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Electron-hole interactions in silicon nanocrystals
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We investigate the electron-hole interactions in spherical silicon nanocrystals by incorporating Coulomb,
exchange, and spin-orbit couplings into a tight-binding model. We study the effect of the electron-hole attrac-
tion on the absorption spectra and on the dielectric constant, using a real-time propagation technique. Diago-
nalizing the full fine-structure Hamiltonian for two-particle states close to the band gap gives exchange
splittings that range from;100 to 7 meV for nanocrystals of radii 6–18 Å. The splittings persist in the
presence of spin-orbit coupling for nanocrystals of radius up to 18 Å, suggesting that dark triplet states below
the absorption threshold can be the origin of the Stokes shifts and temperature-dependent lifetimes observed in
luminescence experiments.@S0163-1829~97!09635-5#
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I. INTRODUCTION

It is well known that the band gap of nanoscale quant
dots are blueshifted from the bulk value due to quant
confinement.1,2 Finite-size effects also enhance the ban
edge oscillator strengths of indirect gap materials such
silicon.1,2 The fine structures in the optical spectra of silic
nanocrystals and porous silicon are also different from th
in the bulk. This is essentially due to size-dependent chan
in the effect of the Coulomb interaction. In the stron
confinement regime, i.e., when the crystallite is smaller th
the bulk exciton diameter, the electron and the ‘‘hole’’ are
close proximity, and the Coulomb interaction scales as 1a,
wherea is the linear dimension of the nanocrystal. The sta
dielectric constantes also decreases with crystallite size3

further increasing the effect of the electron-hole attraction
small a. A strong Coulomb interaction perturbs the ener
levels, mixes the zeroth-order eigenstates, and leads to
assignment of oscillator strengths, which can have notica
effects in the absorption spectrasabs(v);ve2(v). es is de-
rived from e2(v), and is in turn therefore also affected b
the strength of the electron-hole Coulomb attraction.4 In fact
the finite-size-induced change in dielectric screening
drive a nanocrystal of a particular size from the wea
confinement into the strong-confinement regime.3

The excitonic exchange splittingh is proportional to the
overlap between electron and hole wave functions in silic
nanocrystals,4 and scales as 1/a3. For smalla, the bulk sili-
con exchange interaction of 0.14 meV~Ref. 5! can be in-
creased by up to three orders of magnitude.4,6 This interac-
tion creates low-lying triplet states that do not absorb or e
light. Spin-orbit coupling then mixes the otherwise pure s
glets and triplets. When the mixing is small, the triplets c
be populated nonradiatively after optical excitation into t
singlet manifold, and then luminesce with long lifetime
This ‘‘two-level’’ model has been advanced as an expla
tion for the Stokes shifts and the temperature-dependen
minescence lifetimes found in porous silicon.4,7–9 In this
two-level picture, the Stokes shifts correspond toh. At tem-
peratureskBT>h, wherekB is the Boltzmann constant, th
singlet, bright states are thermally accessible, and radia
decay readily takes place. The lifetime crossover occur
560163-1829/97/56~12!/7455~14!/$10.00
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T.100 K, consistent with the experimental Stokes shifts
;10 meV.10 The model is therefore very sensitive to th
relative magnitudes of the exchange and spin-orbit c
plings. Whenh is small compared to the spin-orbit couplin
extensive singlet/triplet mixing may occur, and dark sta
may not exist on the strength of exchange interaction alo
However nonspherical crystallite shapes can quench
spin-orbit coupling and help preserve the singlet-triplet sp
tings, so that geometry may also play an important role.11,12

Coulomb and exchange effects in silicon nanocryst
have been investigated previously with the multiband eff
tive mass approximation~EMA! ~Ref. 4! and other con-
tinuum models.6 EMA also successfully treats spin-orb
coupling in direct-gap nanocrystals such as CdSe.13,14 How-
ever, silicon does not have purelys-conduction states at th
band gap, which complicates the analysis.4 In contrast, the
two-particle extension of the tight-binding method is we
suited to studying the combined effects of Coulomb, e
change, and spin-orbit interactions.12 It gives a more realistic
representation of small nanocrystals than quasicontinu
theories, and surface effects can be accounted for readily
this paper, we apply the tight-binding description of a pre
ous work15–17 that uses ansp3s* basis.18 The nanocrystals
studied here are tetrahedrally faceted, i.e., approxima
spherical in shape, with either truncated or hydroge
terminated surfaces. We investigate the effect of the C
lomb interaction one2(v) and es at the two particle level.
While Takagahara and Takeda have addressed this i
within the EMA,4 to our knowledge this has not previous
been investigated using semiempirical models. In this w
we incorporate all fine-structure components, i.e., Coulom
exchange, and spin-orbit interactions. Our treatment of
exchange interactions differs from that in a previous tig
binding study,12 in that the electron-hole exchange intera
tion is unscreened and the nearest-neighbor exchange
grals are taken into account. It will be shown that the tig
binding model considered here give exchange splittings
agree qualitatively with EMA estimates for crystallites
radius;12– 14 Å, but are systematically smaller for small
size crystallites. The tight-binding exchange splittings are
reasonable agreement with the perturbative estimates de
from a recent empirical pseudopotential calculation.19 We
7455 © 1997 The American Physical Society
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7456 56KEVIN LEUNG AND K. B. WHALEY
find that dark, triplet-dominated states persist in the prese
of spin-orbit coupling for nanocrystal radii of up to 18 Å
The magnitude of the now approximate~i.e., as a result of
the mixing induced by spin-orbit coupling! exchange split-
ting is somewhat reduced, but not entirely quenched, des
the tetrahedral symmetry. Comparison with experime
shows this splitting to be in good agreement with experim
tal exchange splittings, and the radiative lifetimes of da
and bright bands of states to be in order of magnitude ag
ment with the experimental values.8

There has been considerable controversy over the a
racy of thesp3s* tight-binding model used in this work.20

This model gives band gaps that agree with luminesce
experiments. The agreement is apparently fortuitous, a
more accurate tight-binding model12 ~i.e., one which gives a
closer fit to silicon bulk band structure! overestimates the
band gap by 0.5–1 eV over a wide range of nanocry
sizes. A recent empirical pseudopotential calculation21 gives
band gaps in agreement with Ref. 12. The discrepancy
tween experiments and these models is not fully resolved
such, no completely satisfactory tight-binding model f
nanostructure silicon appears to exist, although all curre
employed models do show significant improvement o
EMA estimates of band gaps. In this work, we apply t
sp3s* model to study the exciton fine structure. Our a
proach is in the same spirit as EMA-based calculations
excitons in nanocrystals.4,11,13,14,22Thus the EMA is widely
used to study excitonsplittingsas functions of exciton size
despite its well-known inability to reproduce themagnitude
of the luminescence energy. In other words, we treat
precise magnitude of the band-gap energy~which depends
on the fine details of the tight-binding description! and the
exciton fine structure~which is more generically a function
of the quantum confinement effect! as two separate issue
the former of which will not be addressed here. Of inter
here is the order of magnitude of the radiative lifetimes, a
their distribution over the fine structure. While the prec
values will depend on the details of the band-edge states
possibly also indirectly therefore on the band-edge positio
the latter will not necessarily affect the gross distribution
lifetimes.

Two complementary computational methods are app
in this work. First, to compute the entire absorption spectr
spanning tens of eV, we employ a real-time propagat
method.15–17,23 The spectral resolution is limited here on
by the propagation length. For accurate estimation of
effects of exchange and spin-orbit interactions, high reso
tion is required, but only the band-gap region is pertinent
is then more convenient to diagonalize the Hamiltonian i
restricted two-particle basis made up of electron and h
states close to the band edges.12

This paper is organized as follows. Section II describ
the two-particle Hamiltonian, and the time-dependent a
independent methods. Section III contains the results,
Sec. IV summarizes our findings with some further disc
sion.

II. THEORY

A. Two-particle basis set and Hamiltonian

The zeroth-order triplet/singlet electron-hole eigensta
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uC~1!&5ueh&u j sms&5S ueh&uaa&

~1/A2!ueh&~ uab&1uba&!

ueh&ubb&

~1/A2!ueh&~ uab&2uba&!

D ,

~1!

where e and h denote the electron~conduction band! and
hole ~valence band! states with single-particle eigenenergi
Ee.EF , Eh,EF , respectively.EF is the Fermi energy,
u j sms& is the two-particle spin portion ofuC (1)&, andua& and
ub& are the one-particle spin-1

2 states. Implicit in this treat-
ment is a first-order ‘‘configuration-interaction’’ approxima
tion, such that multiple excitations are not explicitly consi
ered. The two-particle Hamiltonian is derived by projecti
the many-electron Hamiltonian onto the electron-hole ba
in the Hartree-Fock approximation,24,25 and is given by

Ĥ5Ĥo1Ĥcoul1Ĥex1Ĥso, ~2!

Ĥo5(
e

Eeue&^eu2(
h

Ehuh&^hu, ~3!

Ĥcoul52 (
i i 8 i 9 i-

(
gg8g9g-

u ig,i 8g8&w~ ig i-g-; i 8g8i 9g9!

3^ i-g-,i 9g9u, ~4!

Ĥex5ds (
i i 8 i 9 i-

(
gg8g9g-

u ig,i 8g8&w~ ig i 9g9; i 8g8i-g-!

3^ i-g-,i 9g9u, ~5!

Ĥso5 (
igg8g9ss8s9

u igs,ig9s9&^ igsul l̂ i• ŝi u ig8s8&

3^ ig8s8,ig9s9u2 (
igg8g9ss8s9

u ig9s9,igs&

3^ igsul l̂ i• ŝi u ig8s8&^ ig9s9,ig8s8u. ~6!

Herei is the site or atom label,g specifies the type of orbital
s denotes the single-electron/hole spin state,ds52 for the
singlet states and is zero otherwise.25 l is the spin-orbit cou-
pling parameter, andl̂ i and ŝi are the local orbital and spin
momentum operators. Note that our zeroth-order states,
~1!, are direct product states between spatial and spin eig
functions, and the spin-orbit interaction is then included a
perturbation on the single-particle spatial Hamiltonian, E
~3!. Strictly speaking, one should diagonalize the ent
single-particle HamiltonianĤo1Ĥso. We have done this
and find that the results are in excellent agreement with
perturbative treatment of spin-orbit coupling for nanocrys
sizes investigated in this work. So to facilitate comparis
between the exciton effects in the presence and absenc
spin-orbit coupling, and also to make it possible to comp
our results with past works that neglect spin-orbit coupling19

we present results with the spin-orbit coupling treated p
turbatively throughout. It is a good approximation to lim
spin-orbit coupling to on-site interactions only.26 Note also
that only the spin portion ofuC (1)& is symmetrized or anti-
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56 7457ELECTRON-HOLE INTERACTIONS IN SILICON . . .
symmetrized; the symmetry of the orbital wave function
taken into account by explicitly including the exchange te
Ĥex in the Hamiltonian.

The integrals

w~ ig i-g-; i 8g8i 9g9!5E dr1E dr2f ig* ~r 1!f i 8g8
* ~r 2!

3ur 12r 2u21f i 9g9~r 2!f i-g-~r 1!

~7!

convolve the 1/r interaction with the orbital wave function
f ig(r ). Multiple excitations lead to screening effects, whi
will be treated phenomenologically by renormalizing t
‘‘1/ r ’’ interaction with a dielectric screening functione(r )
~Ref. 27! for the electron-hole Coulomb interactionĤcoul,
but not the exchange interactionĤex.4 This will be further
discussed in Sec. II C and the Appendix.

Our application of a distance-dependent dielectric fu
tion contrasts with treatments which assume a modified c
tinuum dielectric constant to model the screening in fin
size crystallites.3,4 Dielectric functions are also applied i
Ref. 12. Even thoughe(r ) obtains from purely bulk
considerations,27 the static dielectricconstant, es , of a finite-
sized dielectric ball derived withe(r ) is already substantially
reduced over the bulk value.28,29 We have also considere
modifying the dielectric function for finite-sized systems.30

To zeroth order, i.e., ignoringĤcoul, Ĥex, and Ĥso, the
exciton consists of an electron in conduction stateue& and a
vacancy in valence stateuh&, and the total excitation energ
is Ee2Eh . Ee andEh are the eigenenergies of the Hartre
Fock single-particle wave functions in the ground man
electron stateuG&. The valence band is filled inuG&, andEe
is then computed as the energy of a virtual orbital of such
electronic configuration.25 Ĥcoul andĤex then lead to correc-
tions to the many-electron excited-state energy. In the tig
binding description, the highest occupied molecular orb
~HOMO! valence state of the bulk bands consists of th
degeneratep states at theG point.18 Applying Ĥso to these
HOMO states give a spin-orbit splitting of 3l/2, which is
fitted to the experimental value of 0.044 eV~Ref. 31! to yield
an empirical value forl. Just as in the single-particle energ
Eh of Eq. ~3!, the second term inĤso, Eq.~6!, pertains to the
hole and carries a negative sign.

B. Dipole matrix elements

The ground-state absorption spectrum of any materia
given bysabs(v);ve2(v), where26

e2~v!5
8p2e2\2

3me
2V (

f
Ef G

22M f G
2 d~v2Ef G!, ~8!

f labels the many-electron excited states,Ef G is the transi-
tion energy,me is the electron mass,V is the volume of the
system,M f G

2 5u^ f up̂u i &u2 is the squared transition dipole ma
trix element between statesu f & anduG&, p̂ is the momentum
operator,e is the electronic charge, and the transition fr
quencyv is expressed in units of energy~eV!. In general,
p̂5(me / i\)@ r̂ ,Ĥ#. In an empirical tight-binding description
Ĥ is defined by the orbital on-site energies and transfer
-
n-

-
-

n

t-
l
e

is

-

e-

ments between an implicit basis of localized orbitalsu ig&.
The operatorr̂ is defined in this implicit basis by

r̂5(
ig

u ig&r i^ igu1(
ig

(
i 8g8

u ig&^ igud r̂ i u i 8g8&^ i 8g8u,

~9!

whered r̂ i5( r̂2r i), andr i is the position vector of sitei . In
the empirical tight-binding approach the local basis functio
are never treated explicitly. Thus there is no information
the second term in Eq.~9! which requires integration of an
operator which does not commute with the Hamiltonian, i
d r̂ i , over the local basis functions. If this second term
neglected, the commutator@ r̂ ,Ĥ# is invariant to the origin
from which r i is measured. SinceM f i is also unambiguously
defined, with this approximation the bulk absorption spe
trum can be calculated without any fitting or extraneous
formation beyond the parametrization of the tight-bindi
Hamiltonian.32,33 However, the neglected contribution
^ igud r̂ i u i 8g8&, in Eq. ~9! can be important.34 For silicon, the
dominant terms are those withi 5 i 8, namely,^ ig8ud r̂ i u ig&.
These give the on-site transition dipole matrix eleme
which dominate in the atomic limit. This limit is not recov
ered in the generic empirical tight-binding treatment.

To give a better agreement with the bulk absorption sp
tra obtained in experiment and in density-functional theo
calculations, the additional on-site matrix elemen
^ ig8ud r̂ i u ig& can be treated as fitting parameters. For
sp3s* parametrization, good fits are obtained wi
values35–37

^ isud r̂ i u ipx&[^sud r̂ upx&50.12ex Å,

^ is* ud r̂ i u ipx&[^s* ud r̂ upx&51.45ex Å, ~10!

whereex is the unit vector in thex direction. The transition
dipole matrix elements for thepy andpz orbitals are similar.
With these additional terms, (i\/me)M f G is then given to
zeroth order in the electron-hole interaction by

^ehu@ r̂ ,Ĥo#uG&d j s ,0dms ,052~Ee2Eh!^eu r̂ uh&d j s ,0dms ,0,
~11!

^eu r̂ uh&5 (
igg8

ce; ig8
* ch; ig@r idgg81^ ig8ud r̂ i u ig&#, ~12!

where we usedu f &5uC (1)&ueh&u j sms&. In Eq. ~12!, ce; ig and
ch; ig are the expansion coefficients ofu ig& for ue& and uh&,
with ue&5( igce; igu ig&, and uh&5( igch; igu ig& respectively.
We used the conventionĤouG&5EGuG&50. In the dipole
approximation, no spin-flips are allowed, and only the sing
component ofu f & can absorb light.

In the presence ofĤcoul, Ĥex, andĤso, the product states
uC (1)& are no longer eigenfunctions of the Hamiltonian, a
the eigenstates now become

uCk
~2!&5 (

eh jsms

ceh jsms

k ueh&u j sms&, ~13!

where ceh jsms

k are the two-particle expansion coefficient

Eq. ~11! is replaced by
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^Ck
~2!u@ r̂ ,Ĥ#uG&52Ek

~2! (
eh jsms

ceh jsms

k* ^eu r̂ uh&d j s0
dms0

~14!

whereEk
(2) is the eigenenergy for stateuCk

(2)&. Finally, the
static dielectric constantes is given by3

es511~2/p!E
0

`

dv e2~v!/v. ~15!

C. Restricted basis set diagonalization

For finite-size crystallites, the electronic properties in t
band-gap region can be readily computed by diagonaliz
the Hamiltonian matrix for a small set of electron-hole tw
u
e

ls
ar

t
e

e
g

particle states,uC&5ue&uh&u j sms&, whereEe andEh are re-
stricted to energies close to the band edges.12 Here ue& and
uh& are directly computed using an eigenvalue-select
Lanczos algorithm.38,39 Ĥo is diagonal in the zeroth-orde
single-particle basisuC (1)&,

^e8h8; j s8ms8uĤoueh; j sms&5~Ee2Eh!de,e8dh,h8d j s , j
s8
dms ,m

s8
.

~16!

The matrix elementŝe8h8; j s8ms8uĤcoulueh; j sms& ~Coulomb!
and ^e8h8; j s8ms8uĤexueh; j sms& ~exchange! are diagonal in
the spin subspace, and we therefore neglect the spin ind
from now on. Expandingue& and uh& in the local orbital
basis, we obtain
^e8h8uĤcoulueh&5 (
i ,i 8,i 9,i-,g,g8,g9,g-

ce8; ig
* ch8; i 8g8

* ch; i 9g9ce; i-g-w~ ig i-g-; i 8g8i 9g9!, ~17!

^e8h8uĤexueh&5ds (
i ,i 8,i 9,i-,g,g8,g9,g-

ce8; ig
* ch8; i 8g8

* ce; i 9g9ch; i-g-w~ ig i-g-; i 8g8i 9g9!. ~18!
e

f

ate

he

de,
s.
-
A

ion
rely
is
To simplify these expressions, only the two-index contrib
tions to w( ig i-g-; i 8g8i 9g9) are retained. These can b
identified as Coulomb and exchange terms@recall Eq.~7!#:

wcoul~ ig,i 8g8!5w~ ig ig; i 8g8i 8g8!, ~19!

wex~ ig,i 9g9!5w~ ig i 9g9; ig i 9g9!. ~20!

Thus we neglect terms with more than two distinct orbita
in accordance with Ref. 12. The higher-order overlaps
small because the wave functions are~assumed! orthonor-
mal. The principal corrections to this assumption give rise
the ‘‘dipole’’-like terms,25 which are smaller in magnitud
and can be neglected~see the Appendix!. Equations~17! and
~18! then reduce to

^e8h8uĤcoulueh&

52 (
i i 8gg8

ce8; ig
* ch8; i 8g8

* ch; i 8g8ce; igwcoul~ ig,i 8g8!

2 ( 8
^ i i 8&gg8

ce8; ig
* ch8; i 8g8

* ch; igce; i 8g8wex~ ig,i 8g8!

2 ( 8
^ i i 8&gg8

ce8; ig
* ch8; ig

* ch; i 8g8ce; i 8g8wex~ ig,i 8g8!,

~21!
-

,
e

o

^e8h8uĤexueh&

5F (
^ i i 8&gg8

ce8; ig
* ch8; i 8g8

* ch; i 8g8ce; igwex~ ig,i 8g8!

1 ( 8
^ i i 8&gg8

ce8; ig
* ch8; ig

* ch; i 8g8ce; i 8g8wex~ ig,i 8g8!

1 ( 8
i i 8gg8

ce8; ig
* ch8; i 8g8

* ch; igce; i 8g8wcoul~ ig,i 8g8!Gds .

~22!

The restricted~primed! sums denote the constraint (ig)
Þ ‘( i 8g8). As mentioned in Sec. II A, and discussed in som
detail in the Appendix, the ‘‘1/r ’’ interaction in the electron-
hole Coulomb interaction, Eq.~17!, is to be screened, while
that in the electron-hole exchange interaction, Eq.~18!, is
not. Thus all integrals entering Eq.~21! are screened, while
those in Eq.~22! are not. We use the dielectric function o
Ref. 27 together with the Ohno formula40,41 and on-site
renormalizations described in the Appendix to approxim
the screening.

In principle, nearest-neighborwex( ig,i 8g8) integrals in
the local orbital basis can contribute significantly to t
electron-hole exchange matrix elements^e8h8uĤexueh&, es-
pecially in II-VI semiconductors such as cadmium seleni
where the electron and hole have small on-site overlap34

Beyond the nearest neighbors,wex( ig,i 8g8) decreases expo
nentially and can be neglected. Both the multi-band EM
treatment of Ref. 4 and the previous tight-binding calculat
of Ref. 12 truncated the exchange interaction more seve
than this. In the EMA treatment the exchange interaction
approximated by ad-function interaction,4 while the tight-
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binding calculation included only the on-site exchan
integrals.12 Unfortunately in the latter calculation the ex
change terms were also incorrectly screened, as pointed
by Takagahara and Takeda.4 A recent empirical pseudopo
tential calculation19 incorporated the long-range compone
of the exchange interaction. However, in contrast to Refs
and 12 which are both nonperturbative configuration inter
tion treatments like the calculations presented here, Ref
as

th

at
e

a
e
t

r
n

ut

t
4
-

19

only deals with both Coulomb and exchange energies in p
turbation theory for relatively small nanocrystals and a
neglected spin-orbit coupling, making quantitative compa
son with the truncated exchange calculations difficult. The
fore in Sec. III B we specifically examine the effect of th
nearest-neighbor exchange terms.

The spin-orbit coupling in Eq.~6! is straightforwardly
computed in the local orbital basis,
es the
^e8h8 j s8ms8uĤsoueh jsms&5ldhh8 (
i ,g,g8

ce8; ig8
* ce; ig^ ig8u l̂ i u ig&^ j s8ms8uŝi u j sms&2ldee8 (

i ,g,g8
ch8; ig8
* ch; ig^ ig8u l̂ i u ig&

3^ j s8ms8uŝi u j sms&. ~23!

With the inclusion of Coulomb, exchange, and spin-orbit couplings, the two-particle Hamiltonian matrix becom
supermatrix

H5S Hcoul1Hso
11;11

Hso
10;11

Hso
1 1̄;11

Hso
00;11

Hso
11;10

Hcoul1Hso
10;10

Hso
1 1̄;10

Hso
00;10

Hso
11;1 1̄

Hso
10;1 1̄

Hcoul1Hso
1 1̄;1 1̄

Hso
00;1 1̄

Hso
11;00

Hso
10;00

Hso
1 1̄;00

Hcoul1Hex1Hso
00;00

D , ~24!
t of
ly,
where the elements are each (Me3Mh) by (Me3Mh) ma-

trices in theue&uh& space, and the superscripts inH
so
j s8ms8 ; j sms

are the spin quantum numbers.Me andMh are the number of
conduction and valence states taken in the restricted b
We only consider expansions withM5Me5Mh here. We
have found thatM512 is sufficient to converge the first few
two-particle states close to the band edge.H, augmented
with the single-particle energies, is diagonalized, and
two-particle absorption spectrum is obtained via Eqs.~8! and
~14!.

D. Real-time propagation

To compute the complete absorption spectrum and rel
properties such as the dielectric constant with the tim
independent method, it is necessary to know the entireueh&
basis set. The dimension of the two-particle Hamiltonian m
trix scales asN2, whereN is the number of atoms in th
nanocluster. With thesp3s* parametrization, the larges
crystallite that can be treated in this way isN541. For larger
clusters the spectral properties can be studied by Fou
transforming the real-time dipole-dipole correlatio
function.42 Starting from Eq. ~8!, and using p̂5(me /
i\)@ r̂ ,Ĥ#,
is.

e

ed
-

-

ier

e2~v!5
8p2e2

3V (
f

rG f•r f Gd~v2Ef G!

5
8pe2

3V\ E
0

`

dt Re eivt(
f

^Gu r̂e2 iE f Gt/\u f &•^ f u r̂ uG&

5
8pe2

3V\ E
0

`

dt Re eivt^Gu r̂•e2 iĤ t/\ r̂ uG&, ~25!

where the conventionĤuG&5EGuG&50 remains in force.
This suggests the following procedure:~a! compute the vec-
tor uC8&5 r̂ uG&5(eĥ eu r̂ uh&ueh& in some basis;~b! apply

the two-particle propagatore2 iĤ t/\,0<t,tmax; ~c! compute
and store the overlapC(t) at each timet,

C~ t !5^Gu r̂•e2 iĤ t/\ r̂ uG&;

and ~d! Fourier transformC(t). This yieldse2(v), Eq. ~8!,
and hence the absorption spectrumsabs(v);ve2(v). We
can then obtain the static dielectric constant with the effec
the Coulomb interaction incorporated nonperturbative
from Eqs.~15! and ~25!,

es512
16pe2

3V\ E
0

`

dt Im^Gu r̂•e2 iĤ t/\ r̂ uG&. ~26!
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In keeping with the single excitation approximation, a pr
jection operatorP̂5(ehueh&^ehu is applied,Ĥ→ P̂Ĥ P̂, so
that the Hamiltonian does not scatter conduction and vale
states into each other.

The resolution of the spectrum is inversely proportiona
length of propagationtmax, and is set at 50 meV in this work
On this energy scale, spin-orbit splittings are unresolved,Ĥso
can be neglected, and singlet and triplet states are there
decoupled. For simplicity, we also neglectĤex, whose con-
tribution is typically less than 25% of the Coulomb intera
tion, and setĤ5Ĥo1Ĥcoul. In Ĥcoul we also neglect terms
wex( ig,i 8g8), consistent with this level of approximation.

The two-particle vectorr̂ ueh& is evolved in time using a
series of short-time propagators,

e2 i P̂Ĥ P̂tmax/\5@e2 i P̂Ĥ P̂dt/\#N,
~27!

e2 i P̂Ĥ P̂dt/\'e2 i P̂ĤoP̂dt/\e2 i P̂ĤcoulP̂dt/\1O~dt2!,

whereN5tmax/dt is the Trotter partition number.23 It is con-
venient to propagate in the electron-hole orbital ba
$u is,i 8s8&%. While Ĥcoul mixes valence and conductio
states, it only provides a weak perturbation in the stro
confinement regime, and the scattering between valence
conduction states should be small. For greater efficiency
will become clear below, it is advisable to neglect the act
of the projection operatorsP̂ on Ĥcoul.

29,43 The validity of
this approximation for Si nanosystems will be demonstra
below. Under the action of the approximateĤ, we have then

P̂ĤoP̂u ig,i 8g8&5 (
i 9g9

@Ti 9g9 ig
e u i 9g9,i 8g8&

2Ti 9g9,i 8g8
h u ig,i 9g9&] ~28!

Ĥcoulu ig,i 8g8&5wcoul~ ig,i 8g8!u ig,i 8g8&, ~29!

where

Ti 9g9 ig
e

5(
e

Ee^ i 9g9ue&^eu ig&,
~30!

Ti 9g9 i 8g8
h

5(
h

Eh^ i 9g9uh&^hu i 8g8&.

The single-particle eigenstates and eigenenergies are ne
as input in this formulation. They are obtained here fro
diagonalizing the tight-binding Hamiltonian. Using
‘‘hyper-checkerboard’’ decomposition,23 which is a generali-
zation of the standard checkerboard decomposition44 to full
matrices, the short-time propagator becomes

e2 iĤ dt/\5Ûo
e~dt!Ûo

h~dt!Ûcoul~dt!,

Ûo
e~dt!5P$~ ig!<~ i 9g9!; i 8g8%û

e~ ig,i 9g9; i 8g8!,
~31!

Ûo
h~dt!5P$~ i 8g8!<~ i 9g9!; ig%û

h~ i 8g8,i 9g9; ig!,

Ûcoul~dt!5P$ ig,i 8g8%ûcoul~ ig,i 8g8!,
-

ce

re

,

g
nd
as
n

d

ded

where furtherO(dt2) corrections have been neglected. T
action of the binary evolution operatorsû on a two-particle
state in the site local basis is given exactly by

ûcoul~ ig,i 8g8!u ig,i 8g8&

5cos@wcoul~ ig,i 8g8!dt/\#u ig,i 8g8&

2 i sin@wcoul~ ig,i 8g8!dt/\#u ig,i 8g8&,

ûe~ ig,i 9g9; i 8g8!u ig,i 8g8&

5cos~Ti 9g9 ig
e dt/\!u ig,i 8g8&

2 i sin~Ti 9g9 ig
e dt/\!u i 9g9,i 8g8&, ~32!

ûh~ i 8g8,i 9g9; ig!u ig,i 8g8&

5cos~Ti 9g9 i 8g8
h dt/\!u ig,i 8g8&

2 i sin~Ti 9g9 i 8g8
h dt/\!u ig,i 9g9&.

Each of these binary evolutions constitutes one elemen
step in the hypercheck-board propagation.Ûcoul(dt) is diag-
onal in the u ig,i 8g8& basis, and so provides only a pha
factor, to be evaluatedM2 times, whereM is the total num-
ber of orbital basis functions defined earlier. In contrast, m
tiplying r̂ ueh& by Ûo

e(dt) and Ûo
h(dt) are bothM3 opera-

tions. These therefore constitute the limiting steps in
algorithm. An alternative basis set is$ueh&%. Ĥo is diagonal
in this basis, but computingÛcoulueh& now becomes anM4

operation.~The same would apply to the action of the pr
jection operatorsP̂ on Ĥcoul, which we have neglected here!
The orbital basis set is therefore more efficient.

III. RESULTS

A. Full absorption spectra: real-time calculation

Figures 1–3~a! show the real-time two-particle absorptio
spectrae2(v) for N541-, 83-, and 147-atom nanocrystal
The nanocrystals are constructed by sequentially add
shells about a central atom, and therefore have tetrahe
symmetry. These crystallites have thesp3s* parametrization
of Ref. 18 and have truncated surfaces, i.e., dangling orb
are eliminated from the basis. A 30-meV half-width filter h
been applied. Figure 1~a! also plots the two-particle spectrum
obtained from diagonalizing the entire 41-atom, two-parti
Hamiltonian~Sec. II C!, the largest such Hamiltonian whic
can be fully diagonalized. The real-time propagation and
agonalization results are in very good agreement, dem
strating that one can with validity neglectP̂ in the short-time
propagator in Eqs.~29! and ~31! for these Si nanocrystals.

The lowest-energy structure is the exciton peak. It is p
gressively redshifted as the cluster size increases and q
tum confinement effect decreases. The time-independentcal-
culation ~Sec. III B! predicts first peaks at frequencies 3.0
2.58, and 2.24 eV for the 41-, 83-, and 147-atom nanocr
tals respectively. They compare well with the first peak
3.06 eV in Fig. 1, and the first shoulder at 2.60 eV in Fig.
respectively. The first exciton structure of the 147-atom cl
ter is not resolved. The single-particle absorption spectra
shown in Figs. 1–3~b!. The lowest non-interacting two
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56 7461ELECTRON-HOLE INTERACTIONS IN SILICON . . .
particle energy levels are at 3.36, 2.79, and 2.41 eV, res
tively, for the three sizes. The Coulomb corrections to
exciton energy are therefore approximately 0.33, 0.20,
0.17 eV. These corrections were shown previously to be
good agreement with perturbative estimates.15,16 They in-
crease with decreasing nanocrystal size, due to the incre
overlap between the electron and hole wave functions.

Compared to the single-particle results, the two-parti
spectra are almost uniformly redshifted by the Coulomb c
rections to the band edge energy, i.e., by roughly 0.3,
and 0.15 eV over the whole energy range. This implies t
the Coulomb interaction is perturbative over most of t
spectrum. The strong peak at 4–5 eV is the exception. La
changes in the spectral envelope are observed, with abs
tion intensities shifting to lower frequencies by up to 1 e
The zeroth-order states are extensively mixed in this h
density-of-states regime, and perturbation theory is no lon
valid. Oscillator strengths are large among electron and h
wave functions that exhibit large overlap. Not coincidenta
it is these states that also experience the strongest Cou
interactions. This explains the qualitative changes in spec
line shape in this region.

The two-particle spectra for the three sizes have sim
shapes, indicating that a convergence to bulklike behavio
rapidly obtained even for clusters of 41–147 atoms. Hig
energy absorption spectra (v.3 eV) for small crystallites
have been reported, and this rapid convergence is als
evidence in that experimental work.45 As silicon is an

FIG. 1. e2(v) for the 41-atom~5.8-Å radius! Si nanocrystal
with truncated surface, in arbitary units.~a! With Coulomb interac-
tion. Solid line—real-time calculation; dotted line—diagonalizati
of two-particle Hamiltonian. The arrow indicates the exciton pe
~b! Without Coulomb interaction~i.e., diagonalization of a single
particle Hamiltonian!. The arrows indicate the indirect and dire
bulk band gap, 1.17 and 3.43 eV, respectively.
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FIG. 2. e2(v) for the 83-atom~7.35-Å radius! Si nanocrystal
with truncated surface.~a! With Coulomb interaction.~b! No Cou-
lomb interaction. The symbols are as in Fig. 1.

FIG. 3. e2(v) for the 147-atom~8.9-Å radius! Si nanocrystal
with truncated surface.~a! With Coulomb interaction.~b! No Cou-
lomb interaction. The symbols are as in Fig. 1. In panel~a!, the
exciton peak~arrow! is not resolved.
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7462 56KEVIN LEUNG AND K. B. WHALEY
indirect-gap material, atT50 there is no bulk absorption a
the band gap energy of 1.17 eV, and the onset of bulk
sorption is at the direct-band gap value of 3.43 eV. Howev
in the finite-size crystallites there is absorption below 2
because of the quantum confinement induced overlap of
electron and hole wave functions in reciprocal space.15,46The
spectral shift due to the Coulomb correction@compare Figs.
1~a! and Fig. 1~b!# clearly enhances this increase in abso
tion. Thus, despite being perturbative in magnitude, the C
lomb term has a significant effect on the sub-direct-gap
sorption.

Table I tabulates the values of the static dielectric c
stantses obtained for crystallites with and without the Co
lomb interaction included, and with various surface termin
tions. ~a! es

c : surface-truncated crystallites with Coulom
interactions, computed via Eq.~26!; ~b! es

o : surface-
truncated crystallites, without Coulomb interactions, co
puted via Eq.~15!; and~c! es

H : hydrogen-terminated crysta
lites, also without Coulomb interactions, computed via E
~15!. The general trend of decreasinges with decreasing
cluster size already noted in Ref. 3, and expected from
simple consideration of the effect of finite-size confinem
on a distance-dependent dielectric function discussed ab
~Sec. I and Ref. 30!, is evident in all three instances. Add
tional trends are also apparent here. We see thates

c2es
o;1,

but that es
c is systematically larger by;10%. Thus the

electron-hole attraction, neglected ines
o , gives rise to a no-

ticeable increase ines . A similar effect was seen for very
small crystallites in the EMA calculations of Ref. 4, but he
it is evident even for the 8.9-Å-radius crystallite. The seco
systematic feature is thates

H2es
o;2. This is of the same

order as the surface contribution estimated in Ref. 3
spherical clusters of similar size, and demonstrates that
surface termination can strongly affect the screening,
though the main contribution to the reduction ines below its
bulk value (es511.4) does come from the confinement.
addition to recognizing the size dependence of dielec
screening in nanocrystals, it is clearly important to real
also that values ofes computed using different approxima
tions are strongly parametrization dependent.3

B. Fine structure near band edge: time-independent calculation

In the absence of spin-orbit coupling, the Hamiltoni
matrix in Eq. ~24! is block diagonal, and the two-particl
states are unambiguously singlets and triplets. Figure 4 p
the Coulomb and exchange energies which are obtained
a restricted basis diagonalization of the singlet and trip

TABLE I. Static dielectric constants forsp3s* parametrized
nanocrystals.es

c : surface-truncated crystallites with Coulomb inte
action, Eq.~26!; es

0: surface-truncated crystallites, without Coulom
interaction, Eq.~15!; es

H : hydrogen-terminated crystallites, withou
Coulomb interaction, Eq.~15!.

Cluster radius~Å! 5.8 7.35 8.9

es
c 7.64 8.28 9.54

es
0 6.86 7.57 8.63

es
H 8.89 9.39 10.28
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manifolds, respectively. The Coulomb energy is defined
the difference between the lowest triplet two-particle st
and the single-particle band gap, whileh, the exchange en
ergy, is the splitting between the lowest singlet and trip
levels. Two sets of data are shown, corresponding to
different surface terminations:~a! sp3s* with truncated sur-
face ~crosses!, and~b! sp3s* with hydrogen-terminated sur
face ~circles!. The Si-H parameters are taken from Ref. 1
These results were obtained with nearest-neighbor excha
terms in the local orbital basis included. Also shown are
EMA estimates of Ref. 4~solid and dashed lines! and the
empirical pseudopotential results from Ref. 19~pluses!.

We first discuss the Coulomb energies. These are r
tively insensitive to the incorporation of nearest-neighbor
change terms in the local orbital basis: only a 2% or le
change results from adding these terms to the calculat
The Coulomb energies computed here are 35% smaller
those derived from the multiband EMA treatment~solid
line!.4 A significant overestimation of Coulomb energies
simple~single band! EMA has been noted recently in a com
parison of perturbative estimates between EMA and pseu
potential calculations,19 where the difference was assigned
errors in the EMA wave functions, both at the local a
envelope-function level. Given this, the similarity evident
Fig. 4 between the perturbative pseudopotential results

FIG. 4. Coulomb and exchange energies for two tight-bind
cluster models. Crosses—sp3s* parameters with truncated surfac
circles—sp3s* parameters with a hydrogen-terminated surface. T
upper sets of data are Coulomb energies, while the lower sets
tain to exchange. The solid and dashed lines are the Coulomb
exchange interactions calculated with multiband EMA in Ref.
Pluses refer to pseudopotential perturbative results of Ref. 3. In
exchange energies~h in meV! vs a3, wherea is the radius on a
base 10 logarithmic scale. Symbols and dashed line as in the m
panel. The solid line shows the strong confinement scaling beha
h}a23 predicted by simple EMA.
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56 7463ELECTRON-HOLE INTERACTIONS IN SILICON . . .
Ref. 19 with the multiband EMA results of Ref. 4 is ve
interesting. Since the two calculations appear to use the s
size-dependent dielectric constant, this agreement, w
was not noted in Ref. 19, would appear to derive from
multiband nature of Ref. 4. Now comparing our curre
tight-binding results with these prior calculations, we no
first that the Coulomb energies do not appear to be sens
to the small differences in effective dielectric constant for
two different surface terminations~a! and ~b! ~see Table I!,
and thus the smaller Coulomb energy obtained here is p
ably not attributable to the use of the dielectric functi
rather than the simpler dielectric constant description
Refs. 4 and 19. The lower values we find appear to de
rather from the use of the Ohno formula to approximate o
site Coulomb integrals, rather than a point-charge appr
mation as was used in Ref. 12~see the Appendix!. The latter
gives systematically larger values of all off-site Coulom
integrals, and therefore results in a larger Coulomb ene
since this is dominated by the Coulomb integrals~unlike the
exchange energy, as discussed in the Appendix!.

The exchange energies of the truncated~a! and hydrogen-
terminated~b! nanocrystals differ somewhat more than t
Coulomb energies, by approximately 10–40%, but the
ference is not systematic. It appears to arise from subtle
ferences in the confinement of the electron and hole w
functions to which the exchange energy is more sensi
than the Coulomb energy. While not excessively large,
nevertheless indicates that the surface has a noticeable e
on the exciton fine structure, even for nanocrystals of rad
15 Å, despite the fact that the band-edge wave functi
have virtually no population in the hydrogen ligand orbita
themselves. At nanocrystal radius;12– 14 Å, the tight
binding configuration interaction energies are in reasona
agreement with the multiband EMA results of Ref. 4.
smaller sizes the EMA exchange energies are marke
larger. When the crystallite radius drops below 5 Å, t
EMA erroneously predicts that exchange energies exceed
Coulomb energies. Therefore such treatment is not adeq
for small crystallites. In the inset of Fig. 4 we show a co
parison with the h}a23 scaling behavior predicted b
simple EMA in strong confinement, wherea is the linear
dimension of the nanocrystals. While the tight-binding
sults show this scaling to be valid to a good approximati
the multiband EMA results of Ref. 4 do not showh}a23

scaling at all over the size range shown in Fig. 4. As m
tioned above, the data shown in Fig. 4 were computed w
both on-site and nearest-neighbor exchange integrals.
resulting exchange splittings agree with the perturbative
sults of Ref. 19 to within 25–40%~Fig. 4!. Omitting the
nearest-neighbor exchange integrals decreases the bar
change interactions by roughly a factor of 2.

Spin-orbit coupling mixes singlet and triplet states.
Figs. 5–8 we plot the fractional singlet character, defined
u^ f u00&u2, for each exciton stateu f & of hydrogen-coated
nanocrystals with thesp3s* parameterization, containing u
to N51285 atoms. Also shown are the radiative recombi
tion rates for each state,47

1/t f G5
4ne2Ef G

3 ur f Gu2

3\4c3 , ~33!
me
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wheren52.6 is the bulk refractive index, andc is the speed
of light. The radiative lifetime,t f G , is thus inversely propor-
tional to the oscillator strength. The density of states is qu
complex, with many states lying extremely close to ea
other, their degeneracies now lifted by the small spin-or
couplings. Nevertheless, in all cases, the first few levels
dark and predominantly triplets. States with appreciable s
glet character are blueshifted with respect to the band e
by roughly h, which therefore retains its significance as
exchange splitting. This is particularly apparent in the bro
ened absorption spectra, which exhibit first peaks or sho
ders betweenvo10.5h and vo1h. These results contras
with Ref. 12, which finds that, for high-symmetry crysta
lites, pure triplet states are completely destroyed by sp
orbit coupling. We attribute the difference to the fact th
unlike Ref. 12, we do not screen the electron-hole excha
interaction4 ~see the Appendix!, and that we also incorporat
the contributions from nearest-neighbor exchange integr
As a result, we obtain larger values ofh, which helps pre-
serve the triplet character of band-edge states. Note tha
cause of the mixing due to spin-orbit coupling, the first st
with appreciable oscillator strength does not lie at exac
vo1h, in contrast to the assumption implicit in the pertu
bative treatment of Ref. 19, which omitted the spin-or
coupling.

The line spectra in Figs. 5–8~a! show that the band-edg

FIG. 5. Fine structure for the 147-atom~8.9-Å radius! hydrogen-
terminated Si nanocrystal. From top to bottom:~a! logarithm of
radiative recombination rate, 1/t; ~b! percent singlet character;~c!
e2(v) ~arbitrary units!. Shorter-lived states have larger values
log(1/t). The line spectrum in~c! has been broadened with
Gaussian function of half-width 2.5 meV. Frequencies are meas
with respect to the lowest two-particle level, i.e.,vo51.907 eV.
h50.050 eV~arrow! for this nanocrystal.
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7464 56KEVIN LEUNG AND K. B. WHALEY
triplets have lifetimest f G which are roughly 1–3 orders o
magnitude larger than those of the bright states. This in
cates that a two-~or in some cases, three-! state model7 is
adequate, even for ‘‘spherical’’ crystallites. The radiati
lifetimes for the low lying bright states at the band edge
1026– 1023 s. In Fig. 9~a!, we further analyze the lifetime
by calculating the recombination ratest f G

21 for two or three
prominent, well-separated peaks or shoulders, at frequen
(v2vo) less than or of orderh. These are categorized a
‘‘bright’’ or ‘‘dark’’ states, depending on whether their en
ergies are at least;0.4h above the band edge or not. Th
plots verify that the lifetimes of these two categories lie
two separate bands, and are separated by factors of 101– 103.
Our bimodal distribution oft f G

21 is qualitatively similar to the
results of Ref. 12 fornonsphericalnanocrystals. Howeve
the decay rates obtained in Ref. 12 are consistently sma
and the lifetimes correspondingly longer~see also compari
son with experiment below!. The bands would collaps
into one if the exchange interactionĤex were
omitted. The line spectra for surface-truncated crystall
~not shown! are qualitatively similar. However, for larg
~.12 Å radius! crystallites, the radiative lifetimes fo
surface-truncated crystallites are about ten times larger
their hydrogen-coated counterparts@see Fig. 9~b!—t21 is
systematically smaller#, and the demarcation into bright an
dark bands is less obvious. For both surface terminations
oscillator strengths generally decrease as the nanocrysta
creases in size, in agreement with the predictions of EM
and with experiments.1,2,4

FIG. 6. Fine structure for the 363-atom~12.0-Å radius!
hydrogen-terminated Si nanocrystal. Symbols are the same a
Fig. 5. See Fig. 5 for definitions.vo51.627 eV andh50.023 eV
for this nanocrystal.
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Comparison between our theoretical and t
experimental8,48 exchange splittings for the hydrogen
terminated crystallites is made in Fig. 10~a!, and between
theoretical and experimental8 radiative lifetimes in Fig.
10~b!. The exchange splittings for crystallites with rad
>8.9 Å are seen to agree with the ‘‘variable temperaturet’’
estimates of Ref. 8. The latter are obtained by fitting
exchange splitting needed to reproduce the temperature
pendence of the radiative lifetimes to a two-level mode8

These estimates are larger than the Stokes shifts observ
photoluminescence measurements~onset measurements!.
Figure 10~b! shows that, for this size range, our calculat
radiative lifetimes for both bright and dark bands are gen
ally within an order of magnitude of the experimental value
The improved agreement relative to the prior tight-bindi
study which found lifetimes between 101 and 103 times that
of the experimental values12 is assigned to the improve
treatment of exchange. For the smaller crystallites, oscilla
strengths of the band-edge states can become strongly de
dent on crystallite size and shapes, yielding a large scatte
radiative lifetimes.4,46 Quantitative comparisons shoul
therefore not be made in the present context.

IV. CONCLUSION

In this paper, we have demonstrated that the real-t
propagation method previously used to study the density
states and exciton binding in nanocrystals15–17,23 can be
adapted to compute the entire absorption spectrum and
lated properties such as the static dielectric constant. N

in

FIG. 7. Fine structure for the 729-atom~15.2-Å radius!
hydrogen-terminated Si nanocrystal. Symbols are the same a
Fig. 5. See Fig. 5 for definitions.vo51.472 eV andh50.011 eV
for this nanocrystal.
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56 7465ELECTRON-HOLE INTERACTIONS IN SILICON . . .
perturbative features are successfully treated with
method, although it is not optimal for studying fine-structu
effects. Using a restricted subspace diagonalization, we h
then analyzed all the fine-structure effects, including C
lomb, exchange, and spin-orbit contributions. The curr
calculation differs from previous tight-binding studies in t
incorporation of nearest-neighbor exchange contributio
and in distinguishing the screened the electron-hole Coulo
terms from the unscreened electron-hole exchange te
The size dependence of the Coulomb and exchange inte
tions in silicon nanocrystals is shown to agree qualitativ
with EMA estimates, although they differ in detail, esp
cially at small sizes. Unlike EMA, the current results sho
that the exchange splitting scales asa23 over a large size
range. For nanocrystals of diameters up to;36 Å, the spin-
orbit effects are small compared to exchange splittings,
the singlet-triplet character profiles and radiative lifetim
computed in this work are qualitatively consistent with t
two-state~triplet-singlet! model explanation of luminescenc
experiments in porous silicon. This indicates that nonsph
cal shapes may not be necessary for explaining the lumi
cence lifetimes in porous silicon, which consists of nanos
domains of up to;31 Å in diameter.49 Comparison with
experiment shows that reasonable radiative lifetimes are
tained for the hydrogen-coated crystallites, although a qu
titative computation would require that phonon-assis
pathways also be examined.46 The improved agreement ob
tained relative to previous tight-binding results is assigned
the improved treatment of exchange here. Surface-trunc

FIG. 8. Fine-structure calculation for the 1285-atom~18.3-Å
radius! hydrogen-terminated Si nanocrystal. Symbols are the s
as in Fig. 5. See Fig. 5 for definitions.vo51.374 eV and
h50.0075 eV for this nanocrystal.
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crystallites exhibit radiative lifetimes somewhat larger th
their hydrogen-terminated counterparts. Other effects
may affect the optical properties of silicon nanocrystal ex
tons are phonon-induced Stokes shifts,4,12 the possible exis-
tence of luminescent surface state,50 and finite-size correc-
tions to the dielectric function~which appear to be small fo
nanocrystal radius larger than 6 Å!.30
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APPENDIX: COULOMB AND EXCHANGE INTEGRALS
AND SCREENING

The tight-binding calculation is cast in the (sp3)4-s* ba-
sis. The Coulomb and exchange integrals in this local orb
basis, Eqs.~19! and ~20!, are ^spp

3spq
3u(1/r )uspp

3spq
3& and

^spp
3spq

3u(1/r )uspq
3spp

3&, wherep andq label the four hybrid-
ized orbitals. These matrix elements are most convenie
calculated in the $3s,3px ,3py ,3pz ,4s% Cartesian basis
which we compute using the Slater-Koster orbital wa
functions for silicon.51 The interactions between hybridize
orbitals are then expressed in terms of these Slater-der

e

FIG. 9. Radiative decay rates~inverse lifetimes! of selected
band-edge states, with thesp3s* tight-binding parameterization.~a!
Hydrogen-terminated crystallites.~b! Surface-truncated crystallites
Crosses—bright band; circles—dark band. The demarcation of
bands, indicated by the dashed lines, is approximate, and states
lifetimes larger than one second are not shown.
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integrals, after discarding terms that involve more than t
distinct atomic orbitals.

Coulomb and exchange matrix elements both contai
mixture of Coulomb and exchange integrals. Screening
the electron-hole interaction arises from polarization of
remaining electrons in the valence band by the electron-h
pair. Following Ref. 4, only the Coulomb matrix elemen
^e8h8uĤcoulueh& are screened; the exchange matrix eleme
^e8h8uĤexueh& are unrenormalized~Ref. 4; and see discus
sion below!. Screening is accounted for here using a diel
tric function e(r ) taken from Ref. 27. For integrals contrib
uting to the exchange matrix element,^e8h8uĤexueh&, e(r )
is then replaced by unity.

On-site Coulomb and exchange integrals are calcula
directly if no screening is required. When screening is
quired, the on-site integrals can be evaluated by Fou
transforms. Thus, for example, Fourier transformation of

wcoul~ i3s,i3s!5E dr1dr2

r3s~r 1!r3s~r 2!

e~ ur 12r 2u!ur 12r 2u
~A1!

yields a one-dimensional integral in the reciprocal spa
Since the precise magnitude of the on-site screening is
crucial to the results, for simplicity we therefore use t
same approximation employed in Ref. 12, and scale all
screened on-site integrals bywcoul( i3s,i3s)/wcoul

o ( i3s,i3s)
'0.2 in ^e8h8uĤcoulueh&, where wcoul

o ( i3s,i3s) is the un-
screened 3s-3s integral.

FIG. 10. Comparison of exchange splittings and radiative l
times derived from the tight-binding theory and from resonan
excited photoluminescence spectra~Ref. 8!. ~a! Exchange splitting.
Crosses—theory~hydrogen-terminated crystallites!; triangles—
variable temperaturet measurement~see text!; filled circles—onset
measurement.~b! Radiative lifetimes. Crosses~theory! and triangles
~Ref. 8!—bright band; circles~theory! and filled circles~Ref. 8!—
dark band.
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Coulomb integrals which are centered on two differe
atoms are estimated using the Ohno formula40,41

wcoul~ ig,i 8g8!

5
1

e~ ur i2r j u!
14.397~eV!

F S 14.397

wcoul
o ~ ig,ig8!

D 2

1~r i2r j !
2G 1/2.

~A2!

Since the only orbital dependence here derives from the
site termwcoul( ig,i 8g8) which is the same for all pairs o
sp3-hybridized orbitals, Eq.~A2! implies an orientation av-
erage over the two-centered integrals betwe
sp3-hybridized orbitals on different atoms.@Note that this
description results in a distinction between off-site Coulom
terms involvingsp3 and s* orbitals, which is absent in the
simpler point charge approximation made in Ref. 12. Sin
in thesp3s* model the conduction states near the band e
have relatively larges* character (;35%s* ) the resulting
Coulomb energies are lower than would be obtained wit
uniform (sp3) value for the off-site Coulomb integrals. W
note also that for a given dielectric function, the magnitu
of the off-site Coulomb integrals resulting from Eq.~A2! is
less than the value obtained with a point charge approxi
tion ~by 10–30%!.# For unscreened exchange integrals ce
tered on two different atoms, a multidimensional Four
transform is applied to the productf ig(r )f i 8g8(r ), and then
the exchange integral is evaluated in Fourier space, in a m
ner similar to the calculation of on-site Coulomb integrals
Ref. 12. The largest contributions come from integrals t
involve thes orbital and/or thep orbital along the bonding
axis, and all other interactions are therefore neglected. W
such exchange integrals occur in Coulomb matrix eleme
screening is applied via the on-site rescaling factor allude
above.

The resulting unscreened on-site Coulomb and excha
integrals in thesp3s* basis are listed in Tables II and Table
III, respectively, and the unscreened nearest-neighbor
change integrals are listed in Table IV. The electron-h
Coulomb matrix elementŝe8h8uĤcoulueh& are dominated by
the on-site and off-site Coulomb integrals. Exchange con
butions to the electron-hole Coulomb matrix elements
negligible in comparison. The electron-hole exchange ma
elementŝ e8h8uĤexueh& are dominated by the exchange co
tributions in Tables III and IV, and by some on-site Coulom

-

TABLE II. On-site Coulomb integrals~unscreened! in the
sp3s* orbital basis, in units of eV. The four hybridizedsp3 orbitals
are uspa

3&5
1
2 (us&1upx&1upy&1upz&), uspb

3&5
1
2 (us&1upx&2upy&

2upz&), uspc
3&5

1
2 (us&2upx&1upy&2upz&), and uspd

3&5
1
2 (us&

2upx&2upy&1upz&), respectively.

spa
3 spb

3 spc
3 spd

3 s*

spa
3 11.91 9.00 9.00 9.00 1.12

spb
3 9.00 11.91 9.00 9.00 1.12

spc
3 9.00 9.00 11.91 9.00 1.12

spd
3 9.00 9.00 9.00 11.91 1.12

s* 1.12 1.12 1.12 1.12 0.95
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integrals. We note that the precise magnitudes of these
grals may depend on the orbital basis employed to eval
them, here the Slater orbitals.

The issue of screening for the exchange interaction
actually quite complex. In the bulk, when expanded in Blo
functions, the exchange interactions can be subdivided
analytic and nonanalytic contributions, which correspond
proximately to the short and long-range component resp
tively, of an expansion in Wannier functions.52 The short-
range ~‘‘analytic’’ ! part of the exchange matrix elemen
should be unscreened53 ~see, however, Ref. 54!. ~A minor
point here is that, strictly speaking, this requires that
‘‘electron’’ and ‘‘hole’’ states be eigenstates of the singl
particle Hamiltonian. The perturbative treatment of the sp
orbit coupling introduces an inconsistency here in princip
but as noted earlier the effect of the perturbation is we
enough that this may be neglected.! However, the ‘‘nonana-
lytical’’ portion, which includes the long-ranged term i
Eq. ~22! minus contributions from a ‘‘core region,’’ shoul

TABLE III. On-site exchange integrals~unscreened! in the
sp3s* orbitals basis, in units of eV. The foursp3-hybridized orbit-
als have been defined in the captions of Table II.

spa
3 spb

3 spc
3 spd

3 s*

spa
3 11.91 0.73 0.73 0.73 0.00

spb
3 0.73 11.91 0.73 0.703 0.00

spc
3 0.73 0.73 11.91 0.73 0.00

spd
3 0.73 0.73 0.73 11.91 0.00

s* 0.00 0.00 0.00 0.00 0.95
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actually be screened just like the Coulomb matrix e
ments.52,55,56In Ref. 4, a subset of the long-range nonanaly
cal exchange vanishes identically due to the symmetry of
spherical nanocrystals considered therein. We have fo
that, for large crystallites, screening the long-ranged term
Eq. ~22! modifies the bare exchange splitting by less th
10%. The correction is nonsystematic, varies in sign, a
strongly depends on the size of the ‘‘core’’ region whe
screening is excluded. The splitting between the first bri
and first dark states in the presence of spin-orbit coupli
depicted in Figs. 5–8, is less affected, and there is essent
no effect on the radiative lifetimes~Sec. III B!. The effect of
this screening on crystallites of less than 100 atoms is m
significant. Since the effect of this long-range screening
small for the cluster sizes of concern here, we have left
contributions to the exchange matrix elements unscreene

Another issue for the exchange interaction is the con
bution of the ‘‘dipole’’-like terms that arise from going be
yond the pairwise overlap approximation in Eq.~22!. Such
dipole interactions allow the exciton to propagate in bu
crystals.25 These terms contribute less than 0.5 meV for t
small crystallites studied herein even when unscreened,
decreases with crystallite sizes.

TABLE IV. Nearest-neighbor exchange integrals~unscreened!
for the sp3 orbitals in units of eV.

Atom 1: bonding Atom 1: nonbonding

atom 2: bonding 2.120 0.617
atom 2: nonbonding 0.617 0.174
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