
PHYSICAL REVIEW B 1 JULY 1997-IVOLUME 56, NUMBER 1
Analytic periodic solutions for domain-wall motion
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We apply multiple time scales to the study of the domain-wall motion for some anisotropic magnetics with
uniaxial magnetic anisotropy. Analytic periodic solutions were obtained. We also investigated the stability of
the periodic solutions. The periodic windows found are in good agreement with experimental and numerical
results.@S0163-1829~97!06925-7#
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I. INTRODUCTION

In the last few years the investigation of micromagnet
has increased in importance. This is because of miniatur
tion and high-density data storage. Recently, some studie1–5

addressed the problem of domain-wall motion. The pres
study develops analytical methods and provides an analy
solution of that problem.

II. MODEL

The starting point is the Landau-Lifshitz6 and Gilbert7

equation of the magnetic spin system dynamics,

dI

dt
52g~ I3H!1

a

I s
S I3dI

dtD , ~1!

whereI is the magnetization vector,I s is the saturation mag
netization,H is the external magnetic field,t is the time,g is
the gyromagnetic constant, anda is the Gilbert damping co-
efficient.

Following Sloczewski8 we study the behavior of the an
isotropic magnetics with uniaxial magnetic anisotropy in t
z-axis direction. The Bloch wall plane is infinite and paral
to thezy plane. An external magnetic field is applied in th
direction of thez axis, and the domain wall moves in th
direction of thex axis. It is also assumed that the ang
measured from they axis in theyz plane ~the precession
angle! is small. These requirements are satisfied for sam
with the values of material parameters indicated in Tab
and with the amplitude of the magnetic external field sma
than about a few hundred A/m. Having all of this in min
using Eq.~1!, the equation of the Bloch wall motion is

2m0~11a2!

g2D

d2x

dt2
1
8pm0I sa

uguD
dx

dt
52I sH, ~2!

where x is the coordinate of the domain wall,m0 is the
permeability of the vacuum, andD is the parameter of the
width of magnetic domain wall. The second term on t
left-hand side of Eq.~2! is due to damping.

A major modification was made4,5 in order to consider
new features. Eddy current damping is considered and
energy9 associated with restoring forces. This term is a
sumed in the form of sine wave with wavelengthl due to the
particular form of the internal stress considered. Equation~2!
has the final form
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2m0~11a2!

g2D

d2x

dt2
1S 8pm0I sa

uguD
1
16dIs

2

p3r D dx

dt

1
2dHcI s

l
sinS 2px

l D52I sH cosvt, ~3!

whered is the thickness of the magnetic material andr is the
electrical resistivity of the magnetic material. We will mak
the usual notation4,5 M , K, R, andB for the corresponding
coefficients of Eq.~3! in this order.

III. ANALYTIC SOLUTION

Equation~3! is equivalent to the nonauthonoumous sy
tem of equations

du1
dt

5u2 ,

du2
dt

52
K

M
u22

R

M
sin

2pu1
l

1
B

M
cosvt. ~4!

To find the periodic solutions we use the averaging meth
proposed by Krylov and Bogoliubov.10 It is assumed that the
periodic solution can be described by the equations

u15a~ t !cos@vt1w~ t !#,

u252va~ t !sin@vt1w~ t !#. ~5!

Substituting Eqs.~5! into Eqs.~4!, one obtains the differen
tial equations of the amplitude and phase:

TABLE I. Material parameters and coefficients.

Saturation magnetization I s50.46 (W b/m2!
Coercitive force Hc50.29 (A/m)
Wavelength of the internal stress l51 ~mm!

Frequency f52 ~MHz!

Mass of domain wall M51.6631029 (kg/m2)
Damping coefficient K57.831022 (kg/sm2)
Restitution coefficient R50.2668 (kg/ms2)
79 © 1997 The American Physical Society
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da

dt
52

K

M
a sin2@vt1w~ t !#

1
R

Mv
sinS 2p

l
a cos@vt1w~ t !# D sin@vt1w~ t !#

2
B

Mv
sin@vt1w~ t !#cosvt,

dw

dt
5

K

M
sin@vt1w~ t !#cos@vt1w~ t !#

2
R

Mva
sinS 2p

l
a cos@vt1w~ t !# D cos@vt1w~ t !#

2
B

Mva
cos@vt1w~ t !#cosvt. ~6!

Averaging Eqs.~6! over a period of the external magnet
field results in

da

dt
52

K

2M
a2

B

2Mv
sinw,

dw

dt
52

R

Mva
J1S 2pa

l D1
B

2Mva
cosw, ~7!

whereJ1(x) is the Bessel function of the first kind~see the
Appendix!. The steady-state solutions of Eqs.~7! are

FIG. 1. Graph of the Bessel function of the first kind, labeled
and the graph of the right-hand side of Eq.~9a!, labeled 2, for some
particular values of normalized steady-state variablez0 .

TABLE II. Zeros of the Bessel function of the first kind an
corresponding values of the external magnetic field.

x0 H ~A/m! B (kg/ms2)

3.83171 0.14277 0.13334
7.01559 0.26139 0.24414
10.17350 0.37905 0.35404
13.3237 0.49643 0.46367
16.4706 0.61368 0.67318
19.6159 0.73087 0.68263
22.7601 0.84802 0.79205
25.9037 0.96515 0.90144
29.0468 1.08226 1.01083
sinw052
Kv

B
a0 ,

cosw05
2R

B
J1S 2pa0

l D , ~8!

or in a more useful form

J1~z0!56b0Aa0H
22z0

2,

cosw05
2R

B
J1~z0!, ~9!

wherea0 andw0 are the steady-state amplitude and pha
b05Kf l /2R, a052Is /Kf l , and f is the frequency of the
applied external magnetic field. The usual parameters for
model are given in the Table I.

Instead of solving the transcendental equation~8a!, we
prefer to extract as much information as possible from
qualitative approach. To do that, we have represented in
same picture the graphs of the left-hand side~the Bessel
function of the first kind! and the right-hand side of Eq.~9a!
in Fig. 1. Due to the symmetry of the solution, we consid
here only the positive domain. Table II indicates the zeros
the Bessel function and corresponding values of the m
netic field and of theB coefficient.

According to Fig. 1 forz0 less than the first zero of th
Bessel function there is only one intersection point of t
two graphs and therefore only one allowed steady state.
creasingz0 , it is possible to find three or two or only on
steady state and so on. Then we may conclude that one
furcation point is located nearB50.244 14~see Table II and
Fig. 2!, another bifurcation point is nearB50.354 04, the
next bifurcation point is aroundB50.463 67, and so on. Ou

,
FIG. 2. Change of sign of the function indicating the change

the stability of the periodic solution.

TABLE III. Stability range of the periodic solution in the linea
approximation.

x0 Hbifurcation ~A/m! B52HI s (kg/ms
2)

1.87466 0.34472 0.31714
3.73682 0.14312 0.13167
5.54368 0.28735 0.26436
6.70043 0.25940 0.23864
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theoretical study is in good agreement with previously
ported results.1,4,5As examples, Refs. 4 and 5 reported bifu
cation and period-doubling scenarios for first transition
chaotic motion forB50.255. The next bifurcation point is
according to Refs. 4 and 5, atB50.389. Previous studie
numerically demonstrated that periodic motion is allowe
and here we obtain analytical expressions of the perio
solution.

This formulation also enables us to derive some import
conclusions about the stability of the periodic solution. T
traditional way to study the stability of the periodic solutio
is based on the monodromy matrix.11 Here we will try to
avoid the complicated numerical evaluations required by
method. To this purpose let us observe that the Jaco
matrix of Eqs.~7! is

J5S 2
K

2M

2
R

M fa0l
J18S 2pa0

l D
2

R

Mv
J1S 2pa0

l D
K

2M

D ,

~10!
-

,
ic

t
e

is
an

whereJ18(x) is the first derivative of the Bessel function o
the first kind. From Eq.~10! it is now possible to obtain the
eigenvalues

l1,256
R

M f l
ASKf l2R D 21 J1~z0!J18~z0!

z0
. ~11!

The graph of the function under the radical sign is shown
Fig. 2. Table III indicates the zeros of the function in Fig.

IV. CONCLUSIONS

For the problem of domain-wall motion in an extern
magnetic field, we found analytic expressions of perio
solutions. The predictions of our theory are compared w
new numerical and existing numerical data and with exp
ment. The agreement is quit satisfactory.
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APPENDIX

In this appendix we shall briefly discuss the averaging procedure that enables us to obtain the relations~7!. It is straight-
forward to show that

sin2~vt1w!5
1

2
, sin~vt1w!cosvt5

sinw

2
, cos~vt1w!cosvt5

cosw

2
. ~A1!

Let us define

A15sin~vt1w!sinS 2px

l D , ~A2a!

A25cos~vt1w!sinS 2px

l D . ~A2b!

It is convenient for further evaluations for us to remember that

sin@z cos~u1w!#5 (
p50

`

~21!p
z2p11

~2p11!!
cos2p11~u1w!

5 (
p50

`

(
k50

2p11

~21!p
z2p11

~2p11!!
C2p11
k ~cosu cosw!k~2sinu sinw!2p112k

5 (
p50

`

(
k50

2p11

~21!p2k11
z2p11

~2p11!!
C2p11
k cosku coskw sin2p112ku sin2p112kw. ~A3!

If one introduces Eq.~A3! into Eq. ~A2a!, one obtains

A15
1

2p (
p50

`

(
k50

2p11

~21!p112k
z2p11

~2p11!!
C2p11
k coskw sin2p122k wE

2p

p

cosk11u sin2p112ku du, ~A4!

whereu5u1p. It is known that

E
2p

p

cosku sin2p122ku du5H 2E0p cosku sin2p122ku du if k is even,

0, otherwise,
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E
2p

p

cosk11u sin2p112ku du5H 2E0p cosk11u sin2p112ku du if k is odd,

0, otherwise,

E
0

p

cos2pu sin2nu du5BS n1
1

2
,p1

1

2D , ~A5!

whereB(a,b)5G(a)G(b)/G(a1b) is theB Euler function. In order to find explicit form of the coefficientA1 , we have to
insert expressions~A5! into formula ~A4!. This gives

A15F2
G~p2 l1 3

2 !G~ l1 1
2 !

G~p12!
1
p2 l1 1

2

l1 1
2

G~p2 l1 1
2 !G~ l1 3

2 !

G~p12! G 1

p (
p50

`

(
l50

p

~21!p
z2p11

~2p11!!
C2p11
2l cos2l11w sin2p1122lw

50.

Similarly, we have

A25
1

p (
p50

`

(
l50

p

~21!p
z2p11

~2p11!!
C2p11
2l cos2lw sin2p22lw

G~p2 l1 3
2 !G~ l1 1

2 !

G~p12!
5 (

p50

`

~21!pS z2D
2p11 1

p! ~p11!!
5J1~z!,

~A6!

where we used the definition of the Bessel function of the first kind,

Jn~z!5 (
p50

`

~21!pS z2D
2p1n 1

p! ~p11!!

and

G~p1 1
2 !5

~2p!!Ap

p!22p
.

ra

.

n
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