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Critical temperature and superfluid density suppression
in disordered high-T . cuprate superconductors
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We argue that the standard Abrikosov-GorkKé)-type theory ofT, in disorderedd-wave superconduct-
ors breaks down in short coherence length higreuprates. Numerical calculations within the Bogoliubov—de
Gennes formalism demonstrate that the correct description of such systems must allow for the spatial variation
of the order parameter, which is strongly suppressed in the vicinity of impurities but mostly unaffected
elsewhere. Suppression ©f is found to be significantly weaker than that predicted by the AG theory, in good
agreement with experimer{tS0163-18207)07334-7

Sensitivity of the superfluid density and the critical tem-that methods traditionally employed to determine the sup-
perature to moderate amounts of substitutional disordepression ofT. by impurities are inadequate for the high-
served as an early indicator of the unconventional nature ofuprates. It has also been suggested that perhaps the effects
the order parameter in high; cuprate superconductors. The of disorder on the transition from the rather peculiar and
theory of dirty d-wave superconductors, pioneered in thisPoorly understood normal state cannot be satisfactorily de-
context by Annett, Goldenfeld, and Rérand by Hirschfeld ~ Scribed within the framework of a simple BCS-like mean
and Goldenfeld, successfully explained the observetide-  field theory. , _
pendence of the superfluid density(T) in YBa,CuzO,_ In the present article we s_how t.ha}t one can, in fact, for'—
(YBCO) films and single crystals, attributing it to the effect mulate an ade_qu_ate description within mean-field theory, if
of the finite density of states at the Fermi level induced bythe spatial variations of the order parameter caused by ran-

impurities, treated as unitary scatterers. Crossover tgom disorder are acco_unted for in a fully self-consistent
: : : : . manner. We present a simple argument for the breakdown of
T-linear behavior was predicted for lower impurity content

. : ; 'the conventional AG-type theorfwhich enforces a uniform
which was later observed in very clean YBCO single crystalsgap averaged over di)g)ordein s@gperconductors with very
by Hardy et al2 The theory was subsequently refifietito

. 2 e short coherence lengths such as the higheuprates. This
provide a good quantitative description of the l0W- 54 ment is then given substance by numerical calculations

temperature behavior gfy(T). _ within the Bogoliubov—de GenngBdG) framework, carried
Similar models have been employed to predict the change

of T, from its clean valueT, due to disorder;’ essentially

by extending the standard Abrikosov-Gorkt&G) theory? 1.0 : , : v
to the case ofli-wave superconductors with scalar impurities. -V ) A//'Cf'o
It has been noted that the experimentally obserV¥edis 08 L v A L0
much more robust than one would expect from these simpl Tm o o
models, when measured against the corresponding change * e
ps(0). Figure 1 illustrates this point by showing the experi- _ 0-6 o // ©
mental T, versuspg(0) for YBCO samples disordered by Q . / ® YBa,(Cu, Zn,),0, ; films |

. > . ) ~ , )
different types of disorder as obtained by various grétlis & 04 |- . :zgazgl x;‘]x))%«z f‘ls'?:lsm
and the corresponding theoretical predictiowhile there /(5/ OYOS%%Z,;;Z(C;;_ %n:)io7_5cerm6<c>
exists a considerable spread in the experimental data, it | 02 - / AYBa,Cu,0, ; He irradiated crysta(\el)s(d)
quite evident that the theory systematically overestimates th s ¥ YBa,Cu,0; ; He irradiated films
suppression of ., perhaps by as much as a factor of 2 in the { === conventional AG ‘heoryl

cases of Refs. 9,11,13. In order to remedy this situation 0.0 © ' ‘
more realistic models have been considered, taking into ac 0.0 0.2 0.4 0.6 0.8 1.0

count strong coupling corrections within the Eliashberg p(n)p(0)
formalisn together with realistic band structursproxim-
ity of the Fermi level to a van Hove point,and the details FIG. 1. Normalized critical temperature versus the normalized

of the pairing interaction within the spin-fluctuation mod®l. zero temperature superfluid density. Experimental data were ob-
While some improvement over the simple model can beained by(a) mutual inductancéRef. 9, (b) (d) infrared reflectance
achieved for carefully selected parameters, the discrepangRefs. 10,11, (c) muon spin rotatiorfRef. 12, and(e) field-current
between theory and experiment remains in place, suggestintgnsity analysigRef. 13. Theoretical curve is from Ref. 5.
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out for a modeld-wave superconductor with a random dis- T, of the sample. Using=2a,/+/7n; (wherea, is the ionic
tribution of nonmagnetic point impurities. Such calculationslattice spacinythis condition becomes

convincingly demonstrate that the rapid drop in the predicted

T, is an artifact of AG theory resulting from spatial averag- Te )

2

n;. (4)

véo
Ch)

ing of the order parameter. The true critical temperature ob- Teo 4

tained from a fully self-consistent solution of the BdG equa- , g . .
tions is always higher, in agreement with experiment. If Tc™ predicted from Eq(2) falls below this lower bound,

In a d-wave superconductor nonmagnetic impurities are®"€ May conclude that the AG theory is not self-consistent,

pair breaking and lead to suppressiorTet A simple modi- since the t_rue coherence Iengttht T@G. !s smaller than the _
fication of the original AG approaglyields an equation for average distance between the impurities and the averaging
T. of the familiar forn?”14 overA(r) is not allowed.
In order to get a rough idea of how restrictive this argu-
Teo 1 aTg 1 ment is, we note that the prefactor of in Eq. (2) can be
In(_l_—) =¢(§+ 5T —zp(i), (1)  converted into a length scales ratioN{0) T~ (7%/1.13)

c Tle (&0/ap).2* Then, combining this with E¢(4) one can derive
where ¢ is a digamma function and=1/27T, is a pair & rough estimate for the range of validity of the AG theory of
breaking parameter. In the limit of unitaryéscatterers, whichthe form
is relevant for Zn and other solutes in YBC@he scattering 2
rate is given by 1/2=n;/7N(0), with n; being the number fo/ao=m/1.13°=5. ©)
density of impurities andN(0) the normal-state density of Clearly, for conventional lowF; superconductors this condi-

states at the Fermi level. Far small we have tion is easily satisfied a&; is typically large compared ta,.
For high-T, cuprates, however, the situation is quite different
T/QG iy n; since typically &, is several lattice spacingséf~4a, in
=l-ga=1l- oo, 2 YBCO). A more careful estimate using realistic values of
Teo 4 AN(0)Teo

T.o and N(0) for YBCO* confirms that the result of our
which is in fact an excellent approximation to the full solu- rough estimat€5) holds. This indicates that the usage of the
tion of (1) for a<a/3, wherea,=0.88191 is the critical AG theory for this material is probably not justifiéd.
pair breaking parametéiT.(«a.) =0]. While the argument presented above is admittedly crude,

One of the crucial assumptions entering the derivation ofve believe that together with the experimental evidence dis-
Eqg. (1) is that the position dependent order paramétér)  cussed above it points to the necessity of studying the effects
can be replaced in the gap equation by its spatial averagef spatial variations of the order parameter in disordered
A. Such a procedure is valid when the gap varies over ghort-coherence-length superconductors. We now present re-
length scale that is large compared to the average spacirfyllts of @ numerical calculation that strongly support the pic-
between the impurities; . In the vicinity of T, significant ~ turé outlined above.
variations of the order parameter take place on the length We eémploy an extended Hubbard model on a square lat-
scale set by the Ginzburg-Landau temperature dependent cbiee With nearest-neighbor attraction and on-site repulsion:
herence lengtl§(T), which is related to the low-temperature

BCS coherence lengthéo=vi/7mA by &(T)=vé(1 H=-t> clcip—n N+ Vi™n,
—TIT.) Y2 wherer=0.74 in a conventiona-wave super- (i o io

conductor with a spherical Fermi surfaeFor a d-wave v

superconductor will be a different number of order unity, +Vo> ;| + e > NigNjors (6)
depending on the precidespace structure of the gap func- i 2 (ijyoo’

tion.

ider th bl f inal ) . L where(ij) stands for nearest-neighbor pairs, and the notation
Consider the problem of a single unitary impurity in &g iherwise standard. Such a model, treated within a self-

d-wave superconductor. The order parameter will b€,ngistent BAG theory, has been used previously to study

strongly suppressed at the impurity site and it will recover its\/ortice§3'24and impuritieég'zo'zsin d-wave superconductors.

bulk value over the distance £(T).'*?° Since a single im- . impurities are modeled By™=\™st| at randomly

purity cannot affecl; of a macroscopic sample, this coher- chosen sites with density. anld VIMP—0 elsewhere. We
I | "

ence length is given by solve this Hamiltonian within the standard mean-field theory
_ B 12 as described in Ref. 20. All physical quantities of interest can
(M) =véo(1=T/Teo) "= ©) be derived from the quasiparticle amplitudes,(r),v,(r)],

For a small finite density of impurities with average spacingWhich satisfy a system of BdG equatidhs
[,>&,, except very close td ., the areas of depressed order 2
u u
el o
Un Un
for £(T). When these areas begin overlapping, i.e., wherwith
&(T)=l;, the entire sample is affected in the sense that the

parameter around individual impurities will not overlap, and A
most of the sample will remain completely unaffected. Thus Ax 3

order parameter is suppressed everywhere. The temperature Eu(r)= —tE Un(ri+ &)+ (V™— 1yu(ry),
at which this happens provides a lower bound for the true ' 5 ' ' '

it is still reasonable to use EQR3) with the unperturbed .o



7884 BRIEF REPORTS 56

1.00 ' ' ' ' i Hlsl::.‘liff;izxsistent | 1.0 p
e =+ t—matrix
1 0.8
S
dﬁ |
5 0.6
s g
7 &~ 04
(1)(2)8 i —— —— 7,7, (scli-consistent) oL
. |o—o1/1,, (uniform) 0.2 00 50 100
=== T/T, (AG theory)
1.00 ¢ A= —A A/A,; (self—consistent) E"‘/ao
0.80 /= =N A/A, (uniform) 00— L
§° 0.0 0.2 04 0.6 0.8 1.0
5 000 T ] P.(n)/p(0)
o 040 - A
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. ] temperature superfluid density as computed from a fully self-
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0.00 0.02 004 0.06 0.08 0.10 0.12 0.14 0.16 consistent solution of BAG equations for systems with different
n. coherence lengths. The error bars reflect the statistical scatter of
' data for six different impurity configurations. Parameters used are

= imp_ _ =— =_
FIG. 2. (a) Normalized zero-temperature superfluid density as all 22, v 1oa, K 034, and Vo Vi

. . . S . . =(0.80,1.05,1.4Q) for ¢&;=(9.9,4.7,2.5%,, respectively. Dash-
function of impurity concentration: fully self-consistent solution of e . . .
. ; . ; : dotted line is a conventional AG solution from Ref. 5. Inset: the rate
BdG equationgsolid symbol$, solution with uniform order param-
. . . . . of changer; versusé,/a, (open squargsand the expected behav-
eter (open symbols and analytict-matrix solution with unitary ior from AG theory 7= 2.18(€, /ag) (dashed ling
scatterers from Ref. %dash-dotted ling (b) Normalized critical ymi=e. 070

temperature and average gap. Dash-dotted line is numerical solution o ) . )
of the AG equation(1). Determination ofT. is more complicated since the num-

ber of iterations needed to self-consistently solve Egs(9)
. to a required accuracy increases dramatically near the tran-
Ao (r)=Ag(r)va(r)+ > As(r)va(ri+8), (8  sition (and presumably diverges aE=T.). We use two dif-
0 ferent methods to overcome this difficult{i) we improve
our initial guess forA(r) at each new temperature by ex-
trapolating from previous temperature points, @mgdwe lo-
cateT. iteratively by following the development of the gap
Ao(r)ZVOE Un(rop (r)tani E,/2kgT), initialized to infinitesimal value.
n Figure 2 summarizes the results of our numerical calcula-
tion, for parameters resulting inéy~4a, (we use

subject to the constraints of self-consistency

V, . Vo=-V;=1.13, u=—0.3@, andV'™=10Q for a system

Agr)= ?En: [un(r+d)vy (1) size L=22). Panel (3 shows the normalized zero-
temperature superfluid density as a functionnpfobtained
+Up(r)vl(r+ é)Jtan E/2kgT). (9)  from a fully self-consistent solution of Eg&), (9) and from

a solution with an enforced uniform order parameter. For
HereA, andA ; are the on-site and nearest-neighbor pairingcomparison a conventional analytic solution within the
amplitudes respectively with= +X, +y and the summation t-matrix formalism is also showfwe use Eq(15) of Ref.
is over positive eigenvalues, only. For a finiteL XL sys-  5)]. As one would expect the uniform solution is very close
tem we solve the BdG equatioiig) by exact numerical di- to the analytical one for all values af . The self-consistent
agonalization using a suitable guess for the initial gap funcsolution agrees well with the two, except for large Our
tions. We then compute new gap functions from Ej.and  results forT. [pane(b)] are much more interesting. While
iterate this process until self-consistency is establi€héd T, computed for the uniform solution tracks the analytic so-
The superfluid density(T) is evaluated from the stan- lution of the AG equatior(1), the true critical temperature
dard linear response formula appropriate for latticeobtained using a self-consistent solution is much higher. In
modelg®?7 fact atn;=0.08 whereT2=0, the true critical temperature
is still more than 70% ofT,. Also note that the average
ps(MI4=(—K,)— A(0x=00y,—0,0=0), (10 zero-temperature gap does not scale With as one would
expect from BCS theory.
where(—K,) is the average kinetic energy along thei- We have carried out calculations for several different sets
rection, andA,,(q,w) is a diagonal element of the current- of parameters, all showing similar behavisee Fig. 3. As
current correlation function. Both—K,) andA,,(q,0) can  the coherence length grows, the discrepancy between the true
be written in terms of ,,,v,,) andE,,, resulting in lengthy  critical temperature and@4® diminishes, as expected from
expressions which we omit here for brevity. the analysis presented above. Egfag~4 as in YBCO, the
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discrepancy is substantial, and can easily account for theluding AG theory, BdG theory is well-suited to calculating
experimentally observed robustnessTaf. The critical im-  the effects of static spatial disorder on the order parameter
purity density for this case i87~0.17. Since Zn substitutes amplitude and on the mean fiel . Since the static random
primarily for the planar copper sites in YBC®ef. 28 and  potential does not couple to the phase, the effects of spatial
only 2/3 of all Cu atoms reside in the planes, our resulrandomness and thermal phase fluctuations are largely de-
implies a bulk critical density ofif,, ~0.10. This is in rea- coupled. To a good approximation, at least for the dilute
sonable agreement with the experimentally observedase, the effects of impurities can be calculated within mean
ng=0.08-0.10 for Zn doped YBCG?® By contrast con- field theory, while the effects of phase fluctuations, in reduc-
ventional models tend to underestimafg,, by a factor of 2 ing T, from its mean field value, require a proper theory of
or more®® The inset to Fig. 3 shows the dependence of thepritical behavior. A complete theory fpr the combined effects
initial rate of change ofT, with n;, 7=T, (dT,/ IS not presently known. However, it is apparent, even at the
dni)ni:o' on &. This quantity also deviates significantly Méan field I(_avel, thgt such a theory for the effect of inhomo-
from the lineary, ~ (£,/ao) behavior expected from the AG geneous pair breaking dn. must take proper account of the

- 5007 . : . resulting inhomogeneity of the gap function. It is our hope
Fgﬁ?ﬁ};ﬁnéé),(‘;howmg instead a quadratic behavior consis that the present calculations will provide the physical moti-

. . ._vation for such a theory.
In closing we comment on the appropriateness of using

BdG theory to calculat& . in short coherence length mate-  The authors are indebted to D. N. Basov, C. Bernhard, H.
rials. As with all conventional theories of superconductivity, Kim, and S. H. Moffat for providing their data for Fig. 1, and
BdG theory is a mean field theory and hence is incapable odre grateful to A. V. Balatsky, V. J. Emery, D. L. Feder, R.
modeling the important effects of phase fluctuations on thé-ehrenbacher, K. Levin, J. S. Preston, and T. Timusk for
ordering temperature in short coherence length, highly anisanspiring discussions. This work has been partially supported
tropic materials such as the hidgh- oxides. On the other by NSERC, OCMR, and by NSF Grant No. DMR-9415549
hand, unlike many more specialized mean field theories, in(M.F.).
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