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Symmetry reduction in group 4mm photonic crystals
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The size of absolute band gaps in two-dimensional photonic crystals is often limited by band degeneracies
at the lattice symmetry points. By reducing the lattice symmetry, these degeneracies can be lifted to increase
the size of existing photonic band gaps, or to create new gaps where none existed for the more symmetric
structure. Specifically, symmetry reduction by the addition of different diameter rods into the unit cell of
two-dimensional square lattices~Laue group 4mm! is explored. This approach is especially useful in opening
absolute band gaps in structures of dielectric rods in air, which are more easily microfabricated than a crystal
of air columns in a dielectric background. Symmetry reduction offers a rational approach for exploring and
designing new photonic crystal structures.@S0163-1829~97!03736-3#
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I. INTRODUCTION

The past decade has witnessed the start of an exciting
field in optoelectronics. The first assertion in 1987 that pe
odic dielectric structures could be made to possess a ph
nic band gap1,2—a region of the frequency spectrum whe
propagating modes are forbidden—has captured the imag
tions of researchers around the world. A photonic band
is analogous to an electronic band gap in semiconduct
this analogy bears promise for photonic crystals to imp
optical device applications as semiconductors have done
electronics.

Much of the interest surrounding photonic crystals ste
from their ability to provide frequency-mode control of ligh
propagating through them. This property gives photo
crystals the potential to greatly improve the efficiency
optoelectronic devices. For example, radiation losses in h
Q resonance cavities can be reduced by embedding the
ity in a photonic crystal.3 Frequencies that fall within the
photonic band gap are exponentially attenuated with no
sorption. The use of an entirely dielectric medium also p
vides an improvement over traditional metallic shieldi
methods, where high losses reduce their usefulness at op
frequencies. Fine control of frequency propagation may
obtained through the introduction of ‘‘defect’’ modes~local-
ized frequency modes! into the gap, which channel emissio
to one or a few select frequencies.3–5 Photonic defect modes
most easily formed by blocks of dielectric material insert
into or removed from the photonic crystal, could lead
thresholdless solid-state lasers and more efficient solar c

Many three-dimensional6–8 and two-dimensional5,9–11

photonic crystals with band gaps in the microwave reg
have been fabricated. For the most promising applicatio
however, it is desirable to have photonic gaps at visible
near-infrared~IR! wavelengths. The frequency at which th
band gap occurs is directly related to the size of the sca
ing elements comprising the lattice. Specifically, the size
the features must be of orderl/2, wherel is the wavelength
at which the gap occurs. A photonic crystal with a band g
in the microwave regime has lattice elements a few millim
ters in size, but to achieve a band gap in the visible region
the electromagnetic spectrum requires precise fabricatio
lattice elements on the order of1

4 mm. Though a method for
560163-1829/97/56~12!/7313~8!/$10.00
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microfabricating three-dimensional~3D! crystals with full
photonic band gaps using standard photolithographic
etching techniques has been proposed,7 fabrication of such
small features is exceedingly difficult. Perhaps for this re
son attention has been drawn towards two-dimensional~2D!
lattice structures, where fabrication requirements are no
stringent. Several groups have successfully fabricated
crystals with near-IR band gaps12–14 and even visible fre-
quency gaps.15

Although 3D photonic crystals suggest the most intere
ing ideas for novel applications, 2D structures could also fi
several important uses, as a result of their strongangular
reflectivity properties over a wide frequency band. For e
ample, 2D photonic crystals with absolute band gaps prov
a large stop band for use as a feedback mirror in la
diodes,16 an improvement over traditional~one-dimensional!
Bragg reflectors.

The larger a photonic band gap is, the greater the forb
den region of the frequency spectrum. Thus, it is essentia
identify and design crystal structures which possess the l
est photonic band gaps for a given dielectric contrast ra
For two different crystals possessing absolute band gap
equal size, it may be advantageous from a fabrication sta
point to choose the one that has the band gap occurring a
higher nondimensionalized frequency,va/2pc, wherev is
the frequency,a is the lattice constant, andc is the speed of
light in vacuum. For a given filling fraction, the feature siz
scales witha; thus, the crystal with the higherva/2pc
should be easier to fabricate. But how does one sift thro
the countless geometrical arrangements to select manufa
able structures with large band gaps in the desired freque
regime? Theoretical calculations are indispensable, albe
formidable task in view of the numerous structures to mo
with many variational parameters~e.g., lattice type, filling
fraction, shape of filling element!. A rational approach to-
wards the design of photonic crystals is needed, rather t
brute-force computation.

Photonic crystals are most valuable when they posses
absoluteband gap, where propagating modes are forbidd
regardless of wave polarization. Many crystals possess b
gaps for some light polarizations, but these may not over
to produce an absolute band gap. Often this is a resul
band degeneracies at points of high symmetry in the crys
7313 © 1997 The American Physical Society
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7314 56CHERYL M. ANDERSON AND KONSTANTINOS P. GIAPIS
which prevent gaps from opening. In some cases the de
eracy can be lifted by reducing the crystal symmetry. C
sider for example the 3D face-centered-cubic lattice w
spherical dielectric ‘‘atoms,’’ which does not possess an
solute photonic band gap.17 By decreasing the symmetry o
the lattice through the introduction of a two-point basis
~which produces the diamond lattice!, a degeneracy in the
bands is lifted and a full photonic band gap is obtained.17 In
two-dimensional photonic crystals, a similar idea of latti
symmetry reduction has also been effective in produc
larger band gaps.18 Here, we present a more complete d
scription of symmetry reduction in Laue group4mmlattices.

II. TWO-DIMENSIONAL SQUARE STRUCTURES

There are three plane groups~two-dimensional space
groups! that comprise the square crystal family:p4, p4mm,
and p4gm.19 The first belongs to the Laue group4, a rela-
tively low symmetry group that has four symmetry ope
tions. Each of the last two plane groups possesses eight
metry operations and together they form the Laue gro
4mm. Two-dimensional photonic crystals that have the sy
metry of the latter group will be the focus of the prese
article. Such crystals are formed by circular cross-sec
rods having a dielectric constantea , embedded in a differen
background material with dielectric constanteb . The infi-
nitely long rods are assumed to be parallel to thez axis, and
the cross section with thex-y plane forms one of the grou
4mmlattices. There are several ways to arrange rods wi
the unit cell of such a lattice without departing from th
symmetry group. The simplest structure~shown by the rods
labeled with index A in Fig. 1! contains one rod in eac
primitive unit cell, with the rod axes arranged on the latti
sites given by the vectors

a~ l !5 l 1a11 l 2a2 . ~1!

Herea1 anda2 are primitive lattice vectors andl 1 and l 2 are
any two integers, collectively termedl . For the coordinate
system shown, the primitive lattice vectors area15a(1,0)
and a25a(0,1), wherea is the lattice constant. The rod
occupying these sites all have diameterd1 .

FIG. 1. The two-dimensional single-rod~sites labeled A! and
double-rod~sites A and B! square structures, showing the unit ce
and the primitive lattice translation vectors.
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A different structure can be obtained by the overlay
another square lattice with rods of diameterd2 on top of the
single-rod square lattice, as shown by the index B rods
Fig. 1. The added structure has the same lattice constana,
but is displaced with respect to the first lattice byt5 1

2 (a1
1a2). This arrangement forms a new lattice whend1Þd2 ,
which is termed the ‘‘double-rod square lattice.’’ Both th
single-rod and double-rod square lattice structures have
symmetry of the plane groupp4mm, and all of the rod sites
have4mmsymmetry~i.e., fourfold rotation and mirror plane
along the two principal symmetry axes!.19 However, the
symmetry is changed slightly in the latter crystal structure
the smallest unit cell must now contain two rods. In eith
case, the rods are all assumed to be made of the same d
tric material and are embedded in a different dielectric ba
ground. The ratio of the two rod diametersb5d2 /d1 can be
varied to control the position and size of band gaps. The
diameter ratio can have values from 0 to`, but sinceb and
b21 yield equivalent crystal structures, we examineb values
between 0 and 1 only. Note that at eitherb50 or 1, the
single-rod square lattice structure is recovered.

There are several other ways in which one can reduce
symmetry of the single-rod square structure. Consider
‘‘glide-symmetry square lattice’’ as shown in Fig. 2. Whi
at first glance this structure might not appear to be more t
a random collection of rods, it belongs in the plane gro
p4gm, thus possessing quite a large number of symme
operations. Each rod site has••m symmetry~a mirror plane
off the principal axes!. The primitive unit cell is shown by
the square outline. Varying the angle that the lattice eleme
form with the primitive unit cell produces a whole class
new structures. We define this angle of tilt,u, as the angle
between the line diagonal of the lattice elements and thx
axis, as illustrated in Fig. 2.

New structures can emerge from combining the two p
vious ideas, i.e., increasing the number of rods in the u
cell and introducing the glide symmetry operation. Consid
for example, the overlay of this new glide-symmetry latti
structure with the single-rod square lattice, such that the r
of the latter lie at the corners and center of the primitive u

FIG. 2. The two-dimensional glide-symmetry square lattic
with the unit cell indicated. The rod arrangements may be rota
by varying the angleu to obtain various structures.
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56 7315SYMMETRY REDUCTION IN GROUP4mmPHOTONIC CRYSTALS
cell. The single-rod square lattice elements have diam
d1 , and the rods associated with the glide lattice have dia
eterd2 . This complex structure combines two different ro
symmetries, with a total of six rods in each primitive un
cell. We will show that even this type of symmetry reducti
can yield large absolute band gaps. The glide lattice, su
imposed with the single-rod square lattice, gives two para
eters that may be varied to maximize the absolute photo
band gap: the ratio of the rod diameters for the two latti
(b5d2 /d1) and the tilt angleu. We examineb values rang-
ing from 0 to`, sinceb andb21 no longer yield equivalen
crystal structures. In Fig. 3, three different periodic structu
that may be obtained by varyingu are shown. Atu50° @Fig.
3~a!# the structure becomes the double-rod square lattice.
also consider two other lattice positions, as shown in F
3~b! and 3~c! at angles of 18.4° and 45°, respectively.

III. THEORY AND PHOTONIC BAND GAP
CALCULATIONS

The propagation of electromagnetic waves through die
tric media is described by Maxwell’s equations. These eq
tions can be solved using a plane-wave expansion techn
to yield the electromagnetic frequency spectra of waves
periodic dielectric crystal.17 To begin, Maxwell’s equations
are combined to give the wave equation in terms of the m
netic fieldH

¹3F 1

e~x!
¹3HG5

v2

c2 H, ~2!

wheree~x! is the position-dependent dielectric constant,v is
the frequency, andc is the speed of light in vacuum. Th
magnetic fieldH~x! and the dielectric functione~x! can be
expanded in a sum of plane waves

H~x!5(
G

(
l51,2

hl,Gêlei ~k1G!•x, ~3!

e~x!5(
G

k~G!eiG•x, ~4!

wherek is the wave vector in the Brillouin zone andG is a
reciprocal-lattice vector. The unit vectorsêl are magnetic
wave polarizations orthogonal to (k1G) and the coefficients
hl,G are the corresponding components of the magnetic fi
The Fourier coefficientsk~G! are defined in the usual man
ner by

k~G!5
1

Acell
E

Acell

e~x!e2 i ~G•x!dx ~5!

where the integration is carried out over the areaAcell of one
lattice unit cell.

In two-dimensions, the vectorsk1G always lie in the
plane of the rods. Therefore, the unit vectorsê1 , ê2 must
either lie in the plane or along thez axis. This property
allows us to rewrite Eq.~2! as two simpler equations, eac
describing a particular wave polarization. For the magne
field vector parallel to the axes of the rods~H polarization!,
h2,k1G50 for all k1G. Substituting the plane wave expa
sions into the wave equation gives an eigenvalue proble
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G8

~k1G!•~k1G8!h~G2G8!h1,k1G85
v2

c2 h1,k1G ,

~6!

where h(G2G8) is a matrix found by inverting the
k(G2G8) matrix of coefficients defined in Eq.~5!. By first

FIG. 3. Two-dimensional square structures produced at
angles~a! u50°, ~b! u518.4°, and~c! u545°. The arrangemen
in ~a! is the double-rod structure~p4mm!, shown with a larger unit
cell. The arrows in ~a! illustrate the direction of rotation—
accompanied by lattice compression—that is performed to ob
the glide-symmetry square lattice~groupp4gm! in ~b!. Further ro-
tation and compression produces the groupp4mmstructure in~c!.
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7316 56CHERYL M. ANDERSON AND KONSTANTINOS P. GIAPIS
expanding the dielectric functione~x! in a plane wave basis
and then inverting the resulting matrix to obtainh(G2G8),
faster convergence to the eigenvalues of Eq.~6! is achieved
than by direct plane wave expansion ofe21(x).20

For E polarization the electric field vector is parallel
the rod axes andH~x! is in the rod plane. Hereh1,k1G50 for
all k1G, yielding another eigenvalue problem:

(
G8

uk1Guuk1G8uh~G2G8!h2,k1G85
v2

c2 h2,k1G . ~7!

Standard eigenvalue techniques are now used to solve
~6! and ~7! to obtain the propagating wave frequencies
the corresponding polarizations.

In this formulation, all information pertaining to the ge
ometry of the lattice is contained in the coefficient matrixh,
or analogously thek matrix. This provides a very convenien
solving routine, as the bulk of the solution ‘‘machinery
remains in place, while only thek coefficient matrix changes
with different crystal structures.

The integral in Eq.~5! can be expanded and simplified
give

k~G!5H f ea1~12 f !eb , G50,

~ea2eb!
1

Acell
E

Arod

e2 i ~G•x!dx, GÞ0.
~8!

The integral in the second part is now over the rods on
Here, f is the rod filling fraction, defined asf 5Arod/Acell .
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For the case of circular cross-section rods of radiusr that
do not overlap, the coefficients become

k~G!5H f ea1~12 f !eb , G50,

~ea2eb!(
T

2prJ1~Gr !

AcellG
e2 i ~G•T!, GÞ0,

~9!

whereJ1 is the first order Bessel function of the first kin
andG5uGu. The summation is over all rods inside one un
cell with positions described by translation vectorsT, mea-
sured from the origin of the coordinate axes. For examp
consider the glide-symmetry square lattice shown in F
3~b!. There are four rods in the unit cell, located at positio
described by the translation vectors

T15
3

8
a11

1

8
a2 , ~10a!

T252
1

8
a11

3

8
a2 ~10b!

T352
3

8
a12

1

8
a2 , ~10c!

T45
1

8
a12

3

8
a2 . ~10d!

Substituting these vectors into Eq.~9! and simplifying
yields
k~G!5H f ea1~12 f !eb , G50,

~ea2eb!
4prJ1~Gr !

AcellG
FcosS a

8
~3g11g2! D1cosS a

8
~g123g2! D G , GÞ0.

~11!
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Here g1 and g2 ~integers, denoted collectively byg! are
components of the reciprocal lattice vector defined by

G~g!5
2p

a2 g1a11
2p

a2 g2a2 . ~12!

The results that follow were obtained using 729 pla
waves for the single-rod square lattice, and 1225 plane wa
for the double-rod square lattice and the glide-symme
square lattice. A greater number of plane waves was requ
to maintain accuracy for the latter cases due to a more c
plex unit cell arrangement. The results were tested us
1757 plane waves, for which the band frequencies diffe
from those calculated with fewer plane waves by a maxim
of 0.8%. Most bands differed by less than 0.5%. Thus,
believe that all of the results reported here are accurat
within at least 1% of their true values. The results of t
accuracy test also seem to suggest that band calcula
with significantly fewer plane waves will not meet the 1
accuracy condition.
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IV. PHOTONIC BAND GAP RESULTS

We first examine the single-rod square lattice of air ho
in a different dielectric background.18,21,22The dispersion re-
lation for a background material with dielectric constanteb
511.4 ~eGaAs at l'1.5mm! and a rod filling fraction off
50.77 is shown in Fig. 4. The figure inset shows the ir
ducible portion of the Brillouin zone and the correspondi
lattice symmetry points. An absolute band gap does exist
this structure, which is produced by an overlap of theH2 and
E3 band gaps.23 It is bounded on the lower side by th
H-polarization gap boundary, and on its upper side by
E-polarization gap. A summary of our calculations for th
single-rod square lattice is shown in the ‘‘gap map’’ of Fi
5, where nondimensionalized frequencies are plotted a
function of the filling fraction. An absolute band gap appea
at filling fractions between 0.68–0.79, and has a maxim
value ofDv50.0188(2pc/a) at f 50.77.

As the rod filling fraction nears the closed-packed con
tion ~f 50.785 for a square lattice of circular rods!, the rods
in the structure begin to touch and the absolute band
quickly disappears. The frequency band plot of Fig. 6 fof
50.8 demonstrates that the size of the absolute band ga
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56 7317SYMMETRY REDUCTION IN GROUP4mmPHOTONIC CRYSTALS
limited because the second, third, and fourthH-polarization
bands are degenerate at theM point of the Brillouin zone. If
this band degeneracy can be lifted while maintaining~or in-
creasing! the size of theE-polarization gap, a larger absolu
band gap will ensue. By placing a smaller diameter rod at
center of each square unit cell~as shown in Fig. 1!, the
crystal symmetry is reduced. The effect of this symme
reduction on the square lattice dispersion relation is show
Fig. 7, where a rod with diameter ratiob50.16 has been
added to the structure for the same total filling fractionf
50.8. TheH-polarization degeneracy has been lifted, resu
ing in a much largerH-polarization gap. Remarkably, th
upperE-polarization gap is also greatly enlarged. Thus,
overlap between the two gaps increases, resulting in a m
larger absolute band gap. The gap map for the double
square lattice whenb50.16 is shown in Fig. 8. The maxi
mum absolute band gap for the double-rod square struc
occurs whenb50.16 and f 50.793. With a gap width of

FIG. 4. Frequency band plot for the single-rod square lattice
holes (f 50.77) in a background dielectric (eb511.4).
E-polarization modes are shown by the solid lines, a
H-polarization modes by the dashed lines. TheH2 and E3 gaps
overlap to produce an absolute band gap~crosshatched region! of
width 0.0188(2pc/a).

FIG. 5. Gap map for the single-rod square lattice of air holes
a background dielectric (eb511.4). An absolute band gap occu
where the upper two polarization gaps overlap. The maximum
occurs atf 50.77 ~indicated by the arrow!.
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Dv50.0548(2pc/a), this photonic band gap is nearlythree
times larger than the best value obtained for the single-
square lattice case.

Extensive calculations have shown that both the filli
fraction and the size of the symmetry breaking element
important factors in dictating which crystal arrangeme
will possess absolute photonic band gaps. In Ref. 24, it w
shown that the region of filling fractions where the rods b
gin to touch or overlap is a critical region of the band g
spectrum, where many band gaps begin to close or open
Furthermore, it was shown that a connected lattice arran
ment was important in the production ofH-polarization gaps.
The introduction of small rods into the unit cell may work
create larger absolute band gaps by increasing the total
filling fraction to regimes where large gaps occur, witho
suffering the consequences of disrupting the lattice conn
tivity.

Though we have managed to greatly increase the siz

f

n

p

FIG. 6. Frequency band plot for the single-rod square lattice
holes (f 50.8) in a background dielectric (eb511.4).
E-polarization modes are shown by the solid lines, a
H-polarization modes by the dashed lines. The absolute band
disappears at large filling fractions due to anH-polarization band
degeneracy at lattice symmetry pointM .

FIG. 7. Frequency band plot for the double-rod square lattice
holes in background dielectric (eb511.4), with f 50.8 and b
50.16. Reducing the lattice symmetry by introducing an additio
rod into the unit cell lifts theH-polarization~dashed lines! degen-
eracy while maintaining a largeE-polarization ~solid lines! gap,
resulting in a large absolute band gap~crosshatched region!.
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7318 56CHERYL M. ANDERSON AND KONSTANTINOS P. GIAPIS
the absolute band gap for the square lattice arrangeme
holes in dielectric, the resulting structure may not be pra
cal for device applications. The maximum absolute gap c
dition has a very large filling fraction,f 50.793. For a mid-
gap wavelength of 1500 nm~near-IR!, the dielectric walls
between adjacent holes will be as thin as 6 nm. The pre
microfabrication of such small features is extremely difficu
In fact, the results of several studies have shown that to o
an absolute photonic band gap in a crystal of air column
a background dielectric requires the rod filling fraction
always be near the close-packed condition.9,25–27Therefore,
if we are to identify photonic crystal structures which po
sess large absolute gaps and can also be easily fabricate
must consider the opposite arrangement, namely that o
electric rods in air. It has been shown26 that for the single-rod
square lattice, no absolute gaps occur for the case of die
tric rods in air due to the complete absence of
H-polarization gap. In addition, we have searched all filli
fractions of the double-rod square lattice@see Fig. 3~a!# of
dielectric rods in air. A modified gap map for a filling frac
tion of 0.33 is shown in Fig. 9~a!, where nondimensionalize
frequencies are plotted as a function of the rod diameter r
b. The band gaps for the single-rod square lattice are
tained whenb50 or, equivalently, unity.28 Values of b
greater than 1 yield the same structures as those atb21. The
gap map is filled with many largeE-polarization gaps tha
open and close as the rod diameter ratio is varied. The g
tend to decrease in size at higher frequencies. An interes
feature of this gap map is the presence of ‘‘defectlik
modes occurring between adjacentE-polarization gaps a
high frequencies and low values ofb. Three such defec
modes are indicated by the horizontal arrows in the figure
each case, a narrow frequency band appears along the le
of a seemingly singleE-polarization gap, splitting it in two
and creating the isolated mode. From a different perspec
this observation could also be interpreted as follows: the
dissimilar rod sizes in the double-rod square lattice may
as a very regular pattern of defects, creating singular
quency pass bands contained within a band gap. In con

FIG. 8. Gap map for the double-rod square lattice (b50.16) of
air holes in a background dielectric (eb511.4), showing a signifi-
cantly larger absolute band gap than that for the single-rod lat
The maximum gap of 0.0548(2pc/a) occurs at a filling fraction of
0.793~indicated by the arrow!.
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to the abundance of largeE-polarization gaps, only a few
small H-polarization gaps exist. The largestH-polarization
gaps occur at high frequencies for values ofb near 1, but
these do not overlap with anyE-polarization gaps. The larg
est absolute gap for the double-rod case was found fo
filling fraction of 0.33 andb50.57. However, the gap is
fairly small, having a maximum width of Dv
50.0280(2pc/a) at a nondimensionalized midgap fre
quency of 0.752. Thus, other ways must be sought to red
the symmetry of the square lattice to find arrangeme
which yield larger absolute band gaps.

The glide-symmetry structure withu518.4°, shown in
Fig. 3~b!, accomplishes a more severe symmetry reduct
than that for the double-rod lattice, as mirror planes alo
major symmetry axes have been eliminated. This symm
reduction opens several largeH-polarization gaps and yield
three large absolute band gaps. Band frequency calculat
for this structure were performed along the symmetry lin
forming the edges of the irreducible 1/8 of the Brillou
zone. The existence of band gaps was confirmed by den
of states calculations using uniformly spacedk points in the
entire first Brillouin zone. The calculations are summariz
in the gap map shown in Fig. 9~b! at a filling fraction of 0.33.
In this figure, the single-rod lattice is recovered whenb
50. The lowest frequency gap occurs at intermediate val
of b, and is entirely limited by the size of theH-polarization
gap that opens inside an existingE-polarization gap. This
gap is formed by the overlap ofH6 andE10 gaps,23 and has
a maximum width of 0.0757(2pc/a) at f 50.3 and b
50.55. Two other absolute gaps form at and near the eq
rod diameter condition. TheH-polarization gaps~H10 and
H14! share oneE-polarization gap (E18). The lower fre-
quency gap has a maximum width of 0.0741(2pc/a) at f
50.33 and b51, while the upper gap maximum i
0.0762(2pc/a) at f 50.33 andb51.05. It is interesting to
note that similar gaps do not exist for the double-rod latt
@Fig. 9~a!#. An additional degree of symmetry reduction~ac-
complished through the introduction of the glide symme
operation! was necessary to open the new absolute gaps
all three absolute gaps for the glide-symmetry lattice ha
similar maximum widths, we can choose which gap to utili
for experimental purposes. From a fabrication standpoin
may be easier to utilize the highest frequency absolute g
For equal size rods the filling fraction is given b
f 5npr 2/a2, wheren is the number of rods in the unit cel
Therefore, for a given filling fraction the rod radius scal
with a, and is inversely proportional toAn. With six rods in
each glide-symmetry lattice unit cell, it is especially impo
tant to make the lattice parametera as large as possible t
increase the smallest feature dimension. However, it has
been shown that higher frequency gaps are more sensitiv
random lattice disorder than those at lower frequencie29

Since the introduction of a certain amount of disorder dur
fabrication is probable, especially for small-size features,
may also affect the choice of absolute band gap.

Continuing the study of the symmetry reduction arg
ment, we have also examined the structure shown in
3~c!. The primitive unit cell for this structure contains s
rods, as does the previous case, but now the rods line u
diagonal rows (u545°). After searching all filling fractions
and rod diameter ratios of dielectric rods in air, no absol
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FIG. 9. Gap maps for two-dimensional square structures of
electric rods (ea511.4) in air produced at tilt angles~a! u50°, ~b!
u518.4°, and~c! u545°. The lattice filling fraction in each case
f 50.33. The structures in~a! and~c! belong to plane groupp4mm,
and have limitedH-polarization gaps. Only the arrangement in~b!
possesses the glide symmetry operation~group p4gm!, which
opens several largeH-polarization gaps to produce three absolu
band gaps. The largest gap~vertical arrow! has a maximum width
of 0.0762(2pc/a) at b51.05. Horizontal arrows in~a! point to
defectlike modes present within theE-polarization gaps.
photonic band gaps were found for this structure. A gap m
is shown in Fig. 9~c! for a filling fraction of 0.33. Severa
large E-polarization gaps exist, but only one sma
H-polarization gap opens up and does not overlap
E-polarization gaps. The lack of absolute gaps makes se
in light of the fact that this crystal structure belongs to t
plane groupp4mm, as do the single-rod and double-rod la
tices. All of thep4mmsymmetry crystals of dielectric rods i
air have very small~or absent! H-polarization gaps.

Striking differences may be seen in comparing the th
gap maps of Fig. 9. The most symmetric structure, that
Fig. 9~a!, possesses the greatest number of large band g
albeit for only one polarization. This structure also exhib
defectlike modes in some of the upperE-polarization gaps, a
characteristic not seen in the other lattices studied here.
easy to createE-polarization gaps in ordered crystals com
prising of dielectric rods in air. These gaps are usually qu
large and robust with respect to changes in the cry
structure.29 The challenge is to forceH-polarization gaps to
open at frequencies that overlap with theE-polarization
gaps. Introduction of the glide-symmetry operation in F
9~b! has succeeded in this more difficult task, opening th
large H-polarization gaps. Some of theE-polarization
gaps—present in the more symmetric case—have b
eliminated by this reduction in lattice symmetry, but seve
large gaps survive to create absolute band gaps. In Fig. 9~c!,
ordered rows of rods are separated with pockets of em
space. The hardyE-polarization gaps remain, though on
one smallH-polarization gap exists. The remarkable evo
tion of gaps occurs simply by changing the tilt angleu.

Our analysis suggests that the best4mm-group-based
structure for obtaining large absolute band gaps with die
tric columns in air is the structure with glide symmetr
shown in Fig. 3~b!. Removing the mirror plane symmetrie
along the principal axes of the square lattice~present in the
p4mmplane group but not inp4gm! contributes to the open
ing of H-polarization gaps, and ultimately produces lar
absolute band gaps. At first glance, it might seem unlik
that the glide structure would have any gaps at all. Howev
there are many symmetry operations present within
structure, which apparently are enough to allow gaps
open. This example illustrates the power of the symme
reduction idea—it provides a rational way to identify ne
structures with absolute band gaps that might have otherw
been overlooked. Indeed, it is doubtful as to whether
structure of Fig. 3~b! would have been studied without th
motivation.

V. DISCUSSION

Though we have explored a method for systematica
identifying new photonic crystal structures, we have not
detailed a quantitative connection between the degree
symmetry reduction and the size of the absolute photo
gap. Such a relationship—if it exists—would be immense
beneficial for the design of photonic crystals. Other resear
ers have also searched for the link between crystal prope
and band gap opening in an attempt to explain and pre
the occurrence of photonic band gaps. Joannopouloset al.,26

studied electromagnetic fields and lattice connectivity to
derstand photonic gap openings. Cassagneet al.,27 have in-
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vestigated the opening of gaps for 2D hexagonal structu
using a perturbative approach. Although these investigat
shed light into how gap opening occurs, they also fall sh
of providing physical rules for selecting the optimal stru
ture. Ideally, deciphering the connection between symm
reduction and band overlap should enable one to determ
the crystal arrangement that yields the maximum abso
band gap for a given dielectric contrast. For the single-
square lattice, we have seen that band degeneracies at a
symmetry point in the crystal can be lifted by reducing t
lattice symmetry. However, we lack ana priori understand-
ing as to what ‘‘degree’’ the symmetry should be broken
maximize the photonic gaps. Photonic crystal modeling
analogous in many ways to electronic crystal modeli
Though several methods exist for calculating properties
crystals of atoms, these methods do not allow one to exa
determine the ideal structure to optimize a given prope
~e.g., hardness!. Instead, one must first propose a structu
and then calculate its crystal properties to determine if
goal has been met. However, judicious guesses of promi
structures greatly assist in the study of these materials
photonic crystal modeling, symmetry reduction can, at
least, be considered as a guiding principle to the design
new photonic structures.

VI. SUMMARY AND CONCLUSIONS

We have shown that the size of absolute photonic b
gaps in two-dimensional square lattices can be significa
increased by reducing the lattice symmetry. Specifically, t
interpenetrating square lattices with different diameter r
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can yield photonic crystals with gaps significantly larger
compared to the single-rod lattice with the same dielec
contrast. For air holes in a background medium of GaAse
511.4), the maximum gap size of the double-rod squ
lattice was nearly three times the size of the best single-
lattice band gap at the same dielectric contrast. Howe
absolute band gaps for crystals of air rods in backgrou
dielectric occur at high filling fractions, resulting in thin
walled structures that are difficult to fabricate. This proble
may be avoided by fabricating photonic crystals of dielect
rods in air. However, no photonic band gaps exist for eit
the single-rod or double-rod lattices of dielectric rods in a
By removing the mirror planes of the single-rod lattice g
ometry through the introduction of the glide symmetry o
eration, crystals with large absolute band gaps have b
obtained. These band gaps occur at moderate filling fract
('0.35) and thus should be easier to fabricate than thos
holes in dielectric. Lattice symmetry reduction provides
guiding principle towards a more rational design of 2D ph
tonic crystals, and might also be successfully applied
band gap engineering in 3D photonic crystals.
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