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Thermal conductivity of solid neon: An iterative analysis

A. Sparavigna
Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia (INFM), Politecnico di Torino,

C.so Duca degli Abruzzi 24, 10129 Torino, Italy
~Received 10 March 1997!

In this paper, the thermal conductivity of neon is obtained by means of a recently proposed iterative solution
of the phonon Boltzmann equation. The potential used for the calculation is an effective Lennard-Jones
potential to include quantum effects. Good agreement with the experimental data is obtained.
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I. INTRODUCTION

Rare-gas crystals are probably the simplest dielectric
ids in which it is possible to study the phonon heat transp
and the role of impurities, dislocations, and other scatter
mechanisms and to compare the theoretical analysis with
experimental results1–6 of several laboratories.

Previous analyses with a variational7 and with an iterative
solution technique8,9 of the phonon Boltzmann equation10,11

applied to argon and krypton gave a good agreement
tween the calculation and the experimental data.

The iterative technique9 solves the Boltzmann equatio
without introducing adjustable parameters or relaxation ti
approximations12 and does not need any special statemen
the lattice model or in the adopted form of the trial functi
as in the variational approaches.7,10,11,13,14An ‘‘ ab initio’’
numerical calculation from the interatomic forces of the l
tice thermal conductivity is then possible: the only requi
ment is that the iteration procedure must be convergent.

In this framework, the choice of the potential and of t
potential parameters plays a decisive role in the calcula
and the comparison of the obtained thermal conductiv
with the experimental data becomes a useful tool to discri
nate between potentials.

For rare-gas solids, the usual choice is a Lennard-Jo
potential that, as already told, in the case of argon and k
ton gives good results. But in the case of neon, due to
lighter mass, the problem of taking into account the quant
effects due to the zero-point motion on the thermal resistiv
is unavoidable:1,6 it was previously analyzed by a phenom
enological approach15 and by a solution in the Ziman
limit 5,10 of the heat-transport equation giving only qualitati
agreement with the experimental data.

The problem of determining the thermal conductivity
neon is then worthy to be considered by means of a non
proximate analysis in order to obtain a quantitative ans
and a possible estimate of the role of quantum effects.

In this paper, we present the results obtained by mean
the iterative tecnique using an effective Lennard-Jo
potential16 with parameters depending on the temperatu
good agreement with the experimental data of Weston
Daniels5 is obtained. Moreover, a comparison with the th
mal conductivity obtained with the bare Lennard-Jones
tential is made, confirming the essential role played by
effective potential.
560163-1829/97/56~13!/7775~4!/$10.00
l-
rt
g
he

e-

e
n

-
-

n
y
i-

es
p-
e

m
y

p-
r

of
s
:
d

-
-
e

II. THE MODEL AND THE ITERATIVE TECHNIQUE

The interatomic potential used in the present calculatio
an effective Lennard-Jones16

V~r !5FF S r 0

r D 12

2S r 0

r D 6G , ~1!

in which we replaceF→F* andr o→r o* , given by the fol-
lowing expressions:

F* 5F$1214.3x211104.9x22%, ~2!

r o* 5r o$113.77x21%, ~3!

wherex53mkBTro
2/\2. Like in Ref. 16, let us assume tha

the major effect of the quantum correction is to produce
effective potential of the same form as the bare potential w
parameters depending on the temperature. In spite of the
of mathematical rigor, the use of this potential gives a qu
titative agreement with the experimental results for the th
modynamical properties of neon.

The data used for the calculation are that of Ref. 1
F/kB5146.8 K, r o52.79 Å, wherekB is the Boltzmann
constant.

From now on, let us disregard the asterisk, understand
by F Eq. ~2!. To describe the lattice model and the iterati
technique, let us use the same notation of Ref. 9 from n
on referred to as I.

Introducing the dimensionless parameter for the cen
potentialV(h):

sh5h1
2F21H 1

h

]V~h!

]h J ; rh5h1
4F21

1

h

]

]hH 1

h

]V~h!

]h J
~4!

with h the lattice site distance andh1 the nearest-neighbo
distance, we can write the equation for the frequency a
polarization of a phonon with wave vectorq:

(
h

~12cosq•h!Fshe1
rh

h1
2 ~h•e!hG5

h1
2mv2

F
e, ~5!

where the sum is running over all the fcc lattice sites,
position of each site being identified by the vectorh. The
7775 © 1997 The American Physical Society
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dispersion relations obtained by means of Eq.~5! are in good
agreement with the experimental data of Endoh, Shirane,
Skalyo17 ~see Fig. 1!.

Calling nqp
o the unperturbed distribution of phonons wit

wave vectorq and polarizationp and Cqp the deviation
function from this distribution, linked by the following rela
tion:

nqp5nqp
o 2Cqp

]nqp
o

]~\vqp!
~6!

to the perturbed distributionnqp , we can write the linearized
Boltzmann equation:

kBTvqp•¹T
]nqp

o

]T
5 (

q8p8,q9p9
Qqp,q8p8

q9p9 @Cq9p92Cq8p82Cqp#

1
1

2 (
q8p8,q9p9

Qqp
q8p8,q9p9

3@Cq9p91Cq8p82Cqp#, ~7!

vqp is the phonon group velocity. The sum is over all th
three-phonon scattering processes, normal and umkl

Qqp,q8p8
q9p9 andQqp

q8p8,q9p9 represent the probability rates of th
three phonon processes (qp)1(q8p8)→(q9p9) and
(qp)→(q8p8)1(q9p9), respectively,

Qqp,q8p8
q9p9 5

p\

16m3N

nqp
o nq8p8

o
~11nq9p9

o
!

vqpvq8p8vq9p9

3d~vqp1vq8p82vq9p9!Rqp,q8p8,q9p9
1 , ~8!

Qqp
q8p8q9p95

p\

16m3N

nqp
o ~11nq8p8

o
!~11nq9p9

o
!

vqpvq8p8vq9p9

3d~vqp2vq8p82vq9p9!Rqp,q8p8,q9p9
2 , ~9!

whereN is the total number of atoms in the crystal and t
factorR6 depends on the polarization vectors and the pot

FIG. 1. Theoretical phonon-dispersion curves~continuous lines!
for neon, in comparison with experimental data~Ref. 17!.
nd

p.

-

tial derivatives@see Eq.~26! in I#. If we consider also the
presence of isotope scattering centers in the lattice, a t
term of the following form:

(
q8p8

Qqp
q8p8@Cq8p82Cqp# ~10!

has to be added in the right-hand side of Eq.~7!. The prob-
ability rate for the isotope scattering is

Qqp
q8p85

p

2N
f S DM

M D 2

vqpvq8p8nqp
o ~11nq8p8

o
!

3ueqp* •eq8p8u
2d~vq8p82vqp!, ~11!

where f is the fraction of unit cells having a difference o
massDM .11

Since the present approach avoids the use of the re
ation time approximation for three-phonon scattering p
cesses, a rigorous description of the interference effects
tween these collisions and Rayleigh scattering due to p
impurities is provided.

Let us introduce an auxiliary functionc related to the
deviation phonon functionC by the following relation:

Cqp52(
i

cqp,i¹ iT, ~12!

the indexi denoting thei component of a Cartesian referen
frame. The iterative solution of the Boltzmann equation
the limit n→` of the function generated by the followin
recurrence relation:

cqp,i
n115

kBTvqp,i

Qqp

]nqp
o

]T
1

1

Qqp
(
q8p8

Qqp
q8p8cq8p8

n

1
1

Qqp
H (

q8p8,q9p9
Qqp,q8p8

q9p9 @cq9p9
n

2cq8p8
n

#

1
1

2 (
q8p8,q9p9

Qqp
q8p8,q9p9@cq9p9

n
1cq8p8

n
#J , ~13!

where

Qqp5 (
q8p8,q9p9

Qqp,q8p8
q9p9 1

1

2 (
q8p8,q9p9

Qqp
q8p8,q9p9

1 (
q8p8

Qqp
q8p8 . ~14!

III. COMPARISON WITH EXPERIMENTAL DATA

After the iterative solution of Eq.~13!, the heat current
density

U5
1

V(
qp

\vqpvqpnqp52
1

V(
qp

\vqpvqp

]nqp
o

]~\vqp!
Cqp

~15!

can be easily evaluated.V is the crystal volume. With re-
spect to a Cartesian reference frame, then component of the
current is
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Un52(
i

kni¹ iT, ~16!

where

kni5
\F2

16p3mvkBT2(p
E

BZ
d3h

ebv̄p

~ebv̄p21!2
v̄p

]v̄p

]hn
Fpi

~17!

is the thermal conductivity tensor. The integral substitute
sum overq in the first Brillouin zone~BZ!. In Eq. ~17!, an
adimensional wave vectorh and a reduced frequencyv̄ are
used.h is linked toq by the relationq52pA2h/h1 andv̄ to
the phonon frequency bybv̄5\v/(kBT) with

b5
\

h1kBTS F

2mD 1/2

. ~18!

The functionFpi is connected to the deviation function b
the following relation:

Cqp52
Fh1

4

8p2vT
(

i
Fpi¹ iT, ~19!

wherev is the cell volumev5V/N.
For calculating the functionsFpi , a crucial step is the

choice of the numberN of points one uses to sample the B
the procedure to determine the best choice has been p
ously explained. As in I we use for the calculationN57488,
which ensures the convergence of the iteration procedur

The behavior of the thermal conductivity as a function
the temperature is shown in Fig. 2 in comparison with
experimental data of Weston and Daniels.5 The experimental
data are obtained at constant volume conditions: in the it
tive calculation the nearest-neighbor distanceh1 is also kept
constant and its value is taken by the relationh15(A2v)1/3

from the cell volumev directly obtained from the experi
mental molar volumevm .

FIG. 2. Thermal conductivity~in W m21 K21) for neon as a
function of temperature along several isocores. The experime
points are from Weston and Daniels~Ref. 5!: L ~13.35 cm3/mole!,
1 ~12.66 cm3/mole!, h ~11.95 cm3/mole!, 3 ~11.16 cm3/mole!.
a

vi-

f
e

a-

One of the samples prepared and studied by Weston
Daniels (vm513.35 cm3/mole! has nearly the same lattic
spacinga (a54.460 Å! of the sample studied by Endo
et al. (a54.466 Å! ~see Fig. 1 for the phonon energies!.

At low temperature, the effects of grain boundaries a
dislocations become relevant and the theoretical curv
which do not include these effects, deviate from the exp
mental data.

To appreciate the agreement between the experime
and the iterative data, let us consider the behavior of
conductivity as a function of the volume at constant reduc
temperature: this is shown by curvea in Fig. 3. Like Weston
and Daniels,5 let us choose for the reduced temperature
value ofT/Qo51/8, where the thermal conductivity is dom
nated by the umklapp processes for all the neon samples
the Debye temperaturesQo , we used that reported in Ref. 5
75.78, 86.58, 100.08, 118.82 K for the samples with mo
volumes 13.35, 12.66, 11.95, and 11.16 cm3/mole, respec-
tively.

In the same figure, the prediction of Julian’s theory18 is
reported for comparison. In doing the comparison, it is n
essary to remember that the result of Julian’s calculation
obtained without considering the isotopic effect that is
stead considered in the present iterative approach. The e
of the mass difference is to decrease the conductivity:
Table I the thermal conductivities of an isotopically pu
sample in comparison with the natural sample are giv

tal
FIG. 3. Thermal conductivity~in W m21 K 21) for neon as a

function of the molar volume at the reduced temperat
T/Q051/8. Curvea is obtained by means of the effective, an
curveb by the bare Lennard-Jones potential. The dotted line rep
sents the prediction of Julian’s theory. The experimental points
from Weston and Daniels~Ref. 5!, from Clemans~Ref. 6!, and
Kimber and Rogers~Ref. 19!.

TABLE I. Thermal conductivity of natural and isotopically pur
neon, kn and kp in W m21 K 21 for different molar volume~in
cm3/mole! at different temperatures.

T
~K!

kn

(vm511.16)
kp

(vm511.16)
kn

(vm513.35)
kp

(vm513.35)

10 8.77 9.58 1.46 1.70
20 1.83 2.03 0.48 0.55
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From the table, one can see that the isotopic effect is slig
higher in the sample with larger molar volume. The effe
of additional scattering from force-constant changes and
cal strain field are not considered here.

In Fig. 3, the result of the iterative calculation done w
the bare Lennard-Jones potential~curveb! is also shown: the
comparison between curvesa andb reveals that the choice
of the potential is fundamental.

Due to the lack of arbitrariness in the iterative procedu
from the obtained results we can achieve that the poten
used by Young for calculating the thermodynamical prop
ties of neon is able to describe the thermal conductivity, t

A concluding observation on the effective potential can
obtained from Fig. 3: since higher volumes correspond
lower reduced temperatures, the effective potential seem
S.
ly
s
o-

,
ial
-
.

e
o
to

work better at low temperature. The agreement is, howe
good.

IV. CONCLUSION

The iterative approach is a numerical but rigorous a
proach that gives good agreement with the experimental
not only, as it was already verified, in the case of argon a
krypton, but also for the lighter of the rare-gas solids, tha
neon. The choice of an effective Lennard-Jones poten
which takes into account the quantum effects of the ze
point motion, proves to be fundamental in the calculatio
The iterative method is then a good tool for checking t
potential parameters from the thermal conductivity measu
ments.
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