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Effects of disorder on two strongly correlated coupled chains

E. Orignac and T. Giamarchi
Laboratoire de Physique des Solides, Universite´ Paris–Sud, Baˆtiment 510, 91405 Orsay, France*

~Received 9 April 1997!

We study the effects of disorder on a system of two coupled chains of strongly correlated fermions~the
ladder system!, using a renormalization-group technique. The stability of the phases of the pure system has
been investigated as a function of interactions both for fermions with spin and spinless fermions. For spinless
fermions the repulsive side is strongly localized whereas the system with attractive interactions isstablewith
respect to disorder, at variance with the single-chain case. For fermions with spins, the repulsive side is also
localized, and in particular thed-wave superconducting phase found for the pure system is totally destroyed by
an arbitrarily small amount of disorder. On the other hand, the attractive side is again remarkably stable with
respect to localization. We have also computed the charge stiffness, the localization length, and the temperature
dependence of the conductivity for the various phases. In the parameter range whered-wave superconductivity
would occur for the pure system the conductivity is found todecreasemonotonically with temperature, even
at high temperature, and we discuss this surprising result. For a model with one-site repulsion and nearest-
neighbor attraction, the most stable phase is an orbital antiferromagnet. Although this phase has no divergent
superconducting fluctuation it can have a divergent conductivity at low temperature. Finally, to make a com-
parison of our results with experimental ladder systems, we treated the interladder coupling in a mean-field
approximation. We argue based on our results that the superconductivity observed in some of these compounds
cannot be a simple stabilization of thed-wave phase found for a pure single ladder. The application of our
results to systems such as quantum wires is also discussed. In particular, the corrections to conductance in a
two-channel quantum wire have been obtained as a function of system length, temperature, and interactions.
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I. INTRODUCTION

Strongly interacting systems constitute one of the m
challenging problems of condensed-matter physics. In
dimension a fairly complete solution of the interacting pro
lem can be obtained, and it is well known that on
dimensional systems are some of the simplest realization
non-Fermi liquids, and have generic properties known
Luttinger liquids.1–4 Prompted by a variety of experiment
situations ranging from organic conductors to high-Tc super-
conductors, there has been, in the recent years, a gro
interest in systems of coupled interacting electron cha
Unfortunately, despite a good understanding of purely o
dimensional systems, the effects of interchain hopping,
lowing us to go from one to higher~two or three! dimensions
are much less known. Whether non-Fermi liquid propert
can be retained even in the presence of finite hopping or
is still a highly controversial issue.5,6

Many studies have therefore focused on systems of
coupled chains7 ~two coupled chains being the so-called la
der systems!, for which much more controlled analytical8–15

or numerical16–20 techniques can be applied allowing for
deeper understanding of their physical properties. For c
mensurate filling, i.e., one electron per site, the system
comes equivalent to coupled spin chains, since the ch
degrees of freedom are frozen by a Mott transition. Import
differences between ladders with an even and odd numbe
legs were expected, in a way reminiscent of the Hald
conjecture between one-dimensional systems with inte
and half integer spins. In particular, ladders with an ev
number of legs were predicted to have a spin gap. G
560163-1829/97/56~12!/7167~22!/$10.00
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experimental realizations of such coupled spin chains
Srn21Cun11O2n ~Refs. 21 and 22! and VO2P2O7 ~Refs. 23
and 24! compounds have confirmed such behavior. Due
the presence of such a spin gap an even more specta
effect is expected upon doping. Opposite the single cha
which exhibit either a spin density wave or charge dens
wave ground state for repulsive interactions, the ladder s
tem is believed to have a superconducting ground state
volving pairing across the chains. That superconducting s
has similarities withd-wave paring that has been advocat
in some two-dimensional models of strongly correlated el
trons for high-Tc superconductors25–31 such as the existenc
of a spin gap and a sign change of the superconducting o
parameter when one moves on the ‘‘Fermi surface.’’ In t
strong coupling limit, i.e., thet-J model, thed-wave phase
can also be viewed as a resonating-valence-band state.32

However all the studies of ladder systems have been
to now, restricted to pure systems. Unfortunately~or maybe
fortunately! it is well known, that for one-dimensional sys
tems disorder has extremely strong effects. For a nonin
acting system, it is well known that all states get localized
the presence of an infinitesimal random potential.33,34 Inter-
actions can modify this picture, but for a one-chain syst
delocalization occurs only for strongly attractive interaction
In particular even normals-wave superconducting phases a
destroyed by nonmagnetic impurities except for exceedin
attractive interactions~see, e.g., Ref. 35 and referenc
therein!, and no Anderson’s theorem exists even for wea
coupled one-dimensional systems.36

In order to compare the theoretical predictions ofd-wave
superconductivity in doped ladder systems with experime
7167 © 1997 The American Physical Society
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7168 56E. ORIGNAC AND T. GIAMARCHI
it is of prime importance to understand the effects of disor
on the phase diagram of the pure ladder system. One o
important questions is of course the stability of the new
found d-wave superconducting phase since there are no
vious reasons why it would survive the introduction of
small amount of disorder. Such a study is also relevant to
physics of quantum wires with few channels.37–41 In quan-
tum wire systems, the situation is however complicated
the occurrence of long range Coulomb forces41 that can in-
duce a one-dimensional analog of the Wigner crystal,42,43

which can drastically modify the response of the system
disorder.45 However, the presence of charges in the grids
the quantum wire systems can be cleverly used to sc
completely the long range interactions, and have an exp
mental realization of a Luttinger liquid.40 By changing the
gate voltage it is possible to have more than one band a
Fermi level, in a controlled way. The quantum wire is thus
possible realization of a two~or more! leg ladder. Interband
tunneling plays the role of interchain hopping. They provi
ideal systems in which to check for the effect of disorder.39,40

Besides the exciting possibility of testing the ability
Luttinger liquid models to describe accurately the now av
able quasi-one-dimensional experimental systems, inves
tion of disorder effects in ladders presents in its own righ
great theoretical interest. Indeed, the two-chain problem
the simplest one to study the effects of interchain hopp
onto the Anderson localization in the presence of inter
tions, giving some clues to this difficult topic in more tha
one dimension. In particular, one would be interested in
taining boundaries between localized and delocalized ph
and the dependence on localization lengths on disorder.
other question of particular interest is the effect of inter
tions on physical quantities controlled by disorder such
the conductivity for a macroscopic system, or for a me
scopic one the persistent currents. In particular, for a o
chain system, it was shown that for a system with spin
grees of freedom persistent currents were enhanced45 by re-
pulsive interactions, at variance on what happened fo
spinless system. It is therefore important to check whet
this striking result still holds in a more two-dimensional sy
tem.

In this paper, we consider the effects of a weak rand
potential scattering on systems of coupled fermionic cha
both with spin and spinless using bosonization a
renormalization-group~RG! techniques. A short account o
some of the results of this paper were presented in Ref.
Besides giving the phase boundaries, the RG also prov
us with expressions of the localization lengths, tempera
dependence of conductivity, and dependence of persis
currents with system size. The plan of the paper is as
lows.

In Sec. II, we discuss the spinless fermions two legs l
der problem. We first recall the phase diagram of the p
system,14 then consider the effects of disorder. This allow
for a detailed comparison of the transport properties of
two-chain system with the ones of the one-chain spinl
fermion system and the ones of one chain of fermion w
spin. We show that contrarily to naive expectations, the l
der spinless fermions system is very different from the o
chain system with spin, and that the effect of interactions
persistent currents is even more violent on a two-chain s
r
he

b-

e

y

o
f
en
ri-

he

-
a-
a
is
g
-

-
es
n-
-
s
-

e-
-

a
er
-

s
d

6.
es
re
nt
l-

-
e

e
s

h
-
-
n
n-

less fermions system than it was for a one-chain system
In Sec. III, we discuss the technically more involved ca

of fermions with spins. Following the same methodology,
first recall the phase diagram of the nonrandom two-ch
system and then consider the effects of a weak random
tential on the phase diagram. As for the spinless problem,
give a detailed discussion of the transport properties in
disordered phases. We compare these results with the
already known for one chain, and show that the reduction
persistent current by attractive interactions that is obser
in one chain of fermions with spin should be almost absen
the two-chain system. Thed-wave superconductivity of the
fermionic two-chain system is a feature that is not preser
in the presence of a very small amount of disorder. On
other hand, for some values of the parameter, an orbital
tiferromagnetic phase exists. This phase has an infinite c
ductivity even in the presence of disorderalthough it has
exponentially decaying superconducting correlations.

In order to compare our results with experiments
doped ladder systems, it is necessary to treat interchain
pling which stabilizes superconductivity at finite temperatu
in real systems, and may also reduce the sensitivity of
system to disorder. Thus in Sec. IV we examine the me
field theory for thed-wave superconductor in an array o
coupled disordered ladders. We give a criterion for pers
tence of superconductivity in the presence of disorder
show thatd-wave superconductivity remains unstable exc
in very pure samples or in the presence of a very stro
Josephson coupling between ladders.

In Sec. V, we summarize the implications for experime
tal systems such as doped SrxCu12xO chains and quantum
wire with two channels. We claim that in recently synth
sized doped ladder systems, the physics of the supercond
ing phase is more likely to be of two-dimensional orig
rather than just a stabilization of a ladderd-wave supercon-
ductivity. Conclusions can be found in Sec. VI. Finally, mo
of the technicalities can be found in the Appendixes.

II. SPINLESS FERMIONS

A. Pure system

Let us consider first two chains of spinless fermio
coupled by an interchain hoppingt' . For simplicity we first
consider only nearest-neighbor interactions, and interch
interactions. The effect of more complicated interactions w
be detailed below. The Hamiltonian for the pure syste
reads

H52t(
i ,p

ci ,p
† ci 11,p1H.c.1V(

i
ni ,pni 11,p

1t'(
i

ci ,1
† ci ,211H.c.1U(

i
ni ,1ni ,21 , ~1!

wherep521,1 is the chain index andi is the site index. To
treat the interactions, it is convenient to rewrite the Ham
tonian in term of boson operators.4,3,47To do so, we linearize
the fermions dispersion relation aroundkF , introduce right
(R) and left movers (L) for each chain, and take the con
tinuum limit cn,r ,p→Aac r ,p(na) with r 5L,R, p561 the
chain index anda the lattice spacing. We use the bondin
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56 7169EFFECTS OF DISORDER ON TWO STRONGLY . . .
co5 @(c11c21)/&# and antibondingcp5 @(c12c21)/
&# bands base and introduce the densit
r r ,o,p(x)5:c r ,o,p

† (x)c r ,o,p(x):. We then define the canon
cally conjugate fieldsfr,i andPr,i via

]xfr,i52
p

&
~rL,o1rR,o6rL,p6rR,p!, ~2!

Pr,i5
1

&
~rR,o6rR,p2rL,o7rL,p!, ~3!

and the fieldur,i(x)5*2`
x Pr,i(x8)dx8. More details on the

bosonization technique can be found in Appendix A. In te
of these fields the Hamiltonian becomes14

H5Hr1H i , Hr5E dx

2p FurKr~pPr!21
ur

Kr
~]xfr!2G ,

H i5E dx

2p FuiK i~pP i!
21

ui

K i
~]xf i!

2G1E dx t'
&

p
]xf i

1E dxF 2g'

~2pa!2 cos~A8f i!1
2gf

~2pa!2 cos~A8u i!G .
~4!

For the microscopic Hamiltonian~1!, one finds

K i511
Ua

2pvF
,

ui5vFS 12
Ua

2pvF
1

Va

pvF
@12cos~2kFa!# D ,

gf52Va@12cos~2kFa!#,

g'5Ua2Va@12cos~2kFa!#,

ur5vFS 11
Ua

2pvF
1

Va

pvF
@12cos~2kFa!# D ,

Kr512
Ua

2pvF
2

Va

pvF
@12cos~2kFa!#, ~5!

with vF52ta sin(2kFa). Therefore for the puret-V model,
one hasKr,1 ~respectively,Kr.1! and gf,0 ~respec-
tively, gf.0! for repulsive~respectively, attractive! interac-
tions andK i51 for all t,V. In fact ~4! describes the mos
general two-chain spinless system. More complicated in
actions ~i.e., longer range and interchain interactions! lead
only to a change in the parametersK, u, andg. By adding
interchain interactions such asU in formula ~5! or longer
range interactions one can in particular access the othe
gimesKr.1 andgf,0 or Kr,1 andgf.0. The physics of
the system is readily seen on Eq.~4!. Thet' term suppresse
cos(A8f i). Depending on the value ofK i , theu i can either
remain massless or develop a gap. We concentrate her
the case whereu i develops a gap and acquires a nonz
expectation value determined by minimizing the ground s
energy~see Appendix A!. This situation always occurs fo
the t-V model.14 By mapping~4! on a problem of one chain
s

r-

re-

on
o
te

of fermions with spin and spin-anisotropic interactions in
magnetic field,48 one can obtain the complete phase diagr
for the pure case.14 Since, due to the one-dimensional natu
of the problem, no true ordered state exists, one has to
the most divergent instability. As for one chain, two ma
types of instabilities are possible: particle-hole~density, cur-
rent, etc.! instabilities or particle-particle~i.e., superconduct-
ing! ones. The operators with the most divergent susceptib
ties are in a boson form,

OCDWp5cR,1
† ~x!cL,1~x!2cR,21

† cL,21~x!

;eı&frcos~&u i!,

OSCs5cL,o~x!cR,p1cL,pcR,o;eı&ursin~&u i!,

OOAF5 i @cR,1
† ~x!cL,21~x!2cR,21

† ~x!cL,1~x!#

;eı&frsin~&u i!,

OSCd5cL,ocR,p2cL,pcR,o;eı&urcos~&u i!.

They describe, respectively, out of phase charge den
waves, an orbital antiferromagnetic phase and chain symm
ric ‘‘ s’’ and antisymmetric ‘‘d’’ type superconductivity. The
out of phase charge density has a 2kF modulation of the
density along the chain and a change of sign across
chains. In the orbital antiferromagnet currents go from o
chain to the other with wave vector 2kF , giving currents
circulating around plaquettes of lengthp/kF . The supercon-
ducting phases are the standard ones, given on the orig
model by

OSCd~n!5cn,1cn,2 ,

OSCs~n!5cn11,1cn,12cn11,2cn,2 . ~6!

The most stable phase depends on the parametersK andg.
The various cases are given in Table I, and the phase
gram shown in Fig. 1. In Ref. 14 the bosonized forms
OSCs andOSCd are exchanged due to the neglect of antico
muting operators~see Appendix A!, so that the two super
conducting phases have been erroneously exchanged.

B. Effects of disorder

Now we consider the effect of the disorder on Eqs.~1!–
~4!. We introduce a random on-site potentiale i ,p uncorre-
lated from site to site and from chain to chain:

TABLE I. The four sectors of the pure two-chain spinless fe
mions model, as a function ofKr andgf . The average value of the
massive field̂ u i& are indicated together with the phase with t
most divergent susceptibility.

I II III IV

gf 1 1 2 2

Kr ,1 .1 .1 ,1

^u i&5
p

A8

p

A8
0 0

phase OAF SCs SCd CDWp
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7170 56E. ORIGNAC AND T. GIAMARCHI
H random5 (
i

p561

e i ,pci ,p
† ci ,p , ~7!

with e i ,pe j ,p85Dd i , jdp,p8 . In the continuum limit and using
the bonding antibonding basis the disorder becomes

H random5E dx$es~x!@c0
†~x!c0~x!1cp

† ~x!cp~x!#

1ea~x!@c0
†~x!cp~x!1cp

† ~x!c0~x!#%, ~8!

with es,a5(e16e21)/2 and ea(x)eb(x8)
5 (Da/2) d(x2x8)da,b . Using the expression of fermio
operators defined in Appendix A and Eq.~2! one obtains for
the disorder term

H random5E dxFhs~x!
&

p
]xfr~x!1

js~x!

pa
eı&frcos~&f i!

1
js* ~x!

pa
e2ı&frcos~&f i!G

1E dxFha~x!

pa
cos~&f i!cos~&u i!

1
ja~x!

pa
eı&frcos~&u i!

1
js* ~x!

pa
e2ı&frcos~&u i!G , ~9!

where the disorder has been split in aq;0 component
(hs,a) and aq;2kF one (js,a). As for one chain theh and
j are uncorrelated and

hs,a~x!hs,a~x8!5Ds,aad~x2x8!, ~10!

js,a~x!js,a~x8!50, ~11!

js,a~x!js,a* ~x8!5Ds,aad~x2x8!. ~12!

FIG. 1. The phase diagram of a generic spinless ladder in te
of gf and Kr . Kr.1 means attraction in the symmetric char
sector andKr,1 repulsion. The line depicts the phase spanned
the puret-V ladder, leading to a CDWp phase forV.0 and a
superconducting SCs phase forV,0.
The q;0 ~forward scattering! part of the disorder does no
affect the conductivity and cannot lead to localization,34 but
could, in principle, modify the phase diagram and in partic
lar destroy the gaps of the pure phase. As for one chain,
can eliminate thehs]xfr by a transformationfr→fr

1 (A8Kr /ur) *dx hs(x). The only effect of this term is
therefore to give an additional exponential decay in
density-density correlation functions.

Due to the presence of a gap inu i ~see Table I!, the
ha(x)cos(&fi)cos(&ui) term is always suppressed at lowe
order. It could however generate relevant terms at hig
order. However higher order terms are either identical
backscattering terms already present in the Hamiltonian
adds random contributions tog'cosA8f i andgfcosA8u i .
At small disorder these contributions are negligiable, and
can completely disregard the forward scattering. We c
therefore keep only for the coupling to disorderHs1Ha

Hs5E dx

pa
js~x!eı&frcos~&f i!1H.c., ~13!

Ha5E dx

pa
ja~x!eı&frcos~&u i!1H.c. ~14!

In Hs the symmetric part of the disorder couples to the
phase charge density wave order parame
OCDW05 (eı&fr/pa)cos(&fi), whereas the antisymmetri
part involvesOCDWp. Due to the gap inu i , f i has huge
quantum fluctuations, and consequently the symmetric
of the disorderDs is always less relevant than the antisym
metric oneDa . We can therefore focus on the latter an
forget about the former. The effect of Eq.~14! again depends
on the values ofgf andK.

1. gf<0

For gf,0 ~i.e., V.0 for the t-V model! we can replace
cos(&ui) by its ~nonzero! mean value and the coupling t
disorder Eq. ~14! reduces toC*dx ja(x)ei&fr(x)1H.c.,
where C is a constant. The effect of such a term can
determined, as for a single chain,35 by using a RG procedure
Upon varying a cutoffa, similar to a lattice spacing in the
original lattice problem, one find the following renormaliz
tion for the disorder:

dKr

dl
52C2Da , ~15!

dDa

dl
5Da~32Kr!, ~16!

where l 5 ln(a) and C2 a constant. Equation~16! implies a
localization-delocalization transition atKr53. For Kr.3
the disorder is irrelevant and the corresponding phase in
pure system is stable. ForKr,3 disorder grows. Although
the system flows to a strong coupling fixed point, it
natural35 to interpret this phase as localized by disord
since the disorder will pin the massless fieldfr . As a con-
sequence, thed-wave superconducting phase is unstable
the presence of disorder except for huge attractive inte
tions. In the case of thet-V model atV.0, we haveKr,1
and therefore the CDWp is always pinned by the disorder.
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56 7171EFFECTS OF DISORDER ON TWO STRONGLY . . .
Similarly to the one-chain problem the localization leng
can be computed using the RG. For very weak disorder
far from the transition one can neglect the renormalization
the exponentKr induced byDa . Using that approximation
we obtain

Da~ l !5e~32Kr!lDa~0!. ~17!

For Da( l );vF
2/a that scheme breaks down and we have

strongly disordered system. For such a system the loca
tion length, i.e., the scale of variation of the phasefr is of
the order of the~renormalized! lattice spacinga* . This oc-
curs forel* ;(vF

2/Da(0)a) @1/(32Kr)#. Therefore

L2 ch.5a~0!S vF
2

Da D @1/~32Kr!#

. ~18!

Let us recall that for a noninteracting system, the localizat
length is of the order of the mean free path, i.
L loc.; (vF

2/D).
Using the renormalization equation it is also possible36 to

obtain the temperature dependence of the conductivity
temperatures above the the pinning temperatureu/L2 ch. Be-
low the pinning temperature, the conductivity is expected
decrease as exp2(Tpin /T)m, by analogy with noninteracting
electrons. A derivation of the temperature dependence
conductivity has been given in Ref. 35. Another method
derive the temperature~or frequency! dependence of the con
ductivity is given in Appendix B. If one neglects the reno
malization of the exponents the conductivity behaves as

s~T!;T22Kr. ~19!

Therefore, forKr,2, the conductivity decreases, and there
no remnantof any superconducting behavior effect we
above the temperature at which the system is effectiv
pinnedTpin;u/L2 ch.. Thus the existence ofd-wave super-
conductivity in the pure system affects the transport prop
ties of the disordered system only for quite a large attract
Analogous effects will occur for fermions with spins as w
be discussed in Sec. III.

2. gf>0

For gf.0 ~i.e., attractive interactions for at-V model!,
^u i&5 (p/A8) and in a first approximation the coupling~14!
vanishes. Obviously, this approximation is too crude and
must integrate the fluctuations ofu i around its mean value to
get the effective coupling. This is done in Appendix C a
gives the following effective action forfr :

Sr5E dx dtF ~¹fr!2

2pKr
1@j~x!eıA8fr~x,t!1H.c.#G , ~20!

with j(x)j* (x8)5Dd(x2x8) andD;Da
2 .

The renormalization of the disorder is given by an eq
tion similar to Eq.~16!:

dD

dl
5~324Kr!D~ l !. ~21!

The disorder is now relevant only forKr,3/4, leading to
three different phases forgf.0: a random orbital antiferro
magnet forKr,3/4, an ordered orbital antiferromagnet f
d
f

a
a-

n
,

or

o

of
o

s

ly

r-
n.

e

-

3/4,Kr,1, and an s-wave superconducting phase fo
Kr.1. For thet-V model,Kr.1, and thes-wave supercon-
ducting phase is thereforestablewith respect to weak disor
der, which differs from the single-chain problem. For t
latter the delocalization only occured forextremelyattractive
interactions, i.e.,Kr.3/2. For the two-chains problem th
localization-delocalization transition arises in the immedi
vicinity of the noninteracting point. Contrarily to the case
repulsive interactions, interchain hopping now strongly
duces the localization effects.

The localization length in the random orbital antiferr
magnet is now given by

L2 ch.

a
5~1/D !@1/~324Kr!#5S vF

2

Daa D @2/~324Kr!#

. ~22!

The conductivity behaves both in the OAF and thes-wave
phase as

s~T!;T224Kr ~23!

diverges asT→0, since the ground state is superconducti
It is to be noted that although the OAF has no supercond
ing order parameter, its conductivity can also be diverg
for Kr.3/4 evenin the presence of disorder. An expand
discussion of orbital antiferromagnet phases can be foun
Sec. III C 1 and Appendix D. The resulting phase diagram
summarized in Fig. 2, together with the single-chain ph
diagram.

C. Physical consequences

The ladder system shows drastically different sensitiv
to disorder depending on the sign ofgf : at gf,0 localiza-
tion effects are much stronger than atgf.0. This is obvious
both on the phase diagram shown on Fig. 2, and in the
pressions~18! and ~22! for the localization length. For the
case of a puret-V model,gf.0 Kr.1 whenV,0 ~attrac-
tive interactions! and as can be seen from Fig. 2 the system

FIG. 2. The phase diagram of the disordered two-chaint-V
model in terms ofgf and Kr . For a single chain the system i
localized forKr,3/2. Ladder effects thereforedelocalizefor attrac-
tive interactions andenhancelocalization for repulsive ones.
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7172 56E. ORIGNAC AND T. GIAMARCHI
delocalized. Although our calculation does not allow us
come arbitrarily close to theV50 point for finite disorder,
since the disorder has to be smaller than the gaps of the
system, we see that if we have a very small disorder,
insulator superconductor transition does occur in the vicin
of the noninteracting point. This is remarkable and in mark
contrast with the single-chain system where the delocal
tion transition occurs forK53/2, i.e., very strongly attrac
tive interactions even for arbitrarily weak disorder. O
could naively think that this effect is simply a manifestati
of the delocalization effect seen for noninteracting electr
when one increases the number of channel~or the number of
chains!. The mechanism is more subtle however, and is
fact controlled by the interactions. Contrarily to the non
teracting case where the localization length is simply prop
tional to the number of chains, we have here acomplete
delocalization of the attractive region, and the localizat
length becomes infinite.

For the repulsive caseV.0 ~i.e., gf,0 Kr,1! the op-
posite effect occurs and the ladder system ismore localized
than the corresponding one-chain system. Indeed for
chain the localization length is given by35,49

L1 ch.

a
;S vF

2

Da D @1/~322K !#

~24!

and is therefore longer than the one of the ladder sys
shown in Eq.~18!. For very large repulsion (K→0) these
two lengths give back the standard Fukuyama-Lee pinn
length of classical charge density waves.50 For finite repul-
sion the localization length of the ladder system is mu
shorter than the one of the corresponding one-dimensi
system with the sameK. Close to the noninteracting poin
K;1, the localization length of the open chain is just t
mean free pathL1 ch.;vF

2/D, whereas the ladder one
L2 ch.;aAvF

2/Da.
This peculiar behavior of the spinless ladder system is

to the gapping of some charge modes that is different
pending on whether the interaction is attractive or repuls
For the repulsive side 2kF charge fluctuations are still ther
and the gap just reduces some of the quantum fluctuation
hence reinforces the effects of disorder, whereas for the
tractive side the gap kills the dominant charge fluctuat
coupled to disorder and helps to delocalize. The sensitivit
disorder is thereforenot directly related to the presence o
absence of the superconducting fluctuations in the pure
tem, but more on how thedensityfluctuations behave. The
smoother the density fluctuations are, the less localized
system is. These effects will be even more transparent for
system with spins as will be examined in detail in Sec.
As a consequence the transport propertiescannotsimply be
guessed by looking at the phase diagram of the pure sys
They even can be opposite to what our intuition based
higher dimensional system could suggest: the more ‘‘sup
conducting’’ the system is the better the transport is~see,
e.g., Sec. III C!.

D. Persistent currents in the ladder system

In addition to the temperature dependence of the cond
tivity, one can compute the charge stiffness of t
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system51–53 D, which measures the strength of the Dru
peak in a macroscopic systems(v)5Dd(v)1s reg. The
stiffnessD can be related to the change of the energy of
ground state of the system in the presence of an external
by

D5
L

2

d2E0

df2 U
f50

, ~25!

E0 being the ground state energy of a ring in a field.f
denotes the boundary anglef52p f / f 0 , wheref is the flux
threading the ring andf 05hc/e is the flux quantum. This
quantity is directly related to the persistent currents fo
mesoscopic system.54–58 For a mesoscopic system, the pe
sistent current measures the response to a finite flux by

J5L
dE0

df U
f

. ~26!

Therefore the stiffnessD provides a measure of the persi
tent currents for a small~or close to a multiple of 2p! flux
since J52Df. Although the complete calculation of th
persistent currents at finite flux is also possible for a o
dimensional interacting system, the calculation is more co
plicated in the presence of disorder, and the stiffness car
enough information for our present purposes.

The effects of interactions on persistent currents is an
tremely difficult question to answer in two or three dime
sions. Perturbative calculations suggest that interacti
could enhance persistent currents.59–62 For a single spinless
chain the persistent currents were found todecreasewith
more repulsive interactions.63–65This effect can naturally be
explained using a renormalization-group technique, and
was shown that such behavior is peculiar to the spinl
problem and that for a single chain of electrons with sp
persistent currents should be enhanced by repul
interactions.45,64 For the ladder system it is therefore ve
interesting to see if the same effects occur and, in particu
to check again for the differences between the spinless
tem and the system with spins. In particular, one could im
ine that the chain index acts in a similar way than a s
index for a single chain. As we will see this idea is far to
naive. We examine the spinless system in this Section
the system with spins will be investigated in Sec. III.

For the ladder system, the conductivity stiffness51 is ob-
tained using Eq.~A13! as D52urKr . The factor of two
compared to the single chain expression~A13! is due to the
fact that there are twice as many degrees of freedom in
two chain system. In the following, we consider a finite sy
tem, the sizeL of which is smaller than the localizatio
length.

From the renormalization-group equation forur ,Kr ,35

one can obtain45 the renormalization-group equation forD,

dD
dl

52D~ l !. ~27!

The conductivity stiffness of a disordered system of sizeL,
D(L) is then obtained by stopping the RG equation
a( l )5L and takingD(L)5D( l ). In the casegf,0, we have
seen thatD( l )5D(0)e(32Kr) l , at least whena( l )!L2 ch..
Putting that approximation forD( l ) in Eq. ~27! gives us
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D~L !5D~0!2CD~0!F S L

a~0! D
32Kr

21G . ~28!

Using the expression forL2ch., Eq. ~28! simplifies for a
length smaller than the localization length into

Dgf,0~L !5D~0!2CF S L

L2ch.~gf,0!
D 32Kr

21G , ~29!

Dgf.0~L !5D~0!2C8F S L

L2ch.~gf.0!
D 324Kr

21G . ~30!

Thus forgf.0 the reduction of the stiffness is less importa
than forgf,0.

Therefore, the length dependence of the conductivity s
ness~and the persistent currents! is extremely sensitive to the
attractive or repulsive character of the interactions for
t-V model or any model with intrachain-only interaction
By comparison with the one-chain case,45,63 we see that the
effects of the interactions on the conductivity stiffness
qualitatively the same~i.e., repulsive interactions help in re
ducing the conductivity stiffness, while attractive intera
tions reduce the decrease of conductivity stiffness by dis
der!, but they are much stronger for two chains than for o
chain. In fact, for at-V model, the reduction of conductivity
stiffness would befinite for attractive interactions, even in a
infinite system since then the disorder is completely irr
evant.

It is noteworthy that the chain index doesnot act in a
similar way as a spin degree of freedom for which the
would be an increase of the persistent currents showin
again the important difference between a system with
without spin.45 The physical reasons for this difference a
examined in more details in the next section.

E. Spinless ladder vs one chain with spin

Naively, one could think that going from one-chain
two-chain amounts to having one internal degree of freed
that is equivalent to the spin, and thus that the results for
system with spin will apply straightforwardly to the ladd
system. However, from what we have seen precedingly,
is definitely not the case. In fact, we have properties for
spinless ladder that are just the contrary of the ones of
fermions with spin. Attractive interactions delocalize in t
spinless fermions case, whereas they increase localizatio
the case of fermions with spin. Persistent currents are
hanced for more attractive interactions in the spinless lad
whereas repulsive interactions would enhance the persis
currents45 in a spin system. The reason for that is that t
spinless ladder has no SU~2! symmetry ~except forV50!
contrarily to one chain with spin. The minimum of th
ground state energy of the spinless ladder correspond
states that break the SU~2! symmetry becauset' plays the
role of a magnetic field.14,48 Thus such phases cannot b
obtained in an isotropic system of fermions with spin.

For attractive interactions, the only way for the symmet
fermions with spin system to preserve SU~2! symmetry is to
form singlet phases such as 2kF charge density waves o
singlet superconducting state. Coupling the charge den
wave fluctuations with a random potential implies strong
t
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calization effects. On the other hand, the spinless ladder s
ply form pairs along the chains and can avoid to form 2kF
fluctuations. Translated in the spin language, such a ph
would be an anisotropic triplet superconductor with a s
gap, and would be forbidden by symmetry. In the same w
for repulsive interactions, preserving SU~2! symmetry pre-
vents the formation of a gap, whereas a gap formation
possible for the spinless ladder giving an out of phase cha
density wave. In the spin language, this corresponds to
anisotropic spin density wave.

Adding random potentials to the spinless ladder results
a rather artificial model of fermions in a random potent
and a random field parallel to thez axis. Because of the
anisotropy, the system is more sensitive to the random fi
parallel to thez axis than to the random potential. Thus, f
repulsive interactions, the anisotropic system has a v
strong coupling to disorder, whereas for repulsive inter
tions, it is only weakly coupled. On the other hand, the is
tropic system is only feeling a random potential. When
teractions are attractive, there is a spin gap and CD
fluctuations that can couple to disorder, making the sys
more localized. When interactions are repulsive, on the o
hand, there is no spin gap thus reducing the coupling of
CDW fluctuations with disorder.

We conclude that for interacting systems, contrarily
their noninteracting counterparts, not only the number
available internal degrees of freedom but also the inter
symmetries determine the response to random perturbat
Losing some symmetries allows for a larger variety
ground states, and thus to very different responses to w
perturbations.

III. FERMIONS WITH SPIN

A. Pure system

The pure case has been analyzed in great detail b
analytically8–13 and numerically.16,17,19,20A very interesting
feature of that model is the existence of a ‘‘d-wave’’ super-
conducting phase for purely repulsive interactions and
existence of a spin gap. The Hamiltonian is in the extend
Hubbard case:

H52t (
i ,s,p

ci 11,s,p
† ci ,s,p1H.c.2t' (

i ,s,p
ci ,s,p

† ci ,s,2p

1U(
i ,p

ni ,↑,pni ,↓,p1V(
i ,p

ni ,pni 11,p , ~31!

wherep561 is the chain index ands5↑,↓ labels the spin.
In order to treat this Hamiltonian using bosonization one h
to separate the bondingo and antibondingp bands as was
done for spinless fermions. Then, within each band, one
apply the standard bosonization formulas for fermions w
spins. As a consequence, the system is described by
fields fr

p ,fs
pfr

o ,fs
o instead of 2 in the spinning case

For the pure case we follow closely the derivation
Ref. 11. It is convenient in the following to replac
the fields fn

o,p (n5r,s) by linear combinations:
fn65 1/& (fn,o6fn,p). The low energy physics depend
on the signs of two constantsg1 ,g2 . Physically,g2 repre-
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7174 56E. ORIGNAC AND T. GIAMARCHI
sents the forward scattering interaction, whileg1 represents
the backward scattering interactions. The Hamiltonian c
sists of a free part,

H5 (
n5r,s
r 56

E dx

2p FunrKnr~pPnr !
21

unr

Knr
~]xfnr !

2G ,
~32!

and two sine-Gordon like parts, one associated with in
band processes induced by intrachain forward scattering

H int,25
g2

2~pa!2 E dx cos2ur2~cos2fs21cos2us2!,

~33!

and the other associated with the intrachain backward s
tering,

H int,15
2g1*

~2pa!2 E dx@cos2fs1~cos2ur21cos2fs2

1cos2us2!2cos2ur2 cos2us2#. ~34!

In all cases, only one of the four bosonic fields (fr1) is
gapless11 and all physical quantities depend on a parame
Kr1 of the symmetric charge mode, analogous to theKr of
the spinless problem. In terms ofg1 ,g2 ,Kr1 is given by

Kr15S 2pvF1~g122g2!

2pvF2~g122g2! D
1/2

. ~35!

That expression is valid for the generic g-ological model. F
the extended Hubbard model, we can go further asg1 ,g2 can
be expressed in terms ofU,V,kF as

g15Ua12Va cos~2kFa!,

g122g252@Ua12Va~22cos~2kFa!#, ~36!

wherea is the lattice spacing. The mean values of the th
other fields are determined by minimizing the energy of
ground state. Depending on the interactions one can dis
guish four sectors that are summarized in Table II.

As for the spinless case one has to consider the var
operators with divergent susceptibilities,

TABLE II. The four sectors of the pure two-chain Hubba
model, as a function ofKr andg1 . The average value of the fiel
developing a gap are indicated together with the phase with
most divergent susceptibility.

I II III IV

g1 1 1 2 2

Kr1 ,1 .1 .1 ,1
^ur2& 0 0 0 0

^fs1& p

2

p

2
0 0

s2 ^fs2&5
p

2
^us2&50 ^fs2&50 ^us2&5

p

2

phase SCd OAF SCs CDWp
-

r-

at-

r

r

e
e
n-

us

OCDWp~n!5(
p,s

pcn,s,p
† cn,s,p , ~37!

OOAF~n!5(
p,s

pcn,s,p
† cn,s,2p , ~38!

OSCs~n!5(
p

cn,s,pcn,2s,p , ~39!

OSCd~n!5(
p

cn,s,pcn,2s,2p . ~40!

When taking the continuum limit these expressions beco

OCDWp5(
s

~cL1s
† cR1s2cL21s

† cR21s!, ~41!

OOAF5ı(
s

~cL1s
† cR21s2cL21s

† cR1s!, ~42!

OSCs5(
s

~cL0scR0,2s1cLpscRp,2s!, ~43!

OSCd5(
s

~cL0scR0,2s2cLpscRp,2s!, ~44!

where for the SC operators, one has to retain theq;0 com-
ponent, while for the OAF and CDWp the q;2kF compo-
nent gives the dominant contribution. To get the corr
bosonized expression one has to pay extra care to the
commutingU operators66 and one obtains

OCDWp5
2

pa
eıfr1 cosfs1sinus2 , ~45!

OOAF5
2ı

pa
eıfr1sin fs1cosus2 , ~46!

OSCs5
2

pa
e2ıur2 cosfs1cosfs2 , ~47!

OSCd5
2

pa
e2ıur1sinfs1sinfs2 . ~48!

From the bosonized form of these operators~simplified by
the fact that ^ur2&50! everywhere and the expression
given in Table II one can deduce that sector I is a SCd phase,
sector II an OAF phase, sector III a SCs phase, and sector IV
a CDWp phase. The phase diagram of the pure system
summarized in Fig. 3. Note that for the pure Hubbard mod
which corresponds toV50 in Eq. ~36!, one can only have
the SCd phase~for U.0! or the SCs phase~for U,0!. The
other phases could be obtained for a more general m
such as the extended Hubbard model. We will come bac
that point later.

e
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B. Effects of disorder

Let us now add a weak random on-site potential:

H random potential5 (
i ,s,p

e i ,pni ,s,p , ~49!

with ni ,p5ci ,↑
† ci ,↑1ci ,↓

† ci ,↓ and e i ,pe j ,p85Dd i , jdp,p8 . We
go through the same steps as in the spinless fermions sec
We get to the continuum limit, introduce the bonding a
antibonding band, and bosonize the resulting coupling to
order. Let us first consider theq;0 part of the coupling to
disorder. For the symmetric part of the disorder this coupl
is of the form

Hs,q;05E hs~x!]xfr~x!dx. ~50!

It is clear that this part of the disorder can be eliminated
the transformation

fr~x!→fr~x!1*x ~pKr1 /ur1! hs~x8!dx8.

For theq;0 part of the antisymmetric random potential, w
obtain

Ha,q;05E dx ha~x!(
s

@cR,0,s
† cR,p,s

1cL,0,s
† cL,p,s1H.c.#. ~51!

The bosonized form of that operator is the following:

Ha,q;05E dx
ha~x!

pa
@eı~fr21ur2!cos~fs21us2!

1eı~2fr21ur2!cos~fs22us2!1H.c.#. ~52!

From that equation, we see that theq;0 part of the antisym-
metric disorder is not coupled to the gapless charge symm

FIG. 3. The phase diagram of the pure two-chain Hubb
model in terms ofg1 andKr1 . Kr1.1 andg1,0 corresponds to
purely attractive interactions.Kr1,1 and g1.1 corresponds to
purely attractive interactions. For a Hubbard model, this leads
SCd phase forU.0 and a SCs phase forU,0.
on.

s-

g

y

t-

ric mode. Moreover, it always contains one term that h
exponentially decaying correlations. Therefore, it can
break any gap by an effectà la Imry Ma and cannot generat
any relevant term by a massive mode integration. It will th
be possible to drop it safely in the following. Then, we ha
to consider the 2kF part of the disorder. We have for the 2kF
coupling to disorder two terms:

Ha5E ja~x!OCDWp~x!1ja* ~x!OCDWp
†

~x!dx, ~53!

Hs5E js~x!OCDWo~x!1js* ~x!OCDWo
†

~x!dx. ~54!

Where jn(x)jn8(x8)* 5Dndn,n8d(x2x8)(n,n85a,s), the
jn are random Gaussian distributed potentials. The opera
OCDWo represent the in-phase charge density wave,
OCDWp the out of phase one.

As before we assume that the disorder is weak enough
to destroy the gaps in the system. We have already arg
that theq;0 is irrelevant to our problem. Concerning th
2kF part, we only retain the massless mode. The situatio
quite similar to the one of anXXZ spin chain in a random
magnetic field. AXXZ spin chain is a Hubbard chain at ha
filling, and thus has a charge gap. The random magnetic fi
couples to the spin density that contains~frozen! charge de-
grees of freedom. However, the random magnetic field o
affects the spin degrees of freedom and does not break
charge gap. By analogy, we expect that even when the
dom potential gets relevant it will not break the spin gap
the gap in the antisymmetric charge mode. Since the gaps
stable, we can obtain simplified forms for the couplings
replacing the fields by their mean values as we did in
spinless fermions problem.

1. SCd sector

We want to analyze the effect of the weak random pot
tial introduced through Eqs.~53!–~54!. Making use of the
full expressions ofOCDWo,p and replacing the gapped field
by their mean values~see sector I of Table II!, we obtain the
following simplified forms:

OCDWo;eıfr1sin~fr2!, ~55!

OCDWp;eıfr1sin~us2!cosfs1 . ~56!

These two operators have exponentially decaying correla
functions and no direct coupling with disorder would exist
one just took into account the mean values of the fieldsfr,2
andus,2 . As in the spinless case one should integrate o
fluctuations to get the effective coupling

Sr1
disorder5E jeff.~x!eı2fr1~x,t!dx dt1H.c. ~57!

Equation~57! can be viewed as the coupling of the fermio
with the 2(kFo6kFp) Fourier component of the disordere
potential, i.e., to a 4kF charge density wave. The origin fo
such a 4kF charge density wave can be understood in sim
terms: at half filling, the strong on site repulsion puts o
fermion per site, meaning that there are no 2kF CDW fluc-
tuations. However, the fermion density is maximum on t
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7176 56E. ORIGNAC AND T. GIAMARCHI
lattice site and minimum in between giving the 4kF charge
density wave fluctuations. In addition due to the spin g
occurring in a ladder with an even number of legs there
no 2kF fluctuations in the spin density as well. As we mo
away from half filling, the spin gap will survive as well a
the absence of 2kF fluctuations. Therefore, a random pote
tial can only couple to the 4kF component of the fermion
density even away from half filling. This is to be contrast
to the case of a single chain where the dominant coup
occurs through the 2kF charge fluctuation. One thus expec
the disorder effects to be weaker in the ladder system.
can also recover directly the 4kF CDW by looking at higher
Fourier components of the density in the bosonization f
mulas. The physics of the metal insulator transition can
interpreted here as the pinning-depinning transition of t
4kF charge density wave.

Due to the presence of the gaps, the problem has in
been formally reduced to a problem of one chain of spinl
fermions with disorder. Using the results from the one ch
problem we find that the localization-delocalization occurs
Kr153/2. Since purely repulsive interaction implyKr1,1
the d-wave phase is therefore unstable to arbitrarily we
disorder. The symmetric~54! and the antisymmetric~53! part
of the disorder contribute equally to destroy thed-wave su-
perconductivity, in contrast with the spinless case where
antisymmetric part was the most relevant. The localizat
length of the two-chain system with spin and purely rep
sive interactions can be obtained by a similar method to
for the spinless case and is

L2 ch.

a
;S vF

2

Da D 2/~322Kr1!

, ~58!

and therefore longer than the corresponding one for
chain with repulsive interactions49,35

L1 ch.

a
;S vF

2

Da D 1/~22Kr1!

. ~59!

As for the spinless case Eq.~58! is applicable if one is far
enough from the noninteracting point so that disorder d
not destroy the gaps created by the interactions. In that
one sees from Eq.~58! that there is a considerable deloca
ization in the ladder. Indeed for weakly repulsive interactio
Kr1;1, the localization length becomes much longer th
the mean free pathl , sinceL2 ch.;a( l /a)2, instead ofL; l
for a single chain. However the more repulsive the inter
tions become, the more the system localizes~one recovers
L2 ch.; l for K51/2!.

The temperature dependence of the conductivity can
obtained above the pinning temperatureTpin.5 (ur1 /L2ch.)
~see Appendix B!. One gets

s~T!}T222Kr1. ~60!

For Kr1,1, the conductivitydecreasesas T→0 even for
temperatures much higher thanTpin. . There is no remnant o
the ‘‘superconducting’’ behavior of the pure system in t
whole SCd sector (Kr1,1).
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2. SCs sector

For sector III, theO operators take a different simplifie
form, due to the different gaps in the system,

OCDWo;eıfr1cos~fr2!, ~61!

OCDWp;eıfr1sin~us2!. ~62!

By substituting in Eqs.~53! and ~54! and integrating over
fluctuations we end with an action of the form~58!. This
time, Kr1.1, so the localization-delocalization transitio
can be reached atKr153/2. This transition arises for a
much weaker attraction than in the one dimensional ca35

whereKr53. This critical value ofK can be realized for a
simple Hubbard model@the maximumK for the Hubbard
model is K52 ~Refs. 67 and 45!#, whereas the one chai
Hubbard model is always localized even for very negat
U.46 In addition the localization length is increased,

L2 ch.

a
5S vF

2

Da D @2/~322Kr1!#

, ~63!

whereas in the one-chain case

L1 ch.

a
5S vF

2

Da D @1/~32Kr!#

. ~64!

Note that here the localization length has the same dep
dence in disorder on the attractive~63! and the repulsive~58!
side, whereas for a single chain the localization length
reducedon the attractive side due to the formation of a sp
gap @compare Eq.~64! and Eq. ~59!#. For the ladder this
comes from the fact that both in the attractive and repuls
sector, three of the modes are always gapped.

The conductivity above the pinning temperature beha
as

s~T!;T222Kr1, ~65!

with again the same exponent as in thed-wave sector~60!.
However, since nowKr1.1 the conductivity nowde-
creases with decreasing T. There will thus be for
1,Kr1,3/2 a maximum in the conductivity forT;Tpin. ,
and the resistivity will go to zero for high values ofKr1 .
This maximum can be seen as a remnant of the super
ducting behavior of the pure system. ForKr1.3/2, the sys-
tem has infinite conductivity forT→0.

3. CDWp sector

Let us now consider Sec. IV. In that sector, one has str
fluctuations towards a CDWp phase. Such a phase is th
analog of the CDWp that existed in the spinless fermio
problem. We see that the coupling to disorder reduces to~see
Table II!

E dx ja~x!eıfr11H.c. ~66!

As in the spinless fermion case that antisymmetric cha
density wave only couples to the antisymmetric disord
The RG equation for disorder is
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dDa

dl
5S 32

Kr1

2 DDa~ l !. ~67!

The antisymmetric disorder is thus relevant forKr1,6.
Since the CDWp phase only exists atKr1,1 the CDWp is
always very strongly pinned by disorder. Using Eq.~67! we
obtain for the localization length in that phase

L loc.,CDWp

a
;S vF

2

Daa D @2/~62Kr1 !#

. ~68!

In the classical limitKr1→0 one recovers again the sta
dard result50 for the pinning of a classical CDW.

The conductivity of the CDWp above the pinning tem
perature behaves as

s~T!;T22 Kr1/2, ~69!

showing sinceKr1,1 a very rapid decrease in the condu
tivity as T→0. This behavior is a consequence of the ve
strong pinning of the CDWp. This feature of the antisym
metric CDW is similar to the one occurring for the spinle
ladder.

4. OAF sector

In the case of the orbital antiferromagnet, the coupling
disorder is made of two terms: One term comes fromOCDWo

the other one fromOCDWp. According to the preceding sec
tions, these terms contain, respectively, cosfr2 and
cosfs1 sinus2 and ~see Table II! therefore have exponen
tially decaying fluctuations. In order to get nontrivial resul
the massive modes have to be integrated out as in the
ceding sections. This again leads to an action of the fo
~57! and the disorder in the OAF phase is relevant
Kr1,3/2. The OAF phase is thereforeas delocalizedas the
superconducting SCs phase, although the pure system do
not exhibit any obvious superconducting order parame
The localization length in the disordered OAF is

L loc.

a
5S vF

2

Da D @2/~322Kr1!#

. ~70!

For Kr1.3/2 we have a metallic phase.
The disorder leads to a conductivity of the form

s~T!}T222Kr1. ~71!

The conductivity in the OAF is therefore identical, as far
the temperature dependence is concerned, to the one i
SCs. It will exhibit in the localized phase 1,Kr1,3/2 the
same maximum in the conductivity forT;Tpin. . Once again
one sees that the transport properties can hardly be gue
from the phase diagram of the pure system. The OAF is t
also an excellent candidate for a ‘‘superconducting’’ beh
ior.

Using Eq. ~36!, it is possible to get some hints on th
parameter regime of the extended Hubbard model in wh
the OAF could be achieved. One is in the OAF sector
g1.0 and Kr1.1. In the extended Hubbard language
means

2V@22cos~2kFa!#,2U,2V cos~2kFa!. ~72!
y
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Let us assume a local repulsionU.0 and that one is close to
half filling cos(2kFa);21. In that case one reaches the OA
for moderate nearest-neighbor attractionV,2U/6. Such a
situation is likely enough to be realized, especially if ad
tional attractive mechanisms such as phonons are taken
account.

5. Differences with the spinless ladder

The spinless ladder and the ladder with spin show so
marked physical differences. Some of them are due to
fact that interchain hopping has a different impact on ferm
ons with spin and spinless fermions. In a system of spinl
fermions, energy can be gained from hopping only if one s
of the rung is occupied and the other one is empty due to
Pauli principle. This induces an enhancement of density fl
tuations. On the other hand, a system with spin can g
energy from interchain hopping by having the two sites
the rung occupied by fermions of opposite spins. This le
to spin gap formation and asmootheningof density fluctua-
tions. This effect is enhanced in the presence of a pu
repulsive interaction as it tends to smooth the density fl
tuations in a system with spins, whereas it enhances the
a spinless system.45 This has already important consequenc
in the pure case. In particular, the positions of the SCd and
OAF phases are different~see Figs. 1 and 3! as thed wave in
the spinless system needs some amount of attraction whe
it is achieved from completely repulsive interactions in t
ladder with spin. In the presence of disorder, thed-wave
phase of the spinless system can be stabilized by sufficie
attractive interactions, whereas in the system with spin i
always unstable~see Figs. 2 and 5!, being replaced by an
s-wave superconducting phase for attractive interactio
Also, in the presence of disorder, the system with spin du
the smoothening of the density shows delocalization co
pared to the one-chain caseboth for the attractive and the
repulsive side. On the other hand, for the spinless system
reinforcement of the density fluctuations enhances local
tion on the repulsive side. The attractive side on the ot
hand is totally delocalized.

In both cases thes-wave phase~occuring for attractive
interactions! is very strongly stabilized by the interchai
hopping. This can be understood by a picture of tigh
bound pairs that behave in both cases as hard core boson
that case, the statistics do not influence qualitatively
transport properties anymore. Similarly both systems ten
form charge density waves that are extremely well pinned
disorder ~usually much more easily than their one-cha
counterpart!. In the case of fermions with spin, this require
some mixing of attractive and repulsive interactions so tha
pair of fermions of opposite spins are formed in the chai
These pairs then have hard core bosons interactions so
the situation becomes an analog to the spinless ferm
case. This explains the enhancement of pinning for the a
symmetric charge density wave phase. However, in the
tem with spin with purely repulsive interactions there isno
CDWp in contrast with the spinless system. Both syste
also present an OAF phase that is revealed to be quite s
in the presence of a small disorder. For the spinless lad
the OAF is even stable close to the noninteracting po
Finally, an interesting similarity between the system of fe
mions with spin and the system of spinless fermions is t
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7178 56E. ORIGNAC AND T. GIAMARCHI
pinning on two different CDW phases are possible depen
ing on the interactions: either the antisymmetric 2kF CDW
or a 4kF CDW. In these two localized phases the behavior
the conductivity at high frequency or high temperature a
of the localization length at small disorder are very differe
~the difference appears in the exponents! the 4kF being much
less well pinned than the 2kF . This is to be contrasted to th
one-chain case where only one pinned charge density w
phase is realized. Therefore, we may expect to see, for w
disorder, a crossover between two different pinned cha
density wave phases in the two-chain system when vary
the strength of the interactions. Such a crossover nee
more detailed study. Unfortunately it cannot be tackled
the RG since it occurs deep in the localized regime. O
interesting question is whether such a transition still occ
for strong disorder.

C. Transport properties

The ladder with spin shows therefore in the presence
disorder transport properties drastically different from t
one that one could naively expect form the pure phase
gram. In particular, thed-wave phase disappears and do
not exhibit any remarkable conductivity. Let us look in mo
detail at the transport properties and compare them to w
happens in a single chain35 for the various sectors.

1. Conductivity

As was mentioned in Sec. III B 2, the ladders-wave
phase is much more stable to disorder than its one-c
counterpart~see Figs. 4 and 5!. This effect manifests itself in
the location of the superconducting-localized transition, a
in the localization length. As for the spinless case, this eff
is entirely controlled by the interactions and going from o
to two chains affects thepower law dependenceof the local-
ization length with disorder. It is thus much stronger than
increase of localization length occuring for a noninteract
system~proportional to the number of channels!. In the pres-
ence of interactions the behavior of the localization len

FIG. 4. The phase diagram of the disordered one-chain Hub
model in terms ofg1' andKr . Delocalization occurs forKr.3 for
g1',0 and forKr.2 for g1'.0.
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cannot be guessed by analogies with the noninteracting
tem. The case of spinless fermions where repulsive inte
tions make the two-chain system more localized than
one-chain system is an excellent counterexample.

The resistivity@see Eq.~65!# is also dropping much faste
than for one chain for whichs1ch.(T);T22Kr. The ladder is
thus a much better conductor than a single chain both
cause of the scale of localization and because of the be
temperature dependence. In addition, even in the local
phase the conductivity will increase for all values ofKr1 for
which thes-wave phase exists in the pure system, until o
reaches the localization temperatureTpin . This behavior is
qualitatively sketched on Fig. 6. The SCs phase shows there
fore all the ‘‘good’’ characteristics of a ‘‘superconducting
phase, and in that respect is much more normal than its o
chain counterpart.

For repulsive interactions a different physical situati
occurs. The system is still less localized than the one-ch

rd
FIG. 5. The phase diagram of the disordered two-chain Hubb

model in terms ofg1 andKr1 . The SCd phase is completely eate
by the PCDW4kF phase, whereas the OAF and the SCs persist if
there is enough attraction. Delocalization occurs forK.3/2, i.e.,
for less attractive interactions than in the one-chain case.

FIG. 6. Behavior of the conductivities of thes-wave ~dotted
line! andd-wave ~solid line! superconductor as a function of tem
perature. ForT@Tloc. , s(T)}T222Kr1. For thed wave, there is no
maximum in the conductivity and therefore no remnant of sup
conductivity in the localized phase.
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56 7179EFFECTS OF DISORDER ON TWO STRONGLY . . .
counterpart. The transition occurs for a smaller value
Kr153/2 ~versusKr52 for a single chain!, and the local-
ization length is larger than for one chain@see Eq.~58!#.
Contrarily to the single chain where the pinned phase i
random antiferromagnet, here the presence of the spin
forces the localized phase to become a pinned 4kF CDW.
However the SCd phase is completely wiped out by the di
order, and what is more surprising, no trace of this ‘‘sup
conducting’’ phase can be found in the high temperat
(T.Tpin) of the conductivity@see Eq.~65!#. In particular,
s(T) decreases monotonically even at high temperature
stark contrast with the SCs phase as shown on Fig. 6. Th
again illustrates the fact that the transport properties are
linked to the behavior of the superconducting order para
eter but to thedensityfluctuations. For a single chain sinc
the density exponent and the superconducting one are re
by Kdensity;1/Ksupra when superconducting fluctuation in
creases density fluctuations necessarily decrease and the
tem becomes a better conductor. Or course this is also tru
the presence of a true superconducting order in higher
mensional systems. For the single chain the fact that su
conducting fluctuations do not necessarily imply better tra
port also appears from the fact that the attractive Hubb
model ismore localized than the repulsive one:45 when the
interactions go from repulsive to attractive a spin gap op
and the density fluctuations are suddenly lowered making
system more easy to pin. A similar effect occurs in t
d-wave phase of the ladder, in a more dramatic way:
d-wave phase does not look superconducting at all sinc
leaves enough room for enough 4kF charge fluctuations
Note that the more repulsive the interactions are the wo
the conductivity, in a similar way to the single chain whe
the phase is a spin density wave. The interchain hopping
thus two effects : on the one hand it leads to the appeara
of the spin gap that wipes the SDW and replaces it by
SCd wave and on the other hand it freezes the density fl
tuations~in particular, the transverse charge modes!. Those
gaps suppress 2kF CDW fluctuations, and localization hap
pens only through coupling to 4kF CDW fluctuations. Since
the mechanism for localization is the same for all signs of
interactions, the transport properties are only weakly dep
dent of the sign of the interactions. This charge freezing
the dominant effect on transport. The two effects are ess
tially unrelated.

The most remarkable phase is the OAF which is an ill
tration of the above. This phase has a localization length
a s(T) as good asa genuine SCs wave phase, and yet has n
genuine superconducting order parameter. In fact the abs
of order parameter is here also due to the spin gap since
a single chain the corresponding phase is a triplet super
ducting phase. However the fact that density fluctuations
already very small in this phase remains~and is helped by
the freezing of transverse charge fluctuations!, giving the re-
markable transport properties of this phase. This remark
property is not an artifact of the potential scattering and p
sists even if coupling to different form of disorder is in
cluded. In particular, the superconductinglike transport pr
erties of the OAF also exist in the presence of a rand
hopping along the chains and a random interchain hopp
amplitude~see Appendix D!. Note that this phase has anal
gies of the so-called flux phase,68–71the size of the plaquette
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is fixed here by the interparticle distance, and of course
phase could not be reached for a pure Hubbard model~at the
opposite of what was claimed in a higher dimensio!.
Whether for such a phase, a sort of Meissner effect a
exists is of course a very interesting question. The conn
tion between the one-dimensional antiferromagnet and itsd
or 3d counterparts clearly deserves further investigation.
particular, in two dimensions a phase offering some simila
ties with the one-dimensional OAF, has been proposed
the high-Tc superconductors.72

2. Persistent currents

In a similar way to the spinless case one can compute
charge stiffness. For the ladder with attractive interactio
one has forKr1 ,Kr,3/2,

D~L !5D~0!2S L

L loc.,1ch.
D 32Kr

, ~73!

whereas for a two-chain one, it is

D~L !5D~0!2S L

L loc.,1ch.
D 322Kr1

. ~74!

These formulas are valid fora!L!L loc. . It is easy to see
that they lead to a smaller reduction of the conductivity st
ness in the two-chain case, in agreement with the fact
L2 ch..L1 ch. For repulsive interactions, it is of the form

D~L !5D~0!2S L

L loc.,1ch.
D 32Kr

. ~75!

Whereas for the two-chain case, it is of the form

D~L !5D~0!2S L

L loc.,1ch.
D 322Kr1

, ~76!

and the two-chain system has a smaller reduction of cond
tivity stiffness than the one-chain system. So up to prefac
the reduction in stiffness in the ladder system with spins
identical for repulsive and attractive interactions and the
duction of conductivity stiffness also shows no abru
change as one goes from attractive to repulsive interacti
By contrast, in the one chain case, attractive interactions
duce a spin gap and localization arises from coupling o
single massless mode to 2kF disorder. This gap closes fo
repulsive interactions and localization arises from the c
pling of two massless modes with the 2kF random potential.
This causes the abrupt change in transport properties
charge stiffness35,45 when one goes from attractive to repu
sive interactions. This is related to the fact that the locali
tion lengths for attractive and repulsive interactions have
same dependence on disorder, in marked contrast both
the spinless problem and the single chain with spins. T
effect of increase of persistent current by repulsive inter
tions occurring in the single chain45 is thus either absent o
strongly reduced~not an exponent effect any more! in the
ladder. It would of course be interesting to investigate lad
with more than two legs to see if this effect reappears a
check for a possible difference of behavior between odd
even legs ladders.
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IV. COUPLED LADDERS

A. Mean-field treatment

In the preceding sections, we have been considering
lated bichains. To describe realistic compounds, such
SrxCu12xO, and have a finite temperature phase transit
interchain coupling should be taken into account. A realis
coupling is of course single particle hopping between
ladders. However in ladders, due to the existence of sin
particle gaps~spin and antisymmetric charge mode! for the
ladder, single particle hopping is irrelevant, provided that
interladder hopping is much smaller than the gaps of
system. One has therefore to consider only the particle-h
~or particle-particle! coupling generated by the single partic
hopping.73 Such couplings can lead to an ordered phase
finite temperature. As is very reasonable on physical grou
such interchain couplings stabilize the dominant o
dimensional instability. We focus here on the existence o
stabled-wave superconducting phase. This allows us to k
only the particle-particle~or Josephson! coupling between
the ladders. The Hamiltonian for the coupled ladders sys
is

H5(
n

FHdisordered 2 chain system,n

1
J

2 E dx@OSC,n
† ~x!OSC,n11~x!

1OSC,n11
† ~x!OSC,n~x!#G , ~77!

whereOSC,n is the operator for~d-wave ors-wave! super-
conductivity for thenth ladder andJ is the strength of the
Josephson coupling. On can simplify further the Hamilton
~77! by keeping only massless modes in the ladder. Doing
we assume that the spin gap and the interchain gap of
two chain system are much larger than the disorder
much larger than the Josephson coupling. However,
make no assumption on the relative magnitude of the Jos
son coupling and the strength of the random potential. T
resulting Hamiltonian is, both for the case where the do
nant instability is ans-wave ord-wave superconductivity,

H5(
n

S E dx

2p Fur1Kr1~pPr1,n!21
ur1

Kr1
~]xfr1,n!2G

1E dx

pa
@jeff.,n~x!eı2fr1,n1H.c.#

1JE dx cos~ur1,n2ur1,n11! D . ~78!

To solve Eq.~78! we treat the Josephson coupling in a me
field assuming the existence of a finite superconducting o
parameter ^cos(ur1)&. By making the replacemen
cos(ur1,n2ur1,n11)→^cos(ur1)&cos(ur1,n), the Hamiltonian
~78! becomes the one of an isolated ladder system in
external field, the value of which is determined by a se
consistency condition. The Hamiltonian is then
o-
as
,

c
e
le

e
e
le

a
ds
-
a
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e
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n
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n
-

HMF5E dx

2p Fur1Kr1~pPr1!21
ur1

Kr1
~]xfr1!2G

1E dx

pa
@jeff.~x!eı2fr11H.c.#

2
W

~2pa!2 E dx cos~ur1!, ~79!

with the self-consistency conditionW5J^cos(ur1)&.
The equation determiningTc is

1

J
5

1

~2pa!2 E dxE
0

bc
dt^Ttcosur1~x,t!cosu~0,0!&H0

,

~80!

with bc5 (1/Tc) and H0 is HMF for W50. To solve Eq.
~80!, one has to compute the finite temperature superc
ducting response function of a ladder in the presence of
order. There are presently no methods to do this exactly,
one can get an accurate solution forTc by making some
simplifying approximations.36 First, one notices that a finite
temperature induces a cutoff lengthl (T)5ur1 /T beyond
which all correlation functions decay exponentially to ze
We make thus the approximation that beyondl (T) all corre-
lation functions are truly zero and belowl (T) they are equal
to theT50 correlation functions. This allows us to use th
RG equations introduced in Sec. III. If we denote byx the
superconducting response function, when we change the
ning cutoff a( l )→a( l )edl, we have x→x exp$2 @dl/
2K( l )#%. Thus to compute correlation functions at leng
scaleR it is sufficient to integrate the RG equation from th
cutoff up toR and follow the renormalization of the respon
function. Making use of these two approximations, the eq
tion giving Tc simplifies into

1

J
5E

a

ur1 /T RdR

2pa2 expS 2E
0

ln~R/a! dl

2K~ l ! D . ~81!

The values ofK( l ) are obtained by numerically solving th
RG equations:

dK

dl
52D~ l !K~ l !2, ~82!

dD

dl
5@322K~ l !#D~ l !, ~83!

the values ofTc for K50.5,1.2 andJ50.1 as a function ofD
are shown on Figs. 7 and 8, respectively. We note that
K51.2 we have ans-wave superconducting phase and f
K50.5, a d-wave phase. This can be expected since
interchain coupling stabilizes the dominant one dimensio
fluctuation~see Fig. 5!. We see that~see Fig. 8! as in the case
of the single chain mean-field theory36 of superconductivity
we have an initial linear decrease of the critical temperat
with disorder strength. This is to be contrasted with the st
dard mean-field theory of thes-wave superconductor in thre
dimensions being based on a diffusion approximation t
does not include Anderson localization effects and givesTc
independent of the disorder. This is the well known And
son theorem. The linear decrease ofTc with the strength of
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56 7181EFFECTS OF DISORDER ON TWO STRONGLY . . .
disorder for s-wave superconductivity in our chain mea
field is due to localization effects. This peculiar situation
due to the absence of a diffusive regime in one-dimensio
disordered systems, which implies that their response fu
tions are always affected by localization effects.

For a d-wave superconductor one expects in mean-fi
theory a linear decrease ofTc as a function ofD ~see, e.g.,
Ref. 74!. For the ladder system however the decrease ofTc is
mainly due to the localization effects, similarly to thes-wave
superconductor case. Although it indeed starts linearly
small disorder~see Fig. 7!, localization effects manifes
themselves by the the sudden drop toTc50 at a critical
disorder strength~see Figs. 8, 7!. For identical Josephso
coupling between the bichains, the critical disorder stren
is smaller for thed-wave superconductor than for thes-wave
one.

B. Simplified treatment

Although the mean-field theory allows an accura
description of the effects of disorder onTc the critical value
of disorder above which superconductivity is destroyed
also be obtained by a very simple physical argument.
Tc

(pure)(J) be the temperature at which the superconduct
transition would occur in the array of ladders if there were
impurities. Just aboveTc

(pure), the thermal length is
(ur1 /Tc

(pure)) and beyond that length all phase coherence
lost. Clearly, if the thermal length is smaller than the loc
ization length in a single chain containing impuritiesj loc. ,
phase coherence is lost before coherent backscattering
build Anderson localization. The system will escape loc
ization due to the building of the~mean-field! superconduc-
tivity. Thus, if

FIG. 7. Tc as a function of disorder for thed-wave phase
(Kr50.5). Tc drops quickly to zero forD.0.2.
al
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Tc
~pure!,j loc ~84!

Anderson localization will not suppress the superconduct
transition. Equation~84! gives a simplified criterion for the
stability of superconductivity. For fixed Josephson coupli
J, Eq.~80! leads toTc

(pure);J@2Kr1 /(2Kr121)#. Thus, the
higher Kr1 the higherTc

(pure). From the preceding section
the localization length both in thes-wave andd-wave super-
conducting phase isj loc.;(1/D)@2/(322Kr1)#. Increasing
Kr1 also reducesj loc. . Thus, the two effects reinforce eac
other, and make the SCs phase that exists forKr1.1 more
stable against Anderson localization than the SCd phase that
exists only atKr1,1.

V. EXPERIMENTAL CONSEQUENCES

The theoretical results obtained in the preceding secti
have important consequences for experimental systems
are believed to be well approximated by coupled chains s
tems, namely, the doped ladder systems which present a
perconducting transition and the two band quantum wire
the former case, one would like to know if the supercondu
ing transition is related to the divergence of superconduc
fluctuations in the strictly one-dimensional system that
sults at the mean-field level in a finiteT superconducting
transition or if the physics of the transition is a two- or thre
dimensional one. We believe that the resilience of superc
ductivity to disorder is a stringent test of effective dime
sionality. In the case of quantum wires, we discuss
experimental consequences of our results for the conduc
ity and charge stiffness in the interacting system. Measu
ments of the conductance would allow us to check the ab

FIG. 8. Tc as a function of disorder for thes-wave phase
(Kr51.2). Tc drops to zero forD.0.9. Note the initial linear
decay ofTc that shows that Anderson theorem does not hold
coupled chain system due to strong localization effects and abs
of a diffusive regime.
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7182 56E. ORIGNAC AND T. GIAMARCHI
theories for the ladders and provide a measurement of
Luttinger liquid parameter in the charge sector, providi
some insight on the strength of interactions in these syste

A. Superconductivity of doped ladder systems

Our study has various experimental consequences for
observation of superconductivity in Ladder systems. Firs
the superconductivity is to come from purely repulsive int
actions ~i.e., to be of thed-wave type!, it should be ex-
tremely sensitive to disorder as we showed in Sec. IV A.
fact, any randomness would induce a conductivity that ne
increases as temperature decreases~see Fig. 6!, so that su-
perconductivity would be impossible to probe except in e
tremely pure samples. Such sensitivity with respect to dis
der is certainly consistent with the difficulty in observing a
type of superconductivity in the ladder system
Srn21Cun11O2n .21,22 However superconductivity seems in
deed to be observed in Sr0.4Ca13.6Cu24O41.36 ~Ref. 75! under
pressure (;3 GPa). Whether such superconductivity is
thed-wave type is of course still open. Various experimen
facts, however seem to indicate that if it is the case, i
unlikely that such a superconducting phase could be
scribed by weakly coupled ladder systems. Indeed one c
use the criterion~84! to estimate the localization length. Tak
ing a reasonable value of 106 ms21 for the Fermi velocity,
one obtains from the observedTc;10 K, a minimal local-
ization length ofj;10 000 Å. Using Eq.~58!, this leads to
extremely long mean-free paths~l 5j for K51/2! when one
is in the d-wave sector. So unless the chains are extrem
pure, a fact not likely to be true in such doped materials,
expects based on one-dimensional physics alone that th
perconductivity should be totally suppressed. If the prese
of superconductivity is due to an extremely pure syst
~which is doubtful! then, introducing more disorder in th
system~for instance, by irradiation! should induce a dramati
decrease of the critical temperature.

Besides the extreme sensitivity ofTc to disorder other
arguments are again a simple stabilization of o
dimensional physics in the experimental compound: eve
one could be below the critical disorder strength determi
by Eq.~84! and Fig. 7, the physics aboveTc should be domi-
nated by the one-dimensional~ladder! effects. In this regime
the resistivity goesup with decreasing temperature as d
scribed in Sec. III C. The observed resistivity showing
monotonicdecreaseof the resistivity~roughly with aT2 or T
law! is again incompatible with the one-dimensional descr
tion. If one is in the purely repulsive sector, the most like
explanation of the main experimental features is that un
pressure the interchain hopping between the ladders bec
strong enough so that the system does not retain its
dimensional feature, but is more accurately described
two-dimensional physics. Such an interpretation is also co
patible with the fact that the system at ambient pressur
insulating. In that case, the coupled bichains treatment
comes extremely questionable, and it is probably bette
start from a two-dimensional description, for which disord
effects are probably weaker, but for which the nature of
superconducting phase has yet to be completely elucida

Another interesting, but probably more farfetched, pos
bility could be that the system is in fact in the orbital an
he
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ferromagnetic sector. In such a sector the effects of diso
are much more reduced, and even very large localiza
lengths can lead to reasonable mean-free paths@j/a is at
worst (l /a)2, and diverges forK53/2, see Eq.~70!#. The
resistivity decreases with temperature according to Eq.~71!.
Here the difficulty lies more in getting the interactions co
responding to this phase, since one needs local repulsion
a sizeable nearest-neighbor attraction. In any case, ca
measurements of the temperature dependence of the res
ity aboveTc could help to decide if such OAF effects a
present. Of course here again, one cannot exclude tha
physics is two dimensional to start with, but at least now
one-dimensional starting point is more consistent with
dominant experimental features.

B. Application to quantum wires

Progress in nanostructure technologies have allowed
measurements of the transport properties of low dimensio
electronic systems. In particular, in recent experiments
quantum wires,37–40 the conductance of a quasi-one-
dimensional electron gas has been measured at very low
peratures. For the pure system, or extremely weak diso
one finds quantized values of the conductance41 in good
agreement with the theoretical predictions76,77 at fractions of
h/e2 as a function of width of the quantum wire~i.e., of the
number of subbands at the Fermi level!. The relation be-
tween the number of channels and resistance has b
verified.40 Impurities on the other hand induce backwa
scattering that is known to cause Anderson localization i
sufficiently long system. In small enough system, it leads
a reduction of conductance as the length of the system
increased or the temperature is lowered. Deviations of c
ductance frome2/h as a function of temperature have inde
been obtained in experiments78 as well as deviations as
function of the length of the wire40 and can be related to th
Luttinger liquid exponent. The correction to the conductan
due to impurities79–81 is of the form

G~T!5
e2

h
2gT2n, ~85!

wheren512Kr is the conductivity exponent.82 The deriva-
tion is similar to the derivation of theT dependence of con
ductivity in Appendix B. For finite size systemsT can be
replaced by the lower cutoffvF /L in Eq. ~85!. This formula
only holds at high enough temperatures or for systems
length L shorter than the localization length for which th
corrections term is small.

If two channels are present in the wire, the system
comes then equivalent to a ladder system. Two bands pre
at the Fermi level are the equivalent of the bonding a
antibonding bands of the ladder system. One then exp
that the whole physics derived in Sec. III C should apply
these wires. In particular, since one expects reasonably
pulsive interactions one should be in the SCd of the CDW4kF

phase. Going from a single chain to the ladder should h
observable consequences on the transport properties.
since the localization length increases drastically in the l
der system one would expect the conductance correct
due to disorder to be much weaker for two channels. This
course assumes that the typical interactions do not vary
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much when going from one channel to two channel, a f
which is not certain. Second, by doing the expansion of
corrections to conductance for the ladder and using the c
ductivity exponent ~Sec. III C!, one would obtain
n5222Kr1 . A fit of the temperature dependence of t
conductance in Ref. 41, could allow to extract the Lutting
liquid exponents for the ladder system, as well as check
above predictions.83

VI. CONCLUSION

In this paper we have examined the effects of disorder
a two-legs ladder system, using RG techniques. We h
computed the effects of disorder on the phase diagram
well as the localization length. Disorder has drastic effects
the phase diagram. For spinless fermions, it leads to an
tremely strong localization of the charge density wave ph
that exists for repulsive interactions. Such localization
even stronger than for a single chain. On the other hand
the ladder system there is a remarkable stability of
s-wave superconducting phase~for attractive interactions!,
compared to the single-chain case. The insula
superconductor transition occurs in the vicinity of the non
teracting point for a puret-V model whereas in the one
chain system it occurs for strongly attractive interactions

For fermions with spin, the repulsive part of the pha
diagram is also strongly localized by disorder. In particul
the d-wave superconducting phase found for ladder syste
is completely suppressed by an arbitrarily small amoun
disorder. We emphasize that this is notonly a pair breaking
effect but a much stronger Anderson localization effect.
the other hand, thes-wave superconducting phase occuri
for attractive interactions is again much more stable to d
order than its one-chain counterpart.

Besides obtaining the phase diagram, we have also in
tigated the transport properties of thet-V and Hubbard two-
chain systems. The RG enabled us to compute the loca
tion length and the charge stiffness as a function of disor
~see Tables III, IV! and the temperature and frequency d
pendence of the conductivity. Various remarkable f
emerged. First, the behaviors of the spinless ladder and
ladder with spins are very different. In particular, the spinle
ladder shows the same tendency as the single spinless c
namely, that attractive interactions decrease localiza
whereas repulsive interactions enhance it. In the two-ch
case, that effect is even stronger. For attractive interact
there isno localization, whereas for repulsive ones the sy
tem is much more localized than its one-chain counterp

TABLE III. The conductivities and localization lengths in th
spinless fermions case. The phases are the ones of the non
dered system that are turned into localized ones upon introduc
of a small disorder.

Phase L loc. s(T)

PCDW4kF S 1

Da
D@2/~324Kr1!# T224Kr1

PCDWp S 1

Da
D@1/~32Kr1!# T224Kr1
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~the exponentin the dependence of localization length wi
disorder is changed!. On the other hand, for the Hubbar
ladder there is no such effect: up to a prefactor, the local
tion length with attractive interaction is the same as for
pulsive ones. As a consequence, the corrections to con
tivity stiffness are the same for attractive and for repuls
interactions.

The temperature dependence of the conductivity follow
power law of the forms(T);T222Kr1, for temperatures
above the localization scaleTloc , whereKr . For the repul-
sive side, where for the pure system one would have
d-wave superconducting phase,Kr1,1, and thus the con-
ductivity decreasesas a function of the temperature eve
well aboveTloc . The transport thus showsno remnantof the
superconducting behavior one could have naively expec
when looking at the pure system. This remarkable fact ill
trates that transport is in fact controlled by the density flu
tuations of the system andnot by the existence of slowly
decreasing superconducting correlation functions. The lad
system provides evidence of a phase that is genuine
d-wave superconductor as far as phase diagram is conce
but would from the transport point of view be closer to
insulator. Of course such an interesting behavior wo
clearly deserve more studying. In particular, it would be
teresting to know how the correlation between the den
fluctuations and the superconducting one evolves as
number of chain is increased, and how the crossover to
three-dimensional situation occurs. Such a study goes
course far beyond the goals of the present paper.

We have applied our results to two types of experimen
systems. First, our results should be relevant for quan
wires with two channels. Here the prediction for the exp
nent in the conductivity can be directly checked by meas
ing the temperature dependence of the conductance of
system. Note that the conductivity/conductance expon
222Kr1 for the ladder systems is different from the one f
a single channel~or a single chain! 12K. Due to the in-
crease of the localization length when going from one ch
nel to two channels one would also expect overall sma
corrections to the conductance for a given strength of
disorder, and roughly constant interactions. Investigation
systems with more than two chains would be useful in or
to get a better understanding of the role of internal symm
tries and gaps on the transport properties of quasi-o
dimensional systems. This is of course also useful in conn
tion with experiments on quantum wires. In particular, w
expect that the behavior of systems with an even numbe
legs is dominated by gap formation whereas the behavio

or-
on

TABLE IV. The conductivities and localization lengths in th
fermions with spin case. The phases are the ones of the nond
dered system that are turned into localized ones upon introduc
of a small disorder.

Phase L loc. s(T)

OAF, SCdSCs S 1

Da
D@2/~322Kr1!# T222Kr1

CDWp S 1

Da
D@2/~62Kr1!# T22(Kr1/2)
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7184 56E. ORIGNAC AND T. GIAMARCHI
systems with an odd number of legs should be closer to
one of a one-chain system.

The other experimental system on which our results co
be applied are of course the coupled bichains where su
conductivity has recently been obtained75 under pressure. To
compare with this system of coupled ladders, it was nec
sary to treat the coupling between different ladders, wh
we did using a mean-field approximation. The results in
cate that even in the presence of coupling between lad
thed-wave phase is still much too sensitive to disorder to
the one experimentally observed. In addition, the obser
temperature dependence of the conductivity would be inc
patible with the one computed here should these system
dominated by one-dimensional~ladder! physics. These ob
servations and the fact that the conductivity occurs un
very large pressure tends to indicate that the mechanism
superconductivity in these systems is very likely to be o
two- or three-dimensional nature and not just the mere
bilization of the ladder superconducting phase. On the o
hand, the system without pressure has a resistivity that c
be more compatible with the localization effects describ
here. Of course one interesting question would be whe
one can get a one~ladder! to higher dimensional crossover a
the pressure is applied. This of course could only be deci
by a more quantitative comparison with experiments as w
as further theoretical and experimental work. Adding ad
tional impurities, for example by irradiation, could allow u
to distinguish if the system is in a one-dimensional regim
since one expects much more drastic localization effect
that case.

Finally, a ladder system with spins exhibits an extrem
interesting orbital antiferromagnetic phase. Although suc
phase cannot occur in a pure Hubbard system it can in p
ciple be stabilized if some nearest-neighbor attraction
added. Although such a phase hasno superconducting orde
parameter, it has perfect conductivity in the presence o
random potential. Moreover that perfect conductivity is a
robust in the presence of random hopping both along
chains and perpendicular to the chains. As far as transpo
concerned this phase is therefore a one-dimensional ‘‘su
conductor.’’ Nevertheless, it has only subdominant~in the
spinless case! or exponentially decaying~in the case of fer-
mions with spin! superconducting correlations, again an
lustration that looking at the superconducting fluctuations
not a good criterion to determine the transport properti
Due to the peculiar nature of this phase it would be intere
ing to check whether it survives in ladder systems with m
than two legs. More generally it also deserves further inv
tigation in dimensions higher than one, both in relation
flux phases of two-dimensional systems and other orb
phases proposed for the normal state of cupr
superconductors.72

The study of the disorder effects could also be extende
various directions. In particular, a more detailed descript
of the physics inside the localized phase would be suita
However such a description is beyond the reach of
simple RG calculation. Going to strong but diluted disord
is also a challenging problem. In particular, understand
the crossover from the results of our paper to the limit wh
disorder suppresses gaps altogether in the system remain
to be done.
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APPENDIX A: BOSONIZATION TECHNIQUE

In this section, we will give a short review of th
bosonization technique in order to fix the notations. We g
the expressions for a single chain of spinless fermions.
more species of fermions, one can bosonize each speci
dividually, and the corresponding expressions are given
the text.

1. Representation of fermion operators in terms of boson ones

Noninteracting one-dimensional spinless fermions on
lattice are described by the kinetic energy,

H52t (
n51

N

~cn11
† cn1cn

†cn11!5(
k

e~k!ck
†ck , ~A1!

wheree(k)522t cosk andcn5(1/AN)(ke
ıkrnck .

To obtain the asymptotic~low energy, long wavelength!
properties of the system one can linearize the spectrum
the Fermi ‘‘surface’’ (6kF) and take the continuum limit by
introducing c(x)5(cn /Aa) with a the lattice spacing and
x5na. With our definition thec’s have the commutation
relations of continuum fermion operators. We define theR
~respectivelyL! ~right and left movers! fermions as fermions
with momentum close to1kF ~respectively,2kF! as

cR~x!5
1

ANa
(

uku,L
eıkxckF1k , ~A2!

and similarly forcL(x) with kF→2kF . L is a cutoff needed
not to double count fermion states, and imposed by the
earization of the dispersion relation. All asymptotic prope
ties can be expressed in term ofcR,L . In particular, the full
fermion operator becomesc(x)5eıkFxcR(x)1e2ıkFxcL(x).
The Hamiltonian~A1! becomes

H52 ivF~cR
†]xcR2cL

†]xcL!, ~A3!

with vF52ta sin(kFa).
Due to the separation into two branch of fermions and

linearization of the spectrum, the Fourier components of
fermion density operators

rR,L~q!5(
k

cR,L,k1q
† cR,k ~A4!

have boson commutation relations,2,4,3

@rR~q!,rR~2q8!#52
L

2p
qdq,q8 ,

@rL~q!,rL~2q8!#5
L

2p
qdq,q8 ,

@rL~q!,rR~2q8!#50. ~A5!
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56 7185EFFECTS OF DISORDER ON TWO STRONGLY . . .
This allows us to rewrite~A3! as

H5pvFE dx@rR~x!21rL~x!2#, ~A6!

with rs(x)5cs
†(x)cs(x) for s5L,R. Instead of using the

density operators themselves it is more convenient to in
duce

P~x!5rR2rL ,

21

p
]xf5~rR1rL!. ~A7!

Physically,P is a momentum density while]xf is propor-
tional to the deviation of the fermion density from its ave
age value. The commutation relations for ther’s imply that
@f(x),P(x8)#5ıd(x2x8). Also, the Hamiltonian rewritten
in terms ofP and gf is

H5E dx
vF

2p
@~pP!21~]xf!2#, ~A8!

which is just the continuum limit of the Hamiltonian of
one-dimensional harmonic chain. Note that the followi
procedure could have been applied to a more complica
lattice Hamiltonian than Eq.~A1!. All that is needed is tha
the Fermi surface reduces to two points. The effectivenes
bosonization stems from the fact that it is possible to expr
the fermions operators in terms ofP(x) and f(x). If one
introducesu(x)5p*2`

x P(x8)dx8, one has the following re-
lations:

cR~x!5
1

A2pa
eı[u~x!2f~x!]UR ,

cL~x!5
1

A2pa
eı[u~x!1f~x!]UL , ~A9!

a being a cutoff, the presence of which is imposed by
cutoff needed in the linearization of the dispersion relatio
The UR andUL are anticommuting operators introduced
Haldane that annihilate one fermion at the Fermi level. Th
operators also anticommute with their Hermitian conjuga
It can be verified explicitly that those relations reprodu
correctly the commutators of fermion operators. TheseU
operators give, in general, corrections vanishing in the th
modynamic limit and can be safely dropped. On the ot
hand, if there are different species of fermions~such as up
and down spin fermions or band degeneracies!, one must
bosonize separately each fermion specie using the form
for spinless fermions. It is needed to introduceUL,n ,UR,n
operators and their complex conjugates~n indexing the in-
ternal degrees of freedom such as spin! to enforce proper
fermions anticommutation relations. In order to make t
bookkeeping less tedious,84 one can introduceh operators
such that

hahb1hbha52da,b ,

ha
†5ha . ~A10!
-

d

of
ss

e
.

e
s.

r-
r

as

t

Wherea5(L,n) or a5(R,n) these operators can therefo
introduce minus signs in the various bosonized expressio

2. Handling the interactions with bosonization

Let us consider spinless fermions. Interactions can then
handled straightforwardly: If one adds a density coupling
the form *dx Ur(x)2, the density can be decomposed in
slowly varying part rR(x)1rL(x) and a 2kF part
e2ıkFxcL

†(x)cR(x)1H.c..
In the Hamiltonian, one retains only the slowly varyin

terms~the other term gives a zero value when integrated o
x!. The 2kF always disappear, while the 4kF can persist in a
half filled lattice system.47 As a consequence, at a noncom
mensurate filling, the Hamiltonian reduces to

H5E dx

2p FuK~pP!21
u

K
~]xf!2G , ~A11!

with uK5vF as a consequence of Galilean invariance.
one makes the rescalingf→f/AK and P→PAK,
one has the same Hamiltonian as in Eq.~A8! with the correct
commutation relation forf and P. If one computes
the physical correlation functions at 0 K such as the
2kF part of the fermion Green’s functionG(x2x8,t2t8)5
2ı^TcR(x,t)cL

†(x8,t8)&, it is easily seen thatK controls
their power law decay whileu controls the propagation o
excitations.u and K are also related to physical quantitie
such as the charge stiffness51 and the compressibility. More
specifically, defining the compressibility b
x521/L(]P/]L)T , P52(]F/]L)T and taking,T→0 K,
we have

x5
pK

ukF
2 . ~A12!

The charge stiffness is defined by D
5(L/2)@d2E(w)/d2w2#w50 , w being a flux threading the
system. From that definition, one obtains

D5uK. ~A13!

The case of fermions with internal degrees of freedom
usually more complicated, because some of the interact
cannot be reduced to (]xf)2 terms, the most well known
example being the backscattering of two fermions with o
posite spins.3,4 Usually, one finds sine-Gordon Hamiltonian
of the form

HSG5E dx

2p FuK~pP!21
u

K
~]xf!2G1DE dx cos~bf!.

~A14!

These Hamiltonians can be studied using RG techniques4,85

The flow equations forK and D are of the Kosterlitz-
Thouless form.86,87 D has scaling dimension 22b2K/4.
Therefore a smallD is relevant forK,8/b2. From the RG
equation forD one sees that there are two regimes: one sm
K or large enoughD regime, whereD is relevant and a large
K, small enoughD regime whereD is irrelevant. WhenD is
irrelevant, the correlation functions keep their power la
character up to logarithmic corrections.85 On the other hand,
if D is relevant,f will acquire a nonzero expectation valu
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that minimizes the ground state energy and a gap will
generated. It can then be shown4 that therê f (f)&; f (^f&)
and that ^Tte

ıau(x,t)e2ıau(0,0)&;exp„$@2Ax21(ut)2#/j%…,
wherej is a correlation length. These results are used ex
sively in the paper.

APPENDIX B: MEMORY FUNCTION CALCULATION
OF ac AND dc CONDUCTIVITY

For the sake of clarity, we will explain the technique
the example of one chain of spinless fermions~technically
this is the simplest case!, and then explain how the calcula
tion can be extended to more complicated cases. First le
describe the memory function approximation.88 The conduc-
tivity is given by linear response theory as

s~v!52ı
x~0!2x~v!

v
, ~B1!

wherex~v! is the current-current response function.88,89 The
memory functionM (v) is defined by

s~v!5
2ıx~0!

v1M ~v!
. ~B2!

This gives the exact formula:88

M ~v!5
vx~v!

x~0!2x~v!
, ~B3!

an expansion88 at high frequency and the small impurity co
centration gives

M ~v!5
~^^F;F&&v2^^F;F&&v50!/v

2x~0!
, ~B4!

where ^^;&& is a retarded correlator evaluated for the pu
system andF5@J,H#, J being the total current. To use tha
formalism in the framework of bosonization, we first need
expression for the current.89 This can be obtained from th
definition of the fermion densityr(x)5r02(]xf/p), and
the current conservation equation:] tr1]xj 50. One obtains
g
-

ng
t

e

n-

us

n

j (x)5(] tf/p). Using the Heisenberg equation of motio
for f and noting that the total currentJ5*dx j(x), one
finds J5uK*P(x)dx. The coupling to disorder being

H imp5E dx
j~x!

2pa
eı2f~x!1H.c. ~B5!

We getF}*@j(x)/2pa#eı2f(x)2@j* (x)/2pa#e2ı2f(x).
This gives

^TtF~t!F~0!&}E dx Dd~x!S 1

x21~ut!2D K

}t22K.

~B6!

Therefore,̂ ^F;F&&v}*dt eıvtt22K}v2K21. This gives
M (v)}v2K22 and for K.3/2s(v)}v222K. The formula
we have obtained is valid only at high frequency. We can
from it a high-temperature formula by using the dimensio
equivalence of temperature and frequency~e.g.,\v;kBT!.
To generalize the calculation to a more complicated case
must first note that in the formula for the current,f will be
replaced byfr in the case of two chains of spinless fermio
andfr1 in the case of two chains of fermions with spin. Th
coupling to disorder being some*dx j(x)eınf1H.c., n de-
pending on the problem at hand, we see that in the gen
case we will just have to make the replaceme
2K→(n2/2)K in the formulas givings(v),s(T).

APPENDIX C: EFFECTIVE RANDOM POTENTIAL
IN THE PRESENCE OF GAPS

In that section, we will give a derivation of the RG equ
tion for Da at gf.0. We start with the method of36 comput-
ing perturbatively the correlation function
^Tte

ı&fr(x1 ,t1)e2ı&fr(x2 ,t2)&. In second order in the random
potential, since ^Tt sin(&fi)(x,t)sin(&fi)(0,0)&;e2r / l ,
there is no singular contribution. Therefore, we must go
fourth order. We will drop the combinatorics since we a
only interested in the renormalization ofD. The fourth order
term is of the following form:
Da
2E dx1dt1dx2dt2dx3dt3dx4dt4

~pa!4 @d~x12x4!d~x22x3!1d~x12x2!d~x32x4!#

3^Tte
ı&[fr~x,t!1fr~x1 ,t1!1fr~x3 ,t3!2fr~x2 ,t2!2fr~x4 ,t4!2fr~0,0!]&

3^Ttsin~&f i!~x1 ,t1!sin~&f i!~x2 ,t2!sin~&f i!~x3 ,t3!sin~&f i!~x4 ,t4!&. ~C1!
of
we
The f i will be exponentially small except whenur 12r 3u! l
and ur 22r 4u! l or ur 12r 2u! l and ur 32r 4u! l ~the other
cases are equivalent to these two ones up to a relabelin
dummy integration variables!. It is easily seen that the sec
ond case is in fact trivial. Therefore, the only interesti
contribution comes from the first term. This term reduces
the simple form
of

o

Da
2l 2CE dx1dt1dx2dt2d~x12x2!

3^Tte
ı&[fr~x,t!12fr~x1 ,t1!22fr~x2 ,t2!2fr~0,0!]&, ~C2!

whereC is a constant that depends on the regularization
the continuum model. It can be seen that the term that
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obtain can be generated by the following effective coupli

Heffective5E dxjeff.~x!eıA8fr1H.c., ~C3!

with jeff.(x)jeff.(x8)5Dd(x2x8) andD}CDa
2 . It is clear that

for couplings of the formeıfr cos(ui), the same argumenta
tion will be equally valid. Note that using a self-consiste
harmonic approximation~SCHA! approximation gives dif-
ferent results; This is due to the fact that normal ordering
SCHA is done without taking the presence of the gaps i
account. Therefore standard scaling, irrespective of the p
ence of the gaps, always holds when one uses SCHA.

APPENDIX D: THE ORBITAL ANTIFERROMAGNET
IN THE PRESENCE OF RANDOM INTRACHAIN

HOPPING AND RANDOM INTERCHAIN HOPPING

We consider the following two types of random hoppin
a random hopping along the chains

H intrachain5(
i ,s

@dt i
1~ci 11,s,1

† ci ,s,11ci ,s,1
† ci 11,s,1!

1dt i
2~ci 11,s,2

† ci ,s,21ci ,s,2
† ci 11,s,2!#, ~D1!

and a random interchain hoppingamplitude,

H interchain5(
i ,s

dt',i~ci ,1
† ci ,21ci ,2

† ci ,1!, ~D2!

wheredt' is real. Bosonization of~D1! leads to an expres
sion identical to the one that obtains by bosonizing a rando
a

:

t

n
o
s-

:

on-site potential. It is then evident that the transport prop
ties of the orbital antiferromagnet are the same in the p
ence of a random potential or random hopping along
chains. Bosonization of equation~D2! gives the following
expression:

H interchain5E 2dx

pa
t
'

2kF~x!e2ıfr1

3@ ı sin fr1cosfs2 cosfs1

1cosfr2 sinfs2 sinfs1#1H.c. ~D3!

It is not difficult to see that such a term has exponentia
decaying correlations sinceur2 develops a gap. Integratio
of the massiver mode leads to a coupling that is identical
the coupling to a random potential. Therefore a random
plitude of the hopping term also does not affect the trans
properties of the OAF more severely than a random poten
and thus the ‘‘superconducting’’ transport properties of
OAF are not an artifact of restricting to random potentia
All physically admissible random perturbations of the tw
chain system lead to the same limit for localization deloc
ization (Kr153/2), the same behavior for conductivity as
function of frequency and temperature, and the same de
dence of localization length as a function of disorder.

On the other hand, if the random hopping term ha
randomphase, there is a direct coupling to the OAF ord
parameter and then the OAF phase is suppressed. Such
are allowed, for instance, in a tight binding picture only if t
phases on the atoms of the two-chain system cannot be m
real. This could be achieved with a random magnetic flux
each plaquette of the two-chain system.
ys.

on,

d.

tt.
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