
PHYSICAL REVIEW B 15 SEPTEMBER 1997-IIVOLUME 56, NUMBER 12
Crossover between Luttinger and Fermi-liquid behavior in weakly coupled metallic chains

Peter Kopietz, Volker Meden,* and Kurt Scho¨nhammer
Institut für Theoretische Physik der Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 19 December 1996!

We use higher-dimensional bosonization to study the normal state of electrons in weakly coupled metallic
chains interacting with long-range Coulomb forces. Particular attention is paid to the crossover between
Luttinger and Fermi-liquid behavior as the interchain hoppingt' is varied. Although in the physically inter-
esting case of finite but smallt' the quasiparticle residue does not vanish, the single-particle Green’s function
exhibits the signature of Luttinger-liquid behavior~i.e., anomalous scaling and spin-charge separation! in a
large intermediate parameter regime. Using realistic parameters, we find that the scaling behavior in this
regime is characterized by an anomalous dimension of the order of unity, as suggested by recent experiments
on quasi-one-dimensional conductors. Our calculation also gives insights into the approximations inherent in
higher-dimensional bosonization; in particular, we show that the replacement of a curved Fermi surface by a
finite numberM of flat patches can give rise to unphysical nesting singularities in the single-particle Green’s
function, which disappear only in the limitM→` or if curvature effects are included. We also compare our
approach with other methods. This work extends our recent letter@Phys. Rev. Lett.74, 2997 ~1995!#.
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I. INTRODUCTION

The properties of the normal metallic state of correla
electrons ind51 dimension are usually summarized und
the name Luttinger-liquid behavior.1 The single-particle
Green’s function of a Luttinger liquid exhibits several stri
ing differences from the Green’s function of a convention
Fermi liquid: the absence of a coherent quasiparticle pe
spin-charge separation, and anomalous scaling prope
characterized by interaction-dependent power laws. N
Fermi-liquid behavior has recently been observed in sev
experiments. First of all, the normal-state properties of hi
temperature superconductors cannot be interpreted in te
of a conventional Fermi-liquid picture.2 Motivated by this
experimental fact, Anderson3 proposed that even ind52 the
single-particle Green’s functions of correlated electrons
exhibit Luttinger-liquid behavior. This unconvention
normal-state behavior was then shown to be a possible ke
understand the superconducting state. In fact, the interla
tunneling theory of high-temperature superconductivity
vanced by Chakravarty, Anderson, and co-workers4 is based
on the fundamental assumption that in the normal state
single-particle Green’s functionG(k,v) satisfies, for wave-
vectorsk sufficiently close to the Fermi surface and for su
ficiently low frequenciesv ~measured relative to the chem
cal potential!, an anomalous scaling law of the form

G~ka1sq,sv!5sg21G~ka1q,v!, ~1!

whereka is a wave vector on the Fermi surface, andg.0 is
some interaction-dependent exponent, the anomalous dim
sion. A finite value ofg is one of the fundamental characte
istics of Luttinger-liquid behavior, whereas in a Fermi liqu
g50. It should be stressed, however, that a generally
cepted microscopic derivation of Eq.~1! for interacting fer-
mions ind.1 does not exist.
560163-1829/97/56~12!/7232~13!/$10.00
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Another class of materials where non-Fermi-liquid beha
ior appears to have been observed experimentally consis
weakly coupled metallic chains,5 which are based on highly
anisotropic conductors. Although at sufficiently low tem
peraturesT these systems have the tendency to develop v
ous types of long-range order, above the ordering temp
ture the metallic state displays clearly non-Fermi liqu
behavior. The interpretation of recent photoemission stud
of these systems in terms of the Luttinger-liquid picture lea
to values for the anomalous dimensiong in the range 1.0
60.2.6–8 Because in one-dimensional lattice models w
short-range interactions~such as the Hubbard model! the
anomalous dimension is always small compared with uni9

the large experimentally measured value ofg suggests that
the long-range nature of the Coulomb interaction must p
an important role in these systems. Of course, the experim
tal systems are not strictly one dimensional, because the
terchain hoppingt' is small but finite, and even fort'50
the electrons on different chains interact with thre
dimensional Coulomb forces. We thus arrive at the probl
of weakly coupled metallic chains, which is the central top
of this paper.

In the last years the problem of coupled Luttinger liqui
has been studied by many authors.10–23Given the fact that in
the absence of interchain hopping the nonperturba
bosonization approach can be used to calculate the sin
particle Green’s function in a controlled way, som
authors12,13,17,20,22,23 attempted to supplement the on
dimensional nonperturbative bosonization solution by so
kind of perturbation theory in powers oft' . One disadvan-
tage of this strategy is that in this way interchain hoppi
and electron-electron interactions between the chains are
taken into account on equal footing. In this work we sh
therefore adopt a different strategy: Instead of combin
one-dimensional bosonization with perturbation theory
powers oft' , we shall use the recently developed highe
dimensional generalization of the bosonization method24–30
7232 © 1997 The American Physical Society
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56 7233CROSSOVER BETWEEN LUTTINGER AND FERMI- . . .
to treat interchain hopping and interactions between t
chains on equal footing. Thus our approach is nonpertur
tive in t' and in the interaction. In particular, fort'50 we
recover the well-known one-dimensional bosonization res
for the Green’s function of the Tomonaga-Luttinger mode

The rest of this paper is organized as follows: In Sec.
we briefly describe the higher-dimensional bosonization a
proach. In particular, we emphasize the approximations
herent in this approach, and discuss its limitations. In Sec.
we shall show how the problem of electrons that are confin
to one-dimensional chains~i.e., without interchain hopping!
and interact with three-dimensional Coulomb forces can
solved in a straightforward way with higher-dimension
bosonization. Of course, this problem can also be solved
means of the conventional one-dimensional bosonizat
technique.31–33However, as shown in Sec. IV, our approac
can also handle the case of finite interchain hoppingt' with-
out having to rely on an expansion in powers oft' or in the
interaction. Although the quasiparticle residue is found to
finite for any t'Þ0, we show by explicit calculation that
there exists a large intermediate regime where the equal-t
Green’s function satisfies an anomalous scaling relat
similar to a Luttinger liquid. In Sec. V we compare our re
sults with those obtained by other approaches. Finally,
Sec. VI we present our conclusions.

II. HIGHER-DIMENSIONAL BOSONIZATION

In this section we shall give a brief summary of th
higher-dimensional bosonization approach. The foundatio
of this nonperturbative approach to the fermionic many-bo
problem go back to ideas due to Luther24 and Haldane.25

More recently, a number of authors applied this technique
problems of physical interest.26–29 The basis of higher-
dimensional bosonization is the subdivision of the Fermi su
face into a finite number of patchesPL

a , a51, . . . ,M . To
be specific, let us consider in Fig. 1 a typical Fermi surface
associated with a periodic array of chains coupled by we
interchain hopping. A possible subdivision intoM58
patches is shown in Fig. 2. Each patchPL

a is then extended
into a three-dimensional squat box,26 as shown in Fig. 3. The
characteristic sizeL of the patches should be chosen suffi

FIG. 1. Fermi surface of an array of chains with small intercha
hopping. Only the intersection with the planekz50 is shown.
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ciently small so that within a given patch the curvature of t
Fermi surface can be locally ignored. On the other hand,
cutoffs L andl cannot be taken to be arbitrarily small, b
cause higher-dimensional bosonization only becomes us
in practice if it is possible to ignore momentum transfer b
tween different patches~the so-called around-the-corne
processes28!. Of course, this is only possible if the interactio
is dominated by forward scattering. More quantitatively, w
assume that the two-body interactionf q becomes negligibly
small if uqu is larger than some cutoffqc!min$L,l%. The
geometry is shown in Fig. 3. Assuming that the nature of
interaction is such that the above condition can be satisfie
is reasonable to make the following two approximations:28,29

First of all, we ignore momentum transfer between differe
boxes~diagonal-patch approximation!. The relative number
of matrix elements neglected in this case is ind dimensions
of order qc

d/(Ld21l)!1. The second fundamental approx
mation is the local linearization of the energy dispersio
Measuring wave vectors locally with respect to coordin

FIG. 2. Approximation of the Fermi surface in Fig. 1 byM
58 flat patches.

FIG. 3. Squat boxes associated with the first two patches in
2. The dashed circle indicates the maximal possible momen
transferqc of the interaction. The vectorka points to the origin of a
local coordinate system centered at patchPL

a , andva is the corre-
sponding local Fermi velocity.
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systems located at pointska in the centers of the patches~see
Fig. 3!, a general energy dispersionek may be expanded as

eka1q5eka1jq
a , jq

a5va
•q1

~qi
a!2

2mi
a 1

~q'
a !2

2m'
a 1...,

~2!

whereqi
a5q• v̂a andq'

a5q2(q• v̂a) v̂a. Herev̂a5va/uvau is
a unit vector in the direction ofva. Note that in general the
massesmi

a and m'
a depend on the patch index. Because

the grand-canonical formulation of statistical mechanics
energy dispersion appears only in the combinationek2m,
the chemical potentialm cancels the constanteka in Eq. ~2!
providedka is chosen to lie exactly on the Fermi surface. W
now ignore all terms in Eq.~2! that are quadratic and highe
order inq, i.e., we approximatejq

a'va
•q. In particular, the

term (q'
a )2/(2m'

a ) is neglected. Note that retaining this ter
would lead to patches with nonzero curvature. Once we
cept the validity of the above approximations, the sing
particle Green’s function can be calculated without furth
approximation in arbitrary dimension. As shown in Refs.
and 29, the result for the Matsubara Green’s function at fin
inverse temperatureb can be written as

G~ka1q,i ṽn!5E drE
0

b

dt e2 i ~q•r2ṽnt!G0
a~r ,t!eQa~r ,t!,

~3!

where

G0
a~r ,t!5

1

bV (
q,ṽn

ei ~q•r2ṽnt!

i ṽn2va
•q

, ~4!

and the Debye-Waller factorQa(r ,t) is given by

Qa~r ,t!5Ra2Sa~r ,t!, ~5!

with

Ra5
1

bV (
q,vm

f RPA~q,ivm!

~ ivm2va
•q!2 5Sa~0,0!, ~6!

Sa~r ,t!5
1

bV (
q,vm

f RPA~q,ivm!cos~q•r2vmt!

~ ivm2va
•q!2 . ~7!

Here ṽn52p(n1 1
2 )/b are fermionic Matsubara frequen

cies, andvm52pm/b are bosonic ones.f RPA(q,ivm) is the
screened interaction in random-phase approximation~RPA!,
which is given in terms of the bare interactionf q and the
noninteracting polarizationP0(q,ivm) via the usual relation

f RPA~q,ivm!5
f q

11 f qP0~q,ivm!
. ~8!

As shown in Refs. 28 and 29, the above expression for
Green’s function can be obtained by means of straight
ward Gaussian functional integration; alternatively, E
~3!–~7! can be derived directly from the underlyin
asymptotic Ward identity and the corresponding linear in
gral equation for the Green’s function.34 In the RPA screened
interaction Eq. ~8! only the long-wavelength limit of
P0(q,ivm) enters, consistent with the neglect of the aroun
the-corner processes. Thus theq sums in Eqs.~4!–~7! are
e

c-
-
r

e

e
r-
.

-

-

implicitly restricted to the regimeuqiu&l, uq'u&L. How-
ever, as long as the external wave vectorq in Eq. ~3! is
sufficiently small, we may ignore these cutoffs. Then it
easy to see thatG0

a(r ,t) in Eq. ~4! is proportional to
d (d21)(r'), where thed21-dimensional vectorr' consists
of the components ofr that are perpendicular tova. In fact,
for V andb→` the integration in Eq.~4! is easily performed
analytically, with the result

G0
a~r ,t!5d~d21!~r'!S 2 i

2p D 1

r i1 i uvaut
, ~9!

where r i5r• v̂a. Because of the prefactord (d21)(r'), we
may replacer→r iv̂a in Eqs.~7! and ~5!. Furthermore, ther
integral in Eq.~3! is effectively a one-dimensional one, be
cause the integrations over the components ofr perpendicu-
lar tova can be done trivially due to thed function in Eq.~9!.
Of course, this simplification is an artifact of the lineariz
tion. The modifications of the above results due to the n
linear terms in the energy dispersion have recently been
culated in Ref. 30. Most importantly, for nonlinear ener
dispersion one should replace, in Eqs.~6! and ~7!,

1

~ ivm2va
•q!2→

1

~ ivm2jq
a!~ ivm1j2q

a !
, ~10!

wherejq
a is given in Eq.~2!. Note that the nonlinear term

remove the double pole in Eqs.~6! and ~7!. Moreover, non-
linearities in the energy dispersion also lead to the repla
ment of the functionG0

a(r ,t) in Eq. ~3! by an interaction-
dependent Green’s functionG̃a(r ,t), which does not
involve the singular prefactord (d21)(r') given in Eq. ~9!.
For an explicit expression ofG̃a(r ,t), see Refs. 29 and 30

The above nonperturbative expressions for the sing
particle Green’s function are valid in arbitrary dimensio
and for arbitrarily shaped Fermi surfaces. Furthermore, id
51 these expressions correctly reduce to the well-kno
bosonization result of the Tomonaga-Luttinger model. W
now apply the above results to study the problem of coup
Luttinger liquids.

III. COULOMB INTERACTION IN CHAINS
WITHOUT INTERCHAIN HOPPING

Before discussing finite interchain hoppingt' , it is in-
structive to study first the caset'50, where the electrons ar
confined to the individual chains. Of course, electrons
different chains still interact with the three-dimensional Co
lomb interaction, so that this is not a purely one-dimensio
problem. The latter was discussed in Ref. 32. Thus, mak
the continuum approximation for motion parallel to th
chains, the Fourier transform of the bare interaction is giv
by

f q5e2a'
2 E

2`

`

drx(
r'

8
e2 iq•r

Ar x
21r'

2
, ~11!

where ther' sum is over the two-dimensional lattice o
chains, with interchain lattice spacinga' . The prime indi-
cates that ther'50 term must be properly regularized~see
below!. For uqu!a'

21, Eq. ~11! reduces to the familiar resul
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f q54pe2/q2. Note that we do not replace, by hand, the
long-range Coulomb interaction by an effective screene
short-range interaction. The screening problem will b
solved explicitly via our bosonization approach.

Because fort'50 the particle number is conserved on
each chain, the problem can be solved by means of stand
one-dimensional bosonization techniques.31–33 However, the
solution can also be obtained quite elegantly within th
framework of higher-dimensional bosonization. In the ab
sence of interchain hopping, the Fermi surface consists
two parallel planes, as shown in Fig. 4. These planes can
identified with the patches discussed in Sec. II. Let us lab
the right plane bya51, and the left one bya52. The
~linearized! energy dispersion is simply given byjq

a

5avFqx , wherevF5uvau is the Fermi velocity. As usual, a
dimensionless measure for the strength of the interaction
Fq5n f q , wheren52/(pvFa'

2 ) is the density of states at the
Fermi energy~the factor of 2 is due to the spin degeneracy!.
An important length scale in the problem is set by th
Thomas-Fermi screening wave vectork, which can be de-
fined by rewriting the dimensionless interactionFq in the
long-wavelength limit as Fq5k2/q2. This yields k
5a'

21A8pg, where the dimensionless coupling constantg is
given byg5e2/(pvF). To evaluate Eqs.~5!–~7!, we need to
know the RPA interaction~8!, which involves the non-
interacting polarizationP0(q,ivm). In the absence of inter-
chain hopping the polarization has the usual one-dimension
form, which is in the long-wavelength limit given by

P0~q,ivm!5
n

2 (
a56

va
•q

va
•q2 ivm

5
n

11vm
2 /~vFqx!

2 .

~12!

For a better comparison with the calculations for finite inter
chain hopping presented in Sec. IV, it is convenient to ex
press the RPA interaction in terms of the dynamic structu
factor in the usual way~we take the limitb→`!,

f RPA~q,ivm!5 f q2 f q
2E

0

`

dv SRPA~q,v!
2v

v21vm
2 ,

~13!

with

FIG. 4. Fermi surface of an array of chains without interchai
hopping.
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SRPA~q,v!5
1

p
ImH P0~q,v1 i01!

11 f qP0~q,v1 i01!J . ~14!

Using Eq.~12!, we obtain, forv.0,

SRPA~q,v!5Zqd~v2vq!, ~15!

with the collective mode and the residue given by

vq5A11FqvFuqxu[vFuqxuKq , ~16!

Zq5
1

2
nvFKquqxu5

uqxuKq

pa'
2 . ~17!

Substituting these results into Eq.~6!, it is then easy to show
that

Ra52
1

V (
q

f q
2 Zq

~vq1uva
•qu!2 , ~18!

which for V→` reduces to

Ra52 1
2 E

0

` dqx

qx
K Fq

2

2A11Fq@A11Fq11#2L
BZ

. ~19!

Similarly, we obtain

Re Sa~x,t!52 1
2 E

0

` dqx

qx
cos~qxx!

3F K 11
Fq

2

A11Fq

e2A11FqvFqxutuL
BZ

2e2vFqxutuG , ~20!

Im Sa~x,t!52
sgn~t!

2 E
0

` dqx

qx
sin~qxx!

3@^e2A11FqvFqxutu&BZ2e2vFqxutu#, ~21!

wherex5ar x , and where for any functionh(q) the symbol
^h(q)&BZ denotes averaging over the first transverse B
louin zone~BZ!,

^h~q!&BZ5
1

S 2p

a'
D 2 E

2 p/a'

p/a'

dqyE
2 p/a'

p/a'

dqzh~q!. ~22!

To show that theqx integrals in Eqs.~20! and ~21! exist at
large qx without the addition of an ultraviolet cutoff, it is
necessary to know the behavior ofFq for large uqu. Trivially
in the approximationFq5k2/q2 the interaction falls off as
uqu22. If one takes into account that the one-dimensio
continuous and two-dimensional discrete Fourier transfo
~11! of the potential shows the same behavior~see below! it
is easy to show from Eqs.~20! and~21! that, after BZ aver-
aging, the integrands fort50 fall off like (k/uqxu)5. Be-
cause theqx integrals exist,k plays the role of an ultraviole
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cutoff. For finitet the integrands in Eqs.~20! and ~21! only
fall off like ( k/qx)

2, but theqx integrals still exists.
Let us first consider the caset50. Then we need to cal

culate the following Brillouin-zone average:

gcb~qx!5K Fq
2

4A11Fq@A11Fq11#2L
BZ

[^g~q!&BZ

5 K ~Kq21!2

4Kq
L

BZ

. ~23!

In the regimeg!1 the Thomas-Fermi screening lengthk21

is large compared with the transverse lattice spacinga' .
Because in this case all wave-vector integrals are domin
by the regimeuqu&k it is allowed to use the continuum
approximationf q54pe2/q2 for the Fourier transform of the
Coulomb potential. The averaging over the transverse B
louin zone in Eq.~23! can then be done analytically, with th
result

gcb~qx!5
e2

2pvF

1

@ uqxu/k1A11~qx /k!2#2
. ~24!

Hence

Qa~x,0!52
e2

2pvF
E

0

`

dqx

12cos~qxx!

@ uqxu/k1A11~qx /k!2#2
.

~25!

For x@k21 it is now easy to show thatQa(x,0);
2gcb ln@kx#, with the anomalous dimension given by

gcb[ lim
qx→0

gcb~qx!5
e2

2pvF
. ~26!

The logarithmic growth of the static Debye-Waller factor
one of the characteristics of a Luttinger liquid. Note that in
strictly one-dimensional model the long-range Coulomb
teraction leads to a Wigner crystal phase35 and not to a Lut-
tinger liquid. In this case the anomalous dimension diver
in the thermodynamic limit. However, the Coulomb intera
tion between electrons on different chains removes this
vergence, and leads to a Luttinger liquid32 with modified
spectral properties forkÞkF ~see below!.

We would like to point out that Eq.~26! is only valid for
g!1, wheregcb!1. It would be incorrect to extrapolate th
result to the regime whereg is of the order of unity, which is
experimentally relevant. In order to calculate the anomal
dimension in this regime, the Fourier transformf q of the
interaction has to be properly calculated. For largerg we
have to take into account the lattice structure in the tra
verse direction. To calculate the one-dimensional continu
and two-dimensional discrete Fourier transform~11! of the
Coulomb potential, it is necessary to regularize ther'50
contribution as in the strictly one-dimensional case.35 The
characteristic feature of the regularizedr'50 term is its
logarithmic divergence2c ln(a0qx) for small qx , wherea0
is the typical extension of the one-particle wave function
the transverse direction, andc is a constant. The prefacto
and the behavior at larger momenta depend on the sp
regularization procedure chosen. This divergence is resp
ed

l-

-

s
-
i-

s

s-
s

ial
n-

sible for the divergence of the anomalous dimension in
strictly one-dimensional model with Coulomb interactio
which leads to the Wigner crystal phase35 of the one-
dimensional electron gas. Forg!1 we already saw that the
chains coupled by the three-dimensional Coulomb inter
tion arenot in the Wigner crystal but in the Luttinger-liquid
phase. In the following we show that for arbitraryg the term
2c ln(a0qx) for an infinite number of chains is exactly can
celled by a termc ln(a'qx) from the r'Þ0 part of the Fou-
rier transform~11!. Therefore the system is a Luttinger liqui
for all g.

In our regularization procedure we assume that the o
particle wave function in the transverse direction is given
a Gaussian distribution corresponding to a harmonic confi
ment potential. We replace ther'50 component in Eq.~11!
by

a'
2 e2

a0
2p

E
2`

`

dr'E
2`

`

drx

e2 iqxr xe2r'
2 /a0

2

~r x
21r'

2 !1/2

5
a'

2 e2

a0
2p

E
2`

`

dr'K0~ ur'uqx!e
2r'

2 /a0
2
, ~27!

whereK0(x) denotes the modified Bessel function. The log
rithmic divergence ofK0 for x→0 leads to the logarithmic
behavior for smallqx discussed above.

To obtain a fast convergence of the Fourier transform~11!
for r'Þ0, we use theEwald summation technique.36 With
the help of thetheta function transformation

(
r'

e2aur'u22 iq'•r'5
p

a'
2 a2 (

G'

e2uq'2G'u2/~4a!, ~28!

where G' denotes a vector of the reciprocal lattice in t
transverse direction, and the integral

2

Ap
E

0

`

da e2~r x
2
1ur'u2!a2

5
1

Ar x
21ur'u2

, ~29!

one obtains

f q54pe2(
G'

exp$2@qx
21uq'2G'u2#/~4a0!%

qx
21uq'2G'u2

12a'
2 e2E

a0

` da

a (
r'Þ0

e2aur'u22 iq'•r'

22a'
2 a0

2e2E
0

a0
da a

1

11a0
2a2 e2qx

2/~4a2!

12a'
2 e2E

a0

` da

a

1

11a0
2a2 e2qx

2/~4a2!. ~30!

For aP@0,a0#, in Eq.~29! we used transformation~28! from
the direct lattice to the reciprocal lattice. Nowa0 can be
chosen in such a way that in the sums in the first and sec
lines of Eq.~30! only a few lattice vectors contribute. In th
following we always choosea054/a0 . For thisa0 the sum
in the second line in Eq.~30! can be completely neglected
and in the first line only the vectors G'

5(my2p/a' ,mz2p/a') with my and mzP@25,5# contrib-
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ute. The last two terms in Eq.~30! contain ther'50 term of
Eq. ~11!. From Eq.~30! it is easy to see that only foruqu
!a'

21 it is permissable to approximate the Fourier transfo
of the Coulomb potential by its continuum limit 4pe2/q2.

To determine the anomalous dimension from Eqs.~23!
and ~26!, we have to take theqx→0 limit in Eq. ~30!. For
qx50 we obtain

f qx50,q'
54pe2(

G'

exp$2uq'2G'u2/~4a0!%

uq'2G'u2

12a'
2 e2E

a0

` da

a (
r'Þ0

e2aur'u22 iq'•R'

22a'
2 e2 lnF4

a0

a'
G , ~31!

i.e., no logarithmic divergence. As already discussed abo
the logarithmic divergence of ther'50-term is exactly can-
celed. Therefore the anomalous dimension is finite and
be calculated numerically from Eq.~23!. In the regulariza-
tion procedure we introduced the parametera0 . Physically it
is clear that only ratiosa' /a0.1 are relevant for quasi-one
dimensional systems. Our numerical results for the ano
lous dimension as function ofg have been published in Fig
1 of Ref. 21. From Eq.~30! it is easy to show thatFq falls off
as k2/q2 for large uqu. Therefore our above discussion co
cerning the existence of the integrals Eqs.~20! and ~21! is
also applicable to the lattice Fourier transform.

In a Luttinger liquid the momentum-integrated spect
functionr~v!, which apart from a one-electron dipole matr
element determines angular-integrated photoemission, is
gebraically suppressed near the chemical potential37 r(v)
}uvugcb. Recent photoemission studies of quasi-on
dimensional conductors suggest values for the anomalou
mension in the range 1.060.2.6–8 This would be hard to
reconcile with a model involving short-range interactions,
e.g., the anomalous dimension in the one-dimensional H
bard model never exceeds1

8 . A rough estimate of the dimen
sionless couplingg for experimental relevant parameters fo
lowing Ref. 5 leads to values ofg of the order of 1. As
shown in Fig. 1 of Ref. 21, our treatment using realis
Coulomb forces quite easily leads to anomalous dimens
in the experimental range.

In the following we discuss the momentum-depend
spectral functionr,(qx ,v). In the strictly one-dimensiona
model with an interaction potential which is finite atq50, it
is known that for anomalous dimensionsg smaller than1

2 a
power-law divergence occurs at the energyvFq and for g
,1 at vcq, wherevc is the long wavelength limit of the
q-dependent charge excitation velocity~spin-charge
separation!.38,39 From Eq. ~16! one obtains for the couple
chains aq' dependence of the charge velocity

vc~q'!5 lim
qx→0

vq

qx
5vFA11Fq'

. ~32!

It is not obvious from Eqs.~20! and ~21! whether a charge
peak occurs or not, because the charge velocityvc(q') is
subject to the BZ averaging, and the singularity can
washed out. On the other hand, because the spin velocitvF
e,

n

a-

l

al-

-
di-

,
b-

ns

t

e

is independent ofq' , one obtains forgcb,
1
2 a sharp thresh-

old singularity atv52vFuqxu, just as in one dimension,

r1
,~qx ,v!;Q~vF@qx2kF#2v!~vF@qx2kF#2v!gcb21/2.

~33!

For gcb.
1
2 the singularity is washed out, but the thresho

survives. On the Fermi surface the BZ averaging is irr
evant, and forgcb,1 one obtains

r1
,~kF ,v!;Q~2v!~2v!gcb21, ~34!

as in the one-dimensional Tomonaga-Luttinger model. In
der to evaluate the momentum-dependent spectral func
for arbitraryqx andv, we have to use numerical techniqu
developed in Ref. 40. It turns out that abroadenedcharge
peak occurs. For increasing anomalous dimensions, i.e.
creasingg, the charge peak broadens. Numerical results
the spectral function are shown in Figs. 2 and 3 of our p
vious Letter.21 From these figures it is clear that our mod
exhibits spin-charge separation. A detailed description of
numerical calculations can be found in Ref. 41.

To summarize this section, we showed that the system
one-dimensional chains coupled by the long-ranged C
lomb interaction is a Luttinger liquid with an anomalous d
mensions of the order of 1. Furthermore, the charge sin
larity of the strictly one-dimensional Luttinger liquid i
broadened due to the BZ averaging, but is still present. In
following we extend the model and include transverse int
chain hopping.

IV. FINITE INTERCHAIN HOPPING

A typical Fermi surface of an array of chains with sma
finite interchain hopping is shown in Fig. 1. In the quasi-on
dimensional materials discussed in Ref. 5, the intrach
hoppingtx is an order of magnitude larger than the intercha
hoppingty5t' , which is again a factor of 10 larger thantz .
We therefore assume transverse hopping only in they direc-
tion. In this section we shall apply our higher-dimension
bosonization approach to this problem. We would like
emphasize that we are ultimately interested in realistic Fe
surfaces without nesting symmetries. Unfortunately, by
placing a curved Fermi surface of the type shown in Fig
by a finite number of locally flat patches~see Fig. 2!, we
introduce unphysical nesting symmetries. In order to obt
physical results that can be compared to experiments,
singularities caused by these artificial symmetries sho
therefore be separated from the physical plasmon mod
the dynamic structure factor. In this section we shall sh
how this can be done in practice.

A. M -patch model

In the higher-dimensional bosonization approach with l
earized energy dispersion the Fermi surface is approxim
by a finite numberM of flat patchesPL

a . In order not to
break the inversion symmetry of the Fermi surface,
choose an even number of patches of equal size, such tha
eachPL

a there exists another patchPL
ā such that the local
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Fermi velocities satisfyvā52va ~see Fig. 2 forM58!.
Then the noninteracting polarizationP0(q,z) is, at long
wavelengths, given by

P0~q,z!5
2n

M (
a51

M /2
~va

•q!2

~va
•q!22z2 , ~35!

where it is understood that the sums are over all patches
va

•q>0. For finite M the poles of the RPA interaction
which are simply the zeros of

11 f qP0~q,z!50, ~36!

can be easily obtained by plotting the right-hand side of
~35! as function ofv2 wherev5z is real, and looking for
the intersections with21/f q . For genericq all (va

•q)2 are
different and positive, and we can order 0,(va1

•q)2

,(va2
•q)2,•••,(vaM /2

•q)2. A repulsive interaction f q
leads then to zeros (vq

2)(a), a51, . . . ,M /2 of Eq. ~36! as
function of z2 lying between the unperturbed poles,

~va1
•q!2,~vq

2!~1!,~va2
•q!2,...,~vaM /2

•q!2,~vq
2!~M /2!.

~37!

In the large-M limit the first M /221 solutions form the par-
ticlehole quasi-continuum, while the largest modevq

M /2 can
be identified with the collective plasmon mode. Forq values
which lead tova i

•q50 and ~or! (va i
•q)25(va j

•q)2, the
number of poles in the quasicontinuum with nonvanish
residue is reduced. Denoting byZq the residue of the plas
mon mode, the dynamic structure factor is given by

SRPA~q,v!5Zqd~v2vq!1Sincoh
RPA ~q,v!, ~38!

where Sincoh
RPA(q,v) is due to the contribution of the othe

modes, which merge forM→` into the particle-hole con-
tinuum. In the absence of interchain hopping,Sincoh

RPA(q,v)
50. Furthermore, the plasmon mode and the associated
due are given in Eqs.~16! and ~17!.

1. Plasmon mode

The crucial observation is now that for small but finitet'
andM→` the low-energy behavior of the Green’s functio
is still dominated by the plasmon mode, which therefore
scribes the crossover between Luttinger- and Fermi-liq
behavior. Thus, to leading order inu, we may ignore the
contributionSincoh

RPA(q,v) in Eq. ~38!. In this case the constan
partRa of the Debye-Waller factor is still given by Eq.~18!,
but now withvq andZq given by the plasmon mode of th
M -patch model. In the strong-coupling limit it is easy
obtain an analytic expression forvq and Zq . Anticipating
that at strong coupling there exists a polevq of Eq. ~36! with
vq

25O(Fq), we may expandP0(q,z) in powers ofz22. The
leading term is

P0~q,z!52
2n

M (
a51

M /2 S va
•q

z D 2F11S va
•q

z D 2

1OS Fva
•q

z G4D G . ~39!

Substituting this approximation into Eq.~36!, it is easy to
show that
ith

.

g

si-

-
d

vq
25Fq

2

M (
a51

M /2

~va
•q!21

(
a51

M /2

~va
•q!4

(
a51

M /2

~va
•q!2

1O~1/Fq!

~40!

and

Zq5
n

2AFq
F 2

M (
a51

M /2

~va
•q!2G1/2

1O~1/Fq!. ~41!

Introducing these expressions in Eq.~18! we obtain to lead-
ing order in the coupling

Spl
RPA~q,v!'

nvF

2AFq

Aqx
21h2q'

2 d~v2vFAFqAqx
21h2q'

2 !,

~42!

where

h25
2

M (
a51

M /2

~ v̂a
•q̂'!2 ~43!

is a small parameter for a weakly corrugated Fermi surf
corresponding to small interchain hopping. Note thatq' in
Eq. ~42! denotes theqy andqz components ofq, and should
not be confused with the vectorq'

a in Eq. ~2!. The contribu-
tion to the constant partRpl

a of the Debye-Waller factor is
given by

Rpl
a 52 1

2 E
0

`

dqx

3K 1

Aqx
21h2qy

2

AFq

F11
1

AFq

va
•q

vFAqx
21h2q'

2 G 2 L
BZ

.

~44!

To leading order the patch dependence drops out. Foh
50, corresponding to zero interchain hopping, the integra
logarithmically divergent. For finiteh the qx integration ob-
tains a finite lower cutoff which leads to a contributio
ln@k/(huq'u)#. To leading order in ln(1/h) one can take the
limit qx→0 in Fq . This yields

Rpl
a' 1

2 ln~1/h! lim
qx→0

^AFq&BZ . ~45!

The prefactor of the logarithm is just the strong coupli
expression of the anomalous dimension of the zero hopp
h50 limit. Now, if Rpl

a is finite, the Riemann-Lebesgu
lemma42 guarantees thatSpl

a (r iv̂a,0) goes to zero for increas
ing r i . Therefore the system is no longer a Luttinger liqu
but a Fermi liquid with a finite quasiparticle weight28,21 Za

5eRa
.
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2. Nesting mode

Clearly, by approximating the realistic curved Fermi su
face shown in Fig. 1 by a collection of flat patches, we
troduced an artificial nesting symmetry. For example,
patchesPL

a andPL
a14 ~with a51, 2, 3, and 4! in Fig. 2 can

be connected by constant vectors which can be attached
arbitrary point on the patches. Simple perturbation theo43

indicates that this nesting symmetry gives rise to logarithm
singularities, leading to a breakdown of the Fermi-liqu
state. However, unless there exists a real physical nes
symmetry in the problem, this singularity has been art
cially generated by approximating a curved Fermi surface
flat patches.

Let us first show how these nesting singularities manif
themselves within our bosonization approach, and then g
a simple quantitative argument about how these singular
disappear due to curvature effects. The crucial observatio
that for a givenq there exists one special patchPL

b such that
the energyuvb

•qu is much smaller than all the other energi
uva

•qu, aÞb. Anticipating that for sufficiently smallqi

[ v̂b
•q there exists ad-function peak in the dynamic struc

ture factor at the nesting modevq
b}uvb

•qu, we see that for
small qi the energyvq

b is much smaller than all energie
uva

•qu with aÞb. Hence the energy dispersion of the ne
ing mode can be approximately calculated by settingz250
t

r-

y
th
e

er
t t
va
w

-
-
e

an

c

ng
-
y

t
e
s
is

-

in all terms withaÞb in sum ~35!. This yields, in the re-
gime of wave vectors defined by

uvb
•qu!uva

•qu for all aÞb, ~46!

the following expression for the polarization:

P0~q,z!'
n

M FM221
2~vb

•q!2

~vb
•q!22z2G . ~47!

The collective mode Eq.~36! is then easily solved, with the
result that the dispersion of the nesting mode is given by

vq
b5S 11Fq

11
M22

M
Fq
D 1/2

uvb
•qu. ~48!

For the associated residue we obtain

Zq
b5

nuvb
•qu

M F11
M22

M
FqG3/2

@11Fq#1/2

. ~49!

Using Eq.~18!, we see that the nesting mode gives rise to
following contribution to the constant partRb of the Debye-
Waller factor associated with patchPL

b :
Rnest
b 5

1

VnM ( 8
q

Fq
2

uvb
•quF11

M22

M
FqG3/2

@11Fq#1/2F S 11Fq

11
M22

M
Fq
D 1/2

11G 2 , ~50!
for
re
ch
qua-
e

at

for

be

e

where the prime on the sum indicates that the sum is over
wave-vector regime defined in Eq.~46!. To understand the
geometric meaning of Eq.~46!, let us note that for our
M -patch model the angle betweenvb and the neighboring
velocity vb11 is of the order ofu/M , whereu5ut'u/EF .
Settingqi5 v̂b

•q and q'5 v̂'
b
•q ~where v̂'

b is a unit vector
orthogonal tov̂b! it is easy to see that the condition Eq.~46!
is equivalent with uqiu!uuq'u/M . We conclude that for
V→` integral ~50! is proportional to

Rnest
b }

1

M E
0

k

dq'E
0

uq' /M dqi

qi
, ~51!

which is infrared divergent. Obviously the logarithmic dive
gence is removed if we take the limitM→`. It should be
kept in mind, however, that in the limitM→` the size of the
patches vanishes, so that the conditionqc!min$L,l% is vio-
lated. As discussed in Sec. II, this condition is necessar
justify the neglect of the around-the-corner processes in
higher-dimensional bosonization approach; see Fig. 3. N
ertheless, because for vanishing patch cutoff we recov
curved Fermi surface, the above calculation suggests tha
nesting singularity will disappear as soon as the finite cur
ture of the patches is taken into account. In Sec. IV B 2
he

to
e

v-
a

he
-

e

shall use the higher-dimensional bosonization result
curved patches29,30 to show that this is indeed the case. He
we would like to give a simple quantitative argument whi
captures the essential physics. Suppose we retain the
dratic terms in expansion~2! of the energy dispersion clos
to patchPL

b . Obviously the termq'
2 /(2m') ~describing the

curvature of patchPL
b ! becomes important forvFuqiu

'q'
2 /(2m'), where for simplicity we have assumed th

m'
b5m' anduvbu5vF are independent of the patch indexb.

Hence we expect that for curved patches the lower limit
the qi integral in Eq.~51! will be effectively replaced by
q'

2 /2um'uvF . We conclude that the effect of curvature can
qualitatively taken into account by substituting

E
0

uq' /M dqi

qi
→E

q'
2 /2um'uvF

uq' /M dqi

qi
5 lnF2um'uvFu

q'M G . ~52!

In physically relevant cases we expectum'u'kF /(vFu), so
that the right-hand side of Eq.~52! reduces to the integrabl
factor of ln@2kF /(Muq'u)#. A more rigorous justification for
the regularization given in Eq.~52! will be given in Sec.
IV B 2.
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B. Four-patch model

We now confirm the general results discussed in S
IV A by explicit calculations forM54, where the collective
mode equation is quadratic, and can be solved exactly. Le
start with the Fermi surface shown in Fig. 5. The noninte
acting polarization is now

P0~q!5
n

2 (
a51

2
~va

•q!2

~va
•q!21vm

2
, ~53!

where the local Fermi velocities are defined in Fig. 5. Th
collective mode Eq.~36! reduces to the biquadratic equatio

z42S 11
Fq

2 D ~jq
21 j̃q

2!z21~11Fq!jq
2j̃q

250, ~54!

where we have introduced the notationsjq5v1
•q and j̃q

5v2
•q. Equation~54! is easily solved,

vq
25S 11

Fq

2 D jq
21 j̃q

2

2
1

1

2 FFq
2S jq

21 j̃q
2

2 D 2

1~11Fq!~jq
22 j̃q

2!2G1/2

, ~55!

ṽq
25S 11

Fq

2 D jq
21 j̃q

2

2
2

1

2 FFq
2S jq

21 j̃q
2

2 D 2

1~11Fq!~jq
22 j̃q

2!2G1/2

. ~56!

Both modesvq and ṽq give rise tod-function peaks in the
dynamic structure factor. We obtain, forv.0,

SRPA~q,v!5Zqd~v2vq!1Z̃qd~v2ṽq!, ~57!

with the residues given by

Zq5
n

2vq

vq
2
jq

21 j̃q
2

2
2jq

2j̃q
2

vq
22ṽq

2 , ~58!

Z̃q5
n

2ṽq

jq
2 j̃ q

22ṽq
2

jq
21 j̃q

2

2

vq
22ṽq

2 . ~59!

FIG. 5. Fermi surface of the four-patch model. Only the inte
section with a plane of constantkz is shown.
c.

us
-

e

In the limit u→0 we have j̃q→jq→vFqx , so that
vq→A11FqvFuqxu and ṽq→vFuqxu. It is also easy to see
that the residueZq in this limit reduces to the result given i
Eq. ~17!, while the residueZ̃q vanishes. To examine whethe
interchain hopping destroys the Luttinger-liquid behavior
is sufficient to calculate the static Debye-Waller factor. Co
bining Eqs.~6!, ~7!, and~57!, it is easy to show that

Qa~r iv̂a,0!52
1

V (
q

@12cos~ v̂a
•qr i!# f q

2

3F Zq

~vq1uva
•qu!2 1

Z̃q

~ṽq1uva
•qu!2G .

~60!

1. Plasmon mode

Let us first focus on the first term in Eq.~60!. Because for
t'→0 this term smoothly reduces to the corresponding
pression in the absence of interchain hopping, the modevq
can be identified with the physical plasmon mode discus
in Sec. IV A. From Sec. III we know that the Debye-Walle
factor is essentially determined by the long-wavelength
gime uqu&k. In this regimeFq@1, so that we may use th
strong-coupling approximation forvq and Zq . From Eqs.
~55! and ~56! it is easy to see that, up to higher orders
u/Fq , the collective density modevq can in this regime be
approximated by

vq'vFA11FqAqx
21u2qy

2. ~61!

Substituting this expression into Eq.~58!, we obtain

Zq'
nvFAqx

21u2qy
2

2A11Fq

. ~62!

Comparing Eq.~62! with Eq. ~17!, we see that the only effec
of the interchain hopping is the replaceme
uqxu→Aqx

21u2qy
2. Thus the plasmon modevq yields the

following contribution to the constant part of Eq.~60! for
small u:

Rpl
a 52E

0

`

dqxK 1

Aqx
21u2qy

2
g~q!L

BZ

. ~63!

If we setu50 we recover the previous result in the absen
of interchain hopping@Eq. ~19!#, which is logarithmically
divergent. This divergence is due to the fact that foru50 the
first factor in Eq.~63! can be pulled out of the averagin
bracket. However, for any finiteu theqx andqy integrations
are coupled, so that it is not possible to factorize the integ
tions. Hence, any nonzero value ofu couples the phase spac
of the q integration. Because foru→0 the integral~63! is
logarithmically divergent, the coefficient of the leading log
rithmic term can be extracted by ignoring theqx-dependence
of the second factor in the averaging symbol of Eq.~63!.
Then we obtain, to leading logarithmic order,

-
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Rpl
a;2E

0

k

dqxK 1

Aqx
21u2qy

2
lim

qx→0
g~q!L

BZ

52gcbF lnS 1

u D1b1G , ~64!

wheregcb is given in Eq.~23!, andb1 is a numerical constan
of the order of unity.

The contribution of the plasmon mode to the spatia
varying partSa(r iv̂a,0) of the Debye-Waller factor at equa
times can be calculated analogously. Note thatr i5 v̂a

•r5
6r x cosu6ry sinu. Repeating the steps leading to Eq.~63!,
we obtain

Spl
a~r iv̂a,0!52E

0

`

dqxcos~qxr i!K cos~uqyr i!

Aqx
21u2qy

2
g~q!L

BZ

.

~65!

Because the Thomas-Fermi wave vectork acts as an effec
tive ultraviolet cutoff, the value of the integral in Eq.~65! is
determined by the regimeuqu&k. For ukur iu!1 we may
approximate cos(uqyri)'1 in this regime under the integra
sign. Furthermore, forkur iu@1 the oscillating factor
cos(qxri) effectively replacesk by ur iu21 as the relevant ul-
traviolet cutoff. We conclude that in the parametrically lar
intermediate regimek21!ur iu!(uk)21 we have to leading
logarithmic order

Spl
a~r iv̂a,0!;2gcbF lnS 1

ukur iu D1b2G , ~66!

whereb2 is another numerical constant.

2. Nesting mode

From the general analysis presented in Sec. IV A we
pect that the second modeṽq in Eq. ~60! will give rise to an
unphysical logarithmic growth ofQa(r iv̂a,0) at large dis-
tances, which is caused by the nesting symmetry of
Fermi surface in our simple four-patch model. We no
verify this expectation and then use the results of Refs.
and 30 to show by explicit calculation that curvature effe
remove the nesting singularities. For convenience we cho
the integration variablesqi5 v̂1

•q5qx cosu1qy sinu and
q'52qx sinu1qycosu. Then jq5vFqi and j̃q5vF(qi

22uq') to leading order inu. Note that the conditionuqiu
&uuq'u is equivalent with ujqu&u j̃qu. Geometrically this
means that the wave vectorq is almost parallel to the surfac
of the first and fourth patch, so that its projectionv̂1

•q5 v̂4

•q on the local normals is much smaller than the project
on the normalsv̂2 and v̂3 of the other two patches. In thi
regime we obtain, from Eq.~56! to leading order,

ṽq'S 11Fq

11
Fq

2
D 1/2

vFuqiu, uqiu&uuq'u, ~67!

and, from Eq.~59!,
-

e

9
s
se

n

Z̃q'
nvFuqiu

4F11
Fq

2 G3/2

@11Fq#1/2

, uqiu&uuq'u. ~68!

We conclude that, foruqiu&uuq'u,

Z̃q

~ṽq1uva
•qu!2

'
n

4vFuqiuF11
Fq

2 G3/2

@11Fq#1/2F S 11Fq

11
Fq

2
D 1/2

11G 2 .

~69!

Note that the above expressions agree with Eqs.~48!–~50! if
there we setM54. The factor of 1/uqiu in Eq. ~69! implies
that the static Debye-Waller factor grows logarithmically f
r i→`. However, for realistic Fermi surfaces of the form
shown in Fig. 1, the nesting symmetry responsible for t
behavior does not exist. To remove this artificial nesti
symmetry, let us now replace the completely flat patches
Fig. 5 by the slightly curved patches shown in Fig. 6. T
corresponding energy dispersions can be taken to bejq

a

5va
•q1 (q'

2 /2m') with negative effective massm' . For
weakly coupled chains we should chooseum'u'mi /u,
wheremi5kF /vF is the effective mass for motion along th
chains. As shown in Refs. 29 and 30, one important effec
the curvature terms on the Debye-Waller factor is the
placement given in Eq.~10!, which removes the double pole
in Eqs. ~6! and ~7!. Taking this effect into account, we se
that the contribution of the nesting mode to the constant p
Ra of Eq. ~60! becomes

Rnest
a '2

1

V (
q

f q
2Z̃q

2 sgn~jq
a!

q'
2

um'u ~ṽq1ujq
au!

, ~70!

with Z̃q andṽq given in Eqs.~59! and~56!. From the above
discussion we know that possible nesting singularities
due to the regimeuqiu&uuq'u. Thus, restricting the limits of

FIG. 6. Fermi surface of the four-patch model with curve
patches. If the component ofq perpendicular tova is denoted by
q' , the patches can be described by energy dispersionsjq

a5va
•q

1(q'
2 /2m') with negative effective massm' .
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the integral in Eq.~70! to this regime, we obtain, from Eqs
~56! and ~59! in the strong-coupling limit,

f q
2Z̃q'

vFuqiu

&n
, ṽq'&vFuqiu. ~71!

Recall that for the three-dimensional Coulomb interact
the strong-coupling conditionn f q@1 is equivalent withuqu
!k. Putting everything together, we find that the contrib
tion from the critical regimeuqiu&uuq'u to Eq. ~70! can be
written as

Rnest
a '2

&k

p3n E
0

k

dq'

um'u
q'

2 E
2uuq'u

uuq'u

3dqi

uqiusgnS qi2
q'

2

2um'uvF
D

&uqiu1Uqi2
q'

2

2um'uvF
U . ~72!

The qi integration can now be performed analytically. T
integral is proportional toq'

2 /um'u, which cancels the singu
lar factor of um'u/q'

2 in Eq. ~72!. We obtain

Rnest
a '2

k

&~&11!2p3nvF
E

0

k

dq'F lnS 2um'uvFu

q'
D1b3G ,

~73!

whereb3 is a numerical constant of the order of unity. Th
is the same type of integral as in Eq.~52!, so that our simple
intuitive arguments given at the end of Sec. IV A are no
put on a more solid basis. As already mentioned, in ph
cally relevant cases we expectum'uvFu'kF , so that we fi-
nally obtain Rnest

a '2gcbb4 where b4 is another numerica
constant of the order of unity. Thus for patches with fin
curvature the contribution of the nesting mode is finite. It
also easy to see that the curvature terms donot modify the
logarithmic small-u behavior ofRa due to the plasmon mod
given in Eq.~64!. This is so because the leading ln(1/u) term
in Eq. ~64! is generated by the energy scalevFuuq'u, which
is by assumption larger than the curvature ene
q'

2 /(2um'u). Comparing our result forRnest
a with the contri-

bution from the plasmon mode given in Eq.~64!, we see that
for small u the contribution of the nesting mode does n
modify the leading logarithmic behaviorRpl

a;2gcb ln(1/u)
due to the plasmon mode. Hence, to leading logarithmic
der, the static Debye-Waller factor is dominated by the c
tribution from the plasmon mode, so that we may writeRa

'Rpl
a , and similarly forSa(r iv̂a,0).

3. Anomalous scaling and spin-charge separation

BecauseRa is finite for any nonzerou, the system is a
Fermi liquid, with quasiparticle residueZa5eRa

}ugcb. Thus
for u→0 the quasiparticle residue vanishes with a nonu
versal power ofu, which can be identified with the anoma
lous dimension of the corresponding Luttinger liquid th
would exist foru50 at the same value of the dimensionle
coupling constant g. Combining Eqs.~64! and ~66!, we ob-
tain, for the total static Debye-Waller factor,
n

-

i-

y

t

r-
-

i-

t

Qa~r iv̂a,0!5Ra2Sa~r iv̂a,0!

52gcb@ ln~kur iu!1b#, k21!ur iu!~uk!21,

~74!

whereb is a numerical constant of the order of unity. Exp
nentiating this expression, we see that the interacting Gre
function satisfies the anomalous scaling relation

Ga~r /s,0!5s31gcbGa~r ,0!, k21!ur iu, ur iu/s!~uk!21.
~75!

In momentum space this implies, forv50 and uk!uqu
!k, an anomalous scaling law of the form given in Eq.~1!
with g5gcb. Thus, in spite of the fact that the system is
Fermi liquid, there exists for smallu a parametrically large
intermediate regime where the interacting Green’s funct
satisfies the anomalous scaling law of Luttinger liquid
Moreover, the effective anomalous exponentis precisely
given by the anomalous dimension of the Luttinger liqu
that would exist foru50. This is a very important result
because in realistic experimental systems the interchain h
ping t' can never be completely turned off. Our result im
plies that for small but finiteu the anomalous dimension o
the Luttinger liquid is in principle measurable, althoug
strictly speaking the system is a Fermi liquid.

Finally, we would like to mention that we have used t
numerical method described in Sec. III to calculate the f
momentum- and frequency-dependent spectral function
finite u. The numerical results are described in detail in R
41. Here we would like to point out that for finite but sma
u the spectral function exhibits spin-charge separation i
large intermediate regime. In fact, for a reasonable choic
the parameters the qualitative features of the spectral fu
tions foru!1 andu50 are identical within the accuracy o
our numerical calculation.

V. COMPARISON WITH OTHER METHODS

As mentioned in Sec. I, an alternative way to approach
problem in the limit of weak interchain hopping is b
straight or renormalization-group-aided perturbation the
in t' .12,13,17,20,22,23In contrast to our result using highe
dimensional bosonization these methods yield a finite va
for the quasiparticle weight only for values of the anomalo
dimensions smaller than a critical value.

The starting point in the approximation proposed
Wen12 and elaborated on by others13,20,22,23is to expand the
self-energy defined in the usual way by

G~k,v!5
1

v2ek2S~k,v!
~76!

in powers of the hopping. If one definesdS(k,v)
[S(k,v)2S(k,v)u t'50 and linearizes the dispersion in th

direction of the chains nearkF , one obtains for the mode
where only intrachain electron-electron interactions are ta
into account

G~k,v!5
1

g~ki ,v!212t'~k'!2dS~k,v!
, ~77!
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whereg(ki ,v) is the exact interacting single-chain propag
tor. Wen12 and later others13,20 then introduce the rathe
crude approximation to neglectdS completely. This is justi-
fied by Wen by the fact thatdS formally vanishes with a
higher power int' than the linear term kept. For the syste
to be a Fermi liquid a zero-frequency pole should occur. T
can happen for arbitrarily small hopping only ifg(ki ,0) di-
verges. Using the exact results for the one-dimensio
Green’s function,g(ki ,0) can in fact be shown to diverg
~for the model without and with spin! for values of the
anomalous dimensiong,1. In this case the quasiparticl
weight in this approximation is proportional t
(t' /EF)g/(12g), and thereforevanisheswhen g reaches 1.
This result is in agreement with the naı¨ve renormalization-
group argument in which the weak-coupling criterion for t
relevance oft' is used for arbitrary strong coupling. Th
behavior of the quasiparticle weight differs from o
bosonization result, which yields a finite value also forg
51 and larger. The shape of the Fermi surface forg,1 in
Wen’s approximation is determined by the equati
g(ki ,0)51/t'(k') and yields a modificationdkF /kF com-
pared to the flat surface of zero transverse hopping of o
(t' /EF)1/(12g), i.e., theshapeof the Fermi surface depend
on thestrengthof the electron-electron interaction. Such
dependence is missing in our bosonization approach. Th
probably the reason for the qualitatively different results
the quasiparticle weight forg'1.

If one calculates the spectral function corresponding
Wen’s Green’s function, it shows various properties in t
low-energy regime which look rather unphysical. If on
crosses the Fermi surface, there are sharp poles eve
finite distances away from it on one side, but there is o
continuous spectral weight on the other side. We believe
bosonization result to produce more reliable spectra, at l
for g!1. For a direct comparison for our model includin
electron-electron interchain interaction, it would be nec
sary first to generalize Wen’s approximation to this ca
This can be done be replacingg(ki ,v) in Eq. ~77! by the
exact Green’s function for zero hopping, which takes in
account the interchain interaction. For this model the
proximation to neglectdS completely is even more seriou
asdS vanishes with one power int' less than in the mode
with intrachain electron-electron interaction only. This c
be easily shown diagrammatically.

Clarke and Strong22 have argued that even in the ran
1
2 ,g,1 the Green’s function in Wen’s approximation co
tains unphysical nonanalyticities which indicate a breakdo
of Fermi-liquid behavior already atg5 1

2 . This seems to fit
well to the other results from their concept of ‘‘confine
coherence.’’ It will be shown elsewhere44 that their argu-
ments concerning the analytical properties of Wen’s Gree
function are not well justified.

Even if one assumes it to be correct that the Fermi surf
becomes flat asg approaches one~from below!, the resulting
state of the system cannot be a simple Luttinger liquid,
fined as a nontrivial metallic ground state where differe
instabilities mutually cancel. Using the parquet approac
was recently shown by Zheleznyak, Yakovenko, a
Dzyaloshinskii45 that two-dimensional systems with flat re
gions on opposite sides of the Fermi surface always dev
some sort of instability toward a phase with spontaneou
-
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broken symmetry. Our thorough analysis of the nesting s
gularities inherent in the higher-dimensional bosonizat
approach provides the answers to some of the quest
raised in the conclusions of Ref. 45.

VI. CONCLUSIONS

In this work we have used the higher-dimension
bosonization approach to study the problem of coupled L
tinger liquids. Our main result is that, strictly speakin
Luttinger-liquid behavior exists only fort'50. Any finite
value of the interchain hopping leads to a finite quasipart
residue, which we have explicitly calculated. Neverthele
in a large intermediate regime of wave vectors and frequ
cies the Green’s function exhibits precisely the same sca
behavior as fort'50. Keeping in mind that experiments ar
always performed with finite resolution, the intermedia
scaling regime seems to be the experimentally relev
one—in this sense the interchain hopping is irrelevant.

Although our approach is nonperturbative in the sen
that an infinite number of Feynman diagrams have b
summed, it is only approximate. However, we have a stro
non-perturbative argument why all terms beyond the Gau
ian approximation that have been ignored in Eqs.~3!–~7! are
negligible in the parameter regime of interest: The clos
loop theorem,28,29 which is essentially equivalent with th
Ward identity derived by Castellani, Di Castro, an
Metzner,34 guarantees a cancellation of the leading infrar
singularities in the non-Gaussian termsto all orders in per-
turbation theory. Of course, for linearized energy dispersio
the shape of the Fermi surface is fixed. Therefore, if
renormalization of the shape of the Fermi surface by
interaction becomes relevant in the present problem, our c
clusions are expected to be modified. However, as discu
in Sec.V, at least as long as the value of the anomal
dimension without interchain hopping is small compar
with unity, we expect the interaction-induced modification
the shape of the Fermi surface to be unimportant. It sho
also be mentioned that only small momentum transfers h
been taken into account in our approach, so that poss
instabilities due to 2kF processes have been neglected. Th
although we have for simplicity taken the zero-temperat
limit, our results are implicitly restricted to temperaturesT
where the system is in the normal state. It is easy to see
T.0 the expressions for the long-distance behavior of
static Debye-Waller factorQa(r iv̂a,0) derived above remain
correct at distances small with the thermal de Broglie wa
length l th5hvF /T. Beyond this length scale we find tha
Qa(r iv̂a,0) is proportional to2ur iu/l th . We therefore con-
clude that for (uk)21!l th the intermediate scaling regim
discussed in Sec. IV B 3 exists even at finite temperature
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