo kgo (—1)P Zpr Dt Chp+ 1(cOs cosp)(—sing sing)2P+ 1k

© 2p+1 2p+1

A
= E 2 (_1)p7k+l (ZPT)I CngrlCOé(e CO§<¢ sirPPt17kg Sin2p+lik(p. (A3)
p=0 k=0 :

If one introduces Eq(A3) into Eq. (A2a), one obtains

A _ L i ZPEH (—1)Pri-k ﬂ CK,., cose sinPPt2-k ‘wa cos1u sirP 1 ky du (A4)
Y2m p=0 K=0 (2p+1)! TPl . b

where §=u+ . It is known that

Zf cofu siP* 2 ku du if k iseven,
0

o
f cou sirtP™ 2 ku du=
o 0, otherwise,
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™ wa cos 1y siPT 1 ku du if k is odd,
f cos™ 1y sirtP ™1 ky du= 0

0, otherwise,

(A5)

1
f coPu sit™u du=B| n+ = SPts
0

whereB(a,B8)=T(a)I'(8)/T'(a+ B) is theB Euler function. In order to find explicit form of the coefficiei{, we have to
insert expression@A5) into formula(A4). This gives

TC(p—1+3T(+3) p-1+3 I(p-1+HI I+ 1 z2p+1
A= — - =+ - - = > (-1)P , 2p+lCOSZI+l(P sin?P -2
I'(p+2) |+% I'(p+2) T p=0 (=0 (2 +1)
=0.
Similarly, we have
R R z?P*t P(p—1+HT(+2) & z| %1
I 22p—2l _ _
— — in?P = 1P = ——=J4(z
T Z 2 -1 " pr iyt Copeacosle s ® T T(pt2) ,)Zo( ) (2 pl(pr 1 V12
(A6)
where we used the definition of the Bessel function of the first kind,
*° 2p+n
Z 1
D=2 (= ( ) TS
p=0 2 p'(p+1)!
and
(2p)!\m
I'(p+3)= Tpi2%®
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