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First-principles calculations of the thermal expansion of metals
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We present first-principles calculations of the thermal expansion of several simple metals~Al, Li, and Na!
within the quasiharmonic approximation. Linear-response theory is used to determine the volume-dependent
phonon frequencies within the density-functional framework. Our results indicate that the treatment of anhar-
monic effects at the quasiharmonic level provides a remarkably good description of the structural and elastic
properties of these materials up to their melting points.@S0163-1829~97!02434-X#
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Electronic-structure calculations based on dens
functional theory~DFT! in the local-density approximation
~LDA ! have proved to be effective tools for studying t
zero-temperature energetics of many systems, ranging f
bulk materials to surfaces, interfaces, and clusters.1 With in-
creasingly powerful computers and efficient algorithms, v
large systems can now be handled, and problems in the
terial science arena are within reach. However, the appl
tion of ab initio methods to the study of thermodynam
properties such as phase diagrams,3 defect energetics,4 nucle-
ation, and growth, for example, remains challenging.

For ordered solids, the free energy at finite temperat
has contributions from both the lattice vibrations and
thermal excitation of electrons. Within the density-function
framework, the latter contribution can be taken into acco
by using the Mermin functional rather than the ordinary D
energy functional.2 The treatment of phonon contributions
the free energy on an equal footing is less straightforwa
First-principles molecular-dynamics methods such as
Car-Parrinello method5 can be used to determine therm
properties that can be expressed as statistical averages.
ever, since the ionic degrees of freedom are treated cla
cally, these simulations are not valid at temperatures com
rable to or lower than the Debye temperature. A furth
drawback is that the entropy, and hence the free energy,
not be expressed as an ensemble average. To calculate
quantities, more elaborate techniques such as thermodyn
integration schemes are needed, which significantly incre
the computational effort required.6

The quasiharmonic approximation7 provides an alterna
tive approach for determining the lattice contributions to
free energy. In this approximation, the Helmholtz free e
ergy F is given by

F~V,T!5ELDA~V!1kBT(
qj

lnS 2sinh
\vqj~V!

2kBT D , ~1!

whereELDA(V) is the energy of the static lattice at a give
volume V, and vqj (V) is the frequency of thej th phonon
band at the pointq in the Brillouin zone. Vibrational modes
are treated quantum mechanically, but the full Hamiltonian
approximated by a harmonic expansion about the equ
560163-1829/97/56~13!/7767~4!/$10.00
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rium atomic positions. Anharmonic effects are includ
through the explicit volume dependence of the vibratio
frequencies. Calculations based on various semiempir
methods suggest that the quasiharmonic approximation
vides a reasonable description of the thermodynamic pro
ties of many bulk materials below the melting point.6,8–11

However, because of the large computational cost of de
mining the complete phonon spectrum as a function of v
ume, few first-principles investigations have been carr
out.

With recently developed DFT-based linear-respon
methods,12,13 vibrational modes with wave vectors at arb
trary points in the Brillouin zone~BZ! can be accurately and
efficiently computed without using large supercells. The
methods can be used to assess the accuracy of the qua
monic approximation for describing the thermodynamics
different physical systems. Studies of the thermal proper
of C ~Ref. 14! and Si ~Refs. 15 and 16! based on phonon
spectra calculated using the linear-response approac
other first-principles methods have found that the treatm
of anharmonic effects at the quasiharmonic level is suffici
for describing these materials, at least up to temperature
several hundred kelvin. In this paper, we assess the app
bility of the quasiharmonic approximation to simples-p met-
als. Using the linear-response method for computing pho
spectra, we study the thermal expansion of Li, Na, and Al
to their melting points. Our results indicate that the quasih
monic approximation provides a remarkably good desc
tion of the structural and elastic properties of these me
even near their melting points, where anharmonic effects
expected to be large. With regard to the equilibrium stru
tural properties of the alkali metals, it is well known th
there are large discrepancies between LDA results and
perimental values. These discrepancies are reduced w
phonon contributions to the free energy are included in
calculations.

All of our calculations are performed using plane-wa
basis sets with norm-conserving pseudopotentials17 repre-
senting the ion-electron interaction. For Li and Na t
Wigner interpolation formula18 for correlation is used, while
for Al the Perdew-Zunger~PZ! parametrization19 is used. In
all cases a core correction is included to account for
7767 © 1997 The American Physical Society
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7768 56BRIEF REPORTS
nonlinearity of the exchange and correlation potential
tween core and valence charge densities.20 Sums over the BZ
are performed on a mesh ofk points generated with the
scheme of Monkhorst and Pack.21 The dynamical matrix is
calculated using the method described in Ref. 13, where
self-consistent change to the Hamiltonian caused by disp
ing an ion is obtained by solving a Bethe-Saltpeter equa
for the change in the charge density. For the bcc struct
the dynamical matrix is calculated for 140 phonon wave v
tors in the irreducible element of the BZ, while for the fc
structure, 89 wave vectors in the irreducible BZ are cons
ered. The Helmholtz free energy, given by Eq.~1!, is calcu-
lated by summing over these wave vectors. Note that
cause we are considering temperatures well below electr
energy scales, and since the electronic density of states v
slowly and smoothly with lattice constant, the contribution
the thermal excitation of electrons to the thermal expans
coefficient is negligible and is not included in the resu
presented here.

The ground-state properties obtained for the static lat
are listed in Table I. In all cases the LDA underestimates
lattice constant and overestimates the bulk modulus.22 For
Al, the lattice constant is underestimated by about 1%, wh
is typical for LDA calculations. For the alkali metals, th
error in the calculated lattice constant is significantly larg
2.7% for Na and 2.3% for Li. If the PZ parametrization
the correlation potential is used for the alkalis, the latt
constants are even more severely underestimated. We us
Wigner formula for the alkali metals in order to minimiz
this discrepancy. The calculated bulk moduli, found by d
ferentiating the fitted equations of state at the equilibri
volumes, are significantly larger than the experimental v
ues. This is related to the underestimation of the lattice c
stant. At larger lattice constants, the calculated bulk modu
decreases. It has been suggested that calculations of e
constants should be carried out at the experimental la
constant.25 However, as shown in Table II, such a schem

TABLE II. Bulk moduli calculated at experimental room
temperature lattice constants using static LDA equations of s
Experimental values are from Ref. 24.

System a0 ~Å! B ~GPa!
Expt. Calc. Expt.

Li 3.52 9.4 11.6
Na 4.28 4.6 6.8
Al 4.05 64.2 72.2

TABLE I. Calculated ground-state properties atT50, without
vibrational effects. Also shown are experimental values for the
tice constants at low temperatures~Ref. 23! and the room-
temperature bulk moduli~Ref. 24!.

System a0 ~Å! B ~GPa!
Calc. Expt. Calc. Expt.

Li 3.41 3.49 15.4 11.6
Na 4.11 4.23 9.0 6.8
Al 3.98 4.02 85.0 72.2
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would produce too large a correction for these materials.
To obtain the temperature dependence of the lattice c

stant and bulk modulus, we use Eq.~1! to compute the Helm-
holtz free energy at temperatureT for several volumes. The
corresponding energy-volume points are fitted to a M
naghan equation of state,26 from which the equilibrium lat-
tice constant and the bulk modulus are determined. In Fig
the energy-volume curves are plotted for Li over a sm
temperature range. The solid curve corresponds toT5298 K,
while the dashed curve shows the staticT50 LDA results.
The inclusion of vibrational effects significantly alters th
equation of state—changes are seen in both the positio
the minimum and the local curvature at the minimum.

In Table III we list the lattice constants calculated fro
the room-temperature equations of state. For the alkali m
als, the inclusion of phonon contributions to the free ene
significantly improves the agreement between the calcula
and measured lattice parameters. The primary source of
provement comes from the phonon zero-point contributio
to the free energy atT50. We deduce this from the obse
vation that the calculations provide a good account of
relative changes in lattice constant as a function of temp
ture, as discussed below.

The inclusion of vibrational effects also improves th
elastic properties compared to room-temperature experim
tal values. In Table III we have listed the bulk moduli for th

e.

t-

FIG. 1. Equations of state for Li. The solid curve is the Helm
holtz free energy at 298 K and the dashed curve is the electr
energy~LDA ! at T50.

TABLE III. Room-temperature lattice constants and bu
moduli calculated using the Helmholtz free energy. Experimen
data are obtained from Ref. 23. For Li, the experimental value
the lattice parameter is extrapolated from 78 K using the exp
mental coefficient of linear expansion~Ref. 27!.

System a0 ~Å! B ~GPa!
Calc. Expt. Calc. Expt.

Li 3.48 3.52 11.5 11.6
Na 4.19 4.28 6.8 6.8
Al 4.00 4.05 75.2 72.2
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different materials at room temperature, and as can be
the agreement between theory and experiment is quite
markable. In all cases the theoretical bulk moduli are wit
2% of the experimental values, which is significantly bet
than the results obtained using the static equation of sta
either the equilibrium LDA lattice parameter or the room
temperature experimental lattice parameter. To identify
source of improvement, we have plotted in Fig. 2 the b
modulus of Al as a function of lattice parameter for tw
cases. The solid curve is that obtained from the temperat
dependent equations of state, and the dashed curve is
tained by looking at the local curvature of the staticT50
equation of state at a given volume. The closeness of the
curves indicates that the improvement of the bulk modulus
a function of temperature is primarily due to the change
the lattice constant. This suggests that static LDA calcu
tions carried out at the room-temperature lattice constant
termined within the quasiharmonic approximation can yi
reasonably accurate elastic constants, while requiring sig
cantly less computational effort than a full quasiharmo
calculation of finite-temperature elastic constants.

Using the results obtained for the lattice constant a
function of temperature, we can determine the thermal
pansion as

D l

l
5

a0~T!2a0~RT!

a0~RT!
, ~2!

where a0(T) is the lattice constant at a given temperatu
and RT is room temperature. The results are plotted in Fi
as solid curves with the experimental data27 plotted as
squares. The agreement between theoretical and experi
tal results is remarkably good. Even with the small errors
the equilibrium lattice constant, the present calculations c
rectly describe the temperature dependence of the rela
volume changes very accurately. Even more surprising is
accuracy of the quasiharmonic approximation in these te
The agreement between theory and experiment holds
only at low temperatures, where the atomic motions

FIG. 2. Calculated bulk modulus as a function of lattice para
eter. The solid curve is obtained from the temperature-depen
Helmholtz free energy and the dashed curve is obtained from
T50 electronic energy.
en
e-
n
r
at

e
k

e-
ob-

o
s

n
-
e-

fi-
c

a
x-

3

en-
n
r-
ve
e

ts.
ot
e

small and likely to be harmonic, but also at temperatu
close to the melting point, where the amplitude of atom
motions is large.

In conclusion, we have shown that by including the e

-
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e

FIG. 3. Temperature dependence of the thermal linear expan
for ~a! Li, ~b! Na, and~c! Al. Solid curves connect calculated value
and symbols represent experimental data from Ref. 27.
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7770 56BRIEF REPORTS
fects of lattice vibrations, structural and elastic properties
severals-p bonded metals can be more accurately calcula
The improvement in the elastic properties is primarily rela
to the improvement in the lattice parameter. However, us
the experimental lattice parameter to determine the b
modulus from the static equation of state results in la
errors. When the static equation of state is used, the
results for the bulk modulus are found when the lattice
rameter is chosen to minimize the Helmholtz free energy
the temperature where the experiments are performed~room
temperature!. This suggests an approach for the accurate
termination of other elastic constants: Determine the theo
ical room-temperature lattice constant and use this value
calculating the elastic constants based on static LDA e
gies. This procedure removes the reliance on experime
e
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data, and may significantly improve the calculated elas
constants. The accuracy of the combination of the line
response methods with the quasiharmonic approximatio
demonstrated by the excellent agreement between the c
lated and measured linear coefficients of thermal expans
This first-principles approach can be used to investig
other materials properties such as phase diagrams, stab
and growth. Temperature-dependent defect energetics, w
are crucial for understanding mechanical properties, can
be studied.
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