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On-site correlation in valence and core states of ferromagnetic nickel
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We present a method which allows us to include narrow-band correlation effects in the description of both
valence and core states and we apply it to the prototypical case of nickel. The resultalfirdtio band
calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral
functions according to a three-body scattering solution of a multiorbital Hubbard Hamiltonian. The calculated
guasiparticle spectra show a remarkable agreement with photoemission data in terms of bandwidth, exchange
splitting, satellite energy position of valence states, and spin polarization of both the main line and the satellite
of the P core level.[S0163-18207)01435-5

[. INTRODUCTION some of them are based on perturbative expansion either in
the e-e interaction(GW approacH, second-order solution of
It is well established that the description of electronicthe Hubbard Hamiltoni@d*3 or in the fluctuations of the
states in narrow-band materials requires improvements oveslectron occupation around LDA mean-field solutidrgth-
the single-particle approximation with a proper inclusion ofers apply at-matrix scheme where the effect of electron
on-site Coulomb interaction between localized electfolms.  correlation on one-electron removal energies from a partially
these systems the itinerant character of valence electroridled band is described as a hole-hole interactibtr. This
which is clearly shown by the energydispersion observed method is strictly valid only in the limit of an almost filled
in photoemission spectroscopy coexists with strong locaband (dilute limit) and its application to the case of nickel
electronic correlation responsible for other observed featurelas been questionéflin order to implement this approach it
such as satellite structures and band-narrowing effects. ThHe necessary to include also electron-electron scattering chan-
interplay of localization and itinerancy has also been indi-nels and to solve a three-body scattering problem involving
cated as a possible explanation of the observed spin polatwo holes and one electron. This is the spirit of the 3BS
ization of core-level spectra through exchange coupling betheory we apply here and which has been originally formu-
tween localizedcore and itinerant(valence states3 lated by Igarashi. This approach has recently been applied
In this paper we present a theoretical description of thdo the description of valence states of nickethoosing,
valence and core electron states of nickel according to hAowever, an approximate form of self-energy in terms of the
method recently developed which has been designed to treattisymmetrized vertex function; in this way the self-energy
highly correlated and highly hybridized systeéhiscluding  turns out to be real, giving rise to peaks in the spectral den-
both the itinerant character of band electrons and the strongjty of unphysical zero width. Here we will instead adopt a
localized electron-electron repulsion. This method allows uwersion of the theory which avoids this shortcoming and
to include narrow-band correlation effects in a first-which is based on the explicit solution of the three-body
principles band calculation; the single-particle band statescattering equatiorfs>’
are determined according to the density functional theory in The interpretation of core-level spectroscopies has up to
the local density approximatio(LDA) and the correlation now largely been based on atomic models which interpret the
effects are described as a three-body scattei@®$) solu-  structures observed in the one-electron removal spectra in
tion of a multiorbital Hubbard Hamiltonian. This approach terms of multiplet states formed by coupling the core hole to
has been previously applied to the description of valence anthe unfilled valence shelf. This scheme has in particular
conduction states of both model systéthsand realistic been applied to the photoemission spectra from the core
materials”8We present here an extension of the method irstates of transition metafsattributing the observed charac-
order to treat both valence and core states on the same foderistic line splitting to intra-atomic exchange interaction be-
ing; this extension is possible in this scheme since it relies otween core and valence electrons of an isolated atom. Such
a multiorbital Hubbard Hamiltonian where core and valencean approach has been seriously questioned since the ob-
states can coexist and on the 3BS method which can be aperved splittings and the energy scale of the interaction are of
plied for any value of effective on-site electron-electron re-the same order of magnitude as the valence band Width;
pulsion. picture which takes into account the itinerant character of
As far as the valence states are concerned various metkialence electrons seems therefore necessary. With the advent
ods have been proposed to augment conventional bamuf spin-polarized spectroscopies such as spin-resolved x-ray
theory for the description of the electronic states of nickel;photoemission'® and magnetic circular dichroisththe spin
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dependence of both the main line and the satellites of NThe full many-body Hamiltonian can then be written as
core-level spectra has been widely investigdfed:2> We

will show that the 3BS solution of a multiband Hubbard . - At A 1 |
Hamiltonian, where full details of the valence band structure™ :g«r em,,nim,Jr%r Izj: tia,jﬂciaaCJBoJrE% Z (Uep
are included, can account for these spectroscopical features

and interpret them in terms of on-site interaction between i " oa i “oa
localized(core and itinerant(valence states. _Jaﬁ); nia(rniﬁfr“LZ Ua,ez(:f NigoNig—o

The paper is organized as follows: we present in Sec. Il
the multiorbital Hubbard Hamiltonian and its relationship to + - - - (multicenter termxs (2.0

the band Hamiltonian we want to implement; Sec. Ill de- o o
scribes the main characteristics of the method which we usPifferent approximations of the exact Hamiltoniéa1) can

to get an approximate solution of the Hubbard HamiltonianP€ obtained using a mean-field approach which amounts to
in terms of self-energy corrections to band eigenstates and g€glecting fluctuations in the electron occupation,

spectral densities; Secs. IV and V specialize to the case of = _ . R . R R

valence and core states, respectively; the results and the com- NiaeNigo’ = Niao{Nigor) T Nigo{Niae) — {Niae){Nigo’)

parison with experiments are presented in Sec. VI. - - N -
+(nia(r_<nia(r>)(niﬁrr’_<niﬂlr’>)
Il. MULTIBAND HUBBARD HAMILTONIAN

= niao’<ni,80"> + niﬁo”(”iao>_ <nia0'><niBu">l

Band structure eigenvalues are in many cases good zero- )
order approximations to the excitation spectrum of a soIiOWher,e( >. means a grounq state average. The mean-field ap-
and it seems reasonable to use them as a starting point for t oximation can b_e app_lled to _aII the many-body_ terms of
inclusion of correlation effects according to the Hubbard 9. (2.1) transforming it into a single-particle Hamiltonian
model; the implicit assumption is that among all the many-
body terms responsible for electron correlation, the Coulomb AMF=> MFn ot > D ti, jBeiTMejB”_ (2.2
repulsion between electrons on the same site is the one iao aBo ij '
which needs to be treated explicitly. To do this it is neces- . . .
sary to define precisely the relationship between band an{ény ba”.d structure calculatlon,_where thg Interacting system
Hubbard Hamiltonian. Let us consider first a localized basidS described as an effective single-particle problem, corre-
set e ,.(r,s) with i labeling the localization sitey the or- ~ Sponds to the self-consistent solutiont$¥'". Another pos-
bital character, and and o the spin coordinate and eigen- Sibility is to apply the mean-field approximation selectively

value, respectively. The full many-body Hamiltonian in sec-t0 the multicenter integrals, keeping the full many-body
ond quantization is character in the one-center terms; in this way one gets a

generalized Hubbard model

ﬂzz 6i0aa-ﬁiao+ 2 E tia,jﬂe;raaejﬁo'

= ~H L H ~ At oA
i ape 1] HH_E eiaoniaa+2 2 tia,jﬁciaocjﬁo
1 iao afo ij
+§. E E Viao’,jﬁa’,|70”,m§0'Cia0'Cjﬁg—’C|ya”cmﬁa'1 1 . . ~ ”
|aJI3|7m6 oo’ +§2 2 (UIQIB_‘]IQB)E niao-niﬂa-
af i o

with n;,=¢!  Ci., andc;.,,Cl . destruction and creation

operators. i A A
. . . . + U N oNig—
Here €° andt;, j; are the intra-atomic and interatomic E. “B; lactip=o

lao

matrix elements of the one-particle Hamiltoniginetic en- _ _ .
ergy plus ionic potential while Vi o, o' 1 yo.mss @€ mul-  Since HMF and HY differ for the treatment of the on-site

ticenter integrals involving the electron-electron interaction,correlation — included itH"" as a mean-field and treated as
a many-body term itH" — it is easy to show that

. (2.3

Viao’,j,BU',lyU’,mﬁo':E’ J ¢raa(rls)¢;€50—’(r,!s,) ME H i i " i .

ss €iao™ Eiour+ % [(Uaﬁ_‘]aﬁ)<niﬁ(r> + Uozﬁ(”iﬁ—o')]'

2
€ - : (2.4
Xm(ﬁh/o.r(r ,S )¢m50(r,5)drdr .
Due to the translational periodicity we can introduce an
In this last expression the dominant contribution comes fromextended Bloch basis set

the one-center integrals witl= j =1=m which are the usual
on-site Coulomb term 1 '
i l//EU.(r,S)Z _Z CZu(k)elk‘Ri(ﬁiau’(r!S) (25)
Ua,BZViao’,iBo’,iﬁU,iaU:Viao’,iB-o’,iB-o’,iao’ Nia

and exchange term and the corresponding relations for creation/destruction op-
, erators of electrons with wave vectkr spin o, and band
‘Jaﬁ:Viao,iBa,iao,iBa" indeXn,



- 1 N
=S CL0E G,

—ik- RICITCHT

ako’ 2 C

Here C! (ko) are the expansion coefficients of Bloch states

in terms of localized orbitalsN the number of unit cells.
HY becomes

E 6knaakaakg+2 > >

E 1
aB kk'p nn’ mm @ 2N

X[U,5Coa(k)* Cg(,(k+ p)CE,U(k’)*

’ antan amt am’
XCB u—(k _p)a‘k(rak+p(rak' ak’—p—u‘

+(U = Jup)Clo(K)*C". (k+p)

mt 2m’

X Cﬁa'(k )* CBO'(k’ - p)ako.ak+pgak/ ak’fpa]'

(2.9

Now el includes also the kinetic part of the single-
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G (kno,® ——(‘If0|akUG(z)akU|\If0>

z= —w+Ey(Ng) +i 4 (3.2

Eo(Ne) and|W,) define the ground state of thé.-particle
system and

1
z—AH

G(z2)= (3.3

is the resolvent operator. The hole propagator can also be
written in terms of the hole self-energy as

1
- k ) = ’
g (knoe) w_EanFU_EI:no(w)

(3.9

wheres,, . (w) is the self-energy correction teand eigen-
valuesepr . In order to calculat& ,,,(») we proceed as in
Ref. 6 adopting a configuration-interaction scheme which
consists in projecting the Hubbard Hamiltonian on a set of
states obtained by adding a finite numbeedi pairs to the
Fermi sea, i.e., to the ground stade,) of the single-particle
Hamiltonian. We will adopt the three-body scattering ap-
proach where this expansion is truncated to include just one

particle Hamiltonian and the Coulomb and exchange inte € h pair: the state with one removed electron of momentum

grals are assumed to be site independent. In the same w.

HMF becomes

HMF 2 eanaE;aEaﬂ (27)
with
elll/ln':(r ekn(r+Qk(r’ (28)
occ
QRr=2 [CL (K| Uapg 2 1G5 (K2
af K'n’
occ
+(Uap=dap)ig 2 1B, (2.9
k'n’

which is the analog of Eq2.4) for Bloch states. Notice that
the sums oven’ are over occupied states. Equatiq2sd)

and(2.9) contain the correct recipe to include Hubbard cor-

relation starting from band structure eigenvalugs  and
are essential in order to avoid double countingeed inter-
action.

Ill. HOLE SPECTRAL FUNCTION, SELF-ENERGY, AND
THE FADDEEV METHOD

We are interested in the hole spectral function

Dy, (@)= ——E ImG~ (kno, ), (3.0

which is the quantity directly related to the photoemission

nd spino is expanded in terms of the basis set including
onhe-hole configurations and three-particle configurations
(one hole plus one-h pair) we will denote by|s) and|t),
respectively,
|S>Eakno|q)0>- |t> aqanSJSaqznzazaqlnlal|q)O>-

(3.5
with

d1+d2—dz=k, 01T0,—03=0

To be consistent the basis set for tRg-particle interact-
ing system will include zero- and two-particle configura-
tions. The ground state of the interactiNg-particle system
coincides then with the noninteracting one; this is obvious
for the single-band Hamiltonian discussed in Refthe state
with zero and onee-h pair added coincide due to-vector
conservatiopand still holds in the present case of multiband
Hamiltonian sinceH" has no off-diagonal matrix elements
among two-particle configurations. As a consequence in the
3BS approximation the hole propagator is the average of the
resolvent over statgs).

By projecting the Hamiltoniafi2.6) over the complete set
appropriate for the N.— 1)-particle system we get an ap-
proximate expression foH™ appropriate to describe one-

electron removal,
(3.6
HereI:|1 is associated to one-hole configurations,

Hy=(s|A"|s)|s)(s],

results we want to compare with. It describes the removal of

one electron of wave vectdr, band indexn, and spino and
is related to the hole propagator

H, describes the contribution of three-particle configura-

tions,
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; F (2)=——

Ha=2 (t[AMt) eyt
tt’
andV is the coupling between one- and three-particle statesand the scattering operator
c_ND_ ONDEDG
V=3 (slfA"[t)]s)(t|+ H.c. S=H3"HHSTRSS.
! The three-body resolvent can then be written as
We leave the detailed expression of the matrix elements of

~ F _fD_ gD&ED
the multibandH" to Appendix A and proceed to sketch the Fa=F3+F3SF;. (3.10

method for the calculation of the resolvel@3). We define a5 shown in Appendix A and Ref. 6 the nondiagonal three-
the three-particle resolvent, that is, the resolvent associatgghdy interaction is the sum of two potentials,
to the three-particle interaction

HIS:ID:\A/h—h_"\A/h—ea

Fs(2)= —= which describeh-h andh-e multiple scattering.
z—Hs We define partial scattering operators

and the Dyson equation which relatégz) to it, A A . ana
Y q e¢z) Shn=Vnnt+HpnF5S,

G(z)=F3(2)+F3(2)[A,+V]G(2). 3. A A apa
| (@)= Fs2)+ Fo@l A+ V16 (37 5, =¥, +F,E28
It is a matter of simple algebrg to shoyv that the hole prOpaWhich are related to the scatteriigmatrices,
gator can then be expressed in termd-gfas

s G O EDS .
g_(kn(r,w)= _GSS(Z) Th-h Vh-h Vh-hFSTh-h ’ (3 113
1 -’I\—h-e: \A/h-e+ \A/h-eleg-’l\—h-e ’ (3-11b
- ' through
w—Eq(Ne)+HEA+ 2 Fau Vi oV, 9
tt’ ~ ~ - A A
(3.9 Sh=Thnt ThnF3She. (3.123
with the notationGs,=(s|G|s), Fay =(t|F3|t’), etc. Since Sve=Thet TheF5Shn- (3.12h

the difference between the ground state energy of th

N-particle systenEq(N,) and the average aaH over |s) Ell'hese are the Faddeev equations which must be solved in

states turns out to be order to getS=S,,+S.., F3 from Eq. (3.10, and
G (kno,w) from Eq. (3.8). Inserting Eqg.(3.12 into Eq.
Eo(Ng) — HsHs: frnﬁ QI = e&”ni (3.10 one gets the expression for the three-particle resolvent

in terms of scattering operato&_. and T,
the band eigenvalues appear naturally in the denominator of

the hole propagator and, comparing E8,.8) with Eq. (3.4), Fa=FY+FY (Thnt ThaFSShet She)FY. (3.13
we can identify the self-energy correction to band eigenval-
ues we are interested in as Further steps are necessary in order to make this general

method practical for real calculations — and further approxi-
mations as well. In the following we will specialize to va-

27 (kno,w) =2 FauVusVer. (3.9 |ence and core states.
tt’

The determination of the hole propagator is then reduced IV. VALENCE STATES

Facdeoy scattering thedfbas described for the single-band V& 80Pt some simpltying assumpions for the descrip-
Y 9 tion of photoemission from valence states of nickel. We will

case in Ref. 6. The method consists in separating the three- id lati | | d |
body Hamiltonian in diagonal and nondiagonal parts considere-e correlation amongl e ectrons only and neglect
the orbital dependence of one-center integrals involving va-

lenced electrons; we set

D=2 (t|AR|t)[t)(t],
3 Et (tH"[B[t)(t] U,, for a,8= d orbitals

U =
@10 elsewhere

ND_ CrHpg ’
Hs _g (tHTE) (], and similarly for the exchange paramedgy; ; moreover we
will neglectU,,—J,, with respect toJ,, . In this way the
defining the diagonal three-body resolvent Hamiltonian(2.6) reduces to
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So @)= | den, (TeE (0—e)

@ =
X[1+U, A% (w—e)], (4.3

wheren, (¢€) is the spin-dependent orbital density dfva-
lence states andf?, is the orbital-dependertt matrix de-
scribing the hole- hoIe multiple scattering,

YD — — (4.4
1+U,505%(w)
FIG. 1. Schematic representation of the basis set for the con- .
figuration expansion of the interacting state with one electron reWIth
moved from the majority-spin band/, Vi, V. describe the e, (n(e)
coupling between one- and three-particle states, the hole-hole, and a,B (w)= f f de Na—o A A (4.5)
the hole-electron interaction, respectively. —€e'—e—id

A*f includes the hole-electron scattering; it is determined by
=3 GEnaéE;aEa solving the integral equation

A*f(w,e)=B*F(w,e)+ j de'n,_,(€")
Ef

+2 uaBKKE D 2 —C" S(K)*
p nn” mm’

XKP(w,e,e ) AP(w,€e"), (4.6

X Ch,(k+p)Ch_,(k")*CF (k' —p) where

AgA Amt Am’
xaptan, ant am . (4.1) Ef
o po o p—o Kaﬁ(w,e,é,):f de"na,o(e”)g'g(w-l-e”—e)Tﬁfe

Finally we will exclude configurations wite-h pair added to

the majority-spin band as it would be strictly correct in the X(w+e)gh(w+ e — e )T (w—€")
strong ferromagnetic limit where no empty states are avail- N
able in the majority-spin band. 4.7

The states which define the basis set forithe-1 system e
are schematically illustrated in Fig. 1; the nonzero interaction Baﬁ(w’e):f fde’na,a(e’)gg(erE’—E)Tﬁfe
potentials responsible fon-h and e-h scattering are also %
indicated. Notice that holes and electrons of parallel spin do
not interact due to the assumptidh,,—J,,= 0. X(w+€)
We have already stressed that the Hubbard correlation
enters the definition of quasiparticle energies twice: first as a

00— e+ f de'n, (")
E¢

mean-field correction tbare eigenvalues, transforming them Xgh(w+e — €9 (w—€e) T (w— e")) _
into band ones according to Eq2.8); second through the
addition of self-energy(3.9). The calculation of this last 4.9

guantity requires a generalization of the method illustrated in

detail in Ref. 6 for the much simpler case of a single-bandT ;. is the orbital-dependerit matrix describing the hole-
Hamiltonian. The situation here is complicated by the sumslectron scattering,

over orbital indices appearing in the effective Hamiltonian.
This requires the definition of orbital-dependent diagonal
Green functions and@ matrices as described in Appendix B.

As a result the self-energy correction to a band eigenvalue of
wave vectok, sping, and band index turns out to depend With
on the quantum numbersandk as

—-uU
fe )=—aﬁ, (4.9
() 10w

F = Na—g(€)Ngs(€’)
1emy gi’ﬁ(w)=J7;de’ Edem (4.10
Snol @)= 25 [CRo(K)P| 2 Upig 2 [CL-o(kD? f
b “ K’ and finally
—2p(0)|. (4.2 (w)_f de’ n,Bo-(e) 4.1
w—€ —i8

The k-vector and band-index dependence of self-energy i€quations(4.2—(4.11) describe the procedure we have fol-
associated to the local orbital coefficients which modulate atowed to calculate in practice self-energy corrections for the
orbital self-energy valence states of Ni reported in Sec. VI.
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cluded for the 3BS description. Notice that configurations

(a) (b) () with one e-h pair added to the majority-spin band are now
td t b considered: even if the number of empty states available is
3 —\ small, the stronger value of the interactions makes these scat-
1, [@3] tering channels no longer negligible. As shown in Fig. 2 we
Vh—d/ O/2 O y have then to take into account scattering between particles of
N parallel spin proportional t&J.,—J., and between particles
1// Va_n % of opposite spin proportional tt.,. The extra configura-
S ra =h tions where all the particleéholes and electronshave the

same spin are calleld).
The procedure to calculate self-energy for core states is a
(e) () straightforward extension of the one outlined for valence

K—’*ﬂ o)
&

| { | t | states. The core hole propagator turns out to be given by
30 —13® ) L
2\ e 2|/ G~ (koo o) =——— _
Vr(—e W= €y — z Fa VisVsi— E F3z2V2rsVs,
~ . t'[, /
o BN B Mg " 5.2
A\ Ny Ay

The presence here of extra configurations and extra interac-
FIG. 2. Schematic representation of the basis set for the contions does not imply any major difference with respect to the

figuration expansion of core states. case of valence states — just the addition of an extra term in
the denominator of Eq5.2) and the necessity to solve sepa-
V. CORE STATES rately two Faddeev problems to calcul&tg,, andF3,, for

) ) . opposite and parallel spin interactions, respectively. This is a
The localized character of core states is responsible foggnsequence of the fact that the Hamiltoni&rl) does not

rr_luch stronger correlation eff_ects associated with larger ongix |z) and|t) configurations. The Faddeev problem for the
site Qoulpmb and exchange integrals. In order to adapt thgatermination ofF4,, is solved in the same way as de-
Hamiltonian (2.6) to the case of core states we make thegqrined in Appendix B forFa,, substitutingU,, with

following assumptions: we neglect the correlatipn among vay _j - and parallel spin instead of opposite ones. More-
lence electrons and assume them to be described by a singlGer the description of the core state in terms of a zero-width
band. In Eq(2.6) the band index can have just two values 4 with as function as orbital density of states drastically
as does the orbital index and we are left with a two-bandgqyces the computational effort required to evaluate the
Hamiltonian noninteracting Green functior@.5), (4.10, and(4.11).

AH_f, + A A 5.1 The relationship between the energlf" and the bare

core eigenvalue involves as usu@f, [see Eqgs(2.8) and

where H,, is the band Hamiltonian for valence electrons (2.9)]; explicitly one has
with the e-e interaction treated in the mean-field approxima-

tion, €co = €0t [(Uey =3 (o) + Ucy(Ny - )]+ UcelNe— o).
(5.3
" _ MF 2t 2 . . .
Hyo= % €kvo AkpoBkuo It is interesting to make a comment concerning the role of
the Coulomb repulsiofJ... Since any three-particléone
and hole plus onee-h pair) configuration must involve empty

states, no multiple scattering is associated With and this
quantity gives rise just to a mean-field contribution. Core-
valence interactiontl;, andJ., on the contrary modify the
bare core energies both through the mean-field contribution
and by self-energy corrections which originate from hole-
hole and electron-hole scattering of opposite and parallel
spin described by andF5,,, respectively.

~ H2t 2
Hcc_kE €coBkcokeo
g

Ucc

A I ot I

+2 2 N akC(Tak‘*’pCU'ak’cfg—ak,*pC*U'7
kk'p @

N 1
— _ A% r__
He, k;p 2 §lVaC,o(k)*C, (k' =p) VI, RESULTS
At 4 At A The calculation of self-energy corrections requires as an
X Qye, a, _ A _p_gt(Ug—J . . . . -
kooBc+ ooy — o8k ~pu -+ (Voo = Jay) input (i) the mean-field eigenvalues and eigenvectors for va-
“C. (K'V*C. (k'—p)al . & al A, _ lence electrongji) the energy of the core level, ari ) the
v (K™ Coo (K= P)AcoBkc peoBir B ~poo] values of the Coulomb and exchange parametd(s,
HereU..=J.., U, , andJ., describe the interactions be- U.., U.,, J¢, . All these quantities can in principle be de-
tween core-core and core-valermtelectrons. duced from arab initio density functional calculation; Cou-
Figure 2 shows schematically the configurations to be inlomb integrals in particular can be obtained in the so-called
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FIG. 3. Single-particle band structure of nickel obtained using
the LMTO method. Energies are referred to the Fermi energy. Open
triangles, minority-spin states; filled triangles, majority-spin states.

constrained-density functional schefhe— a procedure
which is, however, not free of ambiguitiésee, for instance,
the discussion reported in Ref. )1and can lead to large
variations in the estimated values. We have therefore -10 -8 6 4 2 0
adopted a mixed strategy, using resultsadif initio band

calculations to get quantitig$) only, treating all the others
as free parameters.

The band structure of ferromagnetic nickel has been cal- FIG. 4. Density of quasiparticle states of nickel for majority spin
culated with the linear muffin-tin orbitdLMTO) method in  (a) and minority spin(b) compared with experimental results of
the atomic-spheres approximatiGhSA) including the com-  angle-integrated spin-resolved photoemission res(fited tri-
bined correction terrf® The tight-binding LMTO basis s&t  angles of Ref. 3. The results for minority-spin bands obtained with-
has been used, including nine orbitads | d) per atom. The out the strong-ferromagnetic-limit approximation are shown as a
resulting energy dispersion is shown in Fig. 3; the occupabroken line in pane(b).
tion numbers for valence orbitals turn out to bgn, )= o _ _ _

4.68,(n, )= 4.07. We have used the single-particle eigen-from majority-spin states in agreement with our results. The
values and the correspondimy contribution to eigenfunc- two approximations we have adopted for the description of
tions and orbital densities of states to calculate self-energyalence states, thatis,,, —J,,=0 and the strong ferromag-
corrections and spectral functions according to the theory€tic limit, make the self-energy corrections exactly zero for
described in the previous sections. A valuelpf,= 2 eV~ Minority-spin bands and the comparison between our results
has been chosen in order to reproduce the observed energ§d the spin-resolved experimental data confirms the validity
position of the valence band satellite; as we will show belowof both these assumptions. As a further evidence of this we
we are able in this way to reproduce also other characteristid@port in Fig. 4 the minority-spin spectral function calculated
of the valence quasiparticle states such as bandwidth, quadgiter removing the assumption of strong ferromagnetism, i.e.,
particle energy dispersion, and exchange splitting; this is agonsidering als@-h pairs added to the majority-spin band;
important result and represents a success of the present dpe small number of empty states and the relatively small
proach: previous methods based on a simplified descriptiodalue of the interactiotJ,,, make these scattering channels
of the scattering channéfs'®in fact have not been able to not efficient and the calculated spectrum is not significantly
reproduce at the same time the satellite energy position an@tered.

the valence band width which turned out to be systematically It is possible to perform a more refined analysis by look-
overestimated for values of the Coulomb integral fixed toing at thek-resolved spectral function, Fig(® shows the
reproduce the satellite binding energy. spectral function for th&k point andeyn, = —3.6 eV to-

Figure 4 shows the comparison between our results angether with the corresponding self-energy,,(w). The
recent angle-integrated/spin-resolved photoemission *dataspectral function shows a quasiparticle peak plus a satellite:
We find that the calculated total spectral functibr () the first structure is associated to the pole of the hole pro-
defined as pagator shown in Fig. (6) as the interception between

RE S (w)] and the straight linew— ey . The second
N . structure is associated to the maximum of By, ()] and
D, (@)= % Ding( @) as such it will occur at the same energy at &nyector. This
appears more clearly by extending the same analysis to the
closely reproduces the experimental energy distributiork points along the high symmetry line of the Brillouin zone
curves for each spin component; notice in particular that th@nd plotting the energy position of the maxima of
6 eV satellite is observed clearly only in the photoemissiorD,,(w)=2,D,,,(w) to get the quasiparticle band structure

Energy (eV)
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FIG. 7. Comparison between the calculated dispersion of hole
guasiparticle statescircles for majority-spin bands and angle-

FIG. 5. Spectral functiofia) and self-energyb) for theK point resolved spin-integrated photoemission res(dismond$ of Ref.

and e}y, = —3.6 eV. The interception between [Re (knT,w)]
and the straight Iineo—e,ﬁ"nﬁ indicate the position of the quasipar-
ticle pole.

the energy separation between majority and minority quasi-

of Fig. 6. By comparing the quasiparticle band structure withParticle peaks around thé point is 0.2 eV for the topmost

the single-particle results it appears that the majority-spirPand. This result is in remarkable agreement with a recent
eigenvalues are heavily affected by self-energy correctiongStimate_reporting a split of 2648 meV along theX
showing a strong reduction of tlieband width and the pres- direction=® The same is true for the quasiparticle energy dis-
ence of the above mentioned 6 eV satellite. Since th@ersion as a whole, which is shown in Fig. 7 compared with
majority-spin eigenvalues are shifted to lower binding enerthe results of angle-resolved spin-integrated photoemission
gies while the minority-spin ones are unaffected, the splittingsPectroscopy of Ref. 29. _

between majority and minority states becomes smaller than AS far as core levels are concerned we consider here the
in the original single-particle bands. This goes in the right3P level of nickel as a test case. Since the core levels of an
direction since it is well known that single-particle calcula- isolated atom are degenerate in spin their spin dependence is

tions overestimate this quanuty, from F|g 6 it appears thaﬁ. solid state effect, associated to the interaction between the
atom and the solid it is embedded in; in other words the spin

dependence of core-level energies is related to the spin po-

o_m_ﬂﬂ}#ﬁ;m larization of the valence band on one side and to core-
e, m’f e A %, “‘x&?zngxm valence interactions on the other. According to our view the
_2_“%“5“% 'xx,‘ WA;;;:,.:’;"“‘ relevant quantities are the Coulomb and exchange integrals
%%e,‘ oss, between core and valence orbitals which affect the bare
— 1 Ve '"M ] . . .
> A8 atomic core energies both through the mean-field t€xjy
D -4 Jas a I 4 . . . ;
- 4 "V%Q & . and self-energy corrections. The mean-field contribution of
L | A x x Eq. (5.3 gives rise to a spin splitting proportional dg, and
W 69 x s T asssssantt 1 s to the valence band spin polarization
] o A5 X
% * *
° B “x v 8pin | “'- MF_ _MF - -
rgar® 4 Spin T e €ct T €y :‘JCU(<nUl>_<nUT>)'
-10
L r X K r

Notice thatU., and U.. do not enter this expression; they

affect the bare core levet! = e according to
FIG. 6. Quasiparticle band structure of nickel along the high & = €l g

symmetry directions of the Brillouin zone. Energies are referred to
the Fermi energy. Open triangles, minority-spin states; filled tri- H ~ “ ~
angles, majority-spin states. et U ({ny ) +(ny ) +Ucne)]=€c, (6.1
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TABLE I. Parameters used in the calculations of Ni 8ore
hole spectrum.

1/2 3/2
Ue, Je €c €c

5.00 eV 2.50 eV —59.00 eV —57.50 eV

giving rise to a modified core energy level which is still
spin independent. The mean-field eigenvalues are related to
this quantity as

6?:/:;:: €c— JCU<nUU'>'
We have used spin-orbit split values &f, that is,2? and
€22, to fix the absolute value of the core-level binding en-
ergy, choosing thed., to reproduce the spin splitting of the
main peak observed in the core-level photoemissidine
last parameter, that i&l ., , has been fixed in order to repro-
duce the satellite’s energy position. The values which opti-
mize the agreement between our calculation and the experi-
mental results are listed in Table I.

Figure 8 shows the calculated self-energy for the creation
of both majority- and minority-spin hole in the core level
3p2. The same analysis obviously applies to the other spin-
orbit split level 3%2 In the case of the minority-spin core

Dos (Arb. units)

1 I I ¥ 1 1 1 1 1
-82 -80 -78 -76 -74 -72 -70 -68 -66 -64 -62
Energy (eV)

FIG. 9. Spin-integrated spectral function for the creation of a

hole the self-energy presents two well defined structures: thgy core hole compared with the photoemission results of Réd) 3
one at lower binding energy is related to the scattering beand its decomposition into contributions from the spin-orbit split
tween particles of parallel spin with strength proportional tojevel 3p¥/2 (continuous ling and 3*2 (dashed ling (b) refers to

U, —Je, [See Fig. 2)] while the structure at higher binding majority-spin state an¢c) to the minority-spin one.

energy is related tdJ ., and to the scattering between oppo-
site spin particlegsee Fig. 2e)]. Notice that two indepen-
dent factors determine the efficiency of the scattering pro-

40
Spin T
30

p
i
n

20 - P
i
o
‘

4k Re(m 7

x
1 1 1 L | 1 1

Energy (eV)

FIG. 8. Self-energy for the creation of majority-spia and

minority-spin hole(b) in the core level 2

6
-82 -80 -78 -76 -74 -72 -70 -68 -66 -64 -62

cess, the strength of the interaction on one side and the
number of available states in the valence band on the other.
In the case of a minority-spin core hole the weaker parallel
spin interaction is compensated by the larger number of
empty valence states and both the scattering channels involv-
ing parallel and opposite spin particles play a role. The same
argument applies to the case of the majority-spin core hole
but now the weaker parallel spin interaction is associated to
a small number of available empty valence stds=e Fig.
2(c)]; for this reason the interaction between opposite spin
particles[see Fig. 2)] remains the only efficient scattering
channel. As a consequence the self-energy for the majority-
spin core hole presents a single structure associated to
Ue, -

As discussed in the preceding section satellite structures
are expected to occur at energies where the imaginary part of
self-energy has a maximum giving rise to a complex pole of
the hole propagator and therefore to a short lived excitation.
The structures in the calculated self-energy we have just de-
scribed and their origin are therefore essential in order to get
a physical interpretation of the observed photoemission spec-
trum. We report in Fig. 9 the calculated spin-integrated spec-
tral density for the creation of gp3core hole compared with
the photoemission results of Ref. 22. The spectrum shows a
main peak at about 66 eV with two characteristic spin-orbit
split structures A, B) and two satellites@,D). The decom-
position of the spectral function into contributions from the
two spin-orbit split levels 2 and 3% and from different
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spins is also shown. The spectral function for the creation of
a majority-spin core hole shows a main peak and a satellite (@) A
for each spin-orbit split level; as discussed above in terms of
the self-energy this satellite is associated to the only efficient
scattering channel which comes into play after the removal
of one majority-spin electron, that is, to configurations of
Fig. 2(b) where the majority-spin core hole interacts with
opposite spin particles in the valence band, with a strength
proportional toJ,, . The spectral function for the creation of

a minority-spin core hole presents instead two satellites for
each spin-orbit split level: the one at the higher binding en-
ergy is associated to the configurations of Fig) 2here the
spin-down core hole interacts with opposite spin particles in (b)

the valence band with a strength proportionalltg, . Due to

the small number of empty states available in the spin-up /\ /\/\
band this satellite is less pronounced here than in the
majority-spin spectrum. The satellite at lower binding energy
is related to configurations of Fig(f2 and to scattering be-
tween parallel spin particles of strength proportional to
Uey—Jeo -

The one-to-one correspondence between the configura-
tions of Fig. 2 and the satellite structures allows us to inter- N
pret them as shakeup processes occurring after the removal -82 -80 -78 -76 -74 -72 -70 -68 -66 -64 -62
of either a minority- or a majority-spin core electron. The
satellite at lower binding energy| is then associated to the
creation of one minority-spin core hole plus a+h pair in
the valence band of the same spin, giving rise to a bound FIG. 10.(a) Calculated spectrum for the creation of a majority-
state of three parallel spin particles which can be defined as $Pin (continuous lin¢and minority-spindashed ling3p core hole.
triplet state; the satellite at higher binding enerdy) (is (b) Difference spectrum between the two spin components.
related to the creation of either a majority- or a minority-spin
core hole plus a valenaeh pair of opposite spin giving rise
to a singlet state. tron, involving the creation of al-band e-h pair. Even

To analyze the spin polarization of the whole core holethough our present choice of empirically determining the pa-
spectrum in more detail it is useful to consider the spin-rameters of the Hubbard Hamiltonian ensures that we obtain
resolved spectra and their differen@ (w)—D| (w) re-  an overall good agreement with experiments we believe that
ported in Fig. 10. It appears that the spin polarity of struc-the possibility of reproducing both the satellite structures, the
turesA,B,C, andD of Fig. 9 is “down,” “up,” “down,” main line, and their spin dependence with just four param-
“up,” respectively. This is again in agreement with what haseters can be seen as a nontrivial result. The widely used
been seen experimentally and reported in Refs. 19, 22, angtomic models — which use empirical parameters as well —
23. require also armad hoc evaluation of the so-called extra-

atomic effects which allow us to take into account the role of
VII. SUMMARY electrons on neighboring atorfs;such effects are on the
_ _ _ contrary included here from the beginning since the full de-

We have described a method for including short-rangajis of the valence band structure of the solid system are

on-site interactions in the description of both valence anggnsidered. In this sense the present approach can be consid-

core states of a solid system. When applied to valence statgfeq an appropriate tool to describe the response of an itin-
of ferromagnetic nickel the method allows us to get a quasiy ant electron system to the creation of a core hole.
particle band structure which compares much more favorably
with the experimental observation than conventional mean-
field LDA band structure eigenvalues, reproducing the ob-
served bandwidth, the energy dispersion, the satellite struc- APPENDIX A: MATRIX ELEMENTS OF THE

ture, and the exchange splitting. Since the method does not MULTIORBITAL HUBBARD HAMILTONIAN
rely on a perturbation expansion it has a wide range of ap- As discussed in Sec. IV the application of the 3BS

plication, including any correlation regime. The extension ©Oyethod to the valence band states of nickel requires the ex-
core levels is quite natural and allows us to take fully intoyjicit gefinition of matrix elements of the Hamiltonia®. 1)

account the itinerant character of valence electrons. We get . . . -
then a physical picture of thep3core-level spectrum where containing a noninteracting part that we call hef¢and the

the spin splitting of the main line is associated to the valenc@Sité interaction among opposite spin electrons that we de-
band spin polarization and to the core-valence exchange imote byH’. The matrix elements involve stat¢s) and|t)
teraction; the two satellites are interpreted as arising fronglefined in Eq.(3.5) and pictorially depicted in Fig. 1. We
shakeup processes occurring after the removal of a core elebave

Dos (Arb. units)

Polarization

Energy (eV)
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As discussed in Sec. V the description of core states requires the inclusion of the interaction involving the exchange integral
that we call herd1” and the extension of the complete set to the three-particle configuréjonbFig. 2. It is easy to show

that in this case the diagonal matrix elements are similar to the previous ones and that the nonzero off-diagonal ones are
(sIA"[t)y , CtIAt') , (zA"|2') .

APPENDIX B: FADDEEV EQUATIONS FOR THE MULTIBAND HUBBARD HAMILTONIAN
We illustrate the procedure which leads to E@s2)—(4.10 for the removal of one spin-up electron. The relationgBij8)

between the diagonal hole propagator and the three-body resolvent is obtained by inserting the completeness relation

S 9+ 3 il =1

£

[z—(Hﬂss]Gss(z)—Z VGis(2)=1. (B1)

into the identity

N 1
H
(2 AM) ——

that is,

SinceG;4(z) can be obtained by E@3.7) as

Gis(2) =2 Fu'VigGss(2), (B2)

ts’

one gets

[Z_(Hl)ss]Gss(z)_z Vstvt’sFtt’Gss+z 2 VsiVirg Fiir Gsy = 1. (B3)
tt’ tt’ s#s’
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By substituting the explicit definition of the matrix elementswoit appears that the two summations in E§3) involve terms
of the kind

;5 Ch(KICh(K)*,

with n=n’, n#n’ in the first and second sum, respectively. For this reason it seems reasonable to negle(®8) the. last
summation with respect to the first one getting in this way B as a result.
According to Eq.(3.9) the self-energy is given by the sum

2

U
> FauVesVo= 3 DS ZC L(1)* C2 (d3) C 2 (a2)* C; ()

tt’ 0102043 N1NoN3 afB

X 333 a6 CoRa) O (0 (a1 dana dana 1P

r_r ’
010,03 nynony ¥

+F3(Sh-et ThonF3S1-0)FSlain Taznz  agns ), (B4)
where we have used the definiti¢®.5) for [t) and|t’). Let us define now the orbital-dependent free propagator desciibing
h scattering,

s Haprc (ql)cgi(q»* Cp(d2)
03" (dshzw)=— = VIE
a1n102n2 —(Eo— q1”1T —€qn, T E q3n31)

where the summation is over filled states of band inditeandn,. By using the definition(3.1)) it is easy to show that

”1(q1)*C”2(q2)*g§'5(q3w)
C"(g)*C"2(a,)*{(q1N; TN, gans | |G T nlgin! Tgsns ] gin ol Al Sq -
C]1n12q2n2 o (02)* C 72 (A2)* (A1 102Nz A3 | |G Thonlaini Taznz L agng | ) = 1- U, ,0%%(qs0) 03,0

It is also useful to define the orbital-dependembatrix for h-h scattering,

Uug
1-U aﬁ’ggﬁ(anSw) .

Similar definitions and relations hold ferh scattering. It is then a matter of simple algebra to transform(B4) into the
form

TrP (dgngw) =

U, N
2, FauVusVe= 3 [CHKDIP= 2 X {ICHasDIP+ T (asns) [ CH(s )P+ UapA(ana) I
tt’ @ 3N3

where

1 /
Aaﬁ<q3n3>=NqEq 2 CoH(ay* CR(a)* Ci(as) 2 X CF H(ap)C (a3)* C2(a)
12 T2 010,03 NyNong
X (AN 102Nz aanal [FES, F3lainiTazn;Laznal ).

From now on the procedure is the same as the one described in Ref. 6, adopting in particular the so-called local
approximatiof® which allows us to transform all the summations okerectors into integrals involving the density of states.
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