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We studied electrical resistivity of single crystals of an oxide superconduci®uSj; under hydrostatic
pressure up to 12 kbar. The midpoifi decreases at the rate of 3%/kbar. Anomalous increase of resistivity
along thec axis is observed at room temperature with increasing pressure, whereas thatah ghane
decreased with pressure as normally expedi®@d163-18207)07538-3

The oxide superconductor ;JRuQ, draws our attention In this study we have performed measurements of the
with its structural similarity to La_,Sr,CuO, and yet low in-plane and out-of-plane resistivity under hydrostatic pres-
T, of ~1 K.! The anisotropy in resistivityd./p.,~900 at  sure up to 12 kbar. The samples used in the measurements
2 K) is even larger than that of cuprates. It is hoped that itwvere platelike single-crystalline $uQ, grown by the
can play a role of a lowk, counterpart of hight. cuprates floating-zone method. The typical dimensions were
in studying how cuprates differ from other superconductors 5x 0.6x 0.04 mn?. The resistivity was measured by a dc

Shortly after the discovery of superconductivity in four-probe method. In out-of-planec{axis measurements
SrRuQ,, Rice and Sigrist argued the possibility of triplet- sjx gold wires were attached to the sample with heat-cure-
pairing, p-wave superconductivity in this systénhe re- type silver paste as shown in the inset of Fi¢b)land the
sults of specific hedtand nuclear quadrupole resonahce terminals numbered 3 and 4 were shorted and usedl as a

show that there is a significant portion of conduction elec-Iead the terminals 5 and b- . and the terminals 1 and 2
trons which seem to stay in the normal state down to Zer?/olta'ge leads '

kelvin. . We applied hydrostatic pressure to the samples as fol-
In UPt3, another and older candidate ofpawvave super- : ) .
lows. The samples were placed in a Teflon cell filled with

conductor, a decrease df, with increasing pressure was : ) A
reported by Williset al.° They also observed a large decreasePressure me_d|untildem|tsu Daphne No. .7373 oil which
was placed in the Be-Cu clamp cell. Since we clamp the

of T? term(“ A”) in resistivity on pressurization, which they

ascribed to the suppression of spin fluctuations by pressur@ressure cell at room temperature, the pressure decreases on
But if the conduction-electron system can be regarded a§0ling to low temperature. Previous calibration ins

a Fermi liquid, which is believed applicable to,Ru0,,%’ §howed that the pressure d_ecrease at the I_owest temperatures

and the resistivity at low temperature is governed by thdS about 1.5 kbar irrespective of the starting pressure. The

electron-electron interactior is proportional toy?, where  Cell was installed either in oufHe cryostat or dilution re-

y denotes the electronic specific heat coefficient. In this casdligerator for low-temperature measurements.

the decrease oA under pressure is interpreted as the de- The out-of-plane resistivity was measured after the in-

crease of density of states with pressure. Comparison of thglane measurement. A similar pressure dependence of

pressure effect on superconductivity inBu0Q, with thatin T, was followed by the out-of-plane measurement to that

UPt; is useful in examining their similarity. obtained beforehand in the in-plane experiment, ensuring the
There is another topic that this article deals with. In high-reproducibility of theT. change.

T. cuprates the temperature dependence of the out-of-plane We first present the resistively observed superconducting

resistivity p. is semiconducting in the so-called “under- transition under pressuf€ig. 1). Thep,, result at 0, 8, and

doped” region. As more holes are dopegg, becomes me- 12 kbar is shown, while the. result at 0, 4, and 8 kbar.

tallic in the optimally and overdoped region. Maeebal!  Although the same sample was used throughout, we had to

observed thap. of SL,RUQ, undergoes a crossover from a remake electrical contacts on the sample a few times, result-

low-temperature metallic to a high-temperature nonmetallidng in different residual resistivity abovk, from one pres-

state. They discussed that a crossover from metallic condusure to another. Therefore in these figures we multiplied

tion to the thermally assisted hopping regime occurs wheisome data by a scale factor to give a similar residual resis-

the scattering rate by phonons exceeds livherer, stands tivity. T, decreases with increasing pressure at least up to 12

for the time for an electron to travel between adjacentkbar.

layers® The pressure effect op, may shed some light on Second, we show the plot @f vs T? under several pres-

this interesting behavior. sure valuegFig. 2). In Fig. 2 no normalization regarding
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FIG. 1. The temperature dependence of resistivity arounc£1
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FIG. 2. Resistivity up to 17 or 10 K under various pressures

T. under several pressurg®) and (b) correspond to the in-plane

and out-of-plane results, respectively. Note that the applied pressu
values are not common ta) and(b). Inset of(b): a sample with six

terminals inc-axis measurements.

the coefficient ofT? term (A) depend little on pressure.

otted against?. (a) is for ab-plane and(b) for c-axis measure-
ents. No normalization regarding the residual resistivity is made.

r@D has been determined experimentally as#450 K from
a specific heat measurement on a single cry$tebr many

superconducting transition metal element$, takes a com-
mon value of 0.13, as determined from the isotope efféct.
residual resistivity is made. Both the residual resistivity andwe take, for instance, 0.13 as tp& value here. In ordinary

cases\ is estimated from the enhancement of the experimen-

During the pressurization at room temperature we monita| electronic specific heat coefficien,) over the band-
tored the variation of resistivity. The results are shown incajculation value fp,,9.>* According to Oguchi's band

Fig. 3, which indicates a monotonic decreasegf with the
increase of pressure, as normally expected.however, in-

calculation:®> X (= Yexpt/ Ybang— 1) is 2.8. If we substitute
these quantities into Eq1), we obtainT .= 56 K. Surely this

creases with increasing pressure. Actual resistivities at roong much too high compared with the actdal of ~1 K. The

temperature are 168 cm and 16 ) cm for p,, andp.,

respectively.

From the data depicted in Fig. 1 we obtaiT&P phase

diagram(Fig. 4). The transition becomes a little broader with

1.02

reasol(s) for this large discrepancy may be the following.

increasing pressure, probably because of the pressure distri-
bution over the sample. By taking the mean of the supercon-
ductivity onset temperature and zero-resistance temperature,
we deduce that the midpoint, decreases at the rate of
about 3%/kbar and that superconductivity will be completely
suppressed foP=30 kbar.

Since some suggest a pairing mechanism other than the
usual electron-phonon interaction in this compound, it is
worthwhile to see how wellor badly a BCS-based theory
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FIG. 3. Room-temperature resistivity as a function of pressure.

The resistivity data are scaled by a zero-pressure value.
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1.0 T . - r ated by spin fluctuations in $RuQ,, the origin of theT?
* Sr,RuO, Nt -
] Normal B b olane Onset dependence is likely to be electron correlation.
0 ] a2 b . If we extend our discussion along scendiiioand neglect

O ab plane Zero
the change o by pressureg.p, decreases to 0.41 at 8

® ¢ axis Onset - kbar from 0.43 at O bar. This size of decrease is barely ob-
¢ axis Zero servable compared withy,. Therefore the insensitivity of
J A comes naturally if a conventional electron-phonon mecha-
nism applies. In this case we cannot say anything about the
origin of the T2 dependence.
In both cases we may mention that the enhancement fac-
: A, tor in SLRUQ, due to spin fluctuations is much smaller than
10 15 20 25 30 in UPt. In the former case the spin-fluctuation-drivéA
law is endangered as mentioned above. In the latter case,
even if theT? dependence is brought about by spin fluctua-
FIG. 4. T-P phase diagram at low temperature showing thetions, the extent of th&* law goes up to much higher tem-
extent of the superconducting state. perature in SIRUQ, than in UPg, which indicates a higher
scaling temperaturég in SLRUG,. Tgis inversely correlated
(i) The enhancement of the specific heat is mostly due t ith t_he enhancement factor due to spin fluctuations. Hence
he higherTs means the smaller enhancement factor.

another mechanism than the electron-phonon interaction, L
thereby leaving\ entering in Eq(1) much smaller than 2.8. Therefore superconductivity in $uQ, does not s.eem_to
For example, spin fluctuations also enhangg,. fall into the same category as of .Ug?tand even if spin
(i) T, is greatly suppressed by spin fluctuations. fluptuat_lons are mediators _of attractive forcg, they _should be
(iii) u* is anomalously large. quite different from those in URt e.g., having a different
(iv) Superconductivity in this system is all irrelevant to S"@P€ 0f(d.®). o . .
the phonon mechanism. The pressure _de_p_endence;@f(ﬁg. 3J is very interesting
We point out here thati) and i) are not independent of because the reS|st|v]ty usually decreases undgr pressure re-
each other. gargless of whether it is a cohergnt metal or is in a tunneling
Along scenarid(i) we can obtain an effective relevant regime. hf the SYS‘e.”.‘ IS a band insulator, the band gap may
to superconductivityX ) using Eq.(1) andT.~1 K. This increase in the modification of the band structure due to pres-
NeLpniS 0.43, which is only 15% ok = 2.8. We will use sure. Ourp, n};easurement was done at room temperature and
these numbers later. Incidentally, aluminum with=1.17 K Yoshidaet al. havg suggest(_ed that_the system crosses over
has nearly the same Debye temperat@g=428 K as to'a thermally assisted hopping regime above 1(")0 K. Surely
Sr,RUO, and is characterized by = 0.38. thl_s broad hump at arou_n_d 130 K does not look like a metal-
Now we compare the pressure gependenc‘écoandA in to-insulator phase transition and the temperature dependence
of p. above 130 K is not an activation type. Thus it is diffi-

SKL,RUO, with those in UP§. Willis et al® observed that | di band insul he i o
T. decrease of URtis 2.6%/kbar, very close to the decreasecu'[tO regard it as a band insulator. The increasgdias to
¢ ' ! be understood taking account of the shift of the temperature

rate 3% for SyRuQ,. Note thatT, (~0.5 K) of UPt; itself . . ) :
is comparable tdl.~1 K of S,RuG,. On the contrary the \;Vrr]}fetrteh% Crgﬁgﬁlsy'ts maximum. We have not yet studied this
pressure dependence Afis quite different for the two sys- Since our pressure is hydrostatic, we are not sure that the

0,
tems. In UP3, A decreases by 30% at 8 kbar. In,BuQ, axis was really shortened on pressurization. Uniaxial stress

fch.e nqrmal-state resistivity changes so litle by pressure tha;1(3[Iong thec axis is particularly useful to decide whether this
it is difficult to deduce the exact number for thechange. increase ofp, really occurs with thec-axis shortening.

From Fig. Za) we can say that the decreasefofrom P=4 .
to 12 kbar, which is expected to be virtually the same as th% In summary we have observed a fairly rafig depregse
y applying pressure on gHuQ, The midpoint

0”?;;0:: Zrz ?V\;[g 80§2§at)ri,|iliselsefsosrttr;1?anoarii fier\ilvo?fl%eg; en- T. decreases at 3%/kbar, whileA changed little in sharp
P 9 P contrast to UP§, for which A decreases drastically. Al-

dence of resistivity at low temperature: electron-electron cor; . . . : ;
. : . " - though relatively stabléA is consistent with conventional

relation and spin fluctuations. As 1o these “exofic” super- superconductivity, a different type of spin fluctuation may be

conductors there are also two possibilities discussed for the P Y yp P Y

origin of the attractive interaction between carriers: conven.” effect in SpRUQ, from those in UP. Another interesting

tional electron-phonon interaction and spin fluctuations. Ifobservat|on is thap at room temperature increases under

spin fluctuations dominate both low-temperature resistivitypressure' This behavior has to be considered in the context of
and superconductivity in FRuQ,, as believed is the case for a metal-nonmetal crossover p.

UPt;, the observed insensitivity & in SLRUQ, is difficult The authors thank I. H. Inoue, Y. Nishihara, H. Yoshino,
to explain. Therefore, even if an attractive potential is medi-and I. Hase for valuable discussions.
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