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The size of absolute band gaps in two-dimensional photonic crystals is often limited by band degeneracies
at the lattice symmetry points. By reducing the lattice symmetry, these degeneracies can be lifted to increase
the size of existing photonic band gaps, or to create new gaps where none existed for the more symmetric
structure. Specifically, symmetry reduction by the addition of different diameter rods into the unit cell of
two-dimensional square latticésaue group 4nm) is explored. This approach is especially useful in opening
absolute band gaps in structures of dielectric rods in air, which are more easily microfabricated than a crystal
of air columns in a dielectric background. Symmetry reduction offers a rational approach for exploring and
designing new photonic crystal structurfS0163-182607)03736-3

I. INTRODUCTION microfabricating three-dimension#BD) crystals with full
photonic band gaps using standard photolithographic and
The past decade has witnessed the start of an exciting neetching techniques has been propoSéabrication of such
field in optoelectronics. The first assertion in 1987 that perismall features is exceedingly difficult. Perhaps for this rea-
odic dielectric structures could be made to possess a photsen attention has been drawn towards two-dimensi@ial
nic band gap®>—a region of the frequency spectrum where lattice structures, where fabrication requirements are not as
propagating modes are forbidden—has captured the imaginatringent. Several groups have successfully fabricated 2D
tions of researchers around the world. A photonic band gaprystals with near-IR band galys'* and even visible fre-
is analogous to an electronic band gap in semiconductorgjuency gaps®
this analogy bears promise for photonic crystals to impact Although 3D photonic crystals suggest the most interest-
optical device applications as semiconductors have done fdang ideas for novel applications, 2D structures could also find
electronics. several important uses, as a result of their strangular
Much of the interest surrounding photonic crystals stemgeflectivity properties over a wide frequency band. For ex-
from their ability to provide frequency-mode control of light ample, 2D photonic crystals with absolute band gaps provide
propagating through them. This property gives photonica large stop band for use as a feedback mirror in laser
crystals the potential to greatly improve the efficiency ofdiodes!® an improvement over traditioné&bne-dimensional
optoelectronic devices. For example, radiation losses in highBragg reflectors.
Q resonance cavities can be reduced by embedding the cav- The larger a photonic band gap is, the greater the forbid-
ity in a photonic crystaf. Frequencies that fall within the den region of the frequency spectrum. Thus, it is essential to
photonic band gap are exponentially attenuated with no ahidentify and design crystal structures which possess the larg-
sorption. The use of an entirely dielectric medium also pro-est photonic band gaps for a given dielectric contrast ratio.
vides an improvement over traditional metallic shieldingFor two different crystals possessing absolute band gaps of
methods, where high losses reduce their usefulness at opticajual size, it may be advantageous from a fabrication stand-
frequencies. Fine control of frequency propagation may bgoint to choose the one that has the band gap occurring at the
obtained through the introduction of “defect” modéecal-  higher nondimensionalized frequenaya/27c, wherew is
ized frequency modegsnto the gap, which channel emission the frequencya is the lattice constant, armlis the speed of
to one or a few select frequenci&s.Photonic defect modes, light in vacuum. For a given filling fraction, the feature size
most easily formed by blocks of dielectric material insertedscales witha; thus, the crystal with the highewa/27c
into or removed from the photonic crystal, could lead toshould be easier to fabricate. But how does one sift through
thresholdless solid-state lasers and more efficient solar cellthe countless geometrical arrangements to select manufactur-
Many three-dimension@t® and two-dimensionaP='  able structures with large band gaps in the desired frequency
photonic crystals with band gaps in the microwave regiornregime? Theoretical calculations are indispensable, albeit a
have been fabricated. For the most promising applicationdprmidable task in view of the numerous structures to model
however, it is desirable to have photonic gaps at visible tawith many variational parametefg.g., lattice type, filling
near-infraredIR) wavelengths. The frequency at which the fraction, shape of filling elementA rational approach to-
band gap occurs is directly related to the size of the scattewards the design of photonic crystals is needed, rather than
ing elements comprising the lattice. Specifically, the size obrute-force computation.
the features must be of ordef2, where\ is the wavelength Photonic crystals are most valuable when they possess an
at which the gap occurs. A photonic crystal with a band gambsoluteband gap, where propagating modes are forbidden
in the microwave regime has lattice elements a few millimeregardless of wave polarization. Many crystals possess band
ters in size, but to achieve a band gap in the visible region ofjaps for some light polarizations, but these may not overlap
the electromagnetic spectrum requires precise fabrication ab produce an absolute band gap. Often this is a result of
lattice elements on the order éfum. Though a method for band degeneracies at points of high symmetry in the crystal,

0163-1829/97/5@.2)/73138)/$10.00 56 7313 © 1997 The American Physical Society



7314 CHERYL M. ANDERSON AND KONSTANTINOS P. GIAPIS 56

& O o __lo
O H o__
O

Q
O

O O
QQ QOOO

FIG. 1. The two-dimensional single-radites labeled A and
double-rod(sites A and B square structures, showing the unit cell
and the primitive lattice translation vectors. FIG. 2. The two-dimensional glide-symmetry square lattice,

with the unit cell indicated. The rod arrangements may be rotated
which prevent gaps from opening. In some cases the degehy varying the angle to obtain various structures.
eracy can be lifted by reducing the crystal symmetry. Con-
sider for example the 3D face-centered-cubic lattice with A different structure can be obtained by the overlay of
spherical dielectric “atoms,” which does not possess an abanother square lattice with rods of diametigron top of the
solute photonic band gdp.By decreasing the symmetry of Single-rod square lattice, as shown by the index B rods in
the lattice through the introduction of a two-point basis setFig. 1. The added structure has the same lattice conatant
(which produces the diamond latticea degeneracy in the but is displaced with respect to the first lattice by 3 (&
bands is lifted and a full photonic band gap is obtaiheth ~ +a,). This arrangement forms a new lattice wheyw d,,
two-dimensional photonic crystals, a similar idea of IatticeWhiCh is termed the “double-rod square lattice.” Both the
symmetry reduction has also been effective in producingingle-rod and double-rod square lattice structures have the
larger band gap¥ Here, we present a more complete de-Symmetry of the plane group4mm and all of the rod sites
scription of symmetry reduction in Laue groémmlattices. have4mmsymmetry(i.e., fourfold rotation and mirror planes
along the two principal symmetry axe’S However, the
symmetry is changed slightly in the latter crystal structure, as
the smallest unit cell must now contain two rods. In either

There are three plane grougswvo-dimensional space case, the rods are all assumed to be made of the same dielec-
groups that comprise the square crystal famif4, p4mm  tric material and are embedded in a different dielectric back-
and p4gm®® The first belongs to the Laue group a rela-  ground. The ratio of the two rod diametess-d,/d; can be
tively low symmetry group that has four symmetry opera-varied to control the position and size of band gaps. The rod
tions. Each of the last two plane groups possesses eight syrdiameter ratio can have values from Ostpbut sinceg and
metry operations and together they form the Laue groug8 ! yield equivalent crystal structures, we examjhiealues
4mm Two-dimensional photonic crystals that have the sym-between 0 and 1 only. Note that at eith@=0 or 1, the
metry of the latter group will be the focus of the presentsingle-rod square lattice structure is recovered.
article. Such crystals are formed by circular cross-section There are several other ways in which one can reduce the
rods having a dielectric constaat, embedded in a different symmetry of the single-rod square structure. Consider the
background material with dielectric constant. The infi-  “glide-symmetry square lattice” as shown in Fig. 2. While
nitely long rods are assumed to be parallel tozhaxis, and  at first glance this structure might not appear to be more than
the cross section with the-y plane forms one of the group a random collection of rods, it belongs in the plane group
4mmlattices. There are several ways to arrange rods withi4gm thus possessing quite a large number of symmetry
the unit cell of such a lattice without departing from the operations. Each rod site hasm symmetry(a mirror plane
symmetry group. The simplest structughown by the rods off the principal axes The primitive unit cell is shown by
labeled with index A in Fig. )1 contains one rod in each the square outline. Varying the angle that the lattice elements
primitive unit cell, with the rod axes arranged on the latticeform with the primitive unit cell produces a whole class of

II. TWO-DIMENSIONAL SQUARE STRUCTURES

sites given by the vectors new structures. We define this angle of t#t, as the angle
between the line diagonal of the lattice elements andxthe
a(l)=1,a,+15a,. (1) axis, as illustrated in Fig. 2.

New structures can emerge from combining the two pre-
Herea; anda, are primitive lattice vectors and andl, are  vious ideas, i.e., increasing the number of rods in the unit
any two integers, collectively termdd For the coordinate cell and introducing the glide symmetry operation. Consider,
system shown, the primitive lattice vectors ag=a(1,0) for example, the overlay of this new glide-symmetry lattice
and a,=a(0,1), wherea is the lattice constant. The rods structure with the single-rod square lattice, such that the rods
occupying these sites all have diameder of the latter lie at the corners and center of the primitive unit
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cell. The single-rod square lattice elements have diameter
d;, and the rods associated with the glide lattice have diam-
eterd,. This complex structure combines two different rod
symmetries, with a total of six rods in each primitive unit
cell. We will show that even this type of symmetry reduction
can yield large absolute band gaps. The glide lattice, super-
imposed with the single-rod square lattice, gives two param-
eters that may be varied to maximize the absolute photonic
band gap: the ratio of the rod diameters for the two lattices
(B=d,/d;) and the tilt angled. We examines3 values rang-

ing from 0 to, sinceB and 8! no longer yield equivalent
crystal structures. In Fig. 3, three different periodic structures
that may be obtained by varyinjare shown. Ay=0° [Fig.

3(a)] the structure becomes the double-rod square lattice. We
also consider two other lattice positions, as shown in Figs.
3(b) and 3c) at angles of 18.4° and 45°, respectively.

lll. THEORY AND PHOTONIC BAND GAP
CALCULATIONS

The propagation of electromagnetic waves through dielec-
tric media is described by Maxwell's equations. These equa-
tions can be solved using a plane-wave expansion technique
to yield the electromagnetic frequency spectra of waves in a
periodic dielectric crystal! To begin, Maxwell’s equations
are combined to give the wave equation in terms of the mag-
netic fieldH
w2
CZ

1
—VXH|=

VX "y H, (2

wheree(x) is the position-dependent dielectric constants
the frequency, and is the speed of light in vacuum. The
magnetic fieldH(x) and the dielectric functior(x) can be
expanded in a sum of plane waves

Hx)=2 2 hyc&e ke &)
G \A=12

e(x>=§ k(G)e'®, (4)

wherek is the wave vector in the Brillouin zone a@lis a
reciprocal-lattice vector. The unit vectogs are magnetic
wave polarizations orthogonal t& { G) and the coefficients

h, ¢ are the corresponding components of the magnetic field.
The Fourier coefficient&(G) are defined in the usual man- (c)
ner by

FIG. 3. Two-dimensional square structures produced at filt

J e(x)e’i(G'X)dx (5) angles(a) 6=0°, (b) #=18.4°, and(c) #=45°. The arrangement

Acel in (a) is the double-rod structurg@4mm), shown with a larger unit
. L . cell. The arrows in(a) illustrate the direction of rotation—
where the integration is carried out over the afgg of one  ,ccompanied by lattice compression—that is performed to obtain
lattice unit cell. the glide-symmetry square latti¢group p4gm in (b). Further ro-

In two-dimensions, the vectoris+G always lie in the tation and compression produces the grpdmmstructure in(c).

plane of the rods. Therefore, the unit vectes e, must

either lie in the plane or along the axis. This property w2

allows us to rewrite Eq(2) as two simpler equations, each > (k+G)-(k+ G')n(G—G")hikie = ?hl,me,
describing a particular wave polarization. For the magnetic G’ ®)
field vector parallel to the axes of the ro$ polarization),

hox+c=0 for all k+G. Substituting the plane wave expan- where »(G—G') is a matrix found by inverting the
sions into the wave equation gives an eigenvalue problem «(G—G’) matrix of coefficients defined in E@5). By first

k(G)=

Ac(—:‘ll
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expanding the dielectric functiog(x) in a plane wave basis For the case of circular cross-section rods of raditisat
and then inverting the resulting matrix to obtapiG—G’'), do not overlap, the coefficients become
faster convergence to the eigenvalues of ).is achieved
than by direct plane wave expansionef!(x).%° feat(1—1 )ep, G=0,

For E polarization the electric field vector is parallel to «(G)= 2mrd1(Gr) i)
the rod axes anHi(x) is in the rod plane. Herl ;=0 for (€a— fb)z TAG © , G#0,
all k+G, yielding another eigenvalue problem: cel

€)

whereJ; is the first order Bessel function of the first kind
, , o andG=|G|. The summation is over all rods inside one unit
gf [k+Gl[k+G'|7(G—Ghyyre = ?thHG' @ cell with positions described by translation vectdrsmea-
) _ sured from the origin of the coordinate axes. For example,
Standard eigenvalue techniques are now used to solve Eggpnsider the glide-symmetry square lattice shown in Fig.
(6) and (7) to obtain the propagating wave frequencies forz(p). There are four rods in the unit cell, located at positions

2

the corresponding polarizations. o described by the translation vectors
In this formulation, all information pertaining to the ge-
ometry of the lattice is contained in the coefficient matix 3 1
or analogously th& matrix. This provides a very convenient T1—§a1+ §a2’ (109
solving routine, as the bulk of the solution “machinery”
remains in place, while only the coefficient matrix changes 1 3
with different crystal structures. T=—gatgd (10b
The integral in Eq(5) can be expanded and simplified to
give 3 1
Ts=—ga—ga&, (100
fe,+(1—1 ey, G=0,
G)= 1 . 8 1 3
«(G) (€5— €p) f e 1(GX¥dx, G=#0. ® T,=-a,— —ay. (100
Acell Arod 8 8
The integral in the second part is now over the rods only. Substituting these vectors into E) and simplifying
Here, f is the rod filling fraction, defined ab=A,qq/Acel - yields
|
fe,+(1—1 )ey, G=0,
k(G)= 471 (Gr) a a (11
(€a—€p) —3—=—| €08 5(391+0z) | +C08 5(9:-392) ||, G#O.
AcalG 8 8

Here g; and g, (integers, denoted collectively by) are IV. PHOTONIC BAND GAP RESULTS

components of the reciprocal lattice vector defined by We first examine the single-rod square lattice of air holes

in a different dielectric background:?*?*The dispersion re-
5 ) lation for a background material with dielectric constapt
_<T £m =11.4 (egans at \~1.5um) and a rod filling fraction off
Gl9)= 2z 91t 7 92%- (12 =0.77 isegﬁscwn in Figl.L4. The figure inse? shows the irre-
ducible portion of the Brillouin zone and the corresponding
lattice symmetry points. An absolute band gap does exist for
The results that follow were obtained using 729 planethis structure, which is produced by an overlap of itheand
waves for the single-rod square lattice, and 1225 plane wavdss band gap$?® It is bounded on the lower side by the
for the double-rod square lattice and the glide-symmetryH-polarization gap boundary, and on its upper side by the
square lattice. A greater number of plane waves was requireld-polarization gap. A summary of our calculations for the
to maintain accuracy for the latter cases due to a more consingle-rod square lattice is shown in the “gap map” of Fig.
plex unit cell arrangement. The results were tested using, where nondimensionalized frequencies are plotted as a
1757 plane waves, for which the band frequencies differedunction of the filling fraction. An absolute band gap appears
from those calculated with fewer plane waves by a maximunat filling fractions between 0.68—0.79, and has a maximum
of 0.8%. Most bands differed by less than 0.5%. Thus, wevalue of Aw=0.0188(2rc/a) at f=0.77.
believe that all of the results reported here are accurate to As the rod filling fraction nears the closed-packed condi-
within at least 1% of their true values. The results of thetion (f=0.785 for a square lattice of circular rod¢he rods
accuracy test also seem to suggest that band calculatioits the structure begin to touch and the absolute band gap
with significantly fewer plane waves will not meet the 1% quickly disappears. The frequency band plot of Fig. 6ffor
accuracy condition. =0.8 demonstrates that the size of the absolute band gap is
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FIG. 4. Frequency band plot for the single-rod square lattice of ~ FIG. 6. Frequency band plot for the single-rod square lattice of
holes (f=0.77) in a background dielectric e{=11.4). holes (=0.8) in a background dielectric ef=11.4).
E-polarization modes are shown by the solid lines, andE-polarization modes are shown by the solid lines, and
H-polarization modes by the dashed lines. The and E; gaps  H-polarization modes by the dashed lines. The absolute band gap
overlap to produce an absolute band gemsshatched regiorof  disappears at large filling fractions due to ldrpolarization band
width 0.0188(27c/a). degeneracy at lattice symmetry polvit

Aw=0.0548(2rc/a), this photonic band gap is neatlyree

limited because the second, third, and foustkpolarization
timeslarger than the best value obtained for the single-rod

bands are degenerate at tiepoint of the Brillouin zone. If .
this band degeneracy can be lifted while maintainjogin- ~ square lattice case.

creasing the size of theE-polarization gap, a larger absolute ~ Extensive calculations have shown that both the filling
band gap will ensue. By placing a smaller diameter rod at théraction and the size of the symmetry breaking element are
center of each square unit cékis shown in Fig. X the important factors in dictating which crystal arrangements
crystal symmetry is reduced. The effect of this symmetryWill possess absolute photonic band gaps. In Ref. 24, it was
reduction on the square lattice dispersion relation is shown ighown that the region of filling fractions where the rods be-
Fig. 7, where a rod with diameter ratj=0.16 has been 9in to touch or overlap is a critical region of the band gap
added to the structure for the same total filling fraction SPectrum, where many band gaps begin to close or open up.
=0.8. TheH-polarization degeneracy has been lifted, result-Furthermore, it was shown that a connected lattice arrange-
ing in a much largeH-polarization gap. Remarkably, the Mentwas important in the productionldfpolarization gaps.
upper E-polarization gap is also greatly enlarged. Thus, theThe introduction of small rods into the unit cell may work to
overlap between the two gaps increases, resulting in a muci{€ate larger absolute band gaps by increasing the total rod
larger absolute band gap. The gap map for the double-rofilling fraction to regimes where large gaps occur, without
square lattice whep=0.16 is shown in Fig. 8. The maxi- Suffering the consequences of disrupting the lattice connec-

mum absolute band gap for the double-rod square structur@ity- ) _
occurs when8=0.16 andf=0.793. With a gap width of Though we have managed to greatly increase the size of
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occurs atf =0.77 (indicated by the arrop

FIG. 7. Frequency band plot for the double-rod square lattice of
holes in background dielectricef=11.4), with f=0.8 and 8

FIG. 5. Gap map for the single-rod square lattice of air holes in=0.16. Reducing the lattice symmetry by introducing an additional
a background dielectrice,=11.4). An absolute band gap occurs rod into the unit cell lifts theH-polarization(dashed linesdegen-
where the upper two polarization gaps overlap. The maximum gagracy while maintaining a larg&-polarization (solid lineg gap,
resulting in a large absolute band gaposshatched region
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07 to the abundance of largé-polarization gaps, only a few
small H-polarization gaps exist. The largddtpolarization
0.6} gaps occur at high frequencies for valuesghear 1, but
> these do not overlap with arfy-polarization gaps. The larg-
& O5r est absolute gap for the double-rod case was found for a
\‘5 04 filling fraction of 0.33 andB=0.57. However, the gap is
= i fairly small, having a maximum width of Aw
e sl =0.0280(2rc/a) at a nondimensionalized midgap fre-
g quency of 0.752. Thus, other ways must be sought to reduce
8 02} the symmetry of the square lattice to find arrangements
w H-Polarization which yield larger absolute band gaps.
01} | E-Polarization The glide-symmetry structure witl=18.4°, shown in
[1 Both t Fig. 3(b), accomplishes a more severe symmetry reduction
0.000 oo oa 06 08 0 than that for the double-rod lattice, as mirror planes along

major symmetry axes have been eliminated. This symmetry
reduction opens several largepolarization gaps and yields
FIG. 8. Gap map for the double-rod square lattige=(0.16) of  three large absolute band gaps. Band frequency calculations
air holes in a background dielectrief=11.4), showing a signifi- ~for this structure were performed along the symmetry lines
cantly larger absolute band gap than that for the single-rod latticforming the edges of the irreducible 1/8 of the Brillouin
The maximum gap of 0.0548¢&/a) occurs at a filling fraction of zone. The existence of band gaps was confirmed by density
0.793(indicated by the arroy of states calculations using uniformly spadegoints in the
entire first Brillouin zone. The calculations are summarized
the absolute band gap for the square lattice arrangement 8F the gap map shown in Fig(9) at a filling fraction of 0.33.
holes in dielectric, the resulting structure may not be practi{n this figure, the single-rod lattice is recovered whgn
cal for device applications. The maximum absolute gap con=0. The lowest frequency gap occurs at intermediate values
dition has a very large filling fractiorf,=0.793. For a mid- Of 3, and is entirely limited by the size of th¢-polarization
gap wavelength of 1500 nrtnear-IR, the dielectric walls gap that opens inside an existifgpolarization gap. This
between adjacent holes will be as thin as 6 nm. The precisgap is formed by the overlap ¢fs andE;o gaps?® and has
microfabrication of such small features is extremely difficult.a maximum width of 0.0757(2c/a) at f=0.3 and g8
In fact, the results of several studies have shown that to oper 0.55. Two other absolute gaps form at and near the equal
an absolute photonic band gap in a crystal of air columns iod diameter condition. Théi-polarization gapgH;o and
a background dielectric requires the rod filling fraction toH14) share oneE-polarization gap E;g). The lower fre-
always be near the close-packed condifiéf.2’ Therefore, quency gap has a maximum width of 0.0744(Za) at f
if we are to identify photonic crystal structures which pos-=0.33 and B=1, while the upper gap maximum is
sess large absolute gaps and can also be easily fabricated, @®762(2rc/a) at f=0.33 andB=1.05. It is interesting to
must consider the opposite arrangement, namely that of dinote that similar gaps do not exist for the double-rod lattice
electric rods in air. It has been shoffithat for the single-rod  [Fig. Aa)]. An additional degree of symmetry reductitac-
square lattice, no absolute gaps occur for the case of dielecomplished through the introduction of the glide symmetry
tric rods in air due to the complete absence of anoperation was necessary to open the new absolute gaps. As
H-polarization gap. In addition, we have searched all fillingall three absolute gaps for the glide-symmetry lattice have
fractions of the double-rod square lattitgee Fig. 8a)] of  similar maximum widths, we can choose which gap to utilize
dielectric rods in air. A modified gap map for a filling frac- for experimental purposes. From a fabrication standpoint it
tion of 0.33 is shown in Fig. @), where nondimensionalized may be easier to utilize the highest frequency absolute gap.
frequencies are plotted as a function of the rod diameter rati6or equal size rods the filling fraction is given by
B. The band gaps for the single-rod square lattice are obf=nr?/a2, wheren is the number of rods in the unit cell.
tained whenB=0 or, equivalently, unity® Values of 3  Therefore, for a given filling fraction the rod radius scales
greater than 1 yield the same structures as thoge at The  with a, and is inversely proportional tgn. With six rods in
gap map is filled with many larg&-polarization gaps that each glide-symmetry lattice unit cell, it is especially impor-
open and close as the rod diameter ratio is varied. The gapiant to make the lattice parametgras large as possible to
tend to decrease in size at higher frequencies. An interestingcrease the smallest feature dimension. However, it has also
feature of this gap map is the presence of “defectlike” been shown that higher frequency gaps are more sensitive to
modes occurring between adjaceBtpolarization gaps at random lattice disorder than those at lower frequendies.
high frequencies and low values @ Three such defect Since the introduction of a certain amount of disorder during
modes are indicated by the horizontal arrows in the figure. Irfabrication is probable, especially for small-size features, this
each case, a narrow frequency band appears along the lengttay also affect the choice of absolute band gap.
of a seemingly singld&-polarization gap, splitting it in two Continuing the study of the symmetry reduction argu-
and creating the isolated mode. From a different perspectivenent, we have also examined the structure shown in Fig.
this observation could also be interpreted as follows: the twd(c). The primitive unit cell for this structure contains six
dissimilar rod sizes in the double-rod square lattice may actods, as does the previous case, but now the rods line up in
as a very regular pattern of defects, creating singular frediagonal rows §=45°). After searching all filling fractions
guency pass bands contained within a band gap. In contraand rod diameter ratios of dielectric rods in air, no absolute

Filling Fraction
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photonic band gaps were found for this structure. A gap map
is shown in Fig. &) for a filling fraction of 0.33. Several
large E-polarization gaps exist, but only one small
H-polarization gap opens up and does not overlap the
E-polarization gaps. The lack of absolute gaps makes sense
in light of the fact that this crystal structure belongs to the
plane groupp4mm as do the single-rod and double-rod lat-
tices. All of thep4mmsymmetry crystals of dielectric rods in

air have very smallor absentH-polarization gaps.

Striking differences may be seen in comparing the three
gap maps of Fig. 9. The most symmetric structure, that of
Fig. 9(a), possesses the greatest number of large band gaps,
albeit for only one polarization. This structure also exhibits
defectlike modes in some of the upgepolarization gaps, a
characteristic not seen in the other lattices studied here. It is
easy to creat&-polarization gaps in ordered crystals com-
prising of dielectric rods in air. These gaps are usually quite
large and robust with respect to changes in the crystal
structure?® The challenge is to forckl-polarization gaps to
open at frequencies that overlap with tlepolarization
gaps. Introduction of the glide-symmetry operation in Fig.
9(b) has succeeded in this more difficult task, opening three
large H-polarization gaps. Some of th&-polarization
gaps—present in the more symmetric case—have been
eliminated by this reduction in lattice symmetry, but several
large gaps survive to create absolute band gaps. In Fiy. 9
ordered rows of rods are separated with pockets of empty
space. The hard¥-polarization gaps remain, though only
one smallH-polarization gap exists. The remarkable evolu-
tion of gaps occurs simply by changing the tilt angle

Our analysis suggests that the besthmgroup-based
structure for obtaining large absolute band gaps with dielec-
tric columns in air is the structure with glide symmetry,
shown in Fig. 8b). Removing the mirror plane symmetries
along the principal axes of the square lattipeesent in the
p4mm plane group but not ip4gm contributes to the open-
ing of H-polarization gaps, and ultimately produces large
absolute band gaps. At first glance, it might seem unlikely
that the glide structure would have any gaps at all. However,
there are many symmetry operations present within this
structure, which apparently are enough to allow gaps to
open. This example illustrates the power of the symmetry-
reduction idea—it provides a rational way to identify new
structures with absolute band gaps that might have otherwise
been overlooked. Indeed, it is doubtful as to whether the
structure of Fig. &) would have been studied without this
motivation.

V. DISCUSSION

Though we have explored a method for systematically

FIG. 9. Gap maps for two-dimensional square structures of dijdenFiWing new photpnic crystal ;tructures, we have not yet
electric rods ¢,=11.4) in air produced at tilt anglds) 6=0°, (b) detailed a quantitative connection between the degree of

9=18.4°, andc) 6=45°. The lattice filling fraction in each case is SYMmetry reduction and the size of the absolute photonic
gap. Such a relationship—if it exists—would be immensely

and have limitecH-polarization gaps. Only the arrangementliy ~ Peneficial for the design of photonic crystals. Other research-
possesses the glide symmetry operatigmoup p4gm), which  €rs have also searched for the link between crystal properties
opens several largel-polarization gaps to produce three absolute and band gap opening in an attempt to explain and predict
band gaps. The largest gégertical arrow has a maximum width  the occurrence of photonic band gaps. Joannopatias,?®

of 0.0762(2rc/a) at B=1.05. Horizontal arrows ir(@) point to  studied electromagnetic fields and lattice connectivity to un-

defectlike modes present within tfiepolarization gaps. derstand photonic gap openings. Cassaginal.?’ have in-

f=0.33. The structures ita) and(c) belong to plane group4mm,
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vestigated the opening of gaps for 2D hexagonal structuresan yield photonic crystals with gaps significantly larger as
using a perturbative approach. Although these investigationsompared to the single-rod lattice with the same dielectric
shed light into how gap opening occurs, they also fall shorcontrast. For air holes in a background medium of GaAs (
of providing physical rules for selecting the optimal struc- =11.4), the maximum gap size of the double-rod square
ture. Ideally, deciphering the connection between symmetryattice was nearly three times the size of the best single-rod
reduction and band overlap should enable one to determinattice band gap at the same dielectric contrast. However,
the crystal arrangement that yields the maximum absolutabsolute band gaps for crystals of air rods in background
band gap for a given dielectric contrast. For the single-rodlielectric occur at high filling fractions, resulting in thin-
square lattice, we have seen that band degeneracies at a highlled structures that are difficult to fabricate. This problem
symmetry point in the crystal can be lifted by reducing themay be avoided by fabricating photonic crystals of dielectric
lattice symmetry. However, we lack anpriori understand- rods in air. However, no photonic band gaps exist for either
ing as to what “degree” the symmetry should be broken tothe single-rod or double-rod lattices of dielectric rods in air.
maximize the photonic gaps. Photonic crystal modeling iBy removing the mirror planes of the single-rod lattice ge-
analogous in many ways to electronic crystal modeling.ometry through the introduction of the glide symmetry op-
Though several methods exist for calculating properties ogration, crystals with large absolute band gaps have been
crystals of atoms, these methods do not allow one to exactlgbtained. These band gaps occur at moderate filling fractions
determine the ideal structure to optimize a given property~0.35) and thus should be easier to fabricate than those of
(e.g., hardnegs Instead, one must first propose a structureholes in dielectric. Lattice symmetry reduction provides a
and then calculate its crystal properties to determine if theyuiding principle towards a more rational design of 2D pho-
goal has been met. However, judicious guesses of promisingnic crystals, and might also be successfully applied for
structures greatly assist in the study of these materials. Iband gap engineering in 3D photonic crystals.

photonic crystal modeling, symmetry reduction can, at the

least, be considered as a guiding principle to the design of
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