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First-principles calculations of the thermal expansion of metals
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We present first-principles calculations of the thermal expansion of several simple (A¢tadls and Na)
within the quasiharmonic approximation. Linear-response theory is used to determine the volume-dependent
phonon frequencies within the density-functional framework. Our results indicate that the treatment of anhar-
monic effects at the quasiharmonic level provides a remarkably good description of the structural and elastic
properties of these materials up to their melting poif€163-18287)02434-X

Electronic-structure calculations based on densityfium atomic positions. Anharmonic effects are included
functional theory(DFT) in the local-density approximation through the explicit volume dependence of the vibrational
(LDA) have proved to be effective tools for studying the frequencies. Calculations based on various semiempirical
zero-temperature energetics of many systems, ranging fromethods suggest that the quasiharmonic approximation pro-
bulk materials to surfaces, interfaces, and clustatth in-  vides a reasonable description of the thermodynamic proper-
creasingly powerful computers and efficient algorithms, veryties of many bulk materials below the melting poifit!!
large systems can now be handled, and problems in the mgtowever, because of the large computational cost of deter-
terial science arena are within reach. However, the applicanining the complete phonon spectrum as a function of vol-
tion of ab initio methods to the study of thermodynamic yme, few first-principles investigations have been carried
properties such as phase diagrahdsfect energeticspucle- gyt
ation, and growth, for example, remains challenging. With recently developed DFT-based linear-response

For ordered solids, the free energy at finite temperaturgnethodst?* vibrational modes with wave vectors at arbi-
has contributions from both the lattice vibrations and thetrary points in the Brillouin ZonéBZ) can be accurate|y and
thermal excitation of electrons. Within the density—functionalefﬁcienﬂy computed without using large supercells. These
framework, the latter contribution can be taken into aCCOUnh']ethods can be used to assess the accuracy of the quasihar-
by using the Mermin functional rather than the ordinary DFT monic approximation for describing the thermodynamics of
energy functionaf. The treatment of phonon contributions to gifferent physical systems. Studies of the thermal properties
the free energy on an equal footing is less straightforwardgf ¢ (Ref. 14 and Si(Refs. 15 and 16based on phonon
First-principles molecular-dynamics methods such as thepectra calculated using the linear-response approach or
Car-Parrinello methdtican be used to determine thermal other first-principles methods have found that the treatment
properties that can be expressed as statistical averages. Hoy¢-anharmonic effects at the quasiharmonic level is sufficient
ever, since the ionic degrees of freedom are treated classior describing these materials, at least up to temperatures of
cally, these simulations are not valid at temperatures compaseveral hundred kelvin. In this paper, we assess the applica-
rable to or lower than the Debye temperature. A furtherbi“ty of the quasiharmonic approximation to simsieo met-
drawback is that the entropy, and hence the free energy, cagts. Using the linear-response method for computing phonon
not be expressed as an ensemble average. To calculate thegRctra, we study the thermal expansion of Li, Na, and Al up
quantities, more elaborate techniques such as thermodynanig their melting points. Our results indicate that the quasihar-
integration sc_hemes are needed, which significantly increasegonic approximation provides a remarkably good descrip-
the computational effort requiréd. _ tion of the structural and elastic properties of these metals

The quasiharmonic approximatibiprovides an alterna- even near their melting points, where anharmonic effects are
tive approach for c_ieterminir)g th_e lattice contributions to theexpected to be large. With regard to the equilibrium struc-
free energy. In this approximation, the Helmholtz free en-yral properties of the alkali metals, it is well known that
ergy F is given by there are large discrepancies between LDA results and ex-
perimental values. These discrepancies are reduced when
phonon contributions to the free energy are included in the
calculations.

All of our calculations are performed using plane-wave
whereE pa(V) is the energy of the static lattice at a given basis sets with norm-conserving pseudopoterifialspre-
volume V, and wq;(V) is the frequency of th¢th phonon  senting the ion-electron interaction. For Li and Na the
band at the poing in the Brillouin zone. Vibrational modes Wigner interpolation formuf¥ for correlation is used, while
are treated quantum mechanically, but the full Hamiltonian iSor Al the Perdew-ZungetP2) parametrizatiot? is used. In
approximated by a harmonic expansion about the equiliball cases a core correction is included to account for the

fiwg(V)
2kgT
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a
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TABLE |. Calculated ground-state propertiesTat 0, without

vibrational effects. Also shown are experimental values for the lat- -8.318 ' ' '
tice constants at low temperaturéRef. 23 and the room- ,
temperature bulk moduliRef. 24. ,r'
-8.320 | .
System ag (A) B (GPa S
Calc. Expt. Calc. Expt. %: e
Li 3.41 3.49 15.4 11.6 & -8.322 r 1
Na 411 4.23 9.0 6.8 o
Al 3.98 4.02 85.0 72.2 w e ’
-8.324 + \/
nonlinearity of the exchange and correlation potential be-
tween core and valence charge densftfe8ums over the BZ _8.3%6 . , ‘ .
are performed on a mesh &f points generated with the T340 3.4 344 346 348 350
scheme of Monkhorst and PatkThe dynamical matrix is Lattice Constant (A)

calculated using the method described in Ref. 13, where the

self-consistent change to the Hamiltonian caused by displac- FIG. 1. Equations of state for Li. The solid curve is the Helm-
ing an ion is obtained by solving a Bethe-Saltpeter equatiomoltz free energy at 298 K and the dashed curve is the electronic
for the change in the charge density. For the bcc structuresnergy(LDA) at T=0.

the dynamical matrix is calculated for 140 phonon wave vec-

tors in the irreducible element of the BZ, while for the fcc would produce too |arge a correction for these materials.

structure, 89 wave vectors in the irreducible BZ are consid- Tq gbtain the temperature dependence of the lattice con-
ered. The Helmholtz free energy, given by Ef), is calcu-  stant and bulk modulus, we use Ej) to compute the Helm-
lated by summing over these wave vectors. Note that benoitz free energy at temperatufefor several volumes. The
cause we are considering temperatures well below electronigorresponding energy-volume points are fitted to a Mur-
energy scales, and since the electronic density of states variggghan equation of statéfrom which the equilibrium lat-
slowly and smoothly with lattice constant, the contribution oftice constant and the bulk modulus are determined. In Fig. 1,
the thermal excitation of electrons to the thermal expansiofhe energy-volume curves are plotted for Li over a small
coefficient is negligible and is not included in the reSU”Stemperature range. The solid curve corresponds+@98 K,
presented here. . _ . while the dashed curve shows the staic 0 LDA results.
The ground-state properties obtained for the static latticerhe inclusion of vibrational effects significantly alters the
are listed in Table 1. In all cases the LDA underestimates th%quation of state—changes are seen in both the position of
lattice constant and overestimates the bulk modfAUSor  the minimum and the local curvature at the minimum.
Al, the lattice constant is underestimated by about 1%, which |5 Taple 11l we list the lattice constants calculated from

is typical for LDA calculations. For the alkali metals, the the room-temperature equations of state. For the alkali met-
error in the calculated Iattlce'constant is S|gn|f|car_1tly'Iarger:a|s, the inclusion of phonon contributions to the free energy
2.7% for Na and 2.3% for Li. If the PZ parametrization of sjgnjficantly improves the agreement between the calculated
the correlation potential is used for the alkalis, the latticegng measured lattice parameters. The primary source of im-
constants are even more severely underestimated. We use th@yement comes from the phonon zero-point contributions
Wigner formula for the alkali metals in order to minimize i, the free energy af=0. We deduce this from the obser-

this discrepancy. The calculated bulk moduli, found by dif-yation that the calculations provide a good account of the

ferentiating the fitted equations of state at the equilibriume|ative changes in lattice constant as a function of tempera-
volumes, are significantly larger than the experimental valy,re as discussed below.

ues. This is related to the underestimation of the lattice con- The inclusion of vibrational effects also improves the

stant. At larger lattice constants, the calculated bulk modulug|astic properties compared to room-temperature experimen-

decreases. It has been suggested that calculations of elasig yajues. In Table 1l we have listed the bulk moduli for the
constants should be carried out at the experimental lattice

5 .
constan® However, as shown in Table II, such a scheme TABLE Ill. Room-temperature lattice constants and bulk

moduli calculated using the Helmholtz free energy. Experimental
TABLE 1l. Bulk moduli calculated at experimental room- data are obtained from Ref. 23. For Li, the experimental value for
temperature lattice constants using static LDA equations of statehe lattice parameter is extrapolated from 78 K using the experi-

Experimental values are from Ref. 24. mental coefficient of linear expansigRef. 27).
System ag (A) B (GP3 System ag (A) B (GP3

Expt. Calc. Expt. Calc. Expt. Calc. Expt.
Li 3.52 9.4 11.6 Li 3.48 3.52 115 11.6
Na 4.28 4.6 6.8 Na 4.19 4.28 6.8 6.8

Al 4.05 64.2 72.2 Al 4.00 4.05 75.2 72.2
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FIG. 2. Calculated bulk modulus as a function of lattice param- 1.0 ' ‘ '
eter. The solid curve is obtained from the temperature-dependen
Helmholtz free energy and the dashed curve is obtained from the 0.5 .

T=0 electronic energy.

different materials at room temperature, and as can be see
the agreement between theory and experiment is quite re g
markable. In all cases the theoretical bulk moduli are within =
2% of the experimental values, which is significantly better <
than the results obtained using the static equation of state &
either the equilibrium LDA lattice parameter or the room-
temperature experimental lattice parameter. To identify the
source of improvement, we have plotted in Fig. 2 the bulk
modulus of Al as a function of lattice parameter for two

0.0

-0.5

cases. The solid curve is that obtained from the temperature _2'00_0 106_0 206.0 306_0 400.0
dependent equations of state, and the dashed curve is ot Temperature (K)

tained by looking at the local curvature of the stafie 0

equation of state at a given volume. The closeness of the twc 2.0 - - . .

curves indicates that the improvement of the bulk modulus as
a function of temperature is primarily due to the change in
the lattice constant. This suggests that static LDA calcula-
tions carried out at the room-temperature lattice constant de
termined within the quasiharmonic approximation can yield
reasonably accurate elastic constants, while requiring signifi- &
cantly less computational effort than a full quasiharmonic =
calculation of finite-temperature elastic constants. 5
Using the results obtained for the lattice constant as a
function of temperature, we can determine the thermal ex-
pansion as

Al ag(T)—ap(RT)

I ao(RT) '

where ag(T) is the lattice constant at a given temperature
and RT is room temperature. The results are plotted in Fig. 3
as solid curves with the experimental ddtslotted as
squares. The agreement between theoretical and experimefrgF
tal results is remarkably good. Even with the small errors in

2

the equilibrium lattice constant, the present calculations cor-
rectly describe the temperature dependence of the relative

1.0
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FIG. 3. Temperature dependence of the thermal linear expansion
(a) Li, (b) Na, and(c) Al. Solid curves connect calculated values
and symbols represent experimental data from Ref. 27.

volume changes very accurately. Even more surprising is themall and likely to be harmonic, but also at temperatures
accuracy of the quasiharmonic approximation in these testslose to the melting point, where the amplitude of atomic
The agreement between theory and experiment holds naenbotions is large.

only at low temperatures, where the atomic motions are In conclusion, we have shown that by including the ef-
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fects of lattice vibrations, structural and elastic properties oflata, and may significantly improve the calculated elastic
severak-p bonded metals can be more accurately calculatedzonstants. The accuracy of the combination of the linear-
The improvement in the elastic properties is primarily relatedesponse methods with the quasiharmonic approximation is
to the improvement in the lattice parameter. However, usinglemonstrated by the excellent agreement between the calcu-
the experimental lattice parameter to determine the bulléted and measured linear coefficients of thermal expansion.
modulus from the static equation of state results in largel Nis first-principles approach can be used to investigate
errors. When the static equation of state is used, the be§fher materials properties such as phase diagrams, stability,
results for the bulk modulus are found when the lattice pa@nd growth. Temperature-dependent defect energetics, which
rameter is chosen to minimize the Helmholtz free energy a re cruc_:lal for understanding mechanical properties, can also
the temperature where the experiments are perforfrosin e studied.

temperature This suggests an approach for the accurate de- A A.Q. acknowledges support from the U. S. Department
termination of other elastic constants: Determine the theorebf Energy, Office of Basic Energy Sciences, Material Sci-
ical room-temperature lattice constant and use this value fagnce Division. A.Y.L acknowledges support from National
calculating the elastic constants based on static LDA enerScience Foundation Grant No. DMR-9627778 and the Clare
gies. This procedure removes the reliance on experiment@oothe Luce Fund.
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