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Crossover between Luttinger and Fermi-liquid behavior in weakly coupled metallic chains

Peter Kopietz, Volker Medenand Kurt Scfiahammer
Institut fir Theoretische Physik der Universit&attingen, Bunsenstrasse 9, D-37073tBwen, Germany
(Received 19 December 1996

We use higher-dimensional bosonization to study the normal state of electrons in weakly coupled metallic
chains interacting with long-range Coulomb forces. Particular attention is paid to the crossover between
Luttinger and Fermi-liquid behavior as the interchain hopgings varied. Although in the physically inter-
esting case of finite but smdl|] the quasiparticle residue does not vanish, the single-particle Green’s function
exhibits the signature of Luttinger-liquid behavifre., anomalous scaling and spin-charge separatioma
large intermediate parameter regime. Using realistic parameters, we find that the scaling behavior in this
regime is characterized by an anomalous dimension of the order of unity, as suggested by recent experiments
on quasi-one-dimensional conductors. Our calculation also gives insights into the approximations inherent in
higher-dimensional bosonization; in particular, we show that the replacement of a curved Fermi surface by a
finite numberM of flat patches can give rise to unphysical nesting singularities in the single-particle Green’s
function, which disappear only in the limiM — or if curvature effects are included. We also compare our
approach with other methods. This work extends our recent IgRbys. Rev. Lett.74, 2997 (1995)].
[S0163-18207)06936-1

I. INTRODUCTION Another class of materials where non-Fermi-liquid behav-
ior appears to have been observed experimentally consists of
The properties of the normal metallic state of correlatedveakly coupled metallic chairswhich are based on highly
electrons ind=1 dimension are usually summarized underanisotropic conductors. Although at sufficiently low tem-
the name Luttinger-liquid behavidr.The single-particle peraturesT these systems have the tendency to develop vari-
Green’s function of a Luttinger liquid exhibits several strik- ous types of long-range order, above the ordering tempera-
ing differences from the Green’s function of a conventionalture the metallic state displays clearly non-Fermi liquid
Fermi liquid: the absence of a coherent quasiparticle pealyehavior. The interpretation of recent photoemission studies
spin-charge separation, and anomalous scaling propertied these systems in terms of the Luttinger-liquid picture leads
characterized by interaction-dependent power laws. Nonto values for the anomalous dimensignin the range 1.0
Fermi-liquid behavior has recently been observed in several-0.25-8 Because in one-dimensional lattice models with
experiments. First of all, the normal-state properties of highshort-range interactionésuch as the Hubbard modethe
temperature superconductors cannot be interpreted in terna;omalous dimension is always small compared with thity,
of a conventional Fermi-liquid pictureMotivated by this  the large experimentally measured valuejo§uggests that
experimental fact, Andersdproposed that even i=2 the  the long-range nature of the Coulomb interaction must play
single-particle Green’s functions of correlated electrons camn important role in these systems. Of course, the experimen-
exhibit Luttinger-liquid behavior. This unconventional tal systems are not strictly one dimensional, because the in-
normal-state behavior was then shown to be a possible key terchain hopping, is small but finite, and even fdr, =0
understand the superconducting state. In fact, the interlayethe electrons on different chains interact with three-
tunneling theory of high-temperature superconductivity ad-dimensional Coulomb forces. We thus arrive at the problem
vanced by Chakravarty, Anderson, and co-workesdased  of weakly coupled metallic chains, which is the central topic
on the fundamental assumption that in the normal state thef this paper.
single-particle Green’s functioB(k, ) satisfies, for wave- In the last years the problem of coupled Luttinger liquids
vectorsk sufficiently close to the Fermi surface and for suf- has been studied by many auth8ts23Given the fact that in
ficiently low frequencies» (measured relative to the chemi- the absence of interchain hopping the nonperturbative
cal potential, an anomalous scaling law of the form bosonization approach can be used to calculate the single-
particle Green’s function in a controlled way, some
author$?1317.20.22.23 gttempted to supplement the one-
dimensional nonperturbative bosonization solution by some
kind of perturbation theory in powers of . One disadvan-
wherek® is a wave vector on the Fermi surface, and0 is  tage of this strategy is that in this way interchain hopping
some interaction-dependent exponent, the anomalous dimeand electron-electron interactions between the chains are not
sion. A finite value ofy is one of the fundamental character- taken into account on equal footing. In this work we shall
istics of Luttinger-liquid behavior, whereas in a Fermi liquid therefore adopt a different strategy: Instead of combining
vy=0. It should be stressed, however, that a generally acmne-dimensional bosonization with perturbation theory in
cepted microscopic derivation of Effl) for interacting fer- powers oft, , we shall use the recently developed higher-
mions ind>1 does not exist. dimensional generalization of the bosonization metfiot}

G(k“+5s0,50)=s""1G(k*+q,w), 1)
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FIG. 1. Fermi surface of an array of chains with small interchain £, 2. Approximation of the Fermi surface in Fig. 1 by
hopping. Only the intersection with the plakg=0 is shown. =8 flat patches.

to treat interchain hopping and interactions between theiently small so that within a given patch the curvature of the
chains on equal footing. Thus our approach is nonperturba=ermi surface can be locally ignored. On the other hand, the
tive int, and in the interaction. In particular, for =0 we  cutoffs A and\ cannot be taken to be arbitrarily small, be-
recover the well-known one-dimensional bosonization resultause higher-dimensional bosonization only becomes useful
for the Green’s function of the Tomonaga-Luttinger model. in practice if it is possible to ignore momentum transfer be-
The rest of this paper is organized as follows: In Sec. lltween different patchegthe so-called around-the-corner
we briefly describe the higher-dimensional bosonization approcessed). Of course, this is only possible if the interaction
proach. In particular, we emphasize the approximations inis dominated by forward scattering. More quantitatively, we
herent in this approach, and discuss its limitations. In Sec. llhssume that the two-body interactibp becomes negligibly
we shall show how the problem of electrons that are confinedmall if |q| is larger than some cutoffi;<min{A,\}. The
to one-dimensional chainge., without interchain hopping geometry is shown in Fig. 3. Assuming that the nature of the
and interact with three-dimensional Coulomb forces can benteraction is such that the above condition can be satisfied, it
solved in a straightforward way with higher-dimensionalis reasonable to make the following two approximatiéhs*
bosonization. Of course, this problem can also be solved byirst of all, we ignore momentum transfer between different
means of the conventional one-dimensional bosonizatioboxes(diagonal-patch approximatianThe relative number
technique*~**However, as shown in Sec. IV, our approach of matrix elements neglected in this case iglidimensions
can also handle the case of finite interchain hoppingith-  of orderq%/(A9-'\)<1. The second fundamental approxi-
out having to rely on an expansion in powerstofor in the  mation is the local linearization of the energy dispersion.

interaction. Although the quasiparticle residue is found to b&ieasuring wave vectors locally with respect to coordinate
finite for anyt, #0, we show by explicit calculation that

there exists a large intermediate regime where the equal-time
Green’s function satisfies an anomalous scaling relation
similar to a Luttinger liquid. In Sec. V we compare our re-
sults with those obtained by other approaches. Finally, in
Sec. VI we present our conclusions.

Il. HIGHER-DIMENSIONAL BOSONIZATION

In this section we shall give a brief summary of the
higher-dimensional bosonization approach. The foundations
of this nonperturbative approach to the fermionic many-body
problem go back to ideas due to Lutffeand Haldané®
More recently, a number of authors applied this technique to
problems of physical intereét-?° The basis of higher-
dimensional bosonization is the subdivision of the Fermi sur-
face into a finite number of patché®, a=1,... M. To
be specific, let us consider in Fig a typical Fermi surface
associated with a periodic array of chains coupled by weak g 3. squat boxes associated with the first two patches in Fig.
interchain hopping. A possible subdivision intM=8 2 The dashed circle indicates the maximal possible momentum
patches is shown in Fig. 2. Each patefj is then extended transferq, of the interaction. The vectde® points to the origin of a
into a three-dimensional squat b&fas shown in Fig. 3. The local coordinate system centered at pah, andv” is the corre-
characteristic sizé\ of the patches should be chosen suffi- sponding local Fermi velocity.
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systems located at poink$ in the centers of the patchésee
Fig. 3), a general energy dispersiep may be expanded as

(9%  (gf)?
a = at @ Y=y, + +
€katq~™ €k gqa gq q me me 1
2
whereqf=q-V* andq=q—(q-V*)v®. Herev*=v*/|v*| is

a unit vector in the direction of“. Note that in general the

massesn; and m{’ depend on the patch index. Because in
the grand-canonical formulation of statistical mechanics the

energy dispersion appears only in the combinatéQn w,
the chemical potentiglk cancels the constari. in Eq. (2)
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implicitly restricted to the regiméq,|<X\, |q,|<A. How-
ever, as long as the external wave veoipin Eq. (3) is
sufficiently small, we may ignore these cutoffs. Then it is
easy to see thaGg(r,7) in Eq. (4) is proportional to
8973(r,), where thed—1-dimensional vector, consists
of the components af that are perpendicular t*. In fact,

for V and 83— « the integration in Eq(4) is easily performed
analytically, with the result

1
r+ijvelr’

Gg(r,m)=26"" 1(&)( €)

2

wherer,=r.V®. Because of the prefacta®® 1)(r ), we

providedk?® is chosen to lie exactly on the Fermi surface. Wemay replace —r v* in Egs.(7) and(5). Furthermore, the

now ignore all terms in Eq.2) that are quadratic and higher
order inq, i.e., we approximat&;~v“-qg. In particular, the
term (ql)2/(2ml) is neglected. Note that retaining this term

integral in Eq.(3) is effectively a one-dimensional one, be-
cause the integrations over the components pérpendicu-
lar tov* can be done trivially due to th&function in Eq.(9).

would lead to patches with nonzero curvature. Once we acOf course, this simplification is an artifact of the lineariza-
cept the Va”dity of the above approximations, the Sing|e_ti0n. The modifications of the above results due to the non-
particle Green’s function can be calculated without furtherinear terms in the energy dispersion have recently been cal-
approximation in arbitrary dimension. As shown in Refs. 28culated in Ref. 30. Most importantly, for nonlinear energy
and 29, the result for the Matsubara Green’s function at finitélispersion one should replace, in E¢®). and (7),

inverse temperaturg can be written as

@ i~ p —i(gr-w,nEa Q4(r,7)
G(k*+q,iw,)= | dr 0dre nGq(r,mex "7,

()
where
1 i(q»rfanf)
e
and the Debye-Waller factd@“(r, ) is given by
Q«(r,7)=R*—=S%(r,7), (5)
with
1 fRPAQ,i wpm)
N &, Gogvge SO0 ©
. 1 fRPAQ, i wm)cogq-r— wm)
SN & T Gonvea? "

Here @,=2m(n+3)/B are fermionic Matsubara frequen-
cies, andw,=27rm/ B are bosonic onesRPA(q,iwy) is the
screened interaction in random-phase approximaRipA),
which is given in terms of the bare interactidg and the
noninteracting polarizatiohl4(q,i w,,) via the usual relation

fq

RP. H _
f A(q’lwm)_1+qu0(q,iwm)'

®)

1
(lom—vea)?

1
(lon=&)(lont+ €%’
where &g is given in Eq.(2). Note that the nonlinear terms
remove the double pole in Eq&) and (7). Moreover, non-
linearities in the energy dispersion also lead to the replace-
ment of the functionGg(r,7) in Eq. (3) by an interaction-
dependent Green’'s functiolG*(r,7), which does not
involve the singular prefactos )(r,) given in Eq.(9).

For an explicit expression d&“(r,7), see Refs. 29 and 30.

The above nonperturbative expressions for the single-
particle Green’s function are valid in arbitrary dimensions
and for arbitrarily shaped Fermi surfaces. Furthermore in
=1 these expressions correctly reduce to the well-known
bosonization result of the Tomonaga-Luttinger model. We
now apply the above results to study the problem of coupled
Luttinger liquids.

(10)

I1Il. COULOMB INTERACTION IN CHAINS
WITHOUT INTERCHAIN HOPPING

Before discussing finite interchain hopping, it is in-
structive to study first the case=0, where the electrons are
confined to the individual chains. Of course, electrons on
different chains still interact with the three-dimensional Cou-
lomb interaction, so that this is not a purely one-dimensional
problem. The latter was discussed in Ref. 32. Thus, making
the continuum approximation for motion parallel to the

As shown in Refs. 28 and 29, the above expression for thBY

Green'’s function can be obtained by means of straightfor-
ward Gaussian functional integration; alternatively, Egs.

(3)—(7) can be derived directly from the underlying

chains, the Fourier transform of the bare interaction is given
e—iq~r

fq=ezafj_wdrxz ,——r —
1

r

(11)

asymptotic Ward identity and the corresponding linear inte-

gral equation for the Green'’s functidfiln the RPA screened
interaction Eq. (8) only the long-wavelength limit of

ITy(g,iw,,) enters, consistent with the neglect of the around-cates that the, =

the-corner processes. Thus tgesums in Egs(4)—(7) are

where ther, sum is over the two-dimensional lattice of
chains, with interchain lattice spaciray . The prime indi-
0 term must be properly regularizésee
below). For|g|<a;*, Eq.(11) reduces to the familiar result
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. 1 IIy(g,w+i0")
Kk RP. —
z S*Aa.w)=_Im T+ fqwrion) 4
/ Using Eq.(12), we obtain, foro>0,
S, 0)=Z48(w— wy), (15
K with the collective mode and the residue given by
-- X
Wq= \/1+FqUF|qx|EUF|QX|Kq1 (16)
1 |lax K
/ Zg= v ool = R—q (17)

Substituting these results into E®), it is then easy to show

FIG. 4. Fermi surface of an array of chains without interchainthat

hopping.
pping 1 7

Ri=—= > f2—— (18
fq=4me?/q’. Note that we do not replace, by hand, the VG U(wgt|v-a)?

long-range Coulomb interaction by an effective screeneqnich for vV—oc reduces to
short-range interaction. The screening problem will be

solved explicitly via our bosonization approach. = dq F2
Because fort, =0 the particle number is conserved on RY=— %f — d . (19
each chain, the problem can be solved by means of standard 0 Ox \2V1+F[V1+Fq+11%/

one-dimensional bosonization techniqd&s™® However, the
solution can also be obtained quite elegantly within th
framework of higher-dimensional bosonization. In the ab-

eSimilarly, we obtain

sence of interchain hopping, the Fermi surface consists of ReS*(x,7)=— %f da cogQ,X)

two parallel planes, as shown in Fig. 4. These planes can be x

identified with the patches discussed in Sec. Il. Let us label =

the right plane bya=+, and the left one byw=—. The 1+ -3

(linearized energy dispersion is simply given byg % 2 o~ VTFFquEay

= avgQy, Wherevg=|v?| is the Fermi velocity. As usual, a V1+F, -

dimensionless measure for the strength of the interaction is
Fq=vfq, Wwherev=2/(mv Faf) is the density of states at the
Fermi energy(the factor of 2 is due to the spin degenenacy
An important length scale in the problem is set by the —e VRl | (20
Thomas-Fermi screening wave vectar which can be de-

fined by rewriting the dimensionless interactiés in the

long-wavelength limit as Fq=«?/g% This vyields « Im S¥(x, 7) = — sgn(7) f”“ dax
= ail\/87-rg, where the dimensionless coupling consigig 7 2 o Oy
given byg=e?/(m7v). To evaluate Eqg5)—(7), we need to .
know the RPA interaction8), which involves the non- X[(e VI Fauradry ., — e vrtd], (21)
interacting polarizatiodly(q,i wy). In the absence of inter-
chain hopping the polarization has the usual one-dimension
form, which is in the long-wavelength limit given by

sin(gyx)

therex= ar,, and where for any functioh(q) the symbol
? (9))gz denotes averaging over the first transverse Bril-
louin zone(BZ),

I . . v 2 Va'q _ L4 1 mla; mla;
O(q'lwm)_ia:: VEq—ion 1+(1)r2n/(UFqX)2. <h(q)>BZ:? f, w/aquyf w/aquZh(q)' 22
(12) a

For a better comparison with the calculations for finite inter-To show that theg, integrals in Egs(20) and (21) exist at
chain hopping presented in Sec. IV, it is convenient to exarge g, without the addition of an ultraviolet cutoff, it is
press the RPA interaction in terms of the dynamic structurgecessary to know the behavior fef for large|q]. Trivially

factor in the usual waywe take the limitg— ), in the approximatiorF,= «x?/q? the interaction falls off as
|g|~2. If one takes into account that the one-dimensional
* 20 continuous and two-dimensional discrete Fourier transform
RPA( i _f _f2 RP.
R wm) =14 quo do SA(q,0) LA (11) of the potential shows the same behaviee below it

(13 is easy to show from Eq$20) and (21) that, after BZ aver-
aging, the integrands for=0 fall off like («/|qy|)°. Be-
with cause they, integrals existk plays the role of an ultraviolet
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cutoff. For finite 7 the integrands in Eq$20) and(21) only
fall off like (x/q,)?, but theq, integrals still exists.

Let us first consider the case=0. Then we need to cal-
culate the following Brillouin-zone average:

2
Fq

’VCb(qx):<4\/1+—Fq[\/1+—Fq+1]2

5,

In the regimeg<1 the Thomas-Fermi screening length?*
is large compared with the transverse lattice spang

> =(v(q))sz

(Kq_ 1)2

4K 23
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sible for the divergence of the anomalous dimension in the
strictly one-dimensional model with Coulomb interaction,
which leads to the Wigner crystal phaeof the one-
dimensional electron gas. Fgr1l we already saw that the
chains coupled by the three-dimensional Coulomb interac-
tion arenot in the Wigner crystal but in the Luttinger-liquid
phase. In the following we show that for arbitragythe term
—c In(agq,) for an infinite number of chains is exactly can-
celled by a ternt In(a, gy from ther, #0 part of the Fou-
rier transform(11). Therefore the system is a Luttinger liquid
for all g.

In our regularization procedure we assume that the one-
particle wave function in the transverse direction is given by

Because in this case all wave-vector integrals are dominated Gaussian distribution corresponding to a harmonic confine-

by the regime|g|=s« it is allowed to use the continuum
approximationfq=477e2/q2 for the Fourier transform of the
Coulomb potential. The averaging over the transverse Bril
louin zone in Eq(23) can then be done analytically, with the
result

2

e 1
_ . 24
Yer( Ox) 27V [|gyl/ K+ 1+ (ax/ 6)]? =
Hence
e e 1—cog0yX)
Q' x0==5" Jo S i Vit (@ T
(25

For x>k~ 1 it is now easy to show thatQ%(x,0)~

— Yo IN[xX], with the anomalous dimension given by

2

Yeo=lim ye(ay) = (26)

4y—0 27TU|:

The logarithmic growth of the static Debye-Waller factor is

ment potential. We replace tlhg =0 component in Eq(11)
by

f drif dry
2.2
ae © 2,2
o | drolln aoe 4,
ao’ﬂ' —

; 2,2
efqurxefrila0

2 2\1/2
(rz+r2)Y

a‘e

agw

(27)

whereKy(x) denotes the modified Bessel function. The loga-
rithmic divergence oK, for x—0 leads to the logarithmic
behavior for small, discussed above.

To obtain a fast convergence of the Fourier transft)
for r, #0, we use theEwald summation technigi® With
the help of thetheta function transformation

™ 2
E e—\QJ__Gﬂ /(401), (28)
aJZ_a2 G,

2
2 ealr|®=ia 1) —
L

where G, denotes a vector of the reciprocal lattice in the
transverse direction, and the integral

one of the characteristics of a Luttinger liquid. Note that in a 2 °°d —(24r, [Pra?_ 1 29
strictly one-dimensional model the long-range Coulomb in- \/_; fo ae x N m (29)
teraction leads to a Wigner crystal phisand not to a Lut- x UL
tinger liquid. In this case the anomalous dimension divergesne obtains
in the thermodynamic limit. However, the Coulomb interac-
tion between electrons on different chains removes this di- o e —[ait|a — G %)/ (4a0)}
vergence, and leads to a Luttinger ligtfidvith modified fq=4me GZ ©+|q -G, 2
spectral properties fat#kg (see below. . X

We would like to point out that Eq26) is only valid for 2 o [” —alr, 2=iq, -

; ; +2aje — R

0<<1, wherey,<1. It would be incorrect to extrapolate this L L a “o
result to the regime wheg s of the order of unity, which is ° .
experimentally relevant. In order to calculate the anomalous 2. 2 [ 1 —q2l(4a?)
dimension in this regime, the Fourier transforip of the —2ajage fo d“ame X
interaction has to be properly calculated. For largewe
have to take into account the lattice structure in the trans- 2 o * da 1 —(4a?)
verse direction. To calculate the one-dimensional continuous +2are Jao a méa_ze ’ ' (30

and two-dimensional discrete Fourier transfofhi) of the

Coulomb potential, it is necessary to regularize the=0
contribution as in the strictly one-dimensional ca3&he
characteristic feature of the regularized=0 term is its
logarithmic divergence-c In(ayqy) for small q,, whereag

Fora e[0,ap], in Eqg.(29) we used transformatiof28) from

the direct lattice to the reciprocal lattice. Nowy can be
chosen in such a way that in the sums in the first and second
lines of Eq.(30) only a few lattice vectors contribute. In the

is the typical extension of the one-particle wave function infollowing we always choosey=4/a,. For thisay the sum
the transverse direction, ardis a constant. The prefactor in the second line in Eq30) can be completely neglected,
and the behavior at larger momenta depend on the speciahd in the first line only the vectors G,
regularization procedure chosen. This divergence is respon=(my2=/a, ,m,2m/a,) with my andm,e[—5,5] contrib-
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ute. The last two terms in E¢30) contain ther, =0 term of  is independent o, , one obtains fory.,< 3 a sharp thresh-
Eg. (11). From Eq.(30) it is easy to see that only fdg|  old singularity atw=—v¢|q,|, just as in one dimension,
<a11 it is permissable to approximate the Fourier transform

of the Coulomb potential by its continuum limite®/ g, P (0, @)~ O (e[ Oy — Ke]— ) (Ve[ Oy — Ke ]— @) 7o 12,
To determine the anomalous dimension from E@S) (33)
and (26), we have to take thg,—0 limit in Eq. (30). For
dx=0 we obtain For y.,> 3 the singularity is washed out, but the threshold
-G 24 survives. On the Fermi surface the BZ averaging is irrel-
fo o0 —Ame?S exp{—[d, — G, |*/(4ao)} evant, and fory,,<1 one obtains
h=0a, G, la, -G, [*

o S(Kg,0)~0O(—w)(—w)Yeo L, 34
+2&f92f da S gl i, Py (Ke,0)~0(~w)(~w) (34)

a * 1170 as in the one-dimensional Tomonaga-Luttinger model. In or-
der to evaluate the momentum-dependent spectral function
, (31)  for arbitraryg, and w, we have to use numerical techniques

developed in Ref. 40. It turns out thatbmoadenedcharge

i.e., no logarithmic divergence. As already discussed abovegeak occurs. For increasing anomalous dimensions, i.e., in-
the logarithmic divergence of thg =0-term is exactly can- creasingg, the charge peak broadens. Numerical results for
celed. Therefore the anomalous dimension is finite and cathe spectral function are shown in Figs. 2 and 3 of our pre-
be calculated numerically from E@23). In the regulariza- Vvious Letter’* From these figures it is clear that our model
tion procedure we introduced the parametgr Physically it ~ exhibits spin-charge separation. A detailed description of the
is clear that only ratios, /a,>1 are relevant for quasi-one- numerical calculations can be found in Ref. 41.

dimensional systems. Our numerical results for the anoma- To summarize this section, we showed that the system of
lous dimension as function @f have been published in Fig. one-dimensional chains coupled by the long-ranged Cou-
1 of Ref. 21. From Eq(30) it is easy to show théf, falls off lomb interaction is a Luttinger liquid with an anomalous di-
as x2/q? for large |q|. Therefore our above discussion con- mensions of the order of 1. Furthermore, the charge singu-

cerning the existence of the integrals E¢®0) and (21) is larity of the strictly one-dimensional Luttinger liquid is
also applicable to the lattice Fourier transform. broadened due to the BZ averaging, but is still present. In the

In a Luttinger liquid the momentum-integrated spectralfollowing we extend the model and include transverse inter-
function p(w), which apart from a one-electron dipole matrix chain hopping.
element determines angular-integrated photoemission, is al-
gebraically suppressed near the cheml-cal potéﬁtpilw.) IV. FINITE INTERCHAIN HOPPING
o|w|?®, Recent photoemission studies of quasi-one-
dimensional conductors suggest values for the anomalous di- A typical Fermi surface of an array of chains with small
mension in the range 1#00.2578 This would be hard to finite interchain hopping is shown in Fig. 1. In the quasi-one-
reconcile with a model involving short-range interactions, asdimensional materials discussed in Ref. 5, the intrachain
e.g., the anomalous dimension in the one-dimensional Hubhhoppingt, is an order of magnitude larger than the interchain
bard model never exceegs A rough estimate of the dimen- hoppingt,=t, , which is again a factor of 10 larger than
sionless coupling for experimental relevant parameters fol- We therefore assume transverse hopping only irytdéec-
lowing Ref. 5 leads to values af of the order of 1. As tion. In this section we shall apply our higher-dimensional
shown in Fig. 1 of Ref. 21, our treatment using realisticbosonization approach to this problem. We would like to
Coulomb forces quite easily leads to anomalous dimensionemphasize that we are ultimately interested in realistic Fermi
in the experimental range. surfaces without nesting symmetries. Unfortunately, by re-
In the following we discuss the momentum-dependentplacing a curved Fermi surface of the type shown in Fig. 1
spectral functionp=(q,,w). In the strictly one-dimensional by a finite number of locally flat patchdsee Fig. 2, we
model with an interaction potential which is finite@t0, it  introduce unphysical nesting symmetries. In order to obtain
is known that for anomalous dimensiogssmaller than; a  physical results that can be compared to experiments, the
power-law divergence occurs at the energyqg and fory  singularities caused by these artificial symmetries should
<1 atv.g, wherev, is the long wavelength limit of the therefore be separated from the physical plasmon mode in
g-dependent charge excitation velocityspin-charge the dynamic structure factor. In this section we shall show
separation® % From Eq.(16) one obtains for the coupled how this can be done in practice.
chains aq, dependence of the charge velocity

Qo
4_
an

—2a%€? In

© A. M-patch model
ve(qy)=lim q_q:UF\/1+ Fq, - (32 In the higher-dimensional bosonization approach with lin-
G0 T earized energy dispersion the Fermi surface is approximated
It is not obvious from Eqs(20) and (21) whether a charge by a finite numberM of flat patchesPy . In order not to
peak occurs or not, because the Charge Vehﬁé@h) is break the inversion symmetry of the Fermi surface, we
subject to the BZ averaging, and the singularity can bechoose an even number of patches of equal size, such that for
washed out. On the other hand, because the spin velogity eachP} there exists another patdPy such that the local
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Fermi velocities satisfyv"_=—v“ (see Fig. 2 forM =8). /2 " s
Then the noninteracting polarizatioH(q,z) is, at long 5, Wi Z’l (v®-q)
wavelengths, given by wngqM Z (v q) %+ g + O(L/F,)
I o a. q)2
LVt L &9
0 q: M = (Va.q)2_22¥ (40)
where it is understood that the sums are over all patches witgng
v¢-g=0. For finite M the poles of the RPA interaction,
which are simply the zeros of 5 M2 12
14
= — a, 2
1+1,I15(6,2) =0, (36) Z, AL agl (v-q)?| +O(1Fy). (4D

can be easily obtained by plotting the right-hand side of Eq. ] . . )

(35) as function ofw? wherew=z is real, and looking for ~Introducing these expressions in E#8) we obtain to lead-
the intersections with- 1/f,. For genericg all (v*-g)? are N9 order in the coupling

different and positive, and we can order<Qv®i-q)?2

<(ve2.q)?<---<(vem2.q)2. A repulsive interactionf,

VUE
leads then to zerose()(®), a=1,... M/2 of Eq.(36) as SHECHHES 2 V2 + 7202 S(w—veFqVai+ 72a%),
q

function of z? lying between the unperturbed poles, 42
(v g)?<(wf) P<(viz-g)<..<(vwzg)’<(wp) M.
(37)
In the largeM limit the first M/2—1 solutions form the par- 9 M2
ticlehole quasi-continuum, while the largest mad§l’ can 7= > (v-q,)? (43
a=1

be identified with the collective plasmon mode. [fovalues
which lead tov®.q=0 and (o) (v4-g)%=(v¥4-q)?, the _
number of poles in the quasicontinuum with nonvanishing's & Small parameter for a weakly corrugated Fermi surface
residue is reduced. Denoting &, the residue of the plas- corresponding to small interchain hopping. Note tatin
mon mode, the dynamic structure factor is given by Eq. (42) denotes they, andq, components off, and should
not be confused with the vectof’ in Eq. (2). The contribu-
SRR, 0) = Z48(w— wg) + Steai( A, @), (38)  tion to the constant paiRy of the Debye-Waller factor is

where SRPA(q,w) is due to the contribution of the other 9"V°" by

modes, which merge foM —<« into the particle-hole con- .
tinuum. In the absence of interchain hoppirgjicei(d, ) RY=- %f da,
=0. Furthermore, the plasmon mode and the associated resi- 0

due are given in Eqg16) and(17).

1 VFq

1. Plasmon mode /qX2+ 772qu 1 Ve

The crucial observation is now that for small but finite It ===
andM — o the low-energy behavior of the Green’s function \/F—q VENGE AL BZ
is still dominated by the plasmon mode, which therefore de- (44)
scribes the crossover between Luttinger- and Fermi-liquid
behavior. Thus, to leading order i we may ignore the To leading order the patch dependence drops out. sor
contributionsﬁﬁgh(q,w) in Eg. (38). In this case the constant =0, corresponding to zero interchain hopping, the integral is
partR* of the Debye-Waller factor is still given by E(L8), logarithmically divergent. For finite; the g, integration ob-
but now withw, andZ, given by the plasmon mode of the tains a finite lower cutoff which leads to a contribution
M-patch model. In the strong-coupling limit it is easy to In[«/(7q.[)]. To leading order in In(kf) one can take the
obtain an analytic expression fas, and Z,. Anticipating  limit q,—0 in Fq. This yields
that at strong coupling there exists a palgof Eq. (36) with

w§=O(Fq), we may expandly(q,z) in powers ofz 2. The o~ 3 In(1/7) lim <\/F_q>Bz- (45)
leading term is ay—0
2 a 2 a 2
o(q,2)= — Q E v-a 1+ v -q) The prefactor of the logarithm is just the strong coupling
’ M1l oz expression of the anomalous dimension of the zero hopping

4 7=0 limit. Now, if Rj is finite, the Riemann-Lebesgue
+O( ” (39) lemmd? guarantees thzﬁ&(ru\?a,O) goes to zero for increas-

ing r,. Therefore the system is no longer a Luttinger liquid,
Substituting this approximation into E¢36), it is easy to  but a Fermi liquid with a finite quasiparticle weight* z*
show that =eR’,

ve-q
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2. Nesting mode in all terms witha# B8 in sum (35). This yields, in the re-

Clearly, by approximating the realistic curved Fermi sur-9ime of wave vectors defined by
face shown in Fig. 1 by a collection of flat patches, we in- o
troduced an artificial nesting symmetry. For example, the VP-ql<|v*-ql for all a#p, (46)
patchesP} andP{™* (with a=1, 2, 3, and #in Fig. 2 can  the following expression for the polarization:
be connected by constant vectors which can be attached to an
arbitrary point on the patches. Simple perturbation th&ory v 2(vA.q)?
indicates that this nesting symmetry gives rise to logarithmic o(q.2)~ 7 [M—2+ WEq?2=22| (47)
singularities, leading to a breakdown of the Fermi-liquid
state. However, unless there exists a real physical nestinghe collective mode E(36) is then easily solved, with the
symmetry in the problem, this singularity has been artifi-result that the dispersion of the nesting mode is given by
cially generated by approximating a curved Fermi surface by

flat patches. 14+ F 12
; . . . . of=| ———9 IvE.q (48)
Let us first show how these nesting singularities manifest q M—2 a-
themselves within our bosonization approach, and then give 1+ TFq

a simple quantitative argument about how these singularities
disappear due to curvature effects. The crucial observation iBor the associated residue we obtain
that for a giverng there exists one special patEIﬁ such that

the energyv?- q| is much smaller than all the other energies 8 v|VE.q|
|[v¥-q|, a#B. Anticipating that for sufficiently smali, Zq= M— 32 : (49)
=VA.q there exists a-function peak in the dynamic struc- M| 1+ —o—Fq| [1+ Fol™?

ture factor at the nesting modegoc|vﬁ g|, we see that for
small g, the energywﬁ is much smaller than all energies Using Eq.(18), we see that the nesting mode gives rise to the
|v®-q| with a# 8. Hence the energy dispersion of the nest-following contribution to the constant paR? of the Debye-
ing mode can be approximately calculated by setifigO  Waller factor associated with patthB

1 F2
RE — ! k! (50
nest VoM 32 1+F 1/2 2
IvA.q|| 1+ ——F } [1+F Y3 v +1
1+TFq

where the prime on the sum indicates that the sum is over thghall use the higher-dimensional bosonization result for
wave-vector regime defined in E¢6). To understand the curved patché€*’to show that this is indeed the case. Here
geometric meaning of Eq46), let us note that for our we would like to give a simple quantitative argument which
M-patch model the angle betweefi and the neighboring captures the essential physics. Suppose we retain the qua-
velocity vA*1 is of the order ofg/M, where 6=|t, |/Ef. dratic terms in expansio(2) of the energy dispersion close
Settingq,=V#-q and qL—vL (wherevﬁ is a unit vector to patchPﬁ. Obviously the termﬁ/(ZmL) (describing the
orthogonal tov?) it is easy to see that the condition H¢6)  curvature of patchP%) becomes important forg|q|

is equivalent with|q|<6|q,|/M. We conclude that for ~q?/(2m,), where for simplicity we have assumed that

V— integral (50) is proportional to mf=m, and|v#|=v are independent of the patch indgx
Hence we expect that for curved patches the lower limit for

f f"qi“"' dQH 51 the g, integral in Eq.(51) will be effectively replaced by
Riest* 3y M @ (51 q2/2|/m, |ve . We conclude that the effect of curvature can be

qualitatively taken into account by substituting
which is infrared divergent. Obviously the logarithmic diver-
gence is removed if we take the linfil —. It should be
kept in mind, however, that in the limil — o the size of the 6o, M dg, (oM dg  [2[my[ugd
patches vanishes, so that the conditipre min{A,\} is vio- JO q_”_’J - n qM
lated. As discussed in Sec. Il, this condition is necessary to
justify the neglect of the around-the-corner processes in the
higher-dimensional bosonization approach; see Fig. 3. Newn physically relevant cases we expéot, |~kg/(vg6), so
ertheless, because for vanishing patch cutoff we recover #hat the right-hand side of Eg52) reduces to the integrable
curved Fermi surface, the above calculation suggests that ttiactor of I[2k:/(M|q,|)]. A more rigorous justification for
nesting singularity will disappear as soon as the finite curvathe regularization given in Eq52) will be given in Sec.
ture of the patches is taken into account. In Sec. IV B 2 wdV B 2.

(52

a22m Jue i
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k In the limit #—0 we have {;—¢&;—vedy, SO that

wg— 1+ FunIqx| and @,—v|qgy. It is also easy to see
that the residu@, in this limit reduces to the result given in
Eq.(17), while the re5|due'£ vanishes. To examine whether
interchain hopping destroys the Luttinger-liquid behavior, it
is sufficient to calculate the static Debye-Waller factor. Com-
bining Egs.(6), (7), and(57), it is easy to show that

- 1 -
QU(r¥m0)==G 2 [1-cos¥*-qry]fg

FIG. 5. Fermi surface of the four-patch model. Only the inter- 'z
section with a plane of constakj is shown. q q
X @ 2 + = @ 2
(wgt|ve-a)?  (@g+|v*-al)
B. Four-patch model (60)

We now confirm the general results discussed in Sec.
IV A by explicit calculations forM =4, where the collective
mode equation is quadratic, and can be solved exactly. Let us
start with the Fermi surface shown in Fig. 5. The noninter- Let us first focus on the first term in E(50). Because for

1. Plasmon mode

acting polarization is now t, —0 this term smoothly reduces to the corresponding ex-
pression in the absence of interchain hopping, the mage
v 2 ve-q)? can be identified with the physical plasmon mode discussed
o(a)=3 Z m (53 in Sec. IV A. From Sec. IIl we know that the Debye-Waller
m

factor is essentially determined by the long-wavelength re-

where the local Fermi velocities are defined in Fig. 5. Thegime [g|=<«. In this regimeF,>1, so that we may use the

collective mode Eq(36) reduces to the biquadratic equation Strong-coupling approximation fob, and Z,. From Egs.
(55) and (56) it is easy to see that, up to higher orders in

4 0/F4, the collective density mode, can in this regime be
z'- (§q+ )2+ (1+F£E=0, (54 approximated by
where we have introduced the notatlofh'r—v g and gq wqup\/lJrFq\/qur 02q§. (61)

=v?.q. Equation(54) is easily solved,

o[, Fq §§+~§-§ 1 . §§+E§ 2 Substituting this expression into E¢8), we obtain
S Y ] e A
VUE QX+ 0 qy
EREL Zy~ ———. (62
+<1+Fq><f§—§§>2} , (55) 2v1+Fq
_ _ Comparing Eq(62) with Eq. (17), we see that the only effect
" Fo| &+&5 1| _,[&+& 2 of the interchain hopping is the replacement
Wq~= 1+7 2 2 Fa 2 oy — a2+ 02qu. Thus the plasmon mode,, yields the
) following contribution to the constant part of E¢GO) for
2 22 12 small 6
+(1+Fq)(§q_§q) (56)
Both modesw, andw, give rise tos-function peaks in the a_ _f da( ————
q q q v ) . (63)
dynamic structure factor. We obtain, far>0, Pl o \/qxz+ 02qu 57
SN Q,0)=Z48(w—wg)+Z48(0=Bg), (57 If we setd=0 we recover the previous result in the absence

of interchain hoppindEq. (19)], which is logarithmically
divergent. This divergence is due to the fact thatderO the
g § first factor in Eq.(63) can be pulled out of the averaging
q d g bracket. However, for any finité the g, andq, integrations
(59) are coupled, so that it is not possible to factorize the integra-
tions. Hence, any nonzero value @€ouples the phase space
of the g integration. Because fof—0 the integral(63) is
_ 2+ g logarithmically divergent, the coefficient of the leading loga-
5252 ~2 q2 d rithmic term can be extracted by ignoring thgdependence
> ) (59) of the second factor in the averaging symbol of E8Q).
q Then we obtain, to leading logarithmic order,

with the residues given by

v q

1 20y wg—ag ’

14

= —
a qu wé—w
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p 1 k
R“~—f doy| ——=—= lim y(q) Y
o <mqﬂ .
3

5
AV

wherey, is given in Eq.(23), andb, is a numerical constant
of the order of unity.

The contribution of the plasmon mode to the spatially
varying partS*(r,v*,0) of the Debye-Waller factor at equal
times can be calculated analogously. Note thatv*.r=
*ry cosf=ry sin 6. Repeating the steps leading to £63),
we obtain FIG. 6. Fermi surface of the four-patch model with curved

patches. If the component of perpendicular tos* is denoted by

1A

=" %Ych + bl y (64)

4

- cog 6q,r/) q. , the patches can be described by energy dispergifrs“-q
~ I 2 : . .
S2(r,07,0) = _J dqxcos(qxr”)<—yy(q)> ) +(qg;/2m,) with negative effective mass, .
(65 = voelq|
Ly~ E 1372 . lal=6la.]. (68
Because the Thomas-Fermi wave veckoacts as an effec- 41+ -9 [1+ Fq]l/Z
tive ultraviolet cutoff, the value of the integral in E@5) is 2

determined by the regimig|<«. For 6«|r,|<1 we may
approximate cosfg,r;)~1 in this regime under the integral
sign. Furthermore, forx|r)|>1 the oscillating factor =
cosyr,) effectively replacesc by |r,| ! as the relevant ul- Zq
traviolet cutoff. We conclude that in the parametrically large(®@q+ lve-q)
intermediate regime ~1<|r |<(6«) ! we have to leading
logarithmic order ~

We conclude that, fofq,|=<6|q, |,

14

32 1+F 172 2
. dve|q| 1+?q [1+Fq]Y? —Fq +1
. —a
Sgl(rlvaio)’“_'}’cb[ln( 0K|I’H| +b2 ’ (66) 1+ 2
(69)

whereb, is another numerical constant. _ _ .
Note that the above expressions agree with E¢8~(50) if

2. Nesting mode there we seM =4. The factor of 1| in Eqg. (69) implies
that the static Debye-Waller factor grows logarithmically for

) LT r;—. However, for realistic Fermi surfaces of the form
pect that the second modg, in Eq. (60) will give rise to an  gho\yn in Fig. 1, the nesting symmetry responsible for this

unphysical logarithmic growth 0Q*(r,v*,0) at large dis- penavior does not exist. To remove this artificial nesting
tances, which is caused by the nesting symmetry of theymmetry, let us now replace the completely flat patches of
Fermi surface in our simple four-patch model. We nowgiq ‘5 py the slightly curved patches shown in Fig. 6. The

verify this expectation qn_d then use the results of Refs. z%orresponding energy dispersions can be taken tatpe
and 30 to show by explicit calculation that curvature effects_ Ve gt (q2 /2m,) with negative effective mass, . For
oV’ L L L -

remove the nesting singularities. For convenience we Choosv%eakl coupled chains we should chookm, |~m, /6

the integration variables),=¥"- =g cost+q sing and where)ll”n =kp/v is the effective mass for motion aIc!n 'the
=—qysi . Then &,=veq, and £,=ve(q e : g

4. =—0x S|r|u9+(;q_ycosﬁd _ q Fh I N o F\MI chains. As shown in Refs. 29 and 30, one important effect of

—26q,) to leading order ind. Note that the con |t|0|11qH|. the curvature terms on the Debye-Waller factor is the re-

=0|a,| is equivalent with|&,|=<[£,|. Geometrically this placement given in E10), which removes the double pole

means that the wave vectqris almost parallel to the surj4ace in Egs. (6) and (7). Taking this effect into account, we see

of the first and fourth patch, so that its projectioh q=V*  that the contribution of the nesting mode to the constant part

- on the local normals is much smaller than the projectionre of £q. (60) becomes

on the normals/? and v® of the other two patches. In this

From the general analysis presented in Sec. IV A we ex

regime we obtain, from Eq56) to leading order, 1 _ 2sgnéY)
Riest=—y 2 falogz——— (70
_ [ 1+Fq\*? (@15
wq™~ |:q velayl,  lay[=6la.l, (67) Jmy [~ &l
q
+—= I . .
! 2 with Z, and@, given in Eqs.(59) and(56). From the above

discussion we know that possible nesting singularities are
and, from Eq.(59), due to the regimég,|=<6|q, |. Thus, restricting the limits of
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the integral in Eq(70) to this regime, we obtain, from Egs.  Q¢(r,v*,0)=R*— S¥(r,v,0)
(56) and (59) in the strong-coupling limit, . .
==y IN(k|r))+b], & <|r|<(8x) ",
féz(ﬁ velql ’ (74
V2v

@~V2ve|q)|. (71
whereb is a numerical constant of the order of unity. Expo-

Recall that for the three-dimensional Coulomb interactionnentiating this expression, we see that the interacting Green's

the strong-coupling conditiomf,>1 is equivalent withq| function satisfies the anomalous scaling relation

< k. Putting everything together, we find that the contribu-

tion from the critical regiméq|=<#6|q, | to Eq. (70) can be

G(rls,00=s3""0G%(r,0), « i<|r|, |r|/s<(6k)"L.
written as [

s ) In momentum space this implies, fas=0 and 6x<|q|
a ﬁ JKdm m, | folaul <k, an anomalous scaling law of the form given in Eb).
nest™ 73u Jo af J -, with y=y.,. Thus, in spite of the fact that the system is a
2 Fermi liquid, there exists for small a parametrically large
Iq |sgr(q Q. ) mtgrmedlate regime where th(_a interacting Grgen’s fgnc_tlon
! 2Ilm v satisfies the anomalous scaling law of Luttinger liquids.
2 ' (72) Moreover, the effective anomalous exponest precisely
given by the anomalous dimension of the Luttinger liquid
that would exist for#=0. This is a very important result,

The g, integration can now be performed analytically. The Pecause in realistic experimental systems the interchain hop-

integral is proportional ta?/|m, |, which cancels the singu- PiNg t, can never be completely turned off. Our result im-
lar factor of|mL|/q2 in Eq. (72). We obtain plies that for small but finitey the anomalous dimension of
T . .

the Luttinger liquid is in principle measurable, although

2lm, |ve6 strictly speaking the system is a Fermi liquid.

|n(i—F) +b3}, Finally, we would like to mention that we have used the
numerical method described in Sec. lll to calculate the full

(73 momentum- and frequency-dependent spectral function for

. . . ._finite 6. The numerical results are described in detail in Ref.
wherebs is a numerical constant of the order of unity. This 41 "ere we would like to point out that for finite but small
is the same type of integral as in H§2), so that our simple ;4,6 spectral function exhibits spin-charge separation in a
intuitive arguments given at the end of Sec. IV A are nOV\(Iarge intermediate regime. In fact, for a reasonable choice of

put on a more solid basis. As already mentioned, in phySig,o" harameters the qualitative features of the spectral func-

cally relevant cases we expéan, [vgf~=ke, so that we fi- ~ yionqfor <1 and#=0 are identical within the accuracy of
nally obtain Ries~ — ycobs Whereb, is another numerical 4, numerical calculation.

constant of the order of unity. Thus for patches with finite
curvature the contribution of the nesting mode is finite. It is
also easy to see that the curvature termsrdbmodify the
logarithmic small¢ behavior ofR* due to the plasmon mode  As mentioned in Sec. I, an alternative way to approach the
given in Eq.(64). This is so because the leading Irf)lterm  problem in the limit of weak interchain hopping is by
in Eq. (64) is generated by the energy scaled|q, [, which  straight or renormalization-group-aided perturbation theory
is by assumption larger than the curvature energyp t, 121317.202223n contrast to our result using higher-
q?/(2/m, |). Comparing our result foRfgwith the contri-  dimensional bosonization these methods yield a finite value
bution from the plasmon mode given in E§4), we see that  for the quasiparticle weight only for values of the anomalous
for small @ the contribution of the nesting mode does notdimensions smaller than a critical value.

modify the leading logarithmic behavidg~ — vy In(1/6) The starting point in the approximation proposed by
due to the plasmon mode. Hence, to leading logarithmic orwen'? and elaborated on by othé?€%??2%s to expand the
der, the static Debye-Waller factor is dominated by the conself-energy defined in the usual way by
tribution from the plasmon mode, so that we may wiRe

~R¢, and similarly forS*(r,v*,0).

xdg

V2|ay|+ | ay—

_
2lm, [ve

K K
s d
nest V2Z(V2+1)?m3vug fO %

V. COMPARISON WITH OTHER METHODS

bl _
G(k’w)_w—ek—i(k,w) (76)

3. Anomalous scaling and spin-charge separation

in powers of the hopping. If one define$ (k,w)

BecauseR® is finite for any nonzerd, the system is a J . ) A
=3 (k,w) —2(k,w)|tL=O and linearizes the dispersion in the

Fermi liquid, with quasipatrticle residug”=eR“x g7, Thus . . L .
for 6—0 the quasiparticle residue vanishes with a nonunjdirection of the chains neas:, one obtains for the model
versal power ofg, which can be identified with the anoma- yvhere only intrachain electron-electron interactions are taken
lous dimension of the corresponding Luttinger liquid that!Nt© account
would exist ford=0 at the same value of the dimensionless

coupling constant g Combining Eqs(64) and (66), we ob- Gk, )=
tain, for the total static Debye-Waller factor, ' g

1
(kH aw)il_ti(kl)_ 62(K,w)’

(77
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whereg(k; ,w) is the exact interacting single-chain propaga-broken symmetry. Our thorough analysis of the nesting sin-
tor. Wert? and later othef$'?° then introduce the rather gularities inherent in the higher-dimensional bosonization
crude approximation to negleé®, completely. This is justi- approach provides the answers to some of the questions
fied by Wen by the fact thaf> formally vanishes with a raised in the conclusions of Ref. 45.
higher power int, than the linear term kept. For the system
to be a Fermi liquid a zero-frequency pole should occur. This
can happen for arbitrarily small hopping onlygtk; ,0) di- VI. CONCLUSIONS
verges. Using the exact results for the one-dimensional
Green’s functiong(k,,0) can in fact be shown to diverge In this work we have used the higher-dimensional
(for the model without and with spinfor values of the bosonization approach to study the problem of coupled Lut-
anomalous dimensiory<1. In this case the quasiparticle tinger liquids. Our main result is that, strictly speaking
weight in this approximation is proportional to Luttinger-liquid behavior exists only fot, =0. Any finite
(t, /EF)Y(=" and thereforevanisheswhen y reaches 1. value of the interchain hopping leads to a finite quasiparticle
This result is in agreement with the ‘mairenormalization- residue, which we have explicitly calculated. Nevertheless,
group argument in which the weak-coupling criterion for thein a large intermediate regime of wave vectors and frequen-
relevance oft, is used for arbitrary strong coupling. This cies the Green’s function exhibits precisely the same scaling
behavior of the quasiparticle weight differs from our behavior as fot, =0. Keeping in mind that experiments are
bosonization result, which yields a finite value also for always performed with finite resolution, the intermediate
=1 and larger. The shape of the Fermi surfaceyfet1l in  scaling regime seems to be the experimentally relevant
Wen's approximation is determined by the equationgne—in this sense the interchain hopping is irrelevant.
g(k;,0)=1/t, (k,) and yields a modificatiok /ke com- Although our approach is nonperturbative in the sense
pared to the flat surface of zero transverse hopping of ordehat an infinite number of Feynman diagrams have been
(t, IER)Y77), i.e., theshapeof the Fermi surface depends summed, it is only approximate. However, we have a strong
on thestrengthof the electron-electron interaction. Such anon-perturbative argument why all terms beyond the Gauss-
dependence is missing in our bosonization approach. This ian approximation that have been ignored in E8$-(7) are
probably the reason for the qualitatively different results fornegligible in the parameter regime of interest: The closed-
the quasiparticle weight foy~1. loop theorent®?® which is essentially equivalent with the

If one calculates the spectral function corresponding toyard identity derived by Castellani, Di Castro, and
Wen's Green’s function, it shows various properties in theMetzner®* guarantees a cancellation of the leading infrared
low-energy regime which look rather unphysical. If one singularities in the non-Gaussian tertasall orders in per-
crosses the Fermi surface, there are sharp poles even fairbation theory Of course, for linearized energy dispersion
finite distances away from it on one side, but there is onlythe shape of the Fermi surface is fixed. Therefore, if the
continuous spectral weight on the other side. We believe owenormalization of the shape of the Fermi surface by the
bosonization result to produce more reliable spectra, at leagteraction becomes relevant in the present problem, our con-
for y<1. For a direct comparison for our model including clusions are expected to be modified. However, as discussed
electron-electron interchain interaction, it would be necesin Sec.V, at least as long as the value of the anomalous
sary first to generalize Wen’s approximation to this casedimension without interchain hopping is small compared
This can be done be replacimgfk; ,») in Eq. (77) by the  with unity, we expect the interaction-induced modification of
exact Green's function for zero hopping, which takes intothe shape of the Fermi surface to be unimportant. It should
account the interchain interaction. For this model the apalso be mentioned that only small momentum transfers have
proximation to neglect completely is even more serious, been taken into account in our approach, so that possible
as 62 vanishes with one power in less than in the model instabilities due to Rr processes have been neglected. Thus,
with intrachain electron-electron interaction only. This canalthough we have for simplicity taken the zero-temperature
be easily shown diagrammatically. limit, our results are implicitly restricted to temperatufes

Clarke and Strorfg have argued that even in the range where the system is in the normal state. It is easy to see for
3<y<1 the Green’s function in Wen’s approximation con- T>0 the expressions for the long-distance behavior of the
tains unphysical nonanalyticities which indicate a breakdowrstatic Debye-Waller facto®?(r v¢,0) derived above remain
of Fermi-liquid behavior already ay=3. This seems to fit correct at distances small with the thermal de Broglie wave-
well to the other results from their concept of “confined |ength \y,=hvg/T. Beyond this length scale we find that
coherence.” It will be shown elsewhéfethat their argu- Qa(r”\?a,O) is proportiona| to—lr\lll)\th' We therefore con-
ments concerning the analytical properties of Wen's Green'g|ude that for @x) ~*<\y, the intermediate scaling regime

function are not well justified. discussed in Sec. IV B 3 exists even at finite temperature.
Even if one assumes it to be correct that the Fermi surface

becomes flat ay approaches ongrom below), the resulting
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