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Thermal conductivity of solid neon: An iterative analysis
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In this paper, the thermal conductivity of neon is obtained by means of a recently proposed iterative solution
of the phonon Boltzmann equation. The potential used for the calculation is an effective Lennard-Jones
potential to include quantum effects. Good agreement with the experimental data is obtained.
[S0163-18207)07337-2

I. INTRODUCTION Il. THE MODEL AND THE ITERATIVE TECHNIQUE

Rare-gas crvstals are probably the simplest dielectric sol- The in_teratomic potential used in the present calculation is
9 y P y P an effective Lennard-Jont¥s
and the role of impurities, dislocations, and other scattering ol 2 [ro\8
mechanisms and to compare the theoretical analysis with the V(r):(IJ[ (— — (—) } (1)
experimental results® of several laboratories. r
Previous analyses with a variatiohahd with an iterative which we replaceb—®* andr,—r?* , given by the fol-
solution techniqu®® of the phonon Boltzmann equatitir* lowing expressions: oo
applied to argon and krypton gave a good agreement be- '
tween the calculation and the experimental data. O* =d{1-14.3% 1+104.% 2} )
The iterative techniqiesolves the Boltzmann equation ’
without introducing adjustable parameters or relaxation time
approximation¥ and does not need any special statement in
the lattice model or in the adopted form of the trial function
as in the variational approache¥+13An “ab initio”
numerical calculation from the interatomic forces of the lat-
tice thermal conductivity is then possible: the only require-

ids in which it is possible to study the phonon heat transport
r

rE=ry{1+3.7% 1, ®)

wherex=3mkgTr2/42. Like in Ref. 16, let us assume that
the major effect of the quantum correction is to produce an
effective potential of the same form as the bare potential with
ment is that the iteration procedure must be convergent. parameters erendlng on the tempgrature. I.n splte of the lack
of mathematical rigor, the use of this potential gives a quan-

In this framework, the choice of the potential and of the . .. ith th . I its for the th
otential parameters plays a decisive role in the calcuIatiortwltat've agreement with the experimental results for the ther-
P ' . . modynamical properties of neon.
and the comparison of the obtained thermal conductivity he d d for th lculati h f Ref )
with the experimental data becomes a useful tool to discrimi- The data used for the calculation are that of Ref. 16
®/kg=146.8 K, r,=2.79 A, wherekg is the Boltzmann

nate between potentials.
constant.

For rare-gas solids, the usual choice is a Lennard-Jones | di d th sk und di
otential that, as already told, in the case of argon and kryp:- From now on, let us disregar .t e asterisk, un e'rstan. Ing
P ' ' }y @ Eq. (2). To describe the lattice model and the iterative

ton gives good results. But in the case of neon, due to th echnique, let us use the same notation of Ref. 9 from now
lighter mass, the problem of taking into account the quantu on refgrrea 0 as | '

effects due to the zero-point motion on the thermal resistivity Introducing the dimensionless parameter for the central
is unavoidablé:® it was previously analyzed by a phenom- 9 P

enolsoglg(i)cal approach and by a solution in the Ziman potentialV(h):

limit>~"of the heat-transport equation giving only qualitative

agreement with the experimental data. oy =h? 1(} '?V(h)]; ph=h£11‘1371£ i(} f?V(h)]
The problem of determining the thermal conductivity of h ¢h h ohlh o¢h

neon is then worthy to be considered by means of a nonap- 4
proximate anlysis n order 1 0btai a GUANINe SVSUEl 1, e atice st csance ar, e nearestnaightor

P quant ) dfistance, we can write the equation for the frequency and

In this paper, we present the results obtained by means g o :
. : - ) . golanzaﬂon of a phonon with wave vectqr

the iterative tecnique using an effective Lennard-Jone
potential® with parameters depending on the temperature:
good agreement with the experimental data of Weston and 2 (1-cog-h)
Daniels is obtained. Moreover, a comparison with the ther- R
mal conductivity obtained with the bare Lennard-Jones po-
tential is made, confirming the essential role played by thevhere the sum is running over all the fcc lattice sites, the
effective potential. position of each site being identified by the vectorThe

2 2
Ph _hlmw
opet h_i(he)hl_ o €, (5)
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Neon tial derivatives[see Eq.(26) in I]. If we consider also the
presence of isotope scattering centers in the lattice, a third
L [100] [110] ] term of the following form:

Z, Qgpp [\IIQ’D’_\PQD] (10
a'p

Energy (meV)

has to be added in the right-hand side of Ef). The prob-
ability rate for the isotope scattering is

T (AM
ap' - o o]
Q —2Nf( ) wquq,p/nqp(l-i-nq,p,)
><|ez;p'eqrpr|25(a)qrpr_0)qp), (11)
T X T L wheref is the fraction of unit cells having a difference of
massAM .1
FIG. 1. Theoretical phonon-dispersion curgesntinuous lines ‘Since the present approach avoids the use of the relax-
for neon, in comparison with experimental dgRef. 17. ation time approximation for three-phonon scattering pro-

cesses, a rigorous description of the interference effects be-
dispersion relations obtained by means of &yare in good tween these collisions and Rayleigh scattering due to point
agreement with the experimental data of Endoh, Shirane, arifnpurities is provided.
Skalyd”’ (see Fig. 1 Let us introduce an auxiliary functiogh related to the
Calling ng, the unperturbed distribution of phonons with deviation phonon functio” by the following relation:
wave vectorq and polarizationp and ¥, the deviation

function from this distribution, linked by the following rela- Vo=— >, YopiViT (12
tion:
on° the indexi denoting thé component of a Cartesian reference
Ne.=n® — ap (6) frame. The iterative solution of the Boltzmann equation is
wmar TP (A wgp) the limit n—c of the function generated by the following

o . . . recurrence relation:
to the perturbed distribution,,, we can write the linearized

Boltzmann equation: KaTv i INC 1
¢n+l B qp' qp+ 2 Q l//

0 q'p" ! Qgp T quq’ '
KeTVep- VT <9T _q qu" " Qpare [V arp = Varpr = Vapl 1 D q'p” o0 n
’ +— Q /[l/fr/ //_l,/// /]
ap.q’'p q’p a’p

1 . qu a'p’.q"p"
+ = E Qq p’.q"p L

q/p/ q//p// "non

+§ 2 Qq ph.d’p [ll/gupu"_ ‘/"ZIpr] ’ (13)

X[\I’q//pu‘i"\l,qrpr_\l,qp], (7) q p q p

Vgp is the phonon group velocity. The sum is over all thewhere
three-phonon scattering processes, normal and umklapp.

" ” Pl A . " 1 "n
Qq 0’ andQg," " represent the probability rates of the Qqp= > Qgp’q,p,+ —_— Qq p’.q’p
three  phonon processes qi) +(q’p’)—(q”p”) and a’p’.a"p" a’p’.a"p”
(ap)—(a'p’) +(q"p"), respectively, o
+2> Qir. (14)
0 a'p’
q//p// _ ’7Th nqpnq p’ (1+ nq//p//)
WAPT16MN  wopwqr pr @grpr Iil. COMPARISON WITH EXPERIMENTAL DATA
X 8(wgpt wqrpr— wq,,p,,)quq o/ qrp (8) Af_ter the iterative solution of Eq(13), the heat current
density
o (0] (o]
q/p/q//p//_ '7Th nqp(1+nq/p/)(1+nq//p//) 12 ﬁ von 12 h v &n(q)p \I’
ap 3 =_ w S o _ap
16MN @ pr Oqrpy Q4 MPwtalar™ Ty MO (7 g 0) - 9P

(15

can be easily evaluated} is the crystal volume. With re-
whereN is the total number of atoms in the crystal and thespect to a Cartesian reference frame,ih@omponent of the
factorR™ depends on the polarization vectors and the poteneurrent is

X 5( wqp— wq/p wq//pn)qu q'p’,q"p" (9)
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FIG. 2. Thermal conductivit(in Wm~1K~1) for neon as a
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FIG. 3. Thermal conductivitfin Wm~1K ~1) for neon as a

function of temperature along several isocores. The experimentg)nction of the molar volume at the reduced temperature

points are from Weston and DaniéRef. 5: ¢ (13.35 cni/mole),
+ (12.66 cn¥/mole), O (11.95 cni/mole), X (11.16 cni/mole).

un=—2 kniViT, (16)
where
D2 T
Kni=— J 377—(1)[3_’)‘7:[)|
16m°mukgT?p JBz  ~ (eP@p—1)2 " d7n

17

is the thermal conductivity tensor. The integral substitutes
sum overq in the first Brillouin zone(BZ). In Eqg. (17), an
adimensional wave vectap and a reduced frequeney are
used.npis linked toq by theielatiorq=27r\/§n/h1 andw to
the phonon frequency byw=7% w/(kgT) with
h o 1/2
b= hlkBT(ﬁ> (18

The functionF,; is connected to the deviation function by
the following relation:

®h?
Voo=———5—=2, FoiViT, (19
ap 87720T2i P
wherev is the cell volumev =Q/N.
For calculating the functionsr,;, a crucial step is the
choice of the numbeN of points one uses to sample the BZ:

T/®y=1/8. Curvea is obtained by means of the effective, and
curveb by the bare Lennard-Jones potential. The dotted line repre-
sents the prediction of Julian’s theory. The experimental points are
from Weston and Daniel$Ref. 5, from Clemans(Ref. 6, and
Kimber and RogersRef. 19.

One of the samples prepared and studied by Weston and
Daniels ¢ ,=13.35 cnm’/mole) has nearly the same lattice
spacinga (a=4.460 A of the sample studied by Endoh
et al. (a=4.466 A) (see Fig. 1 for the phonon energies

At low temperature, the effects of grain boundaries and
dislocations become relevant and the theoretical curves,
which do not include these effects, deviate from the experi-

#nental data.

To appreciate the agreement between the experimental
and the iterative data, let us consider the behavior of the
conductivity as a function of the volume at constant reduced
temperature: this is shown by curaen Fig. 3. Like Weston
and Daniels, let us choose for the reduced temperature the
value of T/®,=1/8, where the thermal conductivity is domi-
nated by the umklapp processes for all the neon samples. For
the Debye temperaturés,, we used that reported in Ref. 5:
75.78, 86.58, 100.08, 118.82 K for the samples with molar
volumes 13.35, 12.66, 11.95, and 11.16°3%mole, respec-
tively.

In the same figure, the prediction of Julian’s therig
reported for comparison. In doing the comparison, it is nec-
essary to remember that the result of Julian’s calculation is
obtained without considering the isotopic effect that is in-
stead considered in the present iterative approach. The effect
of the mass difference is to decrease the conductivity: in
Table | the thermal conductivities of an isotopically pure

the procedure to determine the best choice has been prediample in comparison with the natural sample are given.

ously explained. As in | we use for the calculatitf= 7488,
which ensures the convergence of the iteration procedure.

TABLE I. Thermal conductivity of natural and isotopically pure

The behavior of the thermal conductivity as a function of1€0N. <y and i, in Wm™*K " for different molar volume(in
the temperature is shown in Fig. 2 in comparison with thecM/mole) at different temperatures.

experimental data of Weston and DaniglEhe experimental

data are obtained at constant volume conditions: in the iteral Kn Kp Kn Kp

tive calculation the nearest-neighbor distahgés also kept
constant and its value is taken by the relatfor= (y2v)Y?
from the cell volumev directly obtained from the experi-
mental molar volume , .

K)  (vp=11.16) (v;,=11.16) (vy,=13.35) (v,=13.35)
10 8.77 9.58 1.46 1.70
20 1.83 2.03 0.48 0.55




7778

BRIEF REPORTS

From the table, one can see that the isotopic effect is slightlyork better at low temperature. The agreement is, however,
higher in the sample with larger molar volume. The effectsgood.
of additional scattering from force-constant changes and lo-

cal strain field are not considered here.

In Fig. 3, the result of the iterative calculation done with
the bare Lennard-Jones potenti@lirveb) is also shown: the
comparison between curvesandb reveals that the choice
of the potential is fundamental.

IV. CONCLUSION

The iterative approach is a numerical but rigorous ap-
proach that gives good agreement with the experimental data
not only, as it was already verified, in the case of argon and

Due to the lack of arbitrariness in the iterative procedurekrypton, but also for the lighter of the rare-gas solids, that is
from the obtained results we can achieve that the potentialeon. The choice of an effective Lennard-Jones potential,
used by Young for calculating the thermodynamical properwhich takes into account the quantum effects of the zero-
ties of neon is able to describe the thermal conductivity, toopoint motion, proves to be fundamental in the calculation.

A concluding observation on the effective potential can beThe iterative method is then a good tool for checking the
obtained from Fig. 3: since higher volumes correspond tgotential parameters from the thermal conductivity measure-
lower reduced temperatures, the effective potential seems toents.
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