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Classical transport of electrons through magnetic barriers
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We investigate the magnetoresistance of a two-dimensional electrof2B&S) in the presence of wide
(width of orderum) magnetic barriers. A Poisson-like equation is solved numerically from which we obtain
the 2D electrostatic potential, electric field, and current distribution in the 2DEG. We found that most of the
electrons are injected at the edge of the magnetic barrier and most of the potential drop takes place in the
barrier region. Major features of a recent magnetoresistance experiment by Leadbaatghys. Rev. B62,
R8629 (1995] on single and double faceted structures can be explained by our classical approach. The
positive background magnetoresistance and the nonlocal Hall effect are reproduced. These results allow one to
disentangle classical and quantum features of the experimental r¢S0I163-18207)03036-1

[. INTRODUCTION system for later reference. In this figure the probes 1 and 8
are current probes and the probes numbered 2—7 and 9-14
Subjecting two-dimensional electron g@DEG) systems  are voltage probes. The nonzero magnetic field regien,
to different physical environments has greatly improved outthe facet regiohnis the gray-shaded region in the middle of
understanding of these systems and has led to the obsen/&e Hall bar. The relevant distances used in the experiment of
tion of several remarkable phenomena such as the integ&ef. 4 are L>920 um, W=40 um, S=3 um,
and the fractional quantum Hall effetsonductance quan- d;=200 um, d,=255 um, d;=10 um, and
tization in quantum point contactshe Aharonov-Bohm ef- d,=220 um. Note also that there is an offset on the experi-
fect, and the Weiss oscillations to mention just a few. Resmental curves in Fig. 3 of Ref. 4, and all the traces for
cently, an increasing amount of effort is devoted to theRi;—10, Rs_g, .. .Ryi3-1, are shifted by 500 to prevent
experimental and theoretical investigation of the behavior obverlap with R,_1,. Consequently, the zero field resist-
the 2DEG under the influence of a nonhomogeneous magnces areR,_3=260 (), R3_4=R;3_1,=330 (), andR5_g
netic field®> Such nonhomogeneous magnetic field profiles=R;;_ 10=220 Qs
can be produced, e.g., by depositing lithographic patterned The paper is organized as follows. In Sec. Il we present
superconducting or ferromagnetic films on top of a hetero-our theoretical model. Section Il contains the results for the
junction. case of a single facet, i.e., a single magnetic barrier. The
Recently, Leadbeatest al reported an alternative tech- effect of placing such barriers in series is investigated in Sec.
nique to produce effective spatially varying magnetic fieldslV. Concluding remarks are presented in Sec V.
of much larger strength and gradients than could be obtained
by lithographic patterned superconducting or ferromagnetic
films. They constructed a nonplanar 2DEG which was fabri-
cated by growth of a GaA@IGa)As heterojunction on a
wafer prepatterned with facets at 20° to the substrate. Apply:
ing a uniform magnetic field§) produces a spatially non-
uniform field component perpendicular to the 2DE&ee
inset of Fig. 2. With the field in the plane of the substrate an
effective magnetic barrier is created located at the facet. Thi
resistance measured across such an etched facet showed
cillations which are periodic in B, and which are on top of
a positive magnetoresistance background which increase
guadratically with the magnetic field for smdl and quasi-
linearly in B for large B.

In the present paper we demonstrate that the large positiv. = =~
magnetoresistance is a classical effect resulting from the pai
ticular potential distribution in the sample as a consequenct
of the nonhomogeneous magnetic field distribution which is

well described by a Poisson-like equation with the appropri-

ate boundary conditions. The small oscillations on top of this  F|G. 1. A schematic top view of the experimental system of Ref.

positive magnetoresistance background are a quantum effegtjjustrating the geometry and the different probes. The gray-

and are in fact Shubnikov—de Haas oscillations. shaded region is the facet regioh.>920 um, W=40 um,
For the experimental traces shown in Figs. 2 and 3 of Refs=3 um, d,=200 um, d,=255 um, d;=10 um,

4 we give in Fig 1 a schematic top view of the experimental d,=220 um.

~
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Il. THEORETICAL MODEL V-[o(x,y)V(x,y)]=0, C)
meL?a?Xrgg\gh?gggtrlfg“;?hl-f\”;fhe4mﬁg]n];i?tu:ﬁz cgr_:%%tix%i:';vyherea(x,y) is a spatial dependent conductivity tensor. For
S Y, homogeneous system and in the abscence of a magnetic

T g e BoR st ol 1) =t and s equation educes 0 e Laplace
y ' equation. In our case the conductivity tensor is no longer

(x,y) plane is bounded by the edges of the Hall bar of Fig. 1constant due to the presence of the finite magnetic barrier:
where a small part of the 2DEG, represented by the gray(—T(X V)= a[ o], wherea = oo /[ 1+ (uaB,)?] with the com-
shaded region in Fig. 1, is subjected to a perpendicular magb'on'ents o ”:’U 1 anc;) P _eaz Z . B. where
netic field which is in thez direction. TheB,#0 region x oYY XY yx— HeBz

corresponds to the facet region in the experimental syste go=NseLe IS the l?rud_e cond_uctivity a}nBleo ou_tside the_

ie.. B,=Bsin(6), 6=20° is the facet angle. and is the ni’a_lcet. The 2D partial differential equation is cast into a finite-

éx'&arnzally appliéd magnetic field in the ple,me of the Sub_d|fference form and solved numerically using the accelerated
. o Gauss-Seidel iteration scheme with the boundary conditions

strate. In order to calculate the spatial distribution of the¢(x 0)=0 and é(x,L)=V, (L is the length of the sample

electrostatic potential, the electric field and the current denénd’\/ is the a Iiéd voltggeand the condition that no cur-

sity, we start with the following system of Maxwell equa- 0 PP

' : - rent can flow out the sides of the sample, ije= 0 forx=0,
tions in the plane of the 2DEG: andx=W. The distances are normalized by the width of the

V.E=4mp, (1) sample(typically W=40 um taken along thex axis) and
voltages are normalized by the total voltage drop between
OE  Am the current probes 1 and 8. The magnetoresistance between
VXB— —=—1, 2 any two pointsa andb along one side of the sample is given
a ¢ by R=V/l.q, With the voltage dropV,,=#(x,b)
—¢(x,a) , and the total current flowing normal to the facet
VXE+ E =0. 3) is obtained throughcdzfgj y(X,y)dx, wherec and d are
cat any two points on the opposite sides of the sample. The Hall

resistance at a distangealong the sample length is given by
g{H:VHllcd, whereVy= ¢(W,y)— ¢(0y). In our numeri-
cal analysis we usedy=1/(53.146 () as obtained from the
experimentally measured resistance in Ref. 4.

For our purposes Eqgl) and (2) can be combined into a
single continuity equation, which expresses charge conserv
tion, by taking the time derivative of the first and the gradi-
ent of the second

V-J+dplat=0. (4) Ill. RESULTS FOR A SINGLE MAGNETIC BARRIER

In addition to the Lorentz force, a single electron in the N Fig. 2 we show both the experimentablid curve and
sample moves under the influence of a dissipative or a resi$he theoreticalldashed curvetraces for the magnetoresis-
tive force due to various scattering mechanisms. This force i§NCceR, -5 for the case of a single facet. For the experimen-
proportional to the average electron velocity and is given byial trace shown in the figure the current is kept constant and
m*v/7, where 7 is the transport relaxation time which is the voltage probes are situated 14n apart across the facet
related to the measured mobility,= er/m* of the sample. ~and the current probes are more than 90t apart. For the

Then the net force exerted on the electron is theoretical curve the voltage difference between prodes
and 5 is maintained constant as a boundary condition and
dv v m* v the current is allowed to vary with the magnetic field, there-
m* q; =€ Et o XB|- : (5)  fore it is sufficient to take the length of the sampleto be

10 um (i.e., the distance between the voltage probes 4 and
which, in essence, is the Langevin equation for a Browniarb) and consequentliz=0.25 is the length of our sample in
particle. In the steady state all time derivatives are set tanits of W=40 um. The numerical computations were done
zero. When Eq(5) is multiplied by the charge density it can using a uniform gridi.e., equally spaced grid points in each
be written in the form of Ohm’s law but where now the directionx andy) since in this particular case the sample is
conductivity is a spatially dependent tensor due to the presaot very long. In Fig. 2 it is seen that apart from the
ence of the nonhomogeneous magnetic field. We are lefShubnikov—de Haa$SdH) oscillations, which result from

with the following set of equations: the quantizing effect of the magnetic field at low tempera-
ture, the theoretical curve accounts nicely for the overall be-
VXE=0, (6)  havior of the magnetoresistance. The experimental curve is
slightly asymmetric aroun@®=0, which is due to the fact
V-J=0, (7)  that the voltage probes are not exactly equidistant from the
facet as will be explained below. The classical origin of the
J=0oE. (8) positive magnetoresistance was confirmed experimentally

where it was found that it persists even for temperatures
Writing the electric field as the gradient of a potential, i.e.,above 100 K. Note that the experimental configuration is
E=—V ¢ the above system of equations reduces to the foleffectively a two terminal measurement where the measured
lowing 2D elliptic partial differential equation for the elec- resistance is determined by the Hall resistance as well as the
trical potentialg: magnetoresistance. For smallfields the Hall resistance is
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FIG. 2. The magnetoresistanBg_s as a function of the applied g; 18 i
magnetic field. The inset shows a schematic side view of the facet © 20
plane making an angle of 20° to the substrate, together with the 30
magnetic field profile perpendicular to the 2DEG. 10
small and thus the resistance is determined by the magne- s 6 4 2 0 2 4 6 8 10
toresistance and is consequently quadrati@inFor larger B (T)

magnetic fields a quasilinear behavior of the resistance as a

function of B is found which is due to the fact that now the  FIG. 4. (a) The Hall resistance calculated across the sample as a

Hall resistance mainly limits the current. function of the longitudinal distance along the sample for different
The theoretical electric potential distribution in the values of the applied magnetic fielth) The Hall resistance in the

Sample |S Shown |n F|g 3 for an app“ed magnet|c f|e|d OfBZ:0 region as a function of the magnetic.ﬁeld fOI’ different dis-
tancesAy from the boundary of the magnetic barrier. The param-

B=-2T eters are the same as those used in Figs. 2 and 3.

B=—2 T, which givesB,=—2sin(20°)= —0.6840 T. No-
tice that almost all the potential drop takes place across the

1 T i

1.0 \\\:’:'II/I////;[ I[[ rEagn_etic ba}rrier. dIr;f the ba[)rier regiorr: ar&d justforL]Jtside itI
=== there is a voltage difference between the edges of the sample
_____ ".'Ijllllzllllllllll%lllllllll[gl;lllllll[i‘s;“" (i.e., across the axis), which is nothing else than a spatially
‘"II”I/;IIIIIII//II[IIIIIIIIIIIIIII,' ) dependent Hall voltage. This is in accord with the concept
= ”"II//IIIII/III/[/IIIII//I[[IIIIIII' that the 8,=0 regions can be thought of as extended high
=3 “.'I'I”””I;I””Illll;lllllllllllll," mobility contacts to a short and wide Hall béhe facet
3 9 _ ""II;III”I//I;””II/II[IIIIIIIIIIl," region which tends to short out most of the voltage imme-
< ",/Illllllllllllllllllllllllllllll'" diately outside the facet region. Particularly interesting is the
4 ','II/II;I/II/[II/III//II/I/II[/I/II" development of the Hall voltage between the opposite edges
'//I /I;IIIIIII/I”IIIIIIIIIIIIII,', of the facet. This becomes very small but nonzero outside the
0.0 III!II/I;””’/I/’”’II[""“ facet region and gives a steep increase of the Hall potential
/I[IIIIIII[I/"‘ profile at the edges of thB,# 0 region which is reminiscent
\ IIII[,,/'“‘ of the potential profile investigated experimentally and theo-
"0& S5 ..‘,!,A ' / retically in Refs. 6 and 7 in a conventional Hall bar under the
+¢</+, & R 0o 0\><° . conditions of the quantum Hall regime and in the middle of
s \ & A 4 N a plateau in the Hall resistan¢see Fig. 3. In Fig. 4a) we
/ show the Hall resistance for different magnetic barrier

strengths and along the length of the sample. Notice that
FIG. 3. The potential distribution in the sample B=—-2 T  Ry#0 in the B,=0 regions. This is made more visible in
which results intoB,= —0.684 T. Fig. 4b), where we show the Hall resistance at different
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. and it is concentrated closer to the edges of the sample. At
' the diagonally opposite corners it is strongly peaked. These
results for the field and current distribution are consistent
with those of Ref. 8 which were calculated for a conven-
\ tional Hall geometry in the case of very low aspect ratio.

It is evident from the potential distributiofsee Fig. 3 or
equivalently the spatial distribution of the electric field com-
ponents that there is a linear excess charge distribyimen
duced by the magnetic barrjewith a & function profile
along they axis at the interfaces between the magnetic-
nonmagnetic field regions due to the finite discontinuity of
the normal component of the electric fielt), at the inter-
faces. The linear excess charges have opposite signs at the
two interfaces. This charge profile can be obtained by taking
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N the second partial derivative of the calculated potential dis-
Vre s s tribution in both directions andy, i.e.,\(X,y) =V2(x,y).
~ Vo al These results were recently also obtained in Ref. 9 by the
Vv complex variable method of conformal mapping. It is pos-
i Pree e il sible to obtain an analytical expression for the induced
L charge at ongfor y=a) of the magnetic-nonmagnetic inter-
o 1. "III faces in terms of the electric field components at the inter-
0 10 20 30 40 face,
x [um] B
_ Mebz 2
. )\(Xay)_—z{[l_(MeBz) ]Ex+2:U~eBzEy}
FIG. 5. The current flow in the sample f8=—2 T. The mag- 1+ (ueB,)
netic barrier region is gray shaded. The local magnitude and direc-
tion of the current is proportional to the magnitude and direction of X é(y—a). (10

th , tively. . . .
© aIrows, respectively At the other interface, i.e., at=Db, the induced charge has

distanced\y from the boundary of the magnetic barrier. This the same form but witts(y —a) replaced by— 6(y—b).
is an example of a nonlocal Hall resistance which in the In Fig. 6 we investigate the effect of the sample length on
present case is a classical effect. The small oscillation in Figthe resistancéfull and dash-dot-dot curvgsvhere the volt-
4(a) near the edge of the magnetic barrier are due to the finitege probes were taken the same as the current probes i.e.,
size of the grid used in our numerical calculation. L=d. Note that when the magnetic field is uniform over the
The spatial distribution of the components of the electricwhole sample, i.e..=d=3 um (dash-dot-dot curyethe
field are obtained as followsE,=—d¢(x,y)/dx and resistance equals the magnetoresistance which is indepen-
E,=—d¢(x,y)/dy. From Fig. 3 it is clear that both compo- dent of the magnetic field and which is a result expected
nents are very small outside the barrier region. Inside th&om a classical calculation. Notice also that the resistance
magnetic barrierE, becomes very large close to the edgesslightly increases with increasing length of the samptem-
especially at the diagonally opposite corners and vanishinglpare dotted curve with full curye The reason is that there
small in the middle wheré€, is finite and more uniform, ~are now largeB,=0 regions which give a small contribu-
singular at the diagonally opposite corners and very small gion to the resistance. Next we investigated the effect of tem-
the other two corners. Accordingly, the largest part of theperature, which is simulated by reducing the mobilty. In the
current will enter the magnetic barrier region from the cornerpresent case of a low temperatue mobility sof=245 000
where both electric field components are large and exit them?/V s a reduction of u. by a factor of 10 is achieved in
barrier from the diagonally opposite corner. Once inside théhe GaAs/ALGa;_,As heterostructure by increasing the
barrier region the guiding center of the electron cyclotrontemperature td~90 K. The result for this situation is given
orbits will drift along the equipotential line¢see Fig. 3 by the dash-dotted curve in Fig. 6. Notice that Bfebehav-
according to the EXB drift with velocity vy  ior extends now up to large® values. The positive magne-
=—(V ¢x B)/B?. Electrons entering or exiting the small re- toresistance is still clearly present at these modeled high tem-
gions of the corners of the barrier will have large velocities,peratures allowing the practical use of the present device as a
which are proportional to the electric field at these locationsmagnetometet® Notice that over thé region : 0—8 T the
to account for current conservation. There are larger numbenagnetoresistance curve still increases by a factor of 10
of electrons drifting with slow and uniform velocities in the which compares to a factor of 276 fér=4.2 K.
middle of the barrier where the electric field is smaller and In order to calculate the other resistance traces shown in
more uniform. This picture is graphically represented in Fig.Fig. 3 of Ref. 4 we have to use the actual length of the
5 where we show the calculated results for the current disexperimental samplé =920 um or L/W=23. With this
tribution J(x,y)=—oa(X,y)V¢(x,y) corresponding to the sample length it is necessary to use a nonuniform grid along
experimental situation of Fig. 3. Notice that even well out-the length of the sampley(direction in order to be able to
side the barrier the current distribution is already modified byhave sufficient grid points within the magnetic barrier region
the presence of the magnetic field barrier in the facet regiomwhich is S'W=0.075 long. The current probe 1 has been set
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FIG. 6. The resistanceR,_s5 as a function of the applied mag-

netic field for different lengths of the sample. For the dash-dotted FlG' 7. The resistance as a function of magnetic field. The ex-
curve the mobility is reduced by a factor of 10 simulating the effectperlmental traces are the solid and the dotted curves. Our results are

of a higher temperature. Etswzed?esxi;-dot-dot curves obtained for asymmetrically placed probes

to have the same distance from the center of the facet as

voltage probe Zi.e., 460 um) and current probe 8 at the that R,_,, is less than a scattering length away from the
same distance as probe 7 which is also at 46® from the facet (s=7v{=2.76 um), where electrons still carry a sub-
center of the facet. For the other probes we used the disstantial memory effect from the nonzero magnetic field re-
tances given in the caption of Fig. 1. The convergence of thgion. Thus probes 5 and 11 are probably more thaaway
nonuniform grid calculation with. =920 um as compared from the facet region and the electrons are in better equilib-
to the previous uniform grid with onl{z=10 wm is much  rium with the rest of the 2DEG in the zero field region.
slower due to the large length of the sample. As a test wd hese facts can also explain the large asymmetry observed in
have verified that the results f&®,_5 for the long sample the experimental traces betwe&3_, and Ry3_ 1, having

can be brought to good agreement with that of the short onelear quantum oscillations and the much less pronounced
(dashed curve in Fig.)2by reducing the tolerance and in- asymmetry and the almost absence of quantum oscillation
creasing the number of iterations. In Fig. 7 we show ourbetween the other two trac&s_g andRy;_ 1. In fact, our
numerical result¢dash-dot-dot curvedogether with the re- numerical result¢dash-dot-dot curvesn Fig. 7 are obtained
sistances measurégolid and dotted curvesn Ref. 4. First, for the following probe positions: probes 12 and 4 are
observe that all thgl@ symmetries of the experimental 0.01 um away from the facet, and probes 11 and 5 are
curves resulting from the sign reversal of the magnetic field5.99 um away from the facet, keeping the distance between
are reproduced. Second, theoretically the following relationgrobes 4 and 5 fixed, i.edg=10 wm. It is obvious that our
between the resistances hoRl;_1,=Rs_g, Rz_4=Rj1_10, results are in good agreement with all the experimental traces
and R,_1,=Rs_44 if the probes are symmetrically placed except in the high magnetic field regions for tra¢®s 1>
from the center of the facet and if they have the same disandR;_, for reasons that are not clear to us for the moment.
tances between the voltage probes. Looking at the experiWhen the probes are symmetrically placed on both sides of
mental traces in Figs. 2 and 7 one can conclude that ththe magnetic barrier then the tradgs, 5 and Ry,_4 coin-
probes are not symmetrically placed from the center of theide with a value of 58 at —9 T, and the resistaces at 9 T
facet region. For instance, in Fig. 2 the experimental trace foof R,5_1, andR;_, are 418 and 363}, respectively.

R,_5 exhibits a difference of approximatly 20Q between The problem of low aspect ratio Hall devices in a homo-
theB=+9 T andB=—9 T results. Also the large differ- geneous magnetic field was studied earlier in the context of
ence in magnitude betweeR,_;, and Rs_;; and the fact applications for magnetic sensdsee, e.g., Ref. 10 and ref-
that the quantum oscillations are more pronounceR,jn,;,  erences therejn The longitudinal magnetoresistance of a
than inR5_4; can be attributed to the same cause implyingsimple rectangular plate is given byR(B)=R(B



56 CLASSICAL TRANSPORT OF ELECTRONS THROUGH ... 7513

185 T T T T T T T T T ] LR L
. 10 . : L y
. 4000p . *, -
1ol & T ef T 1 4 g i 7
4 i s L s
k ]
4t T ;a’: 20001 .
. ol : &~ i ]
I - ; ; 51 I 1.25 |
) : B(T) PP T N TP N B e Al
o ] -10 -8 6 -4 -2 0 2 4 6 8 10 12
Applied B[T]
14.0 | -

- 3 FIG. 10. The magnetoresistanRg_s for the ridge as a function
of the applied magnetic field. The theoretical results are for two
different values of the ridge width &. The inset shows a sche-
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netic field Rgz{tan(0)+(2/q-r)ln([1—k]/[z\/E])]W/L,
wherek=1-—8exp(— 7#W/(2L*)}. In Fig. 8 we compare the
results of these limiting expressiofaotted curveswith our
numerical results of Fig. Zsolid curve$ where we used
L=S as the length of the Hall bar. It is clear that these
expressions strongly overestimate the experimental results
over the whole range of the magnetic field. Although these
limiting expressions give the correct qualitatiB: depen-
dence of the resistance in the loR{ B?) and high R~B)

FIG. 8. The longitudinal resistance for smallfields (inset for
large B fields). Our results argsolid curve compared to those
given by the limiting expressions of Ref. 1@otted curves The
results from the limiting expressions using an effective barrier
width are given by the dashed curves.

=0)Ry(6,L/W), whered is the Hall angle, i.e., tas) = u¢B.
In the limit L/W—0 the so called geometrical contribution

Ry(6,L/W) can be obtained analytically in two extreme 000 T T /]
cases: (i) (limit 6—0, ie., low magnetic field Ry= A
1+(1—0.5428./W) #?, and(ii) (limit 6—, i.e., large mag- i 3 ]
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series(two facets for different distances between the barriers and
FIG. 9. Contours of the energy dissipation rate for a single magfor different relative signs oB, (indicated by the plus/minus signs

between brackets
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tion in our sample it is possible to calculate the energy dis-

field limits, they are in fact only order of magnitude esti- clearly indicates the very limited applicability of these ex-

mates for the present case of transport through a magnetmressions for our system.
barrier. In order to have also a good quantitative agreement Once we have the current and the electric field distribu-

we introduce an effective Hall bar length=S*, which we

J(x,y) - E(x,y). A contour plot of this

obtain by fitting the low magnetic field expression for the sipation raten(x,y)

magnetoresistance to the solid curve. This is shown by thquantity for a single magnetic barrier corresponding to Figs.

dashed curve in Fig. 8 f&*

53 wm which compares with 3 and 5 is shown in Fig. 9. Clearly most of the heat is

3 um. The high magnetic field behav- generated near the sides of the sample where the current is

ior could be fitted approximatly if we use a different length concentrated in the zero magnetic field regions, at the current

a barrier width ofS

injection and removal corners of the barrier region, and

12 um (see dashed curve in the inset of Fig. Bhis

St =
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within the magnetic barrier region itself. At this magnetic r - L
field value ¢ 2 T the system is still far from the dissipation- i T

less flow condition of the quantum Hall regime and the Hall 400:'
angle between the electric field and the current is less than 200k
90°. i

g of ]

T - 4

IV. MAGNETIC BARRIERS IN SERIES o 200 ]

In Ref. 4 a ridge geometrgsee top figure of the inset of _400:

Fig. 10 was fabricated resulting into two magnetic barriers [ i
in series(bottom figure of the inset of Fig. 10each having i T L

the sameB, but with opposite sign. In Fig. 10 both the ex- ' T T

perimental(solid) trace and the theoreticalash-dotedand ¢+ _____. :3 jj::?
dashedl curves are shown. The experimental trace was 600 T TN\ (+4) dls=2 ]
claimed to be for 3=1 um base length of the ridgén [ =t
Ref. 4 it is noted that the etch depth for a ridge is less than

the depth of the regrown material, which may produce some & 400

planarization during regrowth while for the theoretical o P | ;

curves we found that a larger base length gives closer agree- 2001 R ]
ment with experiment. The numerical computations were . A e

done in the same manner as for the single facet discussed in I (b) _,"

the preceeding section maintaining a constant potential dif- o0 ‘; é 1-2 1-6 2

ference between voltage prob@s—(5). Notice that with this
renormalization of the width of the magnetic barrier we ob- y (um)
tan rather good agreement for the positive magnetoresistance
part of the experimental curves. The oscillatory part in theba
experimental curves are again due to quantum effects.
Next we consider the more general case of two magneti
barriers in series. This can be realized experimentally by
producing a ridge with a flat top which is equivalent to in- \where one should compare the dashed curve, i.e.
troducing a zero magnetic field region between the two fac{ ) g/s=0, with the thin solid curve, i.e.
ets. In Fig. 11 we show the magnetoresistance for such &+,—) dis=1.
double barrier structure where we varigd the distanced) In Fig. 13 we show the Hall resistance as a function of the
between the barriers, arig) the relative sign of the magnetic yjstance along the samplalong they direction. It is large
field in the two magnetic barriers. The difference betweer,nq aimost constant across each barrier and drops steeply to
these curves can be understood in terms of the different Cuka|| put nonzero values in the zero magnetic field region as
rent paths followed by the electrons which are shown in Figseypiained earlier. When the two barriers have the same sign
12(8)—-12c). From Figs. 11 and 12 we conclude that in high[rjg 13p)] and the distance between them is nonzero there
magnetic fieldsR~B) the current is effectively injected and 5 3 finite Hall voltage across the region between the two
removed from the extremely narrow regions of the diagoy,rriers(the B, =0 region. This is because the current has to
nally opposite corners of the facet and in the case of barrierg el to the diagonally opposite corner to enter the second
with equal direction of the magnetic field the bulk part of the o i, [see Fig. 1&)] and hence there is a finite electric
magnetoresistance is proportional to the number of pairs ofe|q component along the current path in this region which
injection and removal points of current. For the case of tWoyecomes smaller as the distance between the two barriers is
separate barriers with the same sigrBofthe magnetoresis- jncreased. This is not the case, however, when the barriers
tance at high magnetic fields is almost twice that of a singlg,aye opposite sign because the current comes out of the cor-
barrier and consequently we find classically that the magn€sey of the first barrier and enters the corner of the second
toresistance of multiple barriers is additifeompare dash- papier at the same side of the samfsee Fig. 18)] and
dot-dot curve, i.e.(+,+) d/s=0, with short dashed curve, tnere is no electric field build up across the region between
.e., (+,+) d/s=1 in Fig. 10. For not too large magnetic the parriers and consequently the Hall voltage is very small.
fields (the R~ B? region the current path spreads across thegrom Fig. 13b) we notice that the Hall resistance in the
magnetic-nonmagnetic interface and consequently the Cufnagnetic barrier region increases with the width of the mag-
rent path is shorter, leading to a smaller magnetoresistanCgetic barrier(compare the full curve with the dotted cujve
and the simple rule of addition of resistances in series is Nqjs s only true for theS/W<1 situation while for the op-
longer valid. For barriers in series with opposite direction ofqsite limit of S'Ws1 the Hall resistance will be indepen-

the B, field the situation is differerfitompare Fig. 1®) with  4ent of the length of the magnetic barrier.
Fig. 12c)]. The removal point of current from the first bar-

rier is at the same side of the sample as the injection point of
the current into the second barrier and consequently the re-
sistance is not sensitive to the value of the separation be- In conclusion, we have calculated numerically the electri-
tween the two barriers. This is also clearly visible in Fig. 11cal potential, the electric field, and the current distribution of

FIG. 13. The Hall resistance along the sample for two magnetic
rriers in series for different distances between the barriers and for
f%\l/) opposite relative signs d,, and(b) equal signs oB, in the

0 magnetic barriers. The applied magnetic field is 2 T.

V. CONCLUDING REMARKS
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40 um wide Hall bar samples consisting of a single anda result of the nonequidistant positioning of these probes
multiple wm width magnetic barriers using a simple classicalfrom the magnetic barrier. The fact that the experimental
model. We found that due to the step like character of thenonplaner 2DEG is well modeled by a planar 2DEG makes
magnetic field nonhomogenuity a self-consistérfunction  this regrowth technique a prime candidate for producing

like charge density is induced at the interface between thgarge nonhomogeneous magnetic field profiles on a mesos-
magnetic-nonmagnetic field regions which results in the recopic scale.

distribution of the current density in the whole sample and
consequently it also influences the electric potential and the
electric field profile. In view of the fact that no adjustable
parameters were used in our model the agreement of the
longitudinal magnetoresistance with experiment is remark- Part of this work is supported by the Flemish Science
able. Furthermore, all the experimentally observed asymme~oundation, The Interuniversity Micro Electronics Center
tries of the magnetoresistance traces between probes placdEC), the EC-programme INTAS-93-1495, and the Rus-
outside the magnetic barrier regions are explained. From owian Foundation for Basic Research 95-02-04704. We also
calculation we found that the asymmetry observed in Ref. 4wish to thank M. Leadbeater and S. Badalian for interesting
being larger between one set of voltage probes than others, @iscussions and correspondence.
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