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Classical transport of electrons through magnetic barriers

I. S. Ibrahim, V. A. Schweigert,* and F. M. Peeters†

Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
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We investigate the magnetoresistance of a two-dimensional electron gas~2DEG! in the presence of wide
~width of ordermm! magnetic barriers. A Poisson-like equation is solved numerically from which we obtain
the 2D electrostatic potential, electric field, and current distribution in the 2DEG. We found that most of the
electrons are injected at the edge of the magnetic barrier and most of the potential drop takes place in the
barrier region. Major features of a recent magnetoresistance experiment by Leadbeateret al. @Phys. Rev. B52,
R8 629 ~1995!# on single and double faceted structures can be explained by our classical approach. The
positive background magnetoresistance and the nonlocal Hall effect are reproduced. These results allow one to
disentangle classical and quantum features of the experimental results.@S0163-1829~97!03036-1#
ou
er
eg
-

e
h
r o
a

le
ne
ro

-
ld
in
et
r

pl
-

n
Th
d

f
as

iti
pa
nc
i

pr
hi
ff

e
a

d 8
–14

of
t of

ri-
for

t-

ent
the

he
ec.

ef.
ay-
I. INTRODUCTION

Subjecting two-dimensional electron gas~2DEG! systems
to different physical environments has greatly improved
understanding of these systems and has led to the obs
tion of several remarkable phenomena such as the int
and the fractional quantum Hall effects,1 conductance quan
tization in quantum point contacts,2 the Aharonov-Bohm ef-
fect, and the Weiss oscillations to mention just a few. R
cently, an increasing amount of effort is devoted to t
experimental and theoretical investigation of the behavio
the 2DEG under the influence of a nonhomogeneous m
netic field.3 Such nonhomogeneous magnetic field profi
can be produced, e.g., by depositing lithographic patter
superconducting or ferromagnetic films on top of a hete
junction.

Recently, Leadbeateret al.4 reported an alternative tech
nique to produce effective spatially varying magnetic fie
of much larger strength and gradients than could be obta
by lithographic patterned superconducting or ferromagn
films. They constructed a nonplanar 2DEG which was fab
cated by growth of a GaAs/~AlGa!As heterojunction on a
wafer prepatterned with facets at 20° to the substrate. Ap
ing a uniform magnetic field (B) produces a spatially non
uniform field component perpendicular to the 2DEG~see
inset of Fig. 2!. With the field in the plane of the substrate a
effective magnetic barrier is created located at the facet.
resistance measured across such an etched facet showe
cillations which are periodic in 1/B, and which are on top o
a positive magnetoresistance background which incre
quadratically with the magnetic field for smallB and quasi-
linearly in B for largeB.

In the present paper we demonstrate that the large pos
magnetoresistance is a classical effect resulting from the
ticular potential distribution in the sample as a conseque
of the nonhomogeneous magnetic field distribution which
well described by a Poisson-like equation with the appro
ate boundary conditions. The small oscillations on top of t
positive magnetoresistance background are a quantum e
and are in fact Shubnikov–de Haas oscillations.

For the experimental traces shown in Figs. 2 and 3 of R
4 we give in Fig. 1 a schematic top view of the experiment
560163-1829/97/56~12!/7508~9!/$10.00
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system for later reference. In this figure the probes 1 an
are current probes and the probes numbered 2–7 and 9
are voltage probes. The nonzero magnetic field region~i.e.,
the facet region! is the gray-shaded region in the middle
the Hall bar. The relevant distances used in the experimen
Ref. 4 are L.920 mm, W540 mm, S53 mm,
d15200 mm, d25255 mm, d3510 mm, and
d45220 mm. Note also that there is an offset on the expe
mental curves in Fig. 3 of Ref. 4, and all the traces
R11210, R526, . . .R13212 are shifted by 50V to prevent
overlap with R4212. Consequently, the zero field resis
ances areR2235260 V, R3245R132125330 V, and R526
5R112105220 V.5

The paper is organized as follows. In Sec. II we pres
our theoretical model. Section III contains the results for
case of a single facet, i.e., a single magnetic barrier. T
effect of placing such barriers in series is investigated in S
IV. Concluding remarks are presented in Sec V.

FIG. 1. A schematic top view of the experimental system of R
4 illustrating the geometry and the different probes. The gr
shaded region is the facet region.L.920 mm, W540 mm,
S53 mm, d15200 mm, d25255 mm, d3510 mm,
d45220 mm.
7508 © 1997 The American Physical Society
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56 7509CLASSICAL TRANSPORT OF ELECTRONS THROUGH . . .
II. THEORETICAL MODEL

To explain, quantitatively, the main features of the expe
mental measurements of Ref. 4, namely, the smooth b
ground of the magnetic field dependence of the resista
we will rely on a classical model. The 2DEG situated in t
(x,y) plane is bounded by the edges of the Hall bar of Fig
where a small part of the 2DEG, represented by the gr
shaded region in Fig. 1, is subjected to a perpendicular m
netic field which is in thez direction. TheBzÞ0 region
corresponds to the facet region in the experimental syst
i.e., Bz5Bsin(u), u520° is the facet angle, andB is the
externally applied magnetic field in the plane of the su
strate. In order to calculate the spatial distribution of t
electrostatic potential, the electric field and the current d
sity, we start with the following system of Maxwell equa
tions in the plane of the 2DEG:

¹–E54pr, ~1!

“3B2
]E

]t
5

4p

c
J, ~2!

“3E1
]B

c]t
50. ~3!

For our purposes Eqs.~1! and ~2! can be combined into a
single continuity equation, which expresses charge conse
tion, by taking the time derivative of the first and the gra
ent of the second

¹–J1]r/]t50. ~4!

In addition to the Lorentz force, a single electron in t
sample moves under the influence of a dissipative or a re
tive force due to various scattering mechanisms. This forc
proportional to the average electron velocity and is given
m* v/t, where t is the transport relaxation time which
related to the measured mobilityme5et/m* of the sample.
Then the net force exerted on the electron is

m*
dv

dt
5eS E1

v

c
3BD2

m* v

t
, ~5!

which, in essence, is the Langevin equation for a Brown
particle. In the steady state all time derivatives are se
zero. When Eq.~5! is multiplied by the charge density it ca
be written in the form of Ohm’s law but where now th
conductivity is a spatially dependent tensor due to the p
ence of the nonhomogeneous magnetic field. We are
with the following set of equations:

“3E50, ~6!

¹–J50, ~7!

J5sE. ~8!

Writing the electric field as the gradient of a potential, i.
E52¹f the above system of equations reduces to the
lowing 2D elliptic partial differential equation for the elec
trical potentialf:
-
k-
e,

1
y-
g-

m,

-
e
-

a-
-

is-
is
y

n
to

s-
ft

,
l-

¹•@s~x,y!¹f~x,y!#50, ~9!

wheres(x,y) is a spatial dependent conductivity tensor. F
a homogeneous system and in the abscence of a mag
field s(x,y)5const, and this equation reduces to the Lapla
equation. In our case the conductivity tensor is no lon
constant due to the presence of the finite magnetic bar
s(x,y)5a@s i j #, wherea5s0 /@11(meBz)

2# with the com-
ponents sxx5syy51 and sxy52syx5meBz where
s05nseme is the Drude conductivity andBz50 outside the
facet. The 2D partial differential equation is cast into a fini
difference form and solved numerically using the accelera
Gauss-Seidel iteration scheme with the boundary conditi
f(x,0)50 andf(x,L)5V0 (L is the length of the sample
andV0 is the applied voltage! and the condition that no cur
rent can flow out the sides of the sample, i.e.,j x50 for x50,
andx5W. The distances are normalized by the width of t
sample~typically W540 mm taken along thex axis! and
voltages are normalized by the total voltage drop betw
the current probes 1 and 8. The magnetoresistance betw
any two pointsa andb along one side of the sample is give
by R5Vab /I cd , with the voltage drop Vab5f(x,b)
2f(x,a) , and the total current flowing normal to the fac
is obtained throughI cd5*c

dj y(x,y)dx, where c and d are
any two points on the opposite sides of the sample. The H
resistance at a distancey along the sample length is given b
RH5VH /I cd , whereVH5f(W,y)2f(0,y). In our numeri-
cal analysis we useds051/(53.146V) as obtained from the
experimentally measured resistance in Ref. 4.

III. RESULTS FOR A SINGLE MAGNETIC BARRIER

In Fig. 2 we show both the experimental~solid curve! and
the theoretical~dashed curve! traces for the magnetoresis
tanceR425 for the case of a single facet. For the experime
tal trace shown in the figure the current is kept constant
the voltage probes are situated 10mm apart across the face
and the current probes are more than 900mm apart. For the
theoretical curve the voltage difference between probes~4
and 5! is maintained constant as a boundary condition a
the current is allowed to vary with the magnetic field, the
fore it is sufficient to take the length of the sampleL to be
10 mm ~i.e., the distance between the voltage probes 4
5! and consequentlyL50.25 is the length of our sample i
units ofW540 mm. The numerical computations were don
using a uniform grid~i.e., equally spaced grid points in eac
directionx andy) since in this particular case the sample
not very long. In Fig. 2 it is seen that apart from th
Shubnikov–de Haas~SdH! oscillations, which result from
the quantizing effect of the magnetic field at low tempe
ture, the theoretical curve accounts nicely for the overall
havior of the magnetoresistance. The experimental curv
slightly asymmetric aroundB50, which is due to the fact
that the voltage probes are not exactly equidistant from
facet as will be explained below. The classical origin of t
positive magnetoresistance was confirmed experiment
where it was found that it persists even for temperatu
above 100 K. Note that the experimental configuration
effectively a two terminal measurement where the measu
resistance is determined by the Hall resistance as well as
magnetoresistance. For smallB fields the Hall resistance is
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small and thus the resistance is determined by the mag
toresistance and is consequently quadratic inB. For larger
magnetic fields a quasilinear behavior of the resistance
function of B is found which is due to the fact that now th
Hall resistance mainly limits the current.

The theoretical electric potential distribution in th
sample is shown in Fig. 3 for an applied magnetic field

FIG. 2. The magnetoresistanceR425 as a function of the applied
magnetic field. The inset shows a schematic side view of the fa
plane making an angle of 20° to the substrate, together with
magnetic field profile perpendicular to the 2DEG.

FIG. 3. The potential distribution in the sample forB522 T
which results intoBz520.684 T.
e-

a

f

B522 T, which givesBz522sin(20°)520.6840 T. No-
tice that almost all the potential drop takes place across
magnetic barrier. In the barrier region and just outside
there is a voltage difference between the edges of the sam
~i.e., across thex axis!, which is nothing else than a spatiall
dependent Hall voltage. This is in accord with the conc
that the (Bz50 regions! can be thought of as extended hig
mobility contacts to a short and wide Hall bar~the facet
region! which tends to short out most of the voltage imm
diately outside the facet region. Particularly interesting is
development of the Hall voltage between the opposite ed
of the facet. This becomes very small but nonzero outside
facet region and gives a steep increase of the Hall poten
profile at the edges of theBzÞ0 region which is reminiscen
of the potential profile investigated experimentally and the
retically in Refs. 6 and 7 in a conventional Hall bar under t
conditions of the quantum Hall regime and in the middle
a plateau in the Hall resistance~see Fig. 3!. In Fig. 4~a! we
show the Hall resistance for different magnetic barr
strengths and along the length of the sample. Notice
RHÞ0 in the Bz50 regions. This is made more visible i
Fig. 4~b!, where we show the Hall resistance at differe

et
e

FIG. 4. ~a! The Hall resistance calculated across the sample
function of the longitudinal distance along the sample for differe
values of the applied magnetic field.~b! The Hall resistance in the
Bz50 region as a function of the magnetic field for different d
tancesDy from the boundary of the magnetic barrier. The para
eters are the same as those used in Figs. 2 and 3.
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56 7511CLASSICAL TRANSPORT OF ELECTRONS THROUGH . . .
distancesDy from the boundary of the magnetic barrier. Th
is an example of a nonlocal Hall resistance which in
present case is a classical effect. The small oscillation in
4~a! near the edge of the magnetic barrier are due to the fi
size of the grid used in our numerical calculation.

The spatial distribution of the components of the elec
field are obtained as follows:Ex52]f(x,y)/]x and
Ey52]f(x,y)/]y. From Fig. 3 it is clear that both compo
nents are very small outside the barrier region. Inside
magnetic barrier,Ex becomes very large close to the edg
especially at the diagonally opposite corners and vanishin
small in the middle whereEy is finite and more uniform,
singular at the diagonally opposite corners and very sma
the other two corners. Accordingly, the largest part of
current will enter the magnetic barrier region from the corn
where both electric field components are large and exit
barrier from the diagonally opposite corner. Once inside
barrier region the guiding center of the electron cyclotr
orbits will drift along the equipotential lines~see Fig. 3!
according to the E3B drift with velocity vdrift
52(¹f3B)/B2. Electrons entering or exiting the small re
gions of the corners of the barrier will have large velocitie
which are proportional to the electric field at these locatio
to account for current conservation. There are larger num
of electrons drifting with slow and uniform velocities in th
middle of the barrier where the electric field is smaller a
more uniform. This picture is graphically represented in F
5 where we show the calculated results for the current
tribution J(x,y)52s(x,y)¹f(x,y) corresponding to the
experimental situation of Fig. 3. Notice that even well o
side the barrier the current distribution is already modified
the presence of the magnetic field barrier in the facet reg

FIG. 5. The current flow in the sample forB522 T. The mag-
netic barrier region is gray shaded. The local magnitude and d
tion of the current is proportional to the magnitude and direction
the arrows, respectively.
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and it is concentrated closer to the edges of the sample
the diagonally opposite corners it is strongly peaked. Th
results for the field and current distribution are consist
with those of Ref. 8 which were calculated for a conve
tional Hall geometry in the case of very low aspect ratio.

It is evident from the potential distribution~see Fig. 3! or
equivalently the spatial distribution of the electric field com
ponents that there is a linear excess charge distribution~in-
duced by the magnetic barrier! with a d function profile
along they axis at the interfaces between the magne
nonmagnetic field regions due to the finite discontinuity
the normal component of the electric fieldEy at the inter-
faces. The linear excess charges have opposite signs a
two interfaces. This charge profile can be obtained by tak
the second partial derivative of the calculated potential d
tribution in both directionsx andy, i.e.,l(x,y)5¹2f(x,y).
These results were recently also obtained in Ref. 9 by
complex variable method of conformal mapping. It is po
sible to obtain an analytical expression for the induc
charge at one~for y5a) of the magnetic-nonmagnetic inte
faces in terms of the electric field components at the in
face,

l~x,y!5
meBz

11~meBz!
2
$@12~meBz!

2#Ex12meBzEy%

3d~y2a!. ~10!

At the other interface, i.e., aty5b, the induced charge ha
the same form but withd(y2a) replaced by2d(y2b).

In Fig. 6 we investigate the effect of the sample length
the resistance~full and dash-dot-dot curves! where the volt-
age probes were taken the same as the current probes
L5d. Note that when the magnetic field is uniform over t
whole sample, i.e.,L5d53 mm ~dash-dot-dot curve! the
resistance equals the magnetoresistance which is inde
dent of the magnetic field and which is a result expec
from a classical calculation. Notice also that the resista
slightly increases with increasing length of the sample~com-
pare dotted curve with full curve!. The reason is that ther
are now largerBz50 regions which give a small contribu
tion to the resistance. Next we investigated the effect of te
perature, which is simulated by reducing the mobilty. In t
present case of a low temperatue mobility ofme5245 000
cm2/V s a reduction of me by a factor of 10 is achieved in
the GaAs/AlxGa12xAs heterostructure by increasing th
temperature toT'90 K. The result for this situation is given
by the dash-dotted curve in Fig. 6. Notice that theB2 behav-
ior extends now up to largerB values. The positive magne
toresistance is still clearly present at these modeled high t
peratures allowing the practical use of the present device
magnetometer.10 Notice that over theB region : 0→8 T the
magnetoresistance curve still increases by a factor of
which compares to a factor of 276 forT54.2 K.

In order to calculate the other resistance traces show
Fig. 3 of Ref. 4 we have to use the actual length of t
experimental sampleL5920 mm or L/W523. With this
sample length it is necessary to use a nonuniform grid al
the length of the sample (y direction! in order to be able to
have sufficient grid points within the magnetic barrier regi
which isS/W50.075 long. The current probe 1 has been

c-
f
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7512 56I. S. IBRAHIM, V. A. SCHWEIGERT, AND F. M. PEETERS
to have the same distance from the center of the face
voltage probe 2~i.e., 460 mm! and current probe 8 at th
same distance as probe 7 which is also at 460mm from the
center of the facet. For the other probes we used the
tances given in the caption of Fig. 1. The convergence of
nonuniform grid calculation withL5920 mm as compared
to the previous uniform grid with onlyL510 mm is much
slower due to the large length of the sample. As a test
have verified that the results forR425 for the long sample
can be brought to good agreement with that of the short
~dashed curve in Fig. 2! by reducing the tolerance and in
creasing the number of iterations. In Fig. 7 we show o
numerical results~dash-dot-dot curves! together with the re-
sistances measured~solid and dotted curves! in Ref. 4. First,
observe that all the~a! symmetries of the experimenta
curves resulting from the sign reversal of the magnetic fi
are reproduced. Second, theoretically the following relati
between the resistances hold:R132125R526, R3245R11210,
and R42125R5211 if the probes are symmetrically place
from the center of the facet and if they have the same
tances between the voltage probes. Looking at the exp
mental traces in Figs. 2 and 7 one can conclude that
probes are not symmetrically placed from the center of
facet region. For instance, in Fig. 2 the experimental trace
R425 exhibits a difference of approximatly 200V between
the B519 T andB529 T results. Also the large differ
ence in magnitude betweenR4212 and R5211 and the fact
that the quantum oscillations are more pronounced inR4212
than inR5211 can be attributed to the same cause imply

FIG. 6. The resistancesR425 as a function of the applied mag
netic field for different lengths of the sample. For the dash-do
curve the mobility is reduced by a factor of 10 simulating the eff
of a higher temperature.
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that R4212 is less than a scattering length away from t
facet (l s5tv f52.76 mm!, where electrons still carry a sub
stantial memory effect from the nonzero magnetic field
gion. Thus probes 5 and 11 are probably more thanl s away
from the facet region and the electrons are in better equ
rium with the rest of the 2DEG in the zero field regio
These facts can also explain the large asymmetry observe
the experimental traces betweenR324 and R13212 having
clear quantum oscillations and the much less pronoun
asymmetry and the almost absence of quantum oscilla
between the other two tracesR526 andR11210. In fact, our
numerical results~dash-dot-dot curves! in Fig. 7 are obtained
for the following probe positions: probes 12 and 4 a
0.01 mm away from the facet, and probes 11 and 5 a
6.99 mm away from the facet, keeping the distance betwe
probes 4 and 5 fixed, i.e.,d3510 mm. It is obvious that our
results are in good agreement with all the experimental tra
except in the high magnetic field regions for tracesR13212
andR324 for reasons that are not clear to us for the mome
When the probes are symmetrically placed on both side
the magnetic barrier then the tracesR1125 and R1224 coin-
cide with a value of 55V at 29 T, and the resistaces at 9
of R13212 andR324 are 418V and 363V, respectively.

The problem of low aspect ratio Hall devices in a hom
geneous magnetic field was studied earlier in the contex
applications for magnetic sensors~see, e.g., Ref. 10 and ref
erences therein!. The longitudinal magnetoresistance of
simple rectangular plate is given byR(B)5R(B

d
t

FIG. 7. The resistance as a function of magnetic field. The
perimental traces are the solid and the dotted curves. Our result
the dash-dot-dot curves obtained for asymmetrically placed pro
~see text!.
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56 7513CLASSICAL TRANSPORT OF ELECTRONS THROUGH . . .
50)Rg(u,L/W), whereu is the Hall angle, i.e., tan(u)5meB.
In the limit L/W→0 the so called geometrical contributio
Rg(u,L/W) can be obtained analytically in two extrem
cases: ~i! ~limit u→0, i.e., low magnetic field! Rg5
11(120.5428L/W)u2, and~ii ! ~limit u→`, i.e., large mag-

FIG. 8. The longitudinal resistance for smallB fields ~inset for
large B fields!. Our results are~solid curve! compared to those
given by the limiting expressions of Ref. 10~dotted curves!. The
results from the limiting expressions using an effective bar
width are given by the dashed curves.

FIG. 9. Contours of the energy dissipation rate for a single m
netic barrier corresponding to Figs. 3 and 5.
netic field! Rg5$tan(u)1(2/p)ln(@12k#/@2Ak#)]W/L,
wherek5128exp(2pW/(2L* )%. In Fig. 8 we compare the
results of these limiting expressions~dotted curves! with our
numerical results of Fig. 2~solid curves! where we used
L5S as the length of the Hall bar. It is clear that the
expressions strongly overestimate the experimental res
over the whole range of the magnetic field. Although the
limiting expressions give the correct qualitativeB depen-
dence of the resistance in the low (R;B2) and high (R;B)

r

-

FIG. 10. The magnetoresistanceR425 for the ridge as a function
of the applied magnetic field. The theoretical results are for t
different values of the ridge width (2S). The inset shows a sche
matic side view of the ridge together with the magnetic field pro
perpendicular to the 2DEG.

FIG. 11. The magnetoresistance for two magnetic barriers
series~two facets! for different distances between the barriers a
for different relative signs ofBz ~indicated by the plus/minus sign
between brackets!.



me
tic

7514 56I. S. IBRAHIM, V. A. SCHWEIGERT, AND F. M. PEETERS
FIG. 12. The current distribution for two
magnetic barriers in series corresponding to so
of the traces in Fig. 10 at an applied magne
field of 2 T. ~a! (1,2) d/s50, ~b!
(1,2) d/s51, ~c! (1,1) d/s51. The barrier
regions are gray shaded.
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field limits, they are in fact only order of magnitude es
mates for the present case of transport through a magn
barrier. In order to have also a good quantitative agreem
we introduce an effective Hall bar lengthL5S* , which we
obtain by fitting the low magnetic field expression for t
magnetoresistance to the solid curve. This is shown by
dashed curve in Fig. 8 forS* 553 mm which compares with
a barrier width ofS53 mm. The high magnetic field behav
ior could be fitted approximatly if we use a different leng
S* 512 mm ~see dashed curve in the inset of Fig. 8!. This
tic
nt

e

clearly indicates the very limited applicability of these e
pressions for our system.

Once we have the current and the electric field distrib
tion in our sample it is possible to calculate the energy d
sipation ratew(x,y)5J(x,y)•E(x,y). A contour plot of this
quantity for a single magnetic barrier corresponding to Fi
3 and 5 is shown in Fig. 9. Clearly most of the heat
generated near the sides of the sample where the curre
concentrated in the zero magnetic field regions, at the cur
injection and removal corners of the barrier region, a
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56 7515CLASSICAL TRANSPORT OF ELECTRONS THROUGH . . .
within the magnetic barrier region itself. At this magne
field value of 2 T the system is still far from the dissipation
less flow condition of the quantum Hall regime and the H
angle between the electric field and the current is less t
90°.

IV. MAGNETIC BARRIERS IN SERIES

In Ref. 4 a ridge geometry~see top figure of the inset o
Fig. 10! was fabricated resulting into two magnetic barrie
in series~bottom figure of the inset of Fig. 10!, each having
the sameBz but with opposite sign. In Fig. 10 both the e
perimental~solid! trace and the theoretical~dash-dotted and
dashed! curves are shown. The experimental trace w
claimed to be for 2S51 mm base length of the ridge~in
Ref. 4 it is noted that the etch depth for a ridge is less th
the depth of the regrown material, which may produce so
planarization during regrowth!, while for the theoretical
curves we found that a larger base length gives closer ag
ment with experiment. The numerical computations w
done in the same manner as for the single facet discusse
the preceeding section maintaining a constant potential
ference between voltage probes~4!–~5!. Notice that with this
renormalization of the width of the magnetic barrier we o
tan rather good agreement for the positive magnetoresist
part of the experimental curves. The oscillatory part in
experimental curves are again due to quantum effects.

Next we consider the more general case of two magn
barriers in series. This can be realized experimentally
producing a ridge with a flat top which is equivalent to i
troducing a zero magnetic field region between the two f
ets. In Fig. 11 we show the magnetoresistance for suc
double barrier structure where we varied~1! the distance~d!
between the barriers, and~2! the relative sign of the magneti
field in the two magnetic barriers. The difference betwe
these curves can be understood in terms of the different
rent paths followed by the electrons which are shown in F
12~a!–12~c!. From Figs. 11 and 12 we conclude that in hi
magnetic fields (R;B) the current is effectively injected an
removed from the extremely narrow regions of the diag
nally opposite corners of the facet and in the case of barr
with equal direction of the magnetic field the bulk part of t
magnetoresistance is proportional to the number of pair
injection and removal points of current. For the case of t
separate barriers with the same sign ofBz the magnetoresis
tance at high magnetic fields is almost twice that of a sin
barrier and consequently we find classically that the mag
toresistance of multiple barriers is additive@compare dash-
dot-dot curve, i.e.,~1,1! d/s50, with short dashed curve
i.e., ~1,1! d/s51 in Fig. 10#. For not too large magnetic
fields ~the R;B2 region! the current path spreads across t
magnetic-nonmagnetic interface and consequently the
rent path is shorter, leading to a smaller magnetoresista
and the simple rule of addition of resistances in series is
longer valid. For barriers in series with opposite direction
theBz field the situation is different@compare Fig. 12~b! with
Fig. 12~c!#. The removal point of current from the first ba
rier is at the same side of the sample as the injection poin
the current into the second barrier and consequently the
sistance is not sensitive to the value of the separation
tween the two barriers. This is also clearly visible in Fig.
ll
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where one should compare the dashed curve,
(1,2) d/s50, with the thin solid curve, i.e.,
(1,2) d/s51.

In Fig. 13 we show the Hall resistance as a function of
distance along the sample~along they direction!. It is large
and almost constant across each barrier and drops steep
small but nonzero values in the zero magnetic field region
explained earlier. When the two barriers have the same
@Fig. 13~b!# and the distance between them is nonzero th
is a finite Hall voltage across the region between the t
barriers~theBz50 region!. This is because the current has
travel to the diagonally opposite corner to enter the sec
barrier @see Fig. 12~c!# and hence there is a finite electr
field component along the current path in this region wh
becomes smaller as the distance between the two barrie
increased. This is not the case, however, when the bar
have opposite sign because the current comes out of the
ner of the first barrier and enters the corner of the sec
barrier at the same side of the sample@see Fig. 12~b!# and
there is no electric field build up across the region betwe
the barriers and consequently the Hall voltage is very sm
From Fig. 13~b! we notice that the Hall resistance in th
magnetic barrier region increases with the width of the m
netic barrier~compare the full curve with the dotted curve!.
This is only true for theS/W!1 situation while for the op-
posite limit of S/W@1 the Hall resistance will be indepen
dent of the length of the magnetic barrier.

V. CONCLUDING REMARKS

In conclusion, we have calculated numerically the elec
cal potential, the electric field, and the current distribution

FIG. 13. The Hall resistance along the sample for two magn
barriers in series for different distances between the barriers an
~a! opposite relative signs ofBz , and ~b! equal signs ofBz in the
two magnetic barriers. The applied magnetic field is 2 T.
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40 mm wide Hall bar samples consisting of a single a
multiple mm width magnetic barriers using a simple classi
model. We found that due to the step like character of
magnetic field nonhomogenuity a self-consistentd function
like charge density is induced at the interface between
magnetic-nonmagnetic field regions which results in the
distribution of the current density in the whole sample a
consequently it also influences the electric potential and
electric field profile. In view of the fact that no adjustab
parameters were used in our model the agreement of
longitudinal magnetoresistance with experiment is rema
able. Furthermore, all the experimentally observed asym
tries of the magnetoresistance traces between probes p
outside the magnetic barrier regions are explained. From
calculation we found that the asymmetry observed in Ref
being larger between one set of voltage probes than othe
-

,
,

l
e

e
-

d
e

he
-

e-
ced
ur
,

, is

a result of the nonequidistant positioning of these prob
from the magnetic barrier. The fact that the experimen
nonplaner 2DEG is well modeled by a planar 2DEG mak
this regrowth technique a prime candidate for produci
large nonhomogeneous magnetic field profiles on a mes
copic scale.
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