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Effects of disorder on two strongly correlated coupled chains
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We study the effects of disorder on a system of two coupled chains of strongly correlated fe(tha®ns
ladder system using a renormalization-group technique. The stability of the phases of the pure system has
been investigated as a function of interactions both for fermions with spin and spinless fermions. For spinless
fermions the repulsive side is strongly localized whereas the system with attractive interacttatdasvith
respect to disorder, at variance with the single-chain case. For fermions with spins, the repulsive side is also
localized, and in particular thd-wave superconducting phase found for the pure system is totally destroyed by
an arbitrarily small amount of disorder. On the other hand, the attractive side is again remarkably stable with
respect to localization. We have also computed the charge stiffness, the localization length, and the temperature
dependence of the conductivity for the various phases. In the parameter rangelwyere superconductivity
would occur for the pure system the conductivity is foundiezreasemonotonically with temperature, even
at high temperature, and we discuss this surprising result. For a model with one-site repulsion and nearest-
neighbor attraction, the most stable phase is an orbital antiferromagnet. Although this phase has no divergent
superconducting fluctuation it can have a divergent conductivity at low temperature. Finally, to make a com-
parison of our results with experimental ladder systems, we treated the interladder coupling in a mean-field
approximation. We argue based on our results that the superconductivity observed in some of these compounds
cannot be a simple stabilization of tllewave phase found for a pure single ladder. The application of our
results to systems such as quantum wires is also discussed. In particular, the corrections to conductance in a
two-channel quantum wire have been obtained as a function of system length, temperature, and interactions.
[S0163-18297)08735-3

[. INTRODUCTION experimental realizations of such coupled spin chains like
Sr,-1Cu,410,, (Refs. 21 and 2Rand VO,P,0O; (Refs. 23
Strongly interacting systems constitute one of the mosand 24 compounds have confirmed such behavior. Due to
challenging problems of condensed-matter physics. In onthe presence of such a spin gap an even more spectacular
dimension a fairly complete solution of the interacting prob-effect is expected upon doping. Opposite the single chains,
lem can be obtained, and it is well known that one-which exhibit either a spin density wave or charge density
dimensional systems are some of the simplest realizations @fave ground state for repulsive interactions, the ladder sys-
non-Fermi liquids, and have generic properties known agem is believed to have a superconducting ground state in-
Luttinger liquids'= Prompted by a variety of experimental Vvolving pairing across the chains. That superconducting state
situations ranging from organic conductors to highsuper-  has similarities withd-wave paring that has been advocated
conductors, there has been, in the recent years, a growirig some two-dimensional models of strongly correlated elec-
interest in systems of coupled interacting electron chainstrons for highT, superconductofS—**such as the existence
Unfortunately, despite a good understanding of purely oneef a spin gap and a sign change of the superconducting order
dimensional systems, the effects of interchain hopping, alparameter when one moves on the “Fermi surface.” In the
lowing us to go from one to highdtwo or thre¢ dimensions  strong coupling limit, i.e., theé-J model, thed-wave phase
are much less known. Whether non-Fermi liquid propertiecan also be viewed as a resonating-valence-band %tate.
can be retained even in the presence of finite hopping or not However all the studies of ladder systems have been, up
is still a highly controversial issu&® to now, restricted to pure systems. Unfortunate@ly maybe
Many studies have therefore focused on systems of fevfortunately it is well known, that for one-dimensional sys-
coupled chains(two coupled chains being the so-called lad-tems disorder has extremely strong effects. For a noninter-
der systemy for which much more controlled analyti€al®  acting system, it is well known that all states get localized in
or numerical®2° techniques can be applied allowing for a the presence of an infinitesimal random poteriiaf Inter-
deeper understanding of their physical properties. For comactions can modify this picture, but for a one-chain system
mensurate filling, i.e., one electron per site, the system bedelocalization occurs only for strongly attractive interactions.
comes equivalent to coupled spin chains, since the charda particular even norma-wave superconducting phases are
degrees of freedom are frozen by a Mott transition. Importantestroyed by nonmagnetic impurities except for exceedingly
differences between ladders with an even and odd number @fttractive interactiongsee, e.g., Ref. 35 and references
legs were expected, in a way reminiscent of the Haldan¢herein, and no Anderson’s theorem exists even for weakly
conjecture between one-dimensional systems with integezoupled one-dimensional systerfis.
and half integer spins. In particular, ladders with an even In order to compare the theoretical predictionslefvave
number of legs were predicted to have a spin gap. Googuperconductivity in doped ladder systems with experiments,
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it is of prime importance to understand the effects of disordetess fermions system than it was for a one-chain system.

on the phase diagram of the pure ladder system. One of the In Sec. Ill, we discuss the technically more involved case
important questions is of course the stability of the newlyof fermions with spins. Following the same methodology, we
found d-wave superconducting phase since there are no ofirst recall the phase diagram of the nonrandom two-chain
vious reasons why it would survive the introduction of asystem and then consider the effects of a weak random po-
small amount of disorder. Such a study is also relevant to théntial on the phase diagram. As for the spinless problem, we
physics of quantum wires with few channdls?! In quan-  9ive a detailed discussion of the transport properties in the
tum wire systems, the situation is however complicated b)ﬂlsordered phases. We compare these results with th.e ones
the occurrence of long range Coulomb foflethat can in- alrea}dy known for one chaln., an_d show. that the rgductlon of
duce a one-dimensional analog of the Wigner cry4, persistent current by attractive interactions that is observed

which can drastically modify the response of the system tdn one chainl of fermions with spin should be almo§t absentin
disorder*® However, the presence of charges in the grids oithe two-chain system. The-wave superconductivity of the

the quantum wire systems can be cleverly used to screefﬁrmionic two-chain system is a feature that is not preserved

completely the long range interactions, and have an experll! the presence of a very small amount of disorder. On the

mental realization of a Luttinger liquitf. By changing the qther hand, f(_)r some valges of t_he parameter, an o_rb_|tal an-
gate voltage it is possible to have more than one band at t erromagnetic phase exists. This phase has an infinite con-

Fermi level, in a controlled way. The quantum wire is thus a uctivity even in th? presence of d|§ordahhoug.h it has
possible realization of a tw@r more leg ladder. Interband exponentially decaying superconductlng correlatlpns.
tunneling plays the role of interchain hopping. They provide In order to compare - our results with experiments on
ideal systems in which to check for the effect of disorlde ~ doped ladder systems, it is necessary to treat interchain cou-
Besides the exciting possibility of testing the ability of plmg which stabilizes superconductivity at finite tgr_nperature
Luttinger liquid models to describe accurately the now avail-"" real sys;[jgmsa and_”r;nay. algo re:j\yce the se_nsm\;:ty of the
able quasi-one-dimensional experimental systems, investig yls(;errr: to |]§or Er.d us In Sec. (\;ve examine the mea;n—
tion of disorder effects in ladders presents in its own right e It S%r,y odr t Z l""é%ve superconductor in an farray o
great theoretical interest. Indeed, the two-chain problem i§°UPled disordered ladders. We give a criterion for persis-

the simplest one to study the effects of interchain hoppinéence of superconductivity in the presence of disorder and

onto the Anderson localization in the presence of interacS"OW thatd-wave superconductivity remains unstable except

tions, giving some clues to this difficult topic in more than " VETY pure samples or in the presence of a very strong
one dimension. In particular, one would be interested in obJosephson coupling between Iagder;. . .
taining boundaries between localized and delocalized phases N S€¢- V. we summarize the implications for experimen-
and the dependence on localization lengths on disorder. Af@! Systems such as doped,Su, O chains and quantum

other question of particular interest is the effect of interac-Wire With two channels. We claim that in recently synthe-

tions on physical quantities controlled by disorder such a$iZ€d doped ladder systems, the physics of the superconduct-

the conductivity for a macroscopic system, or for a meso/Nd Phase is more likely to be of two-dimensional origin

scopic one the persistent currents. In particular, for a ongl@ther than just a stabilization of a laddéwave supercon-
chain system, it was shown that for a system with spin deductivity. Co_nclg_smns can be foun(_j in Sec. VL. F|_nally, most
grees of freedom persistent currents were enhdfidsdre- of the technicalities can be found in the Appendixes.

pulsive interactions, at variance on what happened for a

spinless system. It is therefore important to check whether Il. SPINLESS FERMIONS
this striking result still holds in a more two-dimensional sys-
tem. A. Pure system

In this paper, we consider the effects of a weak random Let us consider first two chains of spinless fermions
potential scattering on systems of coupled fermionic chainsoupled by an interchain hoppirtg . For simplicity we first
both with spin and spinless using bosonization andconsider only nearest-neighbor interactions, and interchain
renormalization-grougRG) techniques. A short account of interactions. The effect of more complicated interactions will
some of the results of this paper were presented in Ref. 4de detailed below. The Hamiltonian for the pure system
Besides giving the phase boundaries, the RG also providgeads
us with expressions of the localization lengths, temperature
dependence of conductivity, and dependence of persistent
currents with system size. The plan of the paper is as fol-
lows.

In Sec. Il, we discuss the spinless fermions two legs lad-
der problem. We first recall the phase diagram of the pure
system** then consider the effects of disorder. This allows
for a detailed comparison of the transport properties of thavherep=—1,1 is the chain index anidis the site index. To
two-chain system with the ones of the one-chain spinles§eat the interactions, it is convenient to rewrite the Hamil-
fermion system and the ones of one chain of fermion withtonian in term of boson operatct$:* To do so, we linearize
spin. We show that contrarily to naive expectations, the ladthe fermions dispersion relation aroukd, introduce right
der spinless fermions system is very different from the one{R) and left movers I() for each chain, and take the con-
chain system with spin, and that the effect of interactions ortinuum limit ¢, , ,— \/Eap,,p(na) with r=L,R, p==1 the
persistent currents is even more violent on a two-chain spinehain index andx the lattice spacing. We use the bonding

H=—ti2p prci+1yp+ H.c.+V2i NipNit1p

.2 el atHe U many 1y, (D



56 EFFECTS OF DISORDER ON TWO STRONGL . . 7169

Uo= (Y1 +_ )/v2] and antibondingy .= [ (1 — & — 1)/ TABLE I. The four sectors of the pure two-chain spinless fer-
v2] bands base and introduce the densitiesnions model, as a function &, andg;. The average value of the
Pro-(X)=141 o _(X)t o »(X):. We then define the canoni- massive field(6,) are indicated together with the phase with the

cally conjugate ﬁe|d3/>p,n and Hp,H via most divergent susceptibility.
o | Il 1 v
Iy =— E(pL,o"' PRoTPL,»EPR ) ) o 4 N B _
K, <1 >1 >1 <1
M= (pro FpL.) @ (8= = 0 0
= = — T =+ ) 7= = s
pll 3 PR,0— PR, PLo*+PL, \/5 \/§
and the fieldd,, (x) =% .IT,,(x")dx’. More details on the phase OAF se s cpw”

bosonization technique can be found in Appendix A. In term
of these fields the Hamiltonian becorfies

of fermions with spin and spin-anisotropic interactions in a
magnetic field*® one can obtain the complete phase diagram
for the pure casé&’ Since, due to the one-dimensional nature
of the problem, no true ordered state exists, one has to find
V2 the most divergent instability. As for one chain, two main
+f dx H Ixe types of instabilities are possible: particle-hékensity, cur-
rent, etc) instabilities or particle-particlé.e., superconduct-

dx
H:Hp+H”, Hp:f ﬂu

dx
Hn:f on

u
KP(WHp)2+ K_[’:(ax(ﬁp)z} 1

uy K (Il %+ %(ax(ﬁ”)z

20, ing) ones. The operators with the most divergent susceptibili-
+f dx (2ma)? cog 8 \/_¢u)+ (27a)? 005’\\/59)} ties are in a boson form,
@ Ocowr= thfa(X) ¥ 1(X) — ¥k _1th —1(X)
For the microscopic Hamiltoniafl), one finds Nelf(ppcos(ﬂa”)
Ua
Kj=14 — Oscs= Y o(X) Y, Wi wthr o~ €2 rsin(v26)),
27TU|:
va v Oonr=il¥ra(X) ¥, 1) = ¢ 100 1(X)]
u|,=vp(1— mor + W—vF[l—cos(2kFa)] : ~e"2%sin(v26,),
gi=—Va[1—cog2kea)], Osci= Y ohr,n— YL, 7R 0~ €"2PrCOSV2H)).
They describe, respectively, out of phase charge density
g, =Ua—-Va[l-cog2kea)], waves, an orbital antiferromagnetic phase and chain symmet-
U v ric “s” and antisymmetric ‘tl” type superconductivity. The
a a out of phase charge density has k-2modulation of the
= + + —T01-
Up=ve| 1 2mUE 7TU|:[1 cos2kea)]|, density along the chain and a change of sign across the
chains. In the orbital antiferromagnet currents go from one
_ Ua Va chain to the other with wave vectorkg, giving currents
Kp=1- 2m0e - m,F[l_COS(ZkFa)]’ ) circulating around plaquettes of lengttikz . The supercon-

. ) ducting phases are the standard ones, given on the original
with ve=2ta sin(Xga). Therefore for the puré-V model,  model by

one haskK,<1 (respectively,K,>1) and g;<0 (respec-

tively, g;>0) for repulsive(respectively, attractiyeinterac- Osai(N)=Cn1Cn 2,
tions andK;=1 for all t,V. In fact (4) describes the most
general two-chain spinless system. More complicated inter- Oscs(N)=Cp411Cn1— Cn+1.Ln2- (6)

actions(i.e., longer range and interchain interactipiesad

pnly 0 a c_hange n the parametgt(s u, andg. By adding The various cases are given in Table I, and the phase dia-
interchain interactions such a$ in formula (5) or longer
ram shown in Fig. 1. In Ref. 14 the bosonized forms of

range interactions on n in particular th thrr%
ange Interactions one ca particular access the othe s andOg are exchanged due to the neglect of anticom-

gimesK ,>1 andg;<0 orK <1 andg;>0. The physics of g .
. : muting operatorg§see Appendix A so that the two super-
the system is readily seen on H9). Thet, term suppresses conducting phases have been erroneously exchanged.

cos(y8¢). Depending on the value ¢, the ¢, can either
remain massless or develop a gap. We concentrate here on .

the case where, develops a gap and acquires a nonzero B. Effects of disorder

expectation value determined by minimizing the ground state  Now we consider the effect of the disorder on E(9—
energy(see Appendix A This situation always occurs for (4). We introduce a random on-site potentigl, uncorre-
thet-V model* By mapping(4) on a problem of one chain lated from site to site and from chain to cha|n

The most stable phase depends on the paramitensdg.
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g The g~0 (forward scatteringpart of the disorder does not
affect the conductivity and cannot lead to localizatimut
could, in principle, modify the phase diagram and in particu-
lar destroy the gaps of the pure phase. As for one chain, one
-V model can eliminate thensdy¢, by a transformationg,— ¢,
+ (\/§Kp/up)fdx 7ns(X). The only effect of this term is
therefore to give an additional exponential decay in the
density-density correlation functions.

Due to the presence of a gap #) (see Table), the
cow” sc* na(X)cosi2¢,)cos¢26) term is always suppressed at lowest
’ order. It could however generate relevant terms at higher
order. However higher order terms are either identical to
backscattering terms already present in the Hamiltonian, or
_ o _ adds random contributions @, cos 8¢, and g;cos /86, .

FIG. 1. The phase diagram of a generic spinless ladder in termg; g mq)| disorder these contributions are negligiable, and one
of gy andK, . K,>1 means attraction in the symmetric charge ., completely disregard the forward scattering. We can

sector andK ,<1 repulsion. The line depicts the phase spanned b . :
the puret-V ladder, leading to a CDW phase forV>0 and a therefore keep only for the coupling to disordeg+H,

superconducting Shase foV<0.

OAF . sc*®

Hs:f %ES(X)eHQ‘f’pCOQ\/Q(ﬁH)"‘H.C., (13)

H randon™ 2| fi,pCiT,pCi,pv (7) dx
p=+1 Ha=f gga(x)e'ﬁ"’pcos{ﬁ@nHH.c. (19

with €; y€j ,» =D& ;6 /- In the continuum limit and using

the bonding antibonding basis the disorder becomes In Hg the symmetric part of the disorder couples to the in-

phase charge density wave order parameter
Ocpwo= (e"/”p/wa)cosﬁ/?(m), whereas the antisymmetric
Hrandom:f dx{ esO)[ Y (X) o (X) + T (X) r(X) ] part involvesOCD_Wﬂ. Due to the gap ing,, ¢, has hu_ge
quantum fluctuations, and consequently the symmetric part
a0t (x )+ ot (x )T, 8 of the disordeDg is always less relevant than the antisym-
€L a(X) §=(X) + tr(X) o) I} ® metric oneD,. We can therefore focus on the latter and
with €sa=(€1t€_1)/2 and e.(X) e5(X") forget about the former. The effect of E3d4) again depends

= (Da/2) 8(x—x') 8, 5. Using the expression of fermion ON the values ofjy andK.
operators defined in Appendix A and Eg) one obtains for
the disorder term 1. <0

For g;<O0 (i.e., V>0 for thet-V mode) we can replace

v2 &(X) cos¢26)) by its (nonzerg mean value and the coupling to
Hrandom:j dX 75(X) — dx,(X) + e'2%rcoqv2 ) disorder Eq.(14) reduces toC/[dx &,(x)e"?*4®+H.c.,
where C is a constant. The ;f%ect of such a term can be
X)) s determined, as for a single chatby using a RG procedure.
T € "“2Prcodv2 ) Upon varying a cutoffa, similar to a lattice spacing in the
original lattice problem, one find the following renormaliza-
7a(X) tion for the disorder:
+J dx cogv2¢,)cogv26,)
es
dk, C,D (15)
X 7~ “2Vas
+ _ga( ) e"/MPCOS{\/f 9”) d|
T
* (%) 4D, D.(3—K,) (16)
& (x = - )
+ ;_aefn/id)pcosi‘/i 0)} ’ 9) dl a P

wherel =In(a) and C, a constant. EquatioflL6) implies a
where the disorder has been split inga-0 component localization-delocalization transition & ,=3. For K,>3
(7s,a) and aq~2kg one (£s,). As for one chain theyand  the disorder is irrelevant and the corresponding phase in the

& are uncorrelated and pure system is stable. F&t,<3 disorder grows. Although
the system flows to a strong coupling fixed point, it is
Nsa(X) 7sa(X')=Dg a8(X—X"), (10) naturaf® to interpret this phase as localized by disorder,

since the disorder will pin the massless fielg. As a con-
sequence, the-wave superconducting phase is unstable in
the presence of disorder except for huge attractive interac-
. tions. In the case of the'V model atvV>0, we haveK ,<1
&sa(X) €5 a(X")=Dg za8(x—Xx"). (12 and therefore the CDWis always pinned by the disorder.

gs,a(x)gs,a(xl)zou (11)
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Similarly to the one-chain problem the localization length -
can be computed using the RG. For very weak disorder and
far from the transition one can neglect the renormalization of

the exponenK, induced byD,. Using that approximation, 1) sc®
we obtain

D,(1)=e® X)'D_(0). (17

For Da(|)~v,2:/a that scheme breaks down and we have a
strongly disordered system. For such a system the localiza: w4 3 K
tion length, i.e., the scale of variation of the phaggis of
the order of therenormalizedl lattice spacingx*. This oc-

curs fore'™ ~ (v2/D4(0)a) YC=K)1, Therefore - cd
bW

b2 )[1/(3—Kp)]

Locn= a(0)<D—Z (18)

Let us recall that for a noninteracting system, the localization
length is of the order of the mean free path, ie.,

Lioc~ (vE/D). FIG. 2. The phase diagram of the disordered two-cHaW
Using the renormalization equation it is also possibte  model in terms ofg; andK,. For a single chain the system is
obtain the temperature dependence of the conductivity fofocalized fork ,<3/2. Ladder effects therefortelocalizefor attrac-
temperatures above the the pinning temperatiits ,. Be- tive interactions anénhancdocalization for repulsive ones.
low the pinning temperature, the conductivity is expected to
decrease as ex{(T;,/T)*, by analogy with noninteracting 3/4<K,<1, and ans-wave superconducting phase for
electrons. A derivation of the temperature dependence df,>1. For thet-V model,K,>1, and thes-wave supercon-
conductivity has been given in Ref. 35. Another method toducting phase is therefostablewith respect to weak disor-
derive the temperatur@r frequency dependence of the con- der, which differs from the single-chain problem. For the
ductivity is given in Appendix B. If one neglects the renor- latter the delocalization only occured fextremelyattractive
malization of the exponents the conductivity behaves as interactions, i.e.K,>3/2. For the two-chains problem the
ook localization-delocalization transition arises in the immediate
o(T)~T7 . (19) vicinity of the noninteracting point. Contrarily to the case of

Therefore, folK ,< 2, the conductivity decreases, and there isfePUlSive interactions, interchain hopping now strongly re-
no remnantof any superconducting behavior effect well duces the localization effects. _ _
above the temperature at which the system is effectively The I(_)callzatl(_)n length in the random orbital antiferro-
pinned Ty~ u/L, ¢, Thus the existence af-wave super- Magnetis now given by
conductivity in the pure system affects the transport proper-

ties of the disordered system only for quite a large attraction. Lo ch. _ (1/D)[1’(34Kp)]=<
Analogous effects will occur for fermions with spins as will

be discussed in Sec. Ill.

v% [2/(3-4K )]
(22)

D,a

The conductivity behaves both in the OAF and thwave
2. g>0 phase as
- of

For g;>0 (i.e., attractive interactions for &V model), a(T)~T2 4, (23
(6,)= (r//8) and in a first approximation the coupliftg)

vanishes. Obviously, this approximation is too crude and on&iVerges a¥—0, since the ground state is superconducting.
must integrate the fluctuations 6f around its mean value to 1S t0 be noted that although the OAF has no superconduct-

get the effective coupling. This is done in Appendix C anding order paramgter, its conductivity can also be divergent
gives the following effective action fop, : fo_r Kp>_3/4 evenin the presence of disorder. An expanded_
discussion of orbital antiferromagnet phases can be found in

(V¢p)2 . Sec. lll C 1 and Appendix D. The resulting phase diagram is
szf dx drj - —+[&(x)e" %>7+H.c]|, (200  summarized in Fig. 2, together with the single-chain phase
- g diagram.

with £(x)€* (x')=D 8(x—x’) andD~D?2.
The renormalization of the disorder is given by an equa- C. Physical consequences

tion similar to Eq.(16): The ladder system shows drastically different sensitivity

to disorder depending on the sign @f: at g;<0 localiza-
qr ~ (3—4K,)D(D). (21)  tion effects are much stronger thanggt>0. This is obvious
both on the phase diagram shown on Fig. 2, and in the ex-
The disorder is now relevant only fd€,<3/4, leading to pressiong(18) and (22) for the localization length. For the
three different phases f@;>0: a random orbital antiferro- case of a pur¢-V model,g¢>0 K,>1 whenV<0 (attrac-
magnet forK ,<3/4, an ordered orbital antiferromagnet for tive interactiongand as can be seen from Fig. 2 the system is
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delocalized. Although our calculation does not allow us tosystem* =3 D, which measures the strength of the Drude
come arbitrarily close to th&=0 point for finite disorder, peak in a macroscopic system(w)=Ddé(w)+ 0. The
since the disorder has to be smaller than the gaps of the pustifinessD can be related to the change of the energy of the
system, we see that if we have a very small disorder, thground state of the system in the presence of an external flux
insulator superconductor transition does occur in the vicinityby

of the noninteracting point. This is remarkable and in marked 5
contrast with the single-chain system where the delocaliza- D= L E

tion transition occurs foK=3/2, i.e., very strongly attrac- 2 d¢p? ¢:o’
tive interactions even for arbitrarily weak disorder. One ) o ]
could naively think that this effect is simply a manifestation Eo being the ground state energy of a ring in a fiedl.

of the delocalization effect seen for noninteracting electronglenotes the boundary angfe=27f/f,, wheref is the flux
when one increases the number of charfoethe number of  threading the ring and,=hc/e is the flux quantum. This
chaing. The mechanism is more subtle however, and is ifuantity is directly related to the persistent currents for a
fact controlled by the interactions. Contrarily to the nonin- Mmesoscopic systef~>® For a mesoscopic system, the per-
teracting case where the localization length is simply proporSistent current measures the response to a finite flux by
tional to the number of chains, we have hereanplete dE

delocalization of the attractive region, and the localization J=L-— . (26)
length becomes infinite. dé |,

For the repulsive cas€>0 (i.e., gi<0 K,<1) the op- . . .
posite effect occurs and the ladder systermirelocalized Therefore the stilines® provides a measure of the persis-
gnt currents for a smallor close to a multiple of 2) flux

han th i -chai tem. | f .
than the corresponding one-chain system. Indeed for Onsmce J=2D¢. Although the complete calculation of the

chain the localization length is given Hy*° ; - . .
9 9 by persistent currents at finite flux is also possible for a one-
( v,2: )[l/(B—ZK)] dimensional interacting system, the calculation is more com-

(29

Ll ch.
o

(24) plicated in the presence of disorder, and the stiffness carries
enough information for our present purposes.
. The effects of interactions on persistent currents is an ex-
and is therefore longer than the one of the ladder systememely difficult question to answer in two or three dimen-
shown in Eq.(18). For very large repulsion—0) these gjons.” Perturbative calculations suggest that interactions
two lengths give back the standard Fukuyama-Lee pinningqy|g enhance persistent curreft<2 For a single spinless
length of classical charge density wavé&sor finite repul- chain the persistent currents were founddecreasewith
sion the localization length of the ladder system is muchygre repulsive interactiorf€-55 This effect can naturally be
shorter than the one of the corresponding one-dimensionglyp|ained using a renormalization-group technique, and it
system with the sam&. Close to the noninteracting point \as shown that such behavior is peculiar to the spinless
K~1, the localization length of the open chain is just theproplem and that for a single chain of electrons with spins
mean free pathl,,,~vE/D, whereas the ladder one is persistent currents should be enhanced by repulsive
Lyen~a\vZ/Da. interactions®%* For the ladder system it is therefore very
This peculiar behavior of the spinless ladder system is duénteresting to see if the same effects occur and, in particular,
to the gapping of some charge modes that is different deto check again for the differences between the spinless sys-
pending on whether the interaction is attractive or repulsivetem and the system with spins. In particular, one could imag-
For the repulsive sidek charge fluctuations are still there ine that the chain index acts in a similar way than a spin
and the gap just reduces some of the quantum fluctuation anddex for a single chain. As we will see this idea is far too
hence reinforces the effects of disorder, whereas for the araive. We examine the spinless system in this Section and
tractive side the gap kills the dominant charge fluctuationthe system with spins will be investigated in Sec. lIl.
coupled to disorder and helps to delocalize. The sensitivity to For the ladder system, the conductivity stiffriésis ob-
disorder is thereforaot directly related to the presence or tained using Eq(A13) as D=2u,K,. The factor of two
absence of the superconducting fluctuations in the pure sysompared to the single chain expressi@i3) is due to the
tem, but more on how thdensityfluctuations behave. The fact that there are twice as many degrees of freedom in the
smoother the density fluctuations are, the less localized th&evo chain system. In the following, we consider a finite sys-
system is. These effects will be even more transparent for thiem, the sizeL of which is smaller than the localization
system with spins as will be examined in detail in Sec. Ill.length.
As a consequence the transport propertiasnotsimply be From the renormalization-group equation fop,K, [
guessed by looking at the phase diagram of the pure systerone can obtail? the renormalization-group equation o,
They even can be opposite to what our intuition based on
higher dimensional system could suggest: the more ‘“super- b 27)
conducting” the system is the better the transportsee, dl :
e.g., Sec. Il Q.

Da

The conductivity stiffness of a disordered system of dize
_ _ D(L) is then obtained by stopping the RG equation at
D. Persistent currents in the ladder system a(1)=L and takingD(L) =D(1). In the caseg; <0, we have
In addition to the temperature dependence of the conducseen thatD (1)=D(0)e® Ko, at least whenx(I)<L, .
tivity, one can compute the charge stiffness of thePutting that approximation fdD(l) in Eq. (27) gives us
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3-K, calization effects. On the other hand, the spinless ladder sim-
) - 1}- (28)  ply form pairs along the chains and can avoid to forkg 2
fluctuations. Translated in the spin language, such a phase
Using the expression fok,s,, Eg. (28) simplifies for a  would be an anisotropic triplet superconductor with a spin
length smaller than the localization length into gap, and would be forbidden by symmetry. In the same way,
for repulsive interactions, preserving &) symmetry pre-
37K vents the formation of a gap, whereas a gap formation is
) -1, (@9 possible for the spinless ladder giving an out of phase charge
density wave. In the spin language, this corresponds to an
3-4K, anisotropic spin density wave.
) - 1} . (30

L
D(L)=D(0)—CD(O)[(m

%Kau=mm—%

LZCh(gf<O)

Adding random potentials to the spinless ladder results in
a rather artificial model of fermions in a random potential
and a random field parallel to the axis. Because of the
anisotropy, the system is more sensitive to the random field
parallel to thez axis than to the random potential. Thus, for
Tepulsive interactions, the anisotropic system has a very
strong coupling to disorder, whereas for repulsive interac-
&ions, it is only weakly coupled. On the other hand, the iso-
tropic system is only feeling a random potential. When in-
teractions are attractive, there is a spin gap and CDW
o ; T ) . Huctuations that can couple to disorder, making the system
qualitatively the saméi.e., repulsive interactions help in re- more localized. When interactions are repulsive, on the other

ducing the conductivity stiffness, while attractive interac- hand, there is no spin gap thus reducing the coupling of the
tions reduce the decrease of conductivity stiffness by disorCDW fluctuations with disorder

de, but they are much stronger for two chains than for one \ye conciude that for interacting systems, contrarily to

chain. In fact, for &-V model, the reduction of conductivity heir noninteracting counterparts, not only the number of
.S“Tf’?ess would be_ﬁlmte for attractive interactions, evenin an gy 5ijaple internal degrees of freedom but also the internal
infinite system since then the disorder is completely irrel-gy 1\ metries determine the response to random perturbations.
evant. Losing some symmetries allows for a larger variety of

_Itis noteworthy that the chain index doest act in a ;6 nq states, and thus to very different responses to weak
similar way as a spin degree of freedom for which there

. . =" “perturbations.
would be anincreaseof the persistent currents showing
again the important difference between a system with and
without spin® The physical reasons for this difference are . FERMIONS WITH SPIN
examined in more details in the next section.

Dyy=o(L)=D(0) ~C"

( chh(gf>0)

Thus forg;>0 the reduction of the stiffness is less important
than forg;<O0.

Therefore, the length dependence of the conductivity stiff
ness(and the persistent curreiis extremely sensitive to the
attractive or repulsive character of the interactions for th
t-V model or any model with intrachain-only interactions.
By comparison with the one-chain c&8&€>we see that the

A. Pure system

The pure case has been analyzed in great detail both
analyticall?~** and numerically®171%20A very interesting

Naively, one could think that going from one-chain to feature of that model is the existence of d-tvave” super-
two-chain amounts to having one internal degree of freedorgonducting phase for purely repulsive interactions and the

that is equivalent to the spin, and thus that the results for thexistence of a spin gap. The Hamiltonian is in the extended
system with spin will apply straightforwardly to the ladder Hubbard case:

system. However, from what we have seen precedingly, this

is definitely not the case. In fact, we have properties for the

spinless ladder that are just the contrary of the ones of the H=—-t E CiT+1a pCi,optH.C—t, 2 ciTU oCi.o—p

fermions with spin. Attractive interactions delocalize in the iop T hop T

spinless fermions case, whereas they increase localization in

the case of fermions with spin. Persistent currents are en- +U> ni,T’pni’LervE NipNisip, (31

hanced for more attractive interactions in the spinless ladder ip hp

whereas repulsive interactions would enhance the persistent

currenté® in a spin system. The reason for that is that thewherep=*1 is the chain index and=T1, | labels the spin.

spinless ladder has no ) symmetry (except forV=0) In order to treat this Hamiltonian using bosonization one has

contrarily to one chain with spin. The minimum of the to separate the bonding and antibondingr bands as was

ground state energy of the Spin|ess ladder Corresponds dpne for Spinless fermions. Then, within each band, one can

states that break the $2) symmetry because, plays the apply the standard bosonization formulas for fermions with

role of a magnetic field**® Thus such phases cannot be SPins. As a consequence, the system is described by four

obtained in an isotropic system of fermions with spin. fields ¢, ¢g¢,.¢4; instead of 2 in the spinning case.
For attractive interactions, the only way for the symmetricFor the pure case we follow closely the derivation of

fermions with spin system to preserve @Jsymmetry isto Ref. 11. It is convenient in the following to replace

form singlet phases such a2 charge density waves or the fields ¢>7 (v=p,0) by linear combinations:

singlet superconducting state. Coupling the charge density,. = 1V2 (¢, ,* ¢, ). The low energy physics depends

wave fluctuations with a random potential implies strong lo-on the signs of two constantg, ,g,. Physically,g, repre-

E. Spinless ladder vs one chain with spin
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TABLE II. The four sectors of the pure two-chain Hubbard
model, as a function oK, andg,. The average value of the field Ocpwr(n)= 2 pcg’mpcn,mp, (37)
developing a gap are indicated together with the phase with the p.o
most divergent susceptibility.

| I 1l IV OOAF(H)=pE DCE,g,an,gﬁp, (39)
91 + + - -
K <1 >1 >1 <1
<9ppt> 0 0 0 0 OSG(n):% Cn,o,pCn,—op> (39
<¢a’+> 7_T Z 0 O
2 2
m - Osci(N)= 2 CnopCn,—o,—p- (40
o (bo)=75  (0,-)=0 (¢, )=0 (0,-)=% P
phase se OAFE sc CDW™ When taking the continuum limit these expressions become
ing | i - Ocowr=2> (W 1o¥rie— ¥l 10¥R-10),  (4D)
sents the forward scattering interaction, while represents COWT™ &~ L¥L10¥Rle  PL-10¥R-10/s

the backward scattering interactions. The Hamiltonian con-
sists of a free part,

OOAF=|§ (W 1e¥ro10— U _10¥R10), (42

dx U,
H= 2 | o | UK (T4 ™ (0xb00)?),
r==+

(32) OSCS: 20_: ( ‘;bLOtrwRO,f 0’+ I#Lﬂ'a’wRﬂ', - 0’) ’ (43)

and two sine-Gordon like parts, one associated with inter-
band processes induced by intrachain forward scattering,

0501:20: (YLoo¥ro,- 6= VLmo¥rr,— o) (44)

im,2=% f dx cos¥, (cos2p,_+cosd, ), .

(33) where for the SC operators, one has to retainghd com-

ponent, while for the OAF and CDWthe g~ 2k compo-

and the other associated with the intrachain backward scahent gives the dominant contribution. To get the correct
tering, bosonized expression one has to pay extra care to the anti-
- commutingU operator® and one obtains

Him,1=(2w%)2 f dx[cos2p, ,(cosd,_+cosp, 5
Ocpw»= — €'%»+ cosp,sind,_, (45)
+cosd,_)—cosd,_ cosdH,_]. (34) e

In all cases, only one of the four bosonic fieldg,(.) is 2

gaplesd! and all physical quantities depend on a parameter Oopr=— €'%+sin ¢, codh, _, (46)
K,+ of the symmetric charge mode, analogous toKheof e

the spinless problem. In terms gf ,g,,K, is given by

2
2mvE+ (91— 20,) | M2 Oses=_— e ' cosp,,COSp, -, 47)
P 2mvE— (91— 202) 39
That expression is valid for the generic g-ological model. For Ogui= % e '%*sing, , sing,_ . (48)

the extended Hubbard model, we can go furthegag, can

be expressed in terms of,V, kg as . L
XP ! F From the bosonized form of these operat(snplified by

g,=Ua+2Va cog 2k;a), the fact that(¢,_)=0) everywhere and the expressions
given in Table Il one can deduce that sector | is & Blase,
91— 2g,=—[Ua+2Va(2—cog2kea)], (36) sector Il an OAF phase, sector Ill a Sghase, and sector IV
a CDW™ phase. The phase diagram of the pure system is
wherea is the lattice spacing. The mean values of the threesummarized in Fig. 3. Note that for the pure Hubbard model,
other fields are determined by minimizing the energy of thewhich corresponds t&=0 in Eq. (36), one can only have
ground state. Depending on the interactions one can distirthe SC phase(for U>0) or the SC phase(for U<0). The
guish four sectors that are summarized in Table II. other phases could be obtained for a more general model
As for the spinless case one has to consider the variousuch as the extended Hubbard model. We will come back to
operators with divergent susceptibilities, that point later.
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ric mode. Moreover, it always contains one term that has
& exponentially decaying correlations. Therefore, it cannot
break any gap by an effeatla Imry Ma and cannot generate

any relevant term by a massive mode integration. It will thus

ak d be possible to drop it safely in the following. Then, we have
cbw F sC OAF to consider the R part of the disorder. We have for thé2
: coupling to disorder two terms:
- H Ho= f £a() Ocpwr(X) + &5 () Ofpy=(X)dx,  (53)
Hs= f £4(X) Ocpwe(X) + €5 (X) O pe(X)dx.  (54)
cow” sc®

Where &,(X)&n/(X")* =D 6pn 6(Xx—x")(n,n"=a,s), the
¢, are random Gaussian distributed potentials. The operators
Ocpwe represent the in-phase charge density wave, and
Ocpw~ the out of phase one.

As before we assume that the disorder is weak enough not

FIG. 3. The phase diagram of the pure two-chain Hubbardyy gestroy the gaps in the system. We have already argued
model in terms of, andK,. . K,,>1 andg,<0 corresponds t0 it theq~0 is irrelevant to our problem. Concerning the
purely attractive interactions,, <1 andg,>1 corresponds 10 5 nart “we only retain the massless mode. The situation is
purely attractive interactions. For a Hubbard model, this leads to %]uite similar to the one of aXXZ spin chain in a random
SC’ phase forU>>0 and a S€phase fory <0. magnetic field. AXXZ spin chain is a Hubbard chain at half
filling, and thus has a charge gap. The random magnetic field
couples to the spin density that contaifrezen charge de-
Let us now add a weak random on-site potential: grees of freedom. However, the random magnetic field only
affects the spin degrees of freedom and does not break the
charge gap. By analogy, we expect that even when the ran-
dom potential gets relevant it will not break the spin gap or

. — the gap in the antisymmetric charge mode. Since the gaps are
with ngp=c/ i1+l Ci and € p€j,p =D di;Gpp . We stabglle,pwe can obtgin simplified fgorms for the coupliggg by
go through the same steps as in the spinless fermions Sec“%‘plaeing the fields by their mean values as we did in the
We get to the continuum limit, introduce the bonding a”dspinless fermions problem.

antibonding band, and bosonize the resulting coupling to dis-
order. Let us first consider thg~0 part of the coupling to 1. sc sector
disorder. For the symmetric part of the disorder this coupling
is of the form

B. Effects of disorder

H random potentia‘l_',E € pMigps (49
i,o.p

We want to analyze the effect of the weak random poten-
tial introduced through Eqg53)—(54). Making use of the
full expressions oO¢pye.» and replacing the gapped fields

Hsg~0= j 7s(X) dx b, (X)dX. (500 py their mean valuetsee sector | of Table J] we obtain the

following simplified forms:
It is clear that this part of the disorder can be eliminated by

the transformation Ocpwo—e€'?r+sin(¢,), (55)
¢p(x)_)¢p(x)+fx(7TKp+ /up+) ﬂs(xl)dxr- OCDWﬁ~e|¢P+Sir]( 01)’-)CO&ﬁ0’+ . (56)
For theq~0 part of the antisymmetric random potential, we These two operators have exponentially decaying correlation
obtain functions and no direct coupling with disorder would exist if
one just took into account the mean values of the fieigls
Ha,q~0:f dx ﬂa(X)E [‘!’L,O,UI/IR,W,U and 60'__ . As in the splnless_ case one should integrate over
I fluctuations to get the effective coupling

+ il oot ot H.Cl. (51)

_ _ _ Sysordes f £err(X)€'2%+dx dr+H.c.  (57)
The bosonized form of that operator is the following:

() Equation(57) can be viewed as the coupling of the fermions
Haq~0:J dxna_[el<¢p7+0pf)co3¢r+ 0,.) with the 2kg,*kg,) Fourier component of the disordered
’ Ta potential, i.e., to a kg charge density wave. The origin for
such a 4 charge density wave can be understood in simple
terms: at half filling, the strong on site repulsion puts one
From that equation, we see that #pe 0 part of the antisym- fermion per site, meaning that there are rig- ZDW fluc-
metric disorder is not coupled to the gapless charge symmetuations. However, the fermion density is maximum on the

+e|(_¢p7+0p*)coi¢0_—60,_)+H.C.]. (52)
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lattice site and minimum in between giving th&4charge 2. SC sector

density wave fluctuations. In addition due to the spin gap o sector |1, theO operators take a different simplified
occurring in a ladder with an even number of legs there ar¢, ., que to the different gaps in the system

no 2kg fluctuations in the spin density as well. As we move ’ '

away from half filling, the spin gap will survive as well as Ocpwo~€'%r+cog ¢, ), (62)
the absence of 2 fluctuations. Therefore, a random poten- g
tial can only couple to the i component of the fermion Ocowr~€'#+sin(8,_). (62)

density even away from half filling. This is to be contrasted
to the case of a single chain where the dominant couplin@®y substituting in Eqs(53) and (54) and integrating over
occurs through the - charge fluctuation. One thus expects fluctuations we end with an action of the for(®8). This
the disorder effects to be weaker in the ladder system. Oneme, K,,>1, so the localization-delocalization transition
can also recover directly thekd CDW by looking at higher can be reached & ,, =3/2. This transition arises for a
Fourier components of the density in the bosonization formuch weaker attraction than in the one dimensional £ase
mulas. The physics of the metal insulator transition can bavhereK,=3. This critical value ofK can be realized for a
interpreted here as the pinning-depinning transition of thisimple Hubbard modelthe maximumK for the Hubbard
4ke charge density wave. model isK=2 (Refs. 67 and 48, whereas the one chain
Due to the presence of the gaps, the problem has in fa¢iubbard model is always localized even for very negative
been formally reduced to a problem of one chain of spinles#).® In addition the localization length is increased,
fermions with disorder. Using the results from the one chain

problem we find that the localization-delocalization occurs at Locn [ w2 |[HE72K0]

K,+=3/2. Since purely repulsive interaction impy, , <1 > | Da : (63
the d-wave phase is therefore unstable to arbitrarily weak

disorder. The symmetri4) and the antisymmetriG3) part  whereas in the one-chain case

of the disorder contribute equally to destroy thevave su-

perconductivity, in contrast with the spinless case where the Lyicn [ w2 |[HEKI

antisymmetric part was the most relevant. The localization w D_a) (64)

length of the two-chain system with spin and purely repul-
sive interactions can be obtained by a similar method to thaﬂote that here the localization |ength has the same depen-

for the spinless case and is dence in disorder on the attracti(@3) and the repulsivé58)
side, whereas for a single chain the localization length is
Loen [ 02|22+ reducedon the attractive side due to the formation of a spin
- N(ﬁ) , (58) gap [compare Eq.64) and Eq.(59)]. For the ladder this

comes from the fact that both in the attractive and repulsive
heref | h h , ¢ sector, three of the modes are always gapped.
and therefore longer than the corresponding one for one e conductivity above the pinning temperature behaves

chain with repulsive interactiof%* as

L1cn ( vE )l/(ZK‘”) 59 o(T)~T2 2K+, (65
~| = 59
a Da with again the same exponent as in thevave sectol60).
) ) . . . However, since nowK,,>1 the conductivity nowde-
As for the spinless case E(8) is applicable if one is far creases with decreasing T. There will thus be for
enough from the noninteracting point so that disorder doeg K,+<3/2 a maximum in the conductivity foF ~ T ,
not destroy the gaps created by the interactions. In that casg,q the resistivity will go to zero for high values Kfp+'_
one sees from Eq58) that there is a considerable delocal- This maximum can be seen as a remnant of the supercon-

ization in the ladder. Indeed for weakly repulsive interactionsducting behavior of the pure system. Rog, >3/2, the sys-
K,+~1, the localization length becomes much longer thanem nas infinite conductivity fol —O0.

the mean free path sincel, .~ a(I/@)?, instead ofL~|

for a single chain. However the more repulsive the interac- 3. CDW” sector
tions become, the more the system localitese recovers .
L, on~| for K=1/2). Let us now consider Sec. IV. In that sector, one has strong

The temperature dependence of the conductivity can bfluctuations towards a CDWphase. Such a phase is the
obtained above the pinning temperatiig, = (U, , /L yen) analog of the CDW that existed in the spinless fermion
(see Appendix B One gets ‘ P problem. We see that the coupling to disorder reducésde

Table 1)

o(T)oc T2~ 2K, (60)
f dx &,(x)e'%++H.c. (66)

For K,, <1, the conductivitydecreasesas T—0 even for

temperatures much higher thdg;, . There is no remnant of As in the spinless fermion case that antisymmetric charge
the “superconducting” behavior of the pure system in thedensity wave only couples to the antisymmetric disorder.
whole SC sector K, <1). The RG equation for disorder is



dD, Kot
T_<3_T Da(l). (67)
The antisymmetric disorder is thus relevant fir,, <6.
Since the CDW phase only exists & ,, <1 the CDW' is
always very strongly pinned by disorder. Using Egj7) we
obtain for the localization length in that phase

L v2
loc.,CDW™ _ ( F (68)

[2/6-K,+)]
Da“)

a

In the classical limitkK ,, —0 one recovers again the stan-

dard resuf® for the pinning of a classical CDW.
The conductivity of the CDW above the pinning tem-
perature behaves as

a(T)~T2 Kp+l2, (69
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Let us assume a local repulsitl>0 and that one is close to
half filling cos(Xra)~—1. In that case one reaches the OAF
for moderate nearest-neighbor attractdér: —U/6. Such a
situation is likely enough to be realized, especially if addi-
tional attractive mechanisms such as phonons are taken into
account.

5. Differences with the spinless ladder

The spinless ladder and the ladder with spin show some
marked physical differences. Some of them are due to the
fact that interchain hopping has a different impact on fermi-
ons with spin and spinless fermions. In a system of spinless
fermions, energy can be gained from hopping only if one site
of the rung is occupied and the other one is empty due to the
Pauli principle. This induces an enhancement of density fluc-
tuations. On the other hand, a system with spin can gain
energy from interchain hopping by having the two sites of

showing sinceK ,, <1 a very rapid decrease in the conduc- the rung occupied by fermions of opposite spins. This leads
tivity as T—0. This behavior is a consequence of the veryto spin gap formation and smootheningf density fluctua-

strong pinning of the CDW. This feature of the antisym- tions. This effect is enhanced in the presence of a purely
metric CDW is similar to the one occurring for the SpimessrepUlSive interaction as it tends to smooth the denSity fluc-

ladder.

4. OAF sector

In the case of the orbital antiferromagnet, the coupling t

disorder is made of two terms: One term comes f@Rpyo

the other one fronDcpw~. According to the preceding sec-

tions, these terms contain, respectively, ¢ps and

0,

tuations in a system with spins, whereas it enhances them in
a spinless systefi?. This has already important consequences
in the pure case. In particular, the positions of the' 3@6d

OAF phases are differefgee Figs. 1 and)&s thed wave in

the spinless system needs some amount of attraction whereas
it is achieved from completely repulsive interactions in the
ladder with spin. In the presence of disorder, thevave
phase of the spinless system can be stabilized by sufficiently

COSp,. Sinfl,— and (see Table |l therefore have exponen- attractive interactions, whereas in the system with spin it is

::'?élyrﬁ;scsay:an?ngléj(::?;)rf.t(l)nboerqr?{etorgzt dngn;[rg’éa.ll:eiﬁglts’ra[ways unstable(see Figs. 2 and)5being replaced by an
. ve nave | Integ u ' P'& wave superconducting phase for attractive interactions.
ceding sections. This again leads to an action of the for

(57) and the disorder in the OAF phase is relevant for Iso, in the presence of disorder, the system with spin due to

K, <3/2. The OAF phase is therefoas delocalizedss the the smoothening of the density shows delocalization com-

qucti h ithouah th i q ared to the one-chain cabeth for the attractive and the
superconducting Sﬁ) ase, aithougn the pure system doe epulsive side. On the other hand, for the spinless system the
not exhibit any obvious superconducting order paramete

r, . L . .

e ) . ; reinforcement of the density fluctuations enhances localiza-

The localization length in the disordered OAF is tion on the repulsive side. The attractive side on the other
hand is totally delocalized.

2\ [2/(3-2K ;)]
Lloc.:<v_F> " (70) In both cases the-wave phasgoccuring for attractive

a Da interactiong is very strongly stabilized by the interchain

: hopping. This can be understood by a picture of tightly
FO;IEN}S/Z we have a metallic p_ha_lse. bound pairs that behave in both cases as hard core bosons. In
e disorder leads to a conductivity of the form L . .

that case, the statistics do not influence qualitatively the
o(T)oc T2~ 2Kp (71) transport properties anymore. Similarly both systems tend to

form charge density waves that are extremely well pinned by
The conductivity in the OAF is therefore identical, as far asdisorder (usually much more easily than their one-chain
the temperature dependence is concerned, to the one in tieeunterpait In the case of fermions with spin, this requires
SC. It will exhibit in the localized phase 4K,,<3/2 the  some mixing of attractive and repulsive interactions so that a
same maximum in the conductivity f@r~T, . Once again pair of fermions of opposite spins are formed in the chains.
one sees that the transport properties can hardly be guessédese pairs then have hard core bosons interactions so that
from the phase diagram of the pure system. The OAF is thuthe situation becomes an analog to the spinless fermions
also an excellent candidate for a “superconducting” behav-case. This explains the enhancement of pinning for the anti-
ior. symmetric charge density wave phase. However, in the sys-

Using Eg.(36), it is possible to get some hints on the tem with spin with purely repulsive interactions therenis

parameter regime of the extended Hubbard model in whictCDW™ in contrast with the spinless system. Both systems
the OAF could be achieved. One is in the OAF sector ifalso present an OAF phase that is revealed to be quite stable
g:>0 andK,,>1. In the extended Hubbard language itin the presence of a small disorder. For the spinless ladder
means the OAF is even stable close to the noninteracting point.
Finally, an interesting similarity between the system of fer-
mions with spin and the system of spinless fermions is that

2V[2—cogq2kga)]<—U<2V cog2kga). (72



7178 E. ORIGNAC AND T. GIAMARCHI 56

/ €11 gy
R TS
4k
cD F OAF
1 2 3 K,
1 32 Kot
PCDW sS
PCBW " P W4k scS

FIG. 4. The phase diagram of the disordered one-chain Hubbard
model in terms ofy;; andK,. Delocalization occurs foK ,>3 for FIG. 5. The phase diagram of the disordered two-chain Hubbard
d;, <0 and forK >2 for g;, >0. model in terms ofy; andK ,, . The SC phase is completely eaten
P p

by the PCDW*F phase, whereas the OAF and theSS@rsist if
pinning ontwo different CDW phases are possible depend-there is enough attraction. Delocalization occurs Kor 3/2, i.e.,
ing on the interactions: either the antisymmetric- Z2DW for less attractive interactions than in the one-chain case.
or a 4k CDW. In these two localized phases the behavior of b db logi ith th . .
the conductivity at high frequency or high temperature anocann(_)l:[h € guessfe 'yl anafogle_s wit ; € nonlntle_ract_lng Sys-
of the localization length at small disorder are very differentt_em' € case of Spinjess 1ermions where repuisive Interac-
(the difference appears in the expongthe 4- being much tions make the two-chain system more localized than the
less well pinned than thek? . This is to be contrasted to the On?r-ﬁg?:ansiss)t/i?/ti(tay?slezalé]q?gg)?lIiinatlgglidr:gepfsaagmrﬁllj%h faster
one-ch_aln case where only one pinned charge density waﬁ an for one chain for whickry,(T) ~ T2~ . The ladder is
phase is realized. Therefore, we may expect to see, for we h bett d thh'th inale chain both b
disorder, a crossover between two different pinned charg us a much better conductor than a single chain oo e
density wave phases in the two-chain system when varyingause of the scale of localization and because of the better
the strength of the interactions. Such a crossover needs mperature deper_1d_enc<_e. _In addition, even in the localized
more detailed study. Unfortunately it cannot be tackled byp ase the conductivity will Increase for all valuesgy, fqr
the RG since it occurs deep in the localized regime. OndVNich thes-wave phase exists in the pure system, until one

interesting question is whether such a transition still occur§e@ches the localization temperatdg,. This behavior is
for strong disorder. qualitatively sketched on Fig. 6. The Sghase shows there-

fore all the “good” characteristics of a “superconducting”
phase, and in that respect is much more normal than its one-
chain counterpart.

The ladder with spin shows therefore in the presence of For repulsive interactions a different physical situation
disorder transport properties drastically different from theoccurs. The system is still less localized than the one-chain
one that one could naively expect form the pure phase dia-
gram. In particular, thel-wave phase disappears and does o(T)
not exhibit any remarkable conductivity. Let us look in more
detail at the transport properties and compare them to what
happens in a single chémfor the various sectors.

C. Transport properties

1. Conductivity

As was mentioned in Sec. Il B2, the laddsrwave
phase is much more stable to disorder than its one-chain
counterpartsee Figs. 4 and)5This effect manifests itself in
the location of the superconducting-localized transition, and
in the localization length. As for the spinless case, this effect
is entirely controlled by the interactions and going from one
to two chains affects thpower law dependenagf the local- FIG. 6. Behavior of the conductivities of thewave (dotted
ization length with disorder. It is thus much stronger than theine) and d-wave (solid line) superconductor as a function of tem-
increase of localization length occuring for a noninteractingperature. Foir> T, , o(T)< T2~ 2", For thed wave, there is no
system(proportional to the number of channels the pres-  maximum in the conductivity and therefore no remnant of super-
ence of interactions the behavior of the localization lengthconductivity in the localized phase.
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counterpart. The transition occurs for a smaller value ofis fixed here by the interparticle distance, and of course this

K,+=3/2 (versusK ,=2 for a single chaij and the local- phase could not be reached for a pure Hubbard m@dehe

ization length is larger than for one chaisee Eq.(58)].  opposite of what was claimed in a higher dimengion

Contrarily to the single chain where the pinned phase is aVhether for such a phase, a sort of Meissner effect also

random antiferromagnet, here the presence of the spin ga§Xists is of course a very interesting question. The connec-

forces the localized phase to become a pinnkd @Dw.  tion between the one-dimensional antiferromagnet anddts 2

However the S& phase is completely wiped out by the dis- OF 3_d counterparts clearly deserves further investigation. In

order, and what is more surprising, no trace of this “superJarticular, in two dimensions a phase offering some similari-

conducting” phase can be found in the high temperaturdies with the one-dimensional OAF, has been proposed for

(T>T,i») of the conductivity[see Eq.(65)]. In particular, ~the highT. superconductor.

o(T) decreases monotonically even at high temperature in _

stark contrast with the S(phase as shown on Fig. 6. This 2. Persistent currents

again illustrates the fact that the transport properties are not |n a similar way to the spinless case one can compute the

linked to the behavior of the superconducting order paramcharge stiffness. For the ladder with attractive interactions

eter but to thedensityfluctuations. For a single chain since one has foK ,, ,K <3/2,

the density exponent and the superconducting one are related 8 s

by Kgensiy~ 1/Ksupra When superconducting fluctuation in- 3-K

creases density fluctuations necessarily decrease and the sys- D(L)=D(0)— ( L ) ; (73

tem becomes a better conductor. Or course this is also true in loc. 1ch

the presence of a true superconducting order in higher diwhereas for a two-chain one, it is

mensional systems. For the single chain the fact that super-

conducting fluctuations do not necessarily imply better trans-

port also appears from the fact that the attractive Hubbard D(L):D(O)—(

model ismore localized than the repulsive offl2when the

interactions go from repulsive to attractive a spin gap openFhese formulas are valid fagr<<L <L . It is easy to see

and the density fluctuations are suddenly lowered making thehat they lead to a smaller reduction of the conductivity stiff-

system more easy to pin. A similar effect occurs in theness in the two-chain case, in agreement with the fact that

d-wave phase of the ladder, in a more dramatic way: the , ,>L,.,. For repulsive interactions, it is of the form

d-wave phase does not look superconducting at all since it

leaves enough room for enoughk4 charge fluctuations.

Note that the more repulsive the interactions are the worse D('—):D(O)_(

the conductivity, in a similar way to the single chain where

the phase is a spin density wave. The interchain hopping ha#&/hereas for the two-chain case, it is of the form

thus two effects : on the one hand it leads to the appearance

of the spin gap that wipes the SDW and replaces it by the

S wave and on the other hand it freezes the density fluc- D(L):D(O)_(

tuations(in particular, the transverse charge mgddose

gaps suppresskg CDW fluctuations, and localization hap- and the two-chain system has a smaller reduction of conduc-

pens only through coupling tok¢ CDW fluctuations. Since tivity stiffness than the one-chain system. So up to prefactors

the mechanism for localization is the same for all signs of théhe reduction in stiffness in the ladder system with spins is

interactions, the transport properties are only weakly deperidentical for repulsive and attractive interactions and the re-

dent of the sign of the interactions. This charge freezing igluction of conductivity stiffness also shows no abrupt

the dominant effect on transport. The two effects are essershange as one goes from attractive to repulsive interactions.

tially unrelated. By contrast, in the one chain case, attractive interactions in-
The most remarkable phase is the OAF which is an illusduce a spin gap and localization arises from coupling of a

tration of the above. This phase has a localization length angingle massless mode tdkg disorder. This gap closes for

ao(T) as good as genuine SEwave phase, and yet has no repulsive interactions and localization arises from the cou-

genuine superconducting order parameter. In fact the absenpéng of two massless modes with th&2random potential.

of order parameter is here also due to the spin gap since fdrhis causes the abrupt change in transport properties and

a single chain the corresponding phase is a triplet supercorcharge stiffnes$*>when one goes from attractive to repul-

ducting phase. However the fact that density fluctuations arseive interactions. This is related to the fact that the localiza-

already very small in this phase remaif@nd is helped by tion lengths for attractive and repulsive interactions have the

the freezing of transverse charge fluctuatjoigiving the re-  same dependence on disorder, in marked contrast both with

markable transport properties of this phase. This remarkabléne spinless problem and the single chain with spins. The

property is not an artifact of the potential scattering and pereffect of increase of persistent current by repulsive interac-

sists even if coupling to different form of disorder is in- tions occurring in the single chdfhis thus either absent or

cluded. In particular, the superconductinglike transport propstrongly reducednot an exponent effect any moran the

erties of the OAF also exist in the presence of a randonfadder. It would of course be interesting to investigate ladder

hopping along the chains and a random interchain hoppinwith more than two legs to see if this effect reappears and

amplitude(see Appendix [ Note that this phase has analo- check for a possible difference of behavior between odd and

gies of the so-called flux phas®; " the size of the plaquette even legs ladders.

3-2K,+
) (74)

L loc.,1ch

3-K,
. 75
I—Ioc.,lch) ( )

372Kp+
™

L loc.,1ch
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IV. COUPLED LADDERS dx
HMF:J

A. Mean-field treatment 27

Up+
Up+Kp+(7THp+)2+ KP ((9x¢p+)2
p+

In the preceding sections, we have been considering iso- dx
lated bichains. To describe realistic compounds, such as +f E[feﬁ.(x)e'2¢p++H.c.]
Sr,Cuy,_, O, and have a finite temperature phase transition,
interchain coupling should be taken into account. A realistic
coupling is of course single particle hopping between the T Zwa)? f dx cog6,.), (79
ladders. However in ladders, due to the existence of single
particle gapg(spin and antisymmetric charge moder the  with the self-consistency conditioV=J(cos(,.)).
ladder, single particle hopping is irrelevant, provided that the The equation determining is
interladder hopping is much smaller than the gaps of the

system. One has therefore to consider only the particle-holel _ 1 f fﬁc
(or particle-particle coupling generated by the single particle J (27 a)? dx 0 dr(T.cos,. (x,r)cos H(O’O»HO’
hopping”® Such couplings can lead to an ordered phase at a (80)

finite temperature. As is very reasonable on physical grounds

such interchain couplings stabilize the dominant one-With Bo=(1/T¢) and Ho is Hyg for W=0. To solve Eq.

dimensional instability. We focus here on the existence of a(80)t'. one has to ?omgute tfhe lf'g'(;e terrlﬁerature supe]rccgn—
stabled-wave superconducting phase. This allows us to kee;gudC mgr;]esponse unc Iotln ora ath e(; mt ; ptLe_sence t(I) tlst
only the particle-particlgor Josephsoncoupling between order. There are presently no methods to do this exactly, bu

the ladders. The Hamiltonian for the coupled ladders systerﬂ_ne can get an accurate 6sol_ution ot by_ making some
is simplifying approximations® First, one notices that a finite

temperature induces a cutoff lengtiT)=u,, /T beyond

which all correlation functions decay exponentially to zero.

We make thus the approximation that beyd(d) all corre-

lation functions are truly zero and beld{T) they are equal

3 to the T=0 correlation functions. This allows us to use the

< + RG equations introduced in Sec. lll. If we denote pyhe

*3 j X Osca(X)Osca+1(X) superconducting response function, when we change the run-
ning cutoff a(l)—a(l)e?, we have y— x exp{—[dl/

, 77 2K(1)]}. Thus to compute correlation functions at length
scaleR it is sufficient to integrate the RG equation from the
cutoff up toR and follow the renormalization of the response

where Ogc, is the operator fod-wave ors-wave super-  function. Making use of these two approximations, the equa-

conductivity for thenth ladder and] is the strength of the tion giving T, simplifies into

Josephson coupling. On can simplify further the Hamiltonian

(77) by keeping only massless modes in the ladder. Doing so 1 f“w” RdR ex;{ B f"“R’“) dl

0

H= 2 [Hdisordered 2 chain system,
n

+ Ogcm 1(X)Ogcp(X)]

we assume that the spin gap and the interchain gap of the J 2K(I)
two chain system are much larger than the disorder and ) ] .
much larger than the Josephson coupling. However, wd he value_s ofK(l) are obtained by numerically solving the
make no assumption on the relative magnitude of the JosepfRG equations:

son coupling and the strength of the random potential. The

2
o 27a

) . (8

resulting Hamiltonian is, both for the case where the domi- d_K: —D(HK(?, (82)
nant instability is ars-wave ord-wave superconductivity, dl

dx u dD—[3 2K(1)1D(1) (83
H=3 [ [ g [ (L 25 2 (a2 di ’

the values ofl . for K=0.5,1.2 and)=0.1 as a function ob
+f % [éer n(X)€2%+n+H.C] are shown on Figs. 7 and 8, respectively. We note that for
e : K=1.2 we have ars-wave superconducting phase and for
K=0.5, ad-wave phase. This can be expected since the
_ interchain coupling stabilizes the dominant one dimensional
+Jj dx o8B, + n 0”+'"+1))' 78 fluctuation(see Fig. 5. We see thatsee Fig. 8as in the case
of the single chain mean-field thedfyof superconductivity
To solve Eq(78) we treat the Josephson coupling in a meanwe have an initial linear decrease of the critical temperature
field assuming the existence of a finite superconducting ordewith disorder strength. This is to be contrasted with the stan-
parameter (cos(@,.)). By making the replacement dard mean-field theory of trewave superconductor in three
€08+ n— 0+ n+1)—(C08(,+))c0S@,+ »), the Hamiltonian dimensions being based on a diffusion approximation that
(78) becomes the one of an isolated ladder system in adoes not include Anderson localization effects and gilgs
external field, the value of which is determined by a self-independent of the disorder. This is the well known Ander-
consistency condition. The Hamiltonian is then son theorem. The linear decreaseTgfwith the strength of
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° FIG. 8. T, as a function of disorder for the-wave phase

FIG. 7. T, as a function of disorder for thd-wave phase (K,=1.2). T, drops to zero forD=0.9. Note the initial linear
(K,=0.5). T; drops quickly to zero foD=0.2. decay of T that shows that Anderson theorem does not hold in
coupled chain system due to strong localization effects and absence

. T . of a diffusive regime.
disorder fors-wave superconductivity in our chain mean

field is due to localization effects. This peculiar situation is

due to the absence of a diffusive regime in one-dimensional UP;*< Eoc (84)
disordered systems, which implies that their response func- e

tions are always affected by localization effects.

For ad-wave superconductor one expects in mean-fiel
theory a linear decrease @f, as a function oD (see, e.g.,
Ref. 74. For the ladder system however the decreask. i
mainly due to the localization effects, similarly to thavave

nderson localization will not suppress the superconducting
ransition. Equatior(84) gives a simplified criterion for the
stability of superconductivity. For fixed Josephson coupling
J, Eq.(80) leads toaT """~ J[ 2K . /(2K ,, —1)]. Thus, the
higherK . the higherT*"*®). From the preceding section,
. . o . the localization length both in thewave andd-wave super-
small disorder(see Fig. J, localization effects mgn_ﬁest conducting phase i ~(1/D)[2/(3— 2K, )]. Increasing
themselves by the the sudden dropTg=0 at a critical K, also reduceg, . Thus, the two effects reinforce each
disorder strength{see Figs. 8, )X For identical Josephson other, and make the S@hase that exists fdt, . >1 more

coupling between the bichains, the critical disorder strengthi,pje against Anderson localization than thé' $Base that
is smaller for thed-wave superconductor than for teevave  gyists only at<,, <1
0 :

one.
V. EXPERIMENTAL CONSEQUENCES

B. Simplified treatment The theoretical results obtained in the preceding sections

Although the mean-field theory allows an accurateh@ve important consequences for experimental systems that
description of the effects of disorder dn the critical value ~ are believed to be well approximated by coupled chains sys-
of disorder above which superconductivity is destroyed ca€Ms: namely, the doped ladder systems which present a su-

also be obtained by a verv simple phvsical argument. I_eperconducting transition and. the two barjd quantum wire. In
y y pie phy 9 . the former case, one would like to know if the superconduct-

- : . g'ng transition is related to the divergence of superconducting
Fransrqgn would occur in tfzeura;)rray of ladders if there Werg N%|yctuations in the strictly one-dimensional system that re-
impurities. Just aboveT™"®, the thermal length is gyits at the mean-field level in a finifé superconducting
(u,. /TP and beyond that length all phase coherence isransition or if the physics of the transition is a two- or three-
lost. Clearly, if the thermal length is smaller than the local-dimensional one. We believe that the resilience of supercon-
ization length in a single chain containing impuritiég, , ductivity to disorder is a stringent test of effective dimen-
phase coherence is lost before coherent backscattering caionality. In the case of quantum wires, we discuss the
build Anderson localization. The system will escape local-experimental consequences of our results for the conductiv-
ization due to the building of thémean-field superconduc- ity and charge stiffness in the interacting system. Measure-
tivity. Thus, if ments of the conductance would allow us to check the above
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theories for the ladders and provide a measurement of thierromagnetic sector. In such a sector the effects of disorder
Luttinger liquid parameter in the charge sector, providingare much more reduced, and even very large localization
some insight on the strength of interactions in these systemfengths can lead to reasonable mean-free ppgéhs is at
worst (/a)?, and diverges fok =3/2, see Eq(70)]. The
resistivity decreases with temperature according to(Eg).
A. Superconductivity of doped ladder systems Here the difficulty lies more in getting the interactions cor-

Our study has various experimental consequences for th€sponding to this phase, since one needs local repulsion and
observation of superconductivity in Ladder systems. First, if2 Sizeable nearest-neighbor attraction. In any case, careful
the superconductivity is to come from purely repulsive inter-measurements of the temperature dependence of the resistiv-
actions (i.e., to be of thed-wave type, it should be ex- ity aboveT. could help to decide if such OAF effects are
tremely sensitive to disorder as we showed in Sec. IV A. InPresent. Of course here again, one cannot exclude that the
fact, any randomness would induce a conductivity that nevePhysics is two dimensional to start with, but at least now the
increases as temperature decredses Fig. 6, so that su- One-dimensional starting point is more consistent with the
perconductivity would be impossible to probe except in ex-dominant experimental features.
tremely pure samples. Such sensitivity with respect to disor-
der is certainly consistent with the difficulty in observing any B. Application to quantum wires
type of superconductivity in the ladder systems

2122 o ! Progress in nanostructure technologies have allowed for
St,_1CuU,4+10,, .7 However superconductivity seems in-

doed 1o bo ob ) measurements of the transport properties of low dimensional
eed to be observed in 3Ca3,6CUx4041 36 (REf. 79 under  gjacironic systems. In particular, in recent experiments on

pressure {3 GPa). Whether such superconductivity is quuantum wire$”%° the conductance of a quasi-one-
thed-wave type is of course still open. Various experimentalgimensional electron gas has been measured at very low tem-
fac_ts, however seem to indicate th.at if it is the case, it iSheratures. For the pure system, or extremely weak disorder
unlikely that such a superconducting phase could be de&ne finds quantized values of the conduct4hde good
scribed by weakly coupled ladder systems. Indeed one couldyreement with the theoretical predicti6h€ at fractions of

use the criteriori84) to estimate the localization length. Tak- /a2 45 4 function of width of the quantum witee., of the

ing a reasonable value of Ans™* for the Fermi velocity, n mber of subbands at the Fermi leveThe relation be-
one obtains from the observad~10 K, a minimal local-  tyeen the number of channels and resistance has been
ization length ofé~10 000 A. Using Eq(58), this leads 10 yerified“° Impurities on the other hand induce backward
extremely long mean-free patkis=£ for K=1/2) when one  gcattering that is known to cause Anderson localization in a
is in the d-wave sector. So unle_ss the chains are egtremelgufﬁcienﬂy long system. In small enough system, it leads to
pure, a fact not likely to be true in such doped materials, ong, reduction of conductance as the length of the system is
expects based on one-dimensional physics alone that the Sirreased or the temperature is lowered. Deviations of con-
perconductivity should be totally suppressed. If the presencgyctance frome?/h as a function of temperature have indeed
of superconductivity is due to an extremely pure SysteMyeen optained in experimeffsas well as deviations as a
(which is doubtful then, introducing more disorder in the fnction of the length of the wif8 and can be related to the
system(for instance, by irradiatiorshould induce a dramatic |_ytinger liquid exponent. The correction to the conductance

decrease of the critical temperature. due to impuritie®8Lis of the form
Besides the extreme sensitivity @f. to disorder other
arguments are again a simple stabilization of one- e?
dimensional physics in the experimental compound: even if G(M=1—-9T" (85

one could be below the critical disorder strength determined
by Eq.(84) and Fig. 7, the physics aboie should be domi- wherer=1—K_, is the conductivity exponefit. The deriva-
nated by the one-dimension@hdde effects. In this regime tion is similar to the derivation of th& dependence of con-
the resistivity goesup with decreasing temperature as de- ductivity in Appendix B. For finite size systenis can be
scribed in Sec. Il C. The observed resistivity showing areplaced by the lower cutoif: /L in Eq. (85). This formula
monotonicdecreasef the resistivity(roughly with aT? or T only holds at high enough temperatures or for systems of
law) is again incompatible with the one-dimensional descripdength L shorter than the localization length for which the
tion. If one is in the purely repulsive sector, the most likely corrections term is small.
explanation of the main experimental features is that under If two channels are present in the wire, the system be-
pressure the interchain hopping between the ladders beconsemes then equivalent to a ladder system. Two bands present
strong enough so that the system does not retain its onet the Fermi level are the equivalent of the bonding and
dimensional feature, but is more accurately described bywyntibonding bands of the ladder system. One then expects
two-dimensional physics. Such an interpretation is also comthat the whole physics derived in Sec. 11l C should apply to
patible with the fact that the system at ambient pressure ithese wires. In particular, since one expects reasonably re-
insulating. In that case, the coupled bichains treatment bepulsive interactions one should be in theS(E the CDWF
comes extremely questionable, and it is probably better tphase. Going from a single chain to the ladder should have
start from a two-dimensional description, for which disorderobservable consequences on the transport properties. First
effects are probably weaker, but for which the nature of thesince the localization length increases drastically in the lad-
superconducting phase has yet to be completely elucidatedder system one would expect the conductance corrections
Another interesting, but probably more farfetched, possi-due to disorder to be much weaker for two channels. This of
bility could be that the system is in fact in the orbital anti- course assumes that the typical interactions do not vary too
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TABLE Ill. The conductivities and localization lengths in the TABLE IV. The conductivities and localization lengths in the
spinless fermions case. The phases are the ones of the nondiséermions with spin case. The phases are the ones of the nondisor-
dered system that are turned into localized ones upon introductiodered system that are turned into localized ones upon introduction

of a small disorder. of a small disorder.

Phase Lioc. a(T) Phase Lioc. o(T)

PCDWF 1 \[2(3-4K, )] T2-4K,¢ OAF, sdsc 1 \[2/3-2K,.)] T2-2K,,
b, 5/

PCDW™ 1 \[HB=K, )] T274Kp+ CDW™ 1 \[26-K )] T2-(K,112)
b, 5]

much when going from one channel to two channel, a factthe exponenin the dependence of localization length with
which is not certain. Second, by doing the expansion of thelisorder is changed On the other hand, for the Hubbard
corrections to conductance for the ladder and using the coradder there is no such effect: up to a prefactor, the localiza-
ductivity exponent (Sec. IIIC, one would obtain tion length with attractive interaction is the same as for re-
v=2-2K,,. A fit of the temperature dependence of the pulsive ones. As a consequence, the corrections to conduc-
conductance in Ref. 41, could allow to extract the Luttingertivity stiffness are the same for attractive and for repulsive
liquid exponents for the ladder system, as well as check thiateractions.
above prediction& The temperature dependence of the conductivity follows a
power law of the forma(T)~T2? 2K+, for temperatures
above the localization scalB,., whereK . For the repul-
sive side, where for the pure system one would have the
In this paper we have examined the effects of disorder onl-wave superconducting phase¢,, <1, and thus the con-
a two-legs ladder system, using RG techniques. We haveuctivity decreasesas a function of the temperature even
computed the effects of disorder on the phase diagram asell aboveT,,.. The transport thus shows remnanbf the
well as the localization length. Disorder has drastic effects osuperconducting behavior one could have naively expected
the phase diagram. For spinless fermions, it leads to an exvhen looking at the pure system. This remarkable fact illus-
tremely strong localization of the charge density wave phast&ates that transport is in fact controlled by the density fluc-
that exists for repulsive interactions. Such localization istuations of the system andot by the existence of slowly
even stronger than for a single chain. On the other hand, falecreasing superconducting correlation functions. The ladder
the ladder system there is a remarkable stability of thesystem provides evidence of a phase that is genuinely a
s-wave superconducting phastor attractive interactions  d-wave superconductor as far as phase diagram is concerned,
compared to the single-chain case. The insulatorbut would from the transport point of view be closer to an
superconductor transition occurs in the vicinity of the nonin-insulator. Of course such an interesting behavior would
teracting point for a puré-V model whereas in the one- clearly deserve more studying. In particular, it would be in-
chain system it occurs for strongly attractive interactions. teresting to know how the correlation between the density
For fermions with spin, the repulsive part of the phasefluctuations and the superconducting one evolves as the
diagram is also strongly localized by disorder. In particular,number of chain is increased, and how the crossover to the
the d-wave superconducting phase found for ladder systemthree-dimensional situation occurs. Such a study goes of
is completely suppressed by an arbitrarily small amount ofourse far beyond the goals of the present paper.
disorder. We emphasize that this is motly a pair breaking We have applied our results to two types of experimental
effect but a much stronger Anderson localization effect. Orsystems. First, our results should be relevant for quantum
the other hand, the-wave superconducting phase occuringwires with two channels. Here the prediction for the expo-
for attractive interactions is again much more stable to disnent in the conductivity can be directly checked by measur-
order than its one-chain counterpart. ing the temperature dependence of the conductance of the
Besides obtaining the phase diagram, we have also invesystem. Note that the conductivity/conductance exponent
tigated the transport properties of th&/ and Hubbard two- 2—2K,,, for the ladder systems is different from the one for
chain systems. The RG enabled us to compute the localiza single channelor a single chain1—-K. Due to the in-
tion length and the charge stiffness as a function of disordecrease of the localization length when going from one chan-
(see Tables lll, IV and the temperature and frequency de-nel to two channels one would also expect overall smaller
pendence of the conductivity. Various remarkable factcorrections to the conductance for a given strength of the
emerged. First, the behaviors of the spinless ladder and thdisorder, and roughly constant interactions. Investigation of
ladder with spins are very different. In particular, the spinlesssystems with more than two chains would be useful in order
ladder shows the same tendency as the single spinless chaia,get a better understanding of the role of internal symme-
namely, that attractive interactions decrease localizatiotries and gaps on the transport properties of quasi-one-
whereas repulsive interactions enhance it. In the two-chaidimensional systems. This is of course also useful in connec-
case, that effect is even stronger. For attractive interactiontion with experiments on quantum wires. In particular, we
there isno localization whereas for repulsive ones the sys- expect that the behavior of systems with an even number of
tem is much more localized than its one-chain counterparegs is dominated by gap formation whereas the behavior of

VI. CONCLUSION
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systems with an odd number of legs should be closer to the ACKNOWLEDGMENTS
one of a one-chain system.

conductivity has recently been obtairigdnder pressure. To  fo hogpitality and Grant No. PHY94-07194. E.O. thanks IS
compare with this system of coupled ladders, it was necesy,, hospitality and support during May 1995.
sary to treat the coupling between different ladders, which

we did using a_mean-field approximation. The results indi- APPENDIX A: BOSONIZATION TECHNIQUE

cate that even in the presence of coupling between ladders

thed-wave phase is still much too sensitive to disorder to be In this section, we will give a short review of the
the one experimentally observed. In addition, the observefosonization technique in order to fix the notations. We give
temperature dependence of the conductivity would be incomthe expressions for a single chain of spinless fermions. For
patible with the one computed here should these systems tgore species of fermions, one can bosonize each specie in-
dominated by one-dimensionédhdde) physics. These ob- dividually, and the corresponding expressions are given in
servations and the fact that the conductivity occurs undethe text.

very large pressure tends to indicate that the mechanism for

superconductivity in these systems is very likely to be of al. Representation of fermion operators in terms of boson ones
two- or three-dimensional nature and not just the mere sta- Noninteracting one-dimensional spinless fermions on a
bilization of the IadQer superconducting pha;e._ Qn the othelr ttice are described by the kinetic energy,

hand, the system without pressure has a resistivity that coulé‘

be more compatible with the localization effects described N

here. Of course one interesting question would be whether ~ H=-t>, (¢!, ;co+clch )= e(k)cice, (Al)

one can get a ongadde) to higher dimensional crossover as n=1 k

the pressure is a_ppl_ied. This of_ course could o_nly be decide heree(k)=—2t cok andc,=(1/YN)Z &'Knc, .

by a more quantitative comparison with experiments as wel To obtain the asymptotilow energy, long wavelength

as fulrt_her th(.aore?cal and elprerlrner:jt.al work. A|?jdlr|]|g addionerties of the system one can linearize the spectrum near
tional impurities, for example by irradiation, could allow US go'ormi “surface” (+ ky) and take the continuum limit by

to distinguish if the system is in a one-dimensional reg'me.introducing #(xX)=(c,//a) with a the lattice spacing and

since one expects much more drastic localization effects 0 _ ha. With our definition they/’s have the commutation

that case. . . . !
Finally, a ladder system with spins exhibits an extremelyrelatlons of continuum fermion operators. We define fhe

interesting orbital antiferromagnetic phase. Although such érespectlvelyl_) (right and left moversfermions as fermions

phase cannot occur in a pure Hubbard system it can in prin\’-\”th momentum close ta- k. (respectively,—kg) as

ciple be stabilized if some nearest-neighbor attraction is 1

added. Although such a phase massuperconducting order Yr(X)= — ; e, Ly, (A2)
parameter, it has perfect conductivity in the presence of a vNa [K<a F

random potential. Moreover that perfect conductivity is also - . B .
robust in the presence of random hopping both along thgnd similarly fory (x) with ke— — K. A is a cutoff needed

chains and perpendicular to the chains. As far as transport E;Ot to double count fermion states, and imposed by the lin-

concerned this phase is therefore a one-dimensional “supe >arization of the dispersion relation. All asymptotic proper-

conductor.” Nevertheless, it has only subdomingnt the erS can be exprets)sed n term_m}k,_F.x In partlcgllilg( the ful
spinless cageor exponentially decayingn the case of fer- ek:mlon o_pl)era.tor ecomeg(x) = e yr(x) + e ().
mions with spin superconducting correlations, again an il- The Hamiltonian(A1) becomes
lustration that looking at the superconducting fluctuations is — i T ot
not a good criterion to determine the transport properties. H lE(RoxfR™ o), (A3)
Due to the peculiar nature of this phase it would be interestwith v = 2ta sin(kga).
ing to check whether it survives in ladder systems with more Due to the separation into two branch of fermions and the
than two legs. More generally it also deserves further inveshinearization of the spectrum, the Fourier components of the
tigation in dimensions higher than one, both in relation offermion density operators
flux phases of two-dimensional systems and other orbital
phases proposed for the normal state of cuprate
superconductor

The study of the disorder effects could also be extended in ) 243
various directions. In particular, a more detailed descriptior'ave boson commutation relatiohs;
of the physics inside the localized phase would be suitable. ,
However such a description is beyond the reach of the [Pr(Q).PR(—A")]=— 500
simple RG calculation. Going to strong but diluted disorder
is also a challenging problem. In particular, understanding
the crossover from the results of our paper to the limit where
disorder suppresses gaps altogether in the system remains yet
to be done. [pL(a).pr(—d")]=0. (A5)

PR,L(Q):; ¢L,L,k+q¢R,k (A4)

L
[pL(q)!pL(_ql)]: quq,q’ )
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This allows us to rewrit€A3) as Wherea=(L,n) or a=(R,n) these operators can therefore
introduce minus signs in the various bosonized expressions.

H= f dx[ pr(X)2+ pL(x)?], A6
i LpR()™+ pL(X)7] (A8) 2. Handling the interactions with bosonization

with pg(X)=¥l(x)s(x) for s=L,R. Instead of using the Let us consider spinless fermions. Interactions can then be
density operators themselves it is more convenient to introhandled straightforwardly: If one adds a density coupling of

duce the form fdx Up(x)?, the density can be decomposed in a
slowly varying part pr(X)+p.(X) and a X part
H(X)=pr—pL, ek Pyl (X) hr(x) + H.C..

In the Hamiltonian, one retains only the slowly varying
terms(the other term gives a zero value when integrated over
X). The X always disappear, while thekd can persist in a
half filled lattice systent’ As a consequence, at a noncom-
mensurate filling, the Hamiltonian reduces to

-1
7(7x¢=(PR+PL)- (A7)

Physically,IT is a momentum density whilé,¢ is propor-

tional to the deviation of the fermion density from its aver-
age value. The commutation relations for {is imply that dx , u 5
[$(x),II(x")]=18(x—x"). Also, the Hamiltonian rewritten H—f o [UR(TID ™+ 17 (9xh)|, (A11)
in terms ofII and df is

with uK=vg as a consequence of Galilean invariance. If
_ = ) ) one makes the rescalingp— ¢/\K and II—IIVK,
H‘f dxﬁ[(wn) +(9x)7], (A8)  one has the same Hamiltonian as in E8) with the correct

o . o o commutation relation for¢ and II. If one computes
which is just the continuum limit of the Hamiltonian of a the physical correlation functionst @0 K such as the

one-dimensional harmonic chain. Note that the following2k. part of the fermion Green’s functioB(x—x',t—t')=
procedure could have been applied to a more complicated (T yq(x,t) ¢ (x',t')), it is easily seen thaK controls
lattice quﬂtoman than EqAL). All Fhat is needed is that heir power law decay while controls the propagation of
the Fermi surface reduces to two points. The effectiveness Qfycitations.u andK are also related to physical quantities
bosonization stems from the fact that it is possible to expresg,,ch as the charge stiffn@snd the compressibility. More

fche fermions opera)t(ors in terms BF(x) and ¢(x). If. one  gpecifically, defining the compressibility by
introducesf(x) = 7/~ .II(x")dx’, one has the following re- , — _ 1L (dPldL);, P=—(dF/dL); and taking, T—0K,
lations: we have
1 K
X): —el[e(x)_¢(x)]u , X= 7. (Alz)
¢R( \/ﬁ R Uk|2:

The charge stiffness is defined by D

1 =(L/2)[d’E(¢)/d?¢?],_o, ¢ being a flux threading the
= [0+ ¢(x)] =0,
(x) /27me Ui, (A9) system. From that deﬁnition, one obtains
a being a cutoff, the presence of which is imposed by the D=uK. (A13)

cutoff needed in the linearization of the dispersion relations. . o .
The Ug andU, are anticommuting operators introduced by The case of ferm_lons with internal degrees of f_reedom is
Haldane that annihilate one fermion at the Fermi level. Thes&Sually more compllcated,zbecause some of the interactions
operators also anticommute with their Hermitian conjugatesc@nnot be reduced tod{¢)“ terms, the most well known

It can be verified explicitly that those relations reproduce€X@mple being the backscattering of two fermions with op-

correctly the commutators of fermion operators. These POSIte spins:* Usually, one finds sine-Gordon Hamiltonians

operators give, in general, corrections vanishing in the ther@f the form

modynamic limit and can be safely dropped. On the other dx
hand, if there are different species of fermidgissich as up HSG:J —_— +AJ dx cogB¢).
and down spin fermions or band degenergcieme must 2
bosonize separately each fermion specie using the formulas (A14)
for spinless fermions. It is needed to introdude ,,Ur,  These Hamiltonians can be studied using RG technifjfes.
operators and their complex conjugatesindexing the in-  The flow equations forKk and A are of the Kosterlitz-
ternal degrees of freedom such as gpim enforce proper Thouless fornf®8” A has scaling dimension 282K/4.
fermions anticommutation relations. In order to make thatrherefore a small is relevant fork <8/82. From the RG
bookkeeping less tediod$,one can introducey operators  equation forA one sees that there are two regimes: one small
such that K or large enough regime, where\ is relevant and a large
K, small enough\ regime where\ is irrelevant. When is
Napt NpNa=20a,p; irrelevant, the correlation functions keep their power law
" character up to logarithmic correctiofisOn the other hand,
No= Na - (A10)  if A is relevant,¢ will acquire a nonzero expectation value

uK(Trl'[)2+%((9x¢)2
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that minimizes the ground state energy and a gap will bg(x)=(d;¢/7). Using the Heisenberg equation of motion
generated. It can then be shdhat there(f($))~f((¢))  for ¢ and noting that the total curremt=[dx j(x), one

and that (T e'*?%e @000 —exn({[ — x>+ (u7)?]/g}),  findsI=uK[TI(x)dx. The coupling to disorder being
whereé is a correlation length. These results are used exten-

sively in the paper. Himp:f dxi_xie,2¢(x)+ He. (B5)
APPENDIX B: MEMORY FUNCTION CALCULATION W 26001 £ 12600
OF ac AND dc CONDUCTIVITY e getFo [[&(x)2ma]e [£* (x)/2male :
This gives
For the sake of clarity, we will explain the technique in
the example of one chain of spinless fermidtechnically —_ K ok
this is the simplest cageand then explain how the calcula- <TTF(T)F(O)>OCJ dx D3(x) m> o
tion can be extended to more complicated cases. First let us (B6)
describe the memory function approximatfirhe conduc-
tivity is given by linear response theory as Therefore ((F;F)),x fd7 €' @77~ 2Kx »?K~1 This gives
M(w)xw?*~2 and for K>3/20(w)*w? 2K, The formula
o(w)=—1 X(0)—x(w) (81) e have obtained is valid only at high frequency. We can get
® ’ from it a high-temperature formula by using the dimensional

equivalence of temperature and frequeiteyg.,z w~kgT).
To generalize the calculation to a more complicated case, we
must first note that in the formula for the curregitwill be

where x(w) is the current-current response functf§4° The
memory functionM (w) is defined by

—1x(0) replaced by, in the case of two chains of spinless fermions
o(w)= PESVIPHE (B2)  and¢,. in the case of two chains of fermions with spin. The
coupling to disorder being somx £(x)e'"?+H.c., n de-
This gives the exact formuf& pending on the problem at hand, we see that in the general
case we will just have to make the replacement
M (w)= wx(w) ’ (B3) 2K—(n?/2)K in the formulas givingr(w),o(T).
x(0) = x(w)
an expansioff at high frequency and the small impurity con- ~ APPENDIX C: EFFECTIVE RANDOM POTENTIAL
centration gives IN THE PRESENCE OF GAPS
((FiF) = ((FiF) -0 @ In that section, we will give a derivation of the RG equa-

M(w)= , (B4) tion for D, atg;>0. We start with the method Sfcomput-
—x(0) ing perturbatively the correlation function:
where ((;)) is a retarded correlator evaluated for the pure(T,e"?>¢(1.7)e~"V24,(x2.72)} |n second order in the random
system and®=[J,H], J being the total current. To use that potential, since (T, sin(2¢)(x,7)sin@2¢#,)(0,0))~e~ ",
formalism in the framework of bosonization, we first need anthere is no singular contribution. Therefore, we must go to
expression for the currefit. This can be obtained from the fourth order. We will drop the combinatorics since we are
definition of the fermion density(x)=py—(dy@/7), and  only interested in the renormalization Bf The fourth order

the current conservation equatiahp + d4j =0. One obtains term is of the following form:

2

dx,d7,dx,d7,dx;d r3d x,d
f T 8(%,—Xa) 8(Xg— Xg) + B(X1—X5) 8(Xa—Xg) ]

a (7Ta)4
X(Tfel‘/?[¢p(xy7')+¢p(X1'Tl)+¢p(X3'73)*¢p(xz'7'2)*¢p(x4'74)*¢p(0y0)]>
X(T,SIN(V2ey) (X1, 71)SIN(V2 ) (X2, 72) SINV2 ) (X3, 73)SINV2 Py) (X4, T4))- (Cy

The ¢, will be exponentially small except when, —r 3| <l -

and |r,—r4/<l or |[r;—r,/<I| and |r3—r,|<| (the other Dal Cf dx,d7;d%,d 7, 6(X1—X)
cases are equivalent to these two ones up to a relabeling of
dummy integration variableslt is easily seen that the sec-
ond case is in fact trivial. Therefore, the only interesting
contribution comes from the first term. This term reduces towhereC is a constant that depends on the regularization of
the simple form the continuum model. It can be seen that the term that we

(T V20X 1)+ 20,(x4.70) ~20,(x2.72) = 6,000y (C2)
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obtain can be generated by the following effective coupling:on-site potential. It is then evident that the transport proper-

Heffective:f ngeff.(X)el\@ﬁP"' H.c., (Cy

with &g (X)éetr (X ) =D X—X") andDocCDg. It is clear that

for couplings of the forme'%» cos@), the same argumenta-
tion will be equally valid. Note that using a self-consistent
harmonic approximatiofSCHA) approximation gives dif-
ferent results; This is due to the fact that normal ordering in
SCHA is done without taking the presence of the gaps into
account. Therefore standard scaling, irrespective of the pres-

ence of the gaps, always holds when one uses SCHA.

APPENDIX D: THE ORBITAL ANTIFERROMAGNET
IN THE PRESENCE OF RANDOM INTRACHAIN
HOPPING AND RANDOM INTERCHAIN HOPPING

We consider the following two types of random hopping:

a random hopping along the chains

_ 1, .1 T
H intrachain— IE [&i (Ci + 1,0,1Ci ,o’,1+ Ci ,a,lci + 1,0,1)
N

2,1 T
+0t7(Cit1,52Ci 021 Ci p Lit102] (D1

and a random interchain hoppimgnplitude

Hinterchain= IE &J_,i(ci-r,lci 2t Ci-r,zci ,1)’ (D2)

where 6t is real. Bosonization ofiD1) leads to an expres-

ties of the orbital antiferromagnet are the same in the pres-
ence of a random potential or random hopping along the
chains. Bosonization of equatidid2) gives the following
expression:

2dX 5 _
Hinterchainzf Eti F(x)e "o+

X[1 sin ¢, CcoSp, COSp,
+cosp,_ sing,_ sing,, ]+H.c. (D3)

It is not difficult to see that such a term has exponentially
decaying correlations sincg, - develops a gap. Integration
of the massivep mode leads to a coupling that is identical to
the coupling to a random potential. Therefore a random am-
plitude of the hopping term also does not affect the transport
properties of the OAF more severely than a random potential
and thus the “superconducting” transport properties of the
OAF are not an artifact of restricting to random potentials.
All physically admissible random perturbations of the two-
chain system lead to the same limit for localization delocal-
ization (K, =3/2), the same behavior for conductivity as a
function of frequency and temperature, and the same depen-
dence of localization length as a function of disorder.

On the other hand, if the random hopping term has a
randomphase there is a direct coupling to the OAF order
parameter and then the OAF phase is suppressed. Such terms
are allowed, for instance, in a tight binding picture only if the
phases on the atoms of the two-chain system cannot be made
real. This could be achieved with a random magnetic flux in

sionidenticalto the one that obtains by bosonizing a randomeach plaquette of the two-chain system.
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