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Critical temperature and superfluid density suppression
in disordered high-Tc cuprate superconductors
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We argue that the standard Abrikosov-Gorkov~AG!-type theory ofTc in disorderedd-wave superconduct-
ors breaks down in short coherence length high-Tc cuprates. Numerical calculations within the Bogoliubov–de
Gennes formalism demonstrate that the correct description of such systems must allow for the spatial variation
of the order parameter, which is strongly suppressed in the vicinity of impurities but mostly unaffected
elsewhere. Suppression ofTc is found to be significantly weaker than that predicted by the AG theory, in good
agreement with experiment.@S0163-1829~97!07334-7#
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Sensitivity of the superfluid density and the critical tem
perature to moderate amounts of substitutional disor
served as an early indicator of the unconventional natur
the order parameter in high-Tc cuprate superconductors. Th
theory of dirty d-wave superconductors, pioneered in th
context by Annett, Goldenfeld, and Renn1 and by Hirschfeld
and Goldenfeld,2 successfully explained the observedT2 de-
pendence of the superfluid densityrs(T) in YBa2Cu3O72d

~YBCO! films and single crystals, attributing it to the effe
of the finite density of states at the Fermi level induced
impurities, treated as unitary scatterers. Crossover
T-linear behavior was predicted for lower impurity conte
which was later observed in very clean YBCO single cryst
by Hardy et al.3 The theory was subsequently refined4–6 to
provide a good quantitative description of the low
temperature behavior ofrs(T).

Similar models have been employed to predict the cha
of Tc from its clean valueTc0 due to disorder,5,7 essentially
by extending the standard Abrikosov-Gorkov~AG! theory8

to the case ofd-wave superconductors with scalar impuritie
It has been noted that the experimentally observedTc is
much more robust than one would expect from these sim
models, when measured against the corresponding chan
rs(0). Figure 1 illustrates this point by showing the expe
mental Tc versusrs(0) for YBCO samples disordered b
different types of disorder as obtained by various groups9–13

and the corresponding theoretical prediction.5 While there
exists a considerable spread in the experimental data,
quite evident that the theory systematically overestimates
suppression ofTc , perhaps by as much as a factor of 2 in t
cases of Refs. 9,11,13. In order to remedy this situat
more realistic models have been considered, taking into
count strong coupling corrections within the Eliashbe
formalism7 together with realistic band structures,14 proxim-
ity of the Fermi level to a van Hove point,15 and the details
of the pairing interaction within the spin-fluctuation model16

While some improvement over the simple model can
achieved for carefully selected parameters, the discrepa
between theory and experiment remains in place, sugges
560163-1829/97/56~13!/7882~4!/$10.00
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that methods traditionally employed to determine the su
pression ofTc by impurities are inadequate for the high-Tc
cuprates. It has also been suggested that perhaps the ef
of disorder on the transition from the rather peculiar an
poorly understood normal state cannot be satisfactorily d
scribed within the framework of a simple BCS-like mea
field theory.17

In the present article we show that one can, in fact, fo
mulate an adequate description within mean-field theory,
the spatial variations of the order parameter caused by r
dom disorder are accounted for in a fully self-consiste
manner. We present a simple argument for the breakdown
the conventional AG-type theory~which enforces a uniform
gap averaged over disorder! in superconductors with very
short coherence lengths such as the high-Tc cuprates. This
argument is then given substance by numerical calculatio
within the Bogoliubov–de Gennes~BdG! framework, carried

FIG. 1. Normalized critical temperature versus the normalize
zero temperature superfluid density. Experimental data were
tained by~a! mutual inductance~Ref. 9!, ~b! ~d! infrared reflectance
~Refs. 10,11!, ~c! muon spin rotation~Ref. 12!, and~e! field-current
density analysis~Ref. 13!. Theoretical curve is from Ref. 5.
7882 © 1997 The American Physical Society
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56 7883BRIEF REPORTS
out for a modeld-wave superconductor with a random di
tribution of nonmagnetic point impurities. Such calculatio
convincingly demonstrate that the rapid drop in the predic
Tc is an artifact of AG theory resulting from spatial avera
ing of the order parameter. The true critical temperature
tained from a fully self-consistent solution of the BdG equ
tions is always higher, in agreement with experiment.

In a d-wave superconductor nonmagnetic impurities
pair breaking and lead to suppression ofTc . A simple modi-
fication of the original AG approach8 yields an equation for
Tc of the familiar form5,7,14

lnS Tc0

Tc
D5cS 1

2
1

aTc0

2pTc
D2cS 1

2D , ~1!

where c is a digamma function anda51/2tTc0 is a pair
breaking parameter. In the limit of unitary scatterers, wh
is relevant for Zn and other solutes in YBCO,2 the scattering
rate is given by 1/2t5ni /pN(0), with ni being the number
density of impurities andN(0) the normal-state density o
states at the Fermi level. Fora small we have

Tc
AG

Tc0
.12

p

4
a512

ni

4N~0!Tc0
, ~2!

which is in fact an excellent approximation to the full sol
tion of ~1! for a&ac/3, whereac50.88191 is the critical
pair breaking parameter@Tc(ac)50#.

One of the crucial assumptions entering the derivation
Eq. ~1! is that the position dependent order parameterD(r )
can be replaced in the gap equation by its spatial ave
D̄. Such a procedure is valid when the gap varies ove
length scale that is large compared to the average spa
between the impuritiesl i . In the vicinity of Tc significant
variations of the order parameter take place on the len
scale set by the Ginzburg-Landau temperature dependen
herence lengthj(T), which is related to the low-temperatur
BCS coherence lengthj05v f /pD by j(T).nj0(1
2T/Tc)

21/2, wheren50.74 in a conventionals-wave super-
conductor with a spherical Fermi surface.18 For a d-wave
superconductorn will be a different number of order unity
depending on the precisek-space structure of the gap fun
tion.

Consider the problem of a single unitary impurity in
d-wave superconductor. The order parameter will
strongly suppressed at the impurity site and it will recover
bulk value over the distance;j(T).19,20 Since a single im-
purity cannot affectTc of a macroscopic sample, this cohe
ence length is given by

j~T!.nj0~12T/Tc0!21/2. ~3!

For a small finite density of impurities with average spac
l i@j0, except very close toTc , the areas of depressed ord
parameter around individual impurities will not overlap, a
most of the sample will remain completely unaffected. Th
it is still reasonable to use Eq.~3! with the unperturbedTc0
for j(T). When these areas begin overlapping, i.e., wh
j(T)* l i , the entire sample is affected in the sense that
order parameter is suppressed everywhere. The temper
at which this happens provides a lower bound for the t
d
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Tc of the sample. Usingl i52a0 /Apni ~wherea0 is the ionic
lattice spacing! this condition becomes

Tc

Tc0
*12

p

4 S nj0

a0
D 2

ni . ~4!

If Tc
AG predicted from Eq.~2! falls below this lower bound,

one may conclude that the AG theory is not self-consiste
since the true coherence length atT5Tc

AG is smaller than the
average distance between the impurities and the avera
over D(r ) is not allowed.

In order to get a rough idea of how restrictive this arg
ment is, we note that the prefactor ofni in Eq. ~2! can be
converted into a length scales ratio 1/N(0)Tc0;(p2/1.13)
(j0 /a0).21 Then, combining this with Eq.~4! one can derive
a rough estimate for the range of validity of the AG theory
the form

j0 /a0*p/1.13n2.5. ~5!

Clearly, for conventional low-Tc superconductors this cond
tion is easily satisfied asj0 is typically large compared toa0.
For high-Tc cuprates, however, the situation is quite differe
since typically j0 is several lattice spacings (j0'4a0 in
YBCO!. A more careful estimate using realistic values
Tc0 and N(0) for YBCO,14 confirms that the result of ou
rough estimate~5! holds. This indicates that the usage of t
AG theory for this material is probably not justified.22

While the argument presented above is admittedly cru
we believe that together with the experimental evidence
cussed above it points to the necessity of studying the eff
of spatial variations of the order parameter in disorde
short-coherence-length superconductors. We now presen
sults of a numerical calculation that strongly support the p
ture outlined above.

We employ an extended Hubbard model on a square
tice with nearest-neighbor attraction and on-site repulsio

H52t (
^ i j &s

cis
† cj s2m(

is
nis1(

is
Vi

impnis

1V0(
i

ni↑ni↓1
V1

2 (
^ i j &ss8

nisnj s8, ~6!

where^ i j & stands for nearest-neighbor pairs, and the nota
is otherwise standard. Such a model, treated within a s
consistent BdG theory, has been used previously to st
vortices23,24and impurities19,20,25in d-wave superconductors
The impurities are modeled byVi

imp5Vimp@utu at randomly
chosen sites with densityni and Vi

imp50 elsewhere. We
solve this Hamiltonian within the standard mean-field theo
as described in Ref. 20. All physical quantities of interest c
be derived from the quasiparticle amplitudes@un(r ),vn(r )#,
which satisfy a system of BdG equations26

S ĵ D̂

D̂* 2 ĵ*
D S un

vn
D 5EnS un

vn
D , ~7!

with

ĵun~r i !52t(
d

un~r i1d!1~Vi
imp2m!un~r i !,
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D̂vn~r i !5D0~r i !vn~r i !1(
d

Dd~r i !vn~r i1d!, ~8!

subject to the constraints of self-consistency

D0~r !5V0(
n

un~r !vn* ~r !tanh~En/2kBT!,

Dd~r !5
V1

2 (
n

@un~r1d!vn* ~r !

1un~r !vn* ~r1d!#tanh~En/2kBT!. ~9!

HereD0 andDd are the on-site and nearest-neighbor pairin
amplitudes respectively withd56 x̂,6 ŷ and the summation
is over positive eigenvaluesEn only. For a finiteL3L sys-
tem we solve the BdG equations~7! by exact numerical di-
agonalization using a suitable guess for the initial gap fun
tions. We then compute new gap functions from Eq.~9! and
iterate this process until self-consistency is established20,23.

The superfluid densityrs(T) is evaluated from the stan-
dard linear response formula appropriate for lattic
models19,27

rs~T!/45^2Kx&2Lxx~qx50,qy→0,v50!, ~10!

where^2Kx& is the average kinetic energy along thex̂ di-
rection, andLxx(q,v) is a diagonal element of the current
current correlation function. Botĥ2Kx& andLxx(q,v) can
be written in terms of (un ,vn) andEn , resulting in lengthy
expressions which we omit here for brevity.

FIG. 2. ~a! Normalized zero-temperature superfluid density as
function of impurity concentration: fully self-consistent solution o
BdG equations~solid symbols!, solution with uniform order param-
eter ~open symbols!, and analytict-matrix solution with unitary
scatterers from Ref. 5~dash-dotted line!. ~b! Normalized critical
temperature and average gap. Dash-dotted line is numerical solu
of the AG equation~1!.
g

-

Determination ofTc is more complicated since the num
ber of iterations needed to self-consistently solve Eqs.~7!,~9!
to a required accuracy increases dramatically near the t
sition ~and presumably diverges atT5Tc). We use two dif-
ferent methods to overcome this difficulty:~i! we improve
our initial guess forD(r ) at each new temperature by e
trapolating from previous temperature points, and~ii ! we lo-
cateTc iteratively by following the development of the ga
initialized to infinitesimal value.

Figure 2 summarizes the results of our numerical calcu
tion, for parameters resulting inj0'4a0 ~we use
V052V151.13t, m520.36t, andVimp5100t for a system
size L522). Panel ~a! shows the normalized zero
temperature superfluid density as a function ofni obtained
from a fully self-consistent solution of Eqs.~7!, ~9! and from
a solution with an enforced uniform order parameter. F
comparison a conventional analytic solution within t
t-matrix formalism is also shown@we use Eq.~15! of Ref.
5!#. As one would expect the uniform solution is very clo
to the analytical one for all values ofni . The self-consistent
solution agrees well with the two, except for largeni . Our
results forTc @panel~b!# are much more interesting. Whil
Tc computed for the uniform solution tracks the analytic s
lution of the AG equation~1!, the true critical temperature
obtained using a self-consistent solution is much higher
fact atni.0.08 whereTc

AG50, the true critical temperature
is still more than 70% ofTc0. Also note that the averag
zero-temperature gap does not scale withTc , as one would
expect from BCS theory.

We have carried out calculations for several different s
of parameters, all showing similar behavior~see Fig. 3!. As
the coherence length grows, the discrepancy between the
critical temperature andTc

AG diminishes, as expected from
the analysis presented above. Forj0 /a0'4 as in YBCO, the

a

ion

FIG. 3. Normalized critical temperature versus normalized ze
temperature superfluid density as computed from a fully s
consistent solution of BdG equations for systems with differ
coherence lengths. The error bars reflect the statistical scatte
data for six different impurity configurations. Parameters used
L522, Vimp52100t, m520.36t, and V052V1

5(0.80,1.05,1.40)t for j05(9.9,4.7,2.5)a0, respectively. Dash-
dotted line is a conventional AG solution from Ref. 5. Inset: the r
of changeh i versusj0 /a0 ~open squares!, and the expected behav
ior from AG theoryh i52.18(j0 /a0) ~dashed line!.
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discrepancy is substantial, and can easily account for
experimentally observed robustness ofTc . The critical im-
purity density for this case isni

c'0.17. Since Zn substitute
primarily for the planar copper sites in YBCO~Ref. 28! and
only 2/3 of all Cu atoms reside in the planes, our res
implies a bulk critical density ofnbulk

c '0.10. This is in rea-
sonable agreement with the experimentally obser
nbulk

c 50.0820.10 for Zn doped YBCO.29 By contrast con-
ventional models tend to underestimatenbulk

c by a factor of 2
or more.15 The inset to Fig. 3 shows the dependence of
initial rate of change of Tc with ni , h i5Tc0

21(dTc /
dni)ni50, on j0. This quantity also deviates significant

from the linearh i;(j0 /a0) behavior expected from the AG
prediction~2!, showing instead a quadratic behavior cons
tent with Eq.~4!.

In closing we comment on the appropriateness of us
BdG theory to calculateTc in short coherence length mat
rials. As with all conventional theories of superconductivi
BdG theory is a mean field theory and hence is incapabl
modeling the important effects of phase fluctuations on
ordering temperature in short coherence length, highly an
tropic materials such as the high-Tc oxides. On the othe
hand, unlike many more specialized mean field theories
e
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e
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,
of
e
o-

-

cluding AG theory, BdG theory is well-suited to calculatin
the effects of static spatial disorder on the order parame
amplitude and on the mean fieldTc . Since the static random
potential does not couple to the phase, the effects of spa
randomness and thermal phase fluctuations are largely
coupled. To a good approximation, at least for the dilu
case, the effects of impurities can be calculated within me
field theory, while the effects of phase fluctuations, in redu
ing Tc from its mean field value, require a proper theory
critical behavior. A complete theory for the combined effec
is not presently known. However, it is apparent, even at
mean field level, that such a theory for the effect of inhom
geneous pair breaking onTc must take proper account of th
resulting inhomogeneity of the gap function. It is our ho
that the present calculations will provide the physical mo
vation for such a theory.
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