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On-site correlation in valence and core states of ferromagnetic nickel
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We present a method which allows us to include narrow-band correlation effects in the description of both
valence and core states and we apply it to the prototypical case of nickel. The results of anab initio band
calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral
functions according to a three-body scattering solution of a multiorbital Hubbard Hamiltonian. The calculated
quasiparticle spectra show a remarkable agreement with photoemission data in terms of bandwidth, exchange
splitting, satellite energy position of valence states, and spin polarization of both the main line and the satellite
of the 3p core level.@S0163-1829~97!01435-5#
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I. INTRODUCTION

It is well established that the description of electron
states in narrow-band materials requires improvements
the single-particle approximation with a proper inclusion
on-site Coulomb interaction between localized electrons.1 In
these systems the itinerant character of valence elect
which is clearly shown by the energyk dispersion observed
in photoemission spectroscopy coexists with strong lo
electronic correlation responsible for other observed featu
such as satellite structures and band-narrowing effects.
interplay of localization and itinerancy has also been in
cated as a possible explanation of the observed spin p
ization of core-level spectra through exchange coupling
tween localized~core! and itinerant~valence! states.2,3

In this paper we present a theoretical description of
valence and core electron states of nickel according t
method recently developed which has been designed to
highly correlated and highly hybridized systems4 including
both the itinerant character of band electrons and the str
localized electron-electron repulsion. This method allows
to include narrow-band correlation effects in a firs
principles band calculation; the single-particle band sta
are determined according to the density functional theory
the local density approximation~LDA ! and the correlation
effects are described as a three-body scattering~3BS! solu-
tion of a multiorbital Hubbard Hamiltonian. This approac
has been previously applied to the description of valence
conduction states of both model systems5,6 and realistic
materials.4,7,8 We present here an extension of the method
order to treat both valence and core states on the same
ing; this extension is possible in this scheme since it relies
a multiorbital Hubbard Hamiltonian where core and valen
states can coexist and on the 3BS method which can be
plied for any value of effective on-site electron-electron
pulsion.

As far as the valence states are concerned various m
ods have been proposed to augment conventional b
theory for the description of the electronic states of nick
560163-1829/97/56~12!/7149~13!/$10.00
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some of them are based on perturbative expansion eithe
the e-e interaction~GW approach,9 second-order solution o
the Hubbard Hamiltonian10–12! or in the fluctuations of the
electron occupation around LDA mean-field solution;13 oth-
ers apply at-matrix scheme where the effect of electro
correlation on one-electron removal energies from a parti
filled band is described as a hole-hole interaction.14,15 This
method is strictly valid only in the limit of an almost filled
band ~dilute limit! and its application to the case of nick
has been questioned.10 In order to implement this approach
is necessary to include also electron-electron scattering c
nels and to solve a three-body scattering problem involv
two holes and one electron. This is the spirit of the 3B
theory we apply here and which has been originally form
lated by Igarashi.5 This approach has recently been appli
to the description of valence states of nickel16 choosing,
however, an approximate form of self-energy in terms of
antisymmetrized vertex function; in this way the self-ener
turns out to be real, giving rise to peaks in the spectral d
sity of unphysical zero width. Here we will instead adopt
version of the theory which avoids this shortcoming a
which is based on the explicit solution of the three-bo
scattering equations.4,6,7

The interpretation of core-level spectroscopies has up
now largely been based on atomic models which interpret
structures observed in the one-electron removal spectr
terms of multiplet states formed by coupling the core hole
the unfilled valence shell.17 This scheme has in particula
been applied to the photoemission spectra from the c
states of transition metals18 attributing the observed charac
teristic line splitting to intra-atomic exchange interaction b
tween core and valence electrons of an isolated atom. S
an approach has been seriously questioned since the
served splittings and the energy scale of the interaction ar
the same order of magnitude as the valence band width2 a
picture which takes into account the itinerant character
valence electrons seems therefore necessary. With the ad
of spin-polarized spectroscopies such as spin-resolved x
photoemission3,19 and magnetic circular dichroism20 the spin
7149 © 1997 The American Physical Society
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7150 56F. MANGHI, V. BELLINI, AND C. ARCANGELI
dependence of both the main line and the satellites of
core-level spectra has been widely investigated.19,21–23 We
will show that the 3BS solution of a multiband Hubba
Hamiltonian, where full details of the valence band struct
are included, can account for these spectroscopical feat
and interpret them in terms of on-site interaction betwe
localized~core! and itinerant~valence! states.

The paper is organized as follows: we present in Sec
the multiorbital Hubbard Hamiltonian and its relationship
the band Hamiltonian we want to implement; Sec. III d
scribes the main characteristics of the method which we
to get an approximate solution of the Hubbard Hamilton
in terms of self-energy corrections to band eigenstates an
spectral densities; Secs. IV and V specialize to the cas
valence and core states, respectively; the results and the
parison with experiments are presented in Sec. VI.

II. MULTIBAND HUBBARD HAMILTONIAN

Band structure eigenvalues are in many cases good z
order approximations to the excitation spectrum of a so
and it seems reasonable to use them as a starting point fo
inclusion of correlation effects according to the Hubba
model; the implicit assumption is that among all the man
body terms responsible for electron correlation, the Coulo
repulsion between electrons on the same site is the
which needs to be treated explicitly. To do this it is nec
sary to define precisely the relationship between band
Hubbard Hamiltonian. Let us consider first a localized ba
setf ias(r ,s) with i labeling the localization site,a the or-
bital character, ands and s the spin coordinate and eigen
value, respectively. The full many-body Hamiltonian in se
ond quantization is

Ĥ5(
ias

e ias
0 n̂ias1 (

abs
(
i j

t ia, j bĉias
† ĉ j bs

1
1

2 (
ia j b lgmd

(
ss8

Vias, j bs8,lgs8,mdsĉias
† ĉ j bs8

† ĉlgs8ĉmds ,

with n̂ias5 ĉias
† ĉias and ĉias ,ĉias

† destruction and creation
operators.

Heree ias
0 and t ia, j b are the intra-atomic and interatom

matrix elements of the one-particle Hamiltonian~kinetic en-
ergy plus ionic potential!, while Vias, j bs8,lgs8,mds are mul-
ticenter integrals involving the electron-electron interactio

Vias, j bs8,lgs8,mds5(
ss8

E f ias* ~r ,s!f j bs8
* ~r 8,s8!

3
e2

ur2r 8u
f lgs8~r 8,s8!fmds~r ,s!drdr 8.

In this last expression the dominant contribution comes fr
the one-center integrals withi 5 j 5 l 5m which are the usua
on-site Coulomb term

Uab
i 5Vias,ibs,ibs,ias5Vias,ib2s,ib2s,ias

and exchange term

Jab
i 5Vias,ibs,ias,ibs .
i

e
res
n

II

-
se
n
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-
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The full many-body Hamiltonian can then be written as

Ĥ5(
ias

e iasn̂ias1 (
abs

(
i j

t ia, j bĉias
† ĉ j bs1

1

2(ab
F(

i
~Uab

i

2Jab
i !(

s
n̂iasn̂ibs1(

i
Uab

i (
s

n̂iasn̂ib2sG
1•••~multicenter terms!. ~2.1!

Different approximations of the exact Hamiltonian~2.1! can
be obtained using a mean-field approach which amount
neglecting fluctuations in the electron occupation,

n̂iasn̂ibs85n̂ias^n̂ibs8&1n̂ibs8^n̂ias&2^n̂ias&^n̂ibs8&

1~ n̂ias2^n̂ias&!~ n̂ibs82^n̂ibs8&!

.n̂ias^n̂ibs8&1n̂ibs8^n̂ias&2^n̂ias&^n̂ibs8&,

where^ & means a ground state average. The mean-field
proximation can be applied to all the many-body terms
Eq. ~2.1! transforming it into a single-particle Hamiltonian

ĤMF5(
ias

e ias
MF n̂ias1 (

abs
(
i j

t ia, j bĉias
† ĉ j bs . ~2.2!

Any band structure calculation, where the interacting syst
is described as an effective single-particle problem, co
sponds to the self-consistent solution ofĤMF. Another pos-
sibility is to apply the mean-field approximation selective
to the multicenter integrals, keeping the full many-bo
character in the one-center terms; in this way one get
generalized Hubbard model

ĤH5(
ias

e ias
H n̂ias1 (

abs
(
i j

t ia, j bĉias
† ĉ j bs

1
1

2(ab
F(

i
~Uab

i 2Jab
i !(

s
n̂iasn̂ibs

1(
i

Uab
i (

s
n̂iasn̂ib2sG . ~2.3!

Since HMF and HH differ for the treatment of the on-site
correlation — included inHMF as a mean-field and treated a
a many-body term inHH — it is easy to show that

e ias
MF 5e ias

H 1(
b

@~Uab
i 2Jab

i !^n̂ibs&1Uab
i ^n̂ib2s&#.

~2.4!

Due to the translational periodicity we can introduce
extended Bloch basis set

cks
n ~r ,s!5

1

AN
(
ia

Cas
n ~k!eik•Rif ias~r ,s! ~2.5!

and the corresponding relations for creation/destruction
erators of electrons with wave vectork, spin s, and band
index n,
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âks
n 5

1

AN
(
ia

Cas
n ~k!eik•Ri ĉias ,

âks
n†

5
1

AN
(
ia

Cas
n ~k!* e2 ik•Ri ĉias

† .

HereCa
n(ks) are the expansion coefficients of Bloch sta

in terms of localized orbitals,N the number of unit cells.
HH becomes

ĤH5(
kns

ekns
H âks

n†
âks

n 1(
ab

(
kk8p

(
nn8

(
mm8

(
s

1

2N

3@UabCas
n ~k!* Cas

n8 ~k1p!Cb2s
m ~k8!*

3Cb2s
m8 ~k82p!âks

n†âk1ps
n8 âk82s

m† âk82p2s
m8

1~Uab2Jab!Cas
n ~k!* Cas

n8 ~k1p!

3Cbs
m ~k8!* Cbs

m8~k82p!âks
n†âk1ps

n8 âk8s
m† âk82ps

m8 #.

~2.6!

Now ekns
H includes also the kinetic part of the singl

particle Hamiltonian and the Coulomb and exchange in
grals are assumed to be site independent. In the same
HMF becomes

ĤMF5(
kns

ekns
MF âks

n†
âks

n , ~2.7!

with

ekns
MF 5ekns

H 1Qks
n , ~2.8!

Qks
n 5(

ab
uCas

n ~k!u2FUab

1

N(
k8n8

occ

uCb2s
n8 ~k8!u2

1~Uab2Jab!
1

N(
k8n8

occ

uCbs
n8 ~k8!u2G , ~2.9!

which is the analog of Eq.~2.4! for Bloch states. Notice tha
the sums overn8 are over occupied states. Equations~2.8!
and ~2.9! contain the correct recipe to include Hubbard c
relation starting from band structure eigenvaluesekns

MF and
are essential in order to avoid double counting ofe-e inter-
action.

III. HOLE SPECTRAL FUNCTION, SELF-ENERGY, AND
THE FADDEEV METHOD

We are interested in the hole spectral function

Dks
2 ~v!52

1

p(
n

ImG2~kns,v!, ~3.1!

which is the quantity directly related to the photoemiss
results we want to compare with. It describes the remova
one electron of wave vectork, band indexn, and spins and
is related to the hole propagator
s

-
ay

-

f

G2~kns,v!52^C0uâks
n†

Ĝ~z!âks
n uC0&,

z52v1E0~Ne!1 id ~3.2!

E0(Ne) and uC0& define the ground state of theNe-particle
system and

Ĝ~z!5
1

z2ĤH
~3.3!

is the resolvent operator. The hole propagator can also
written in terms of the hole self-energy as

G2~kns,v!5
1

v2ekns
MF 2Skns

2 ~v!
, ~3.4!

whereSkns
2 (v) is the self-energy correction tobandeigen-

valuesekns
MF . In order to calculateSkns

2 (v) we proceed as in
Ref. 6 adopting a configuration-interaction scheme wh
consists in projecting the Hubbard Hamiltonian on a set
states obtained by adding a finite number ofe-h pairs to the
Fermi sea, i.e., to the ground stateuF0& of the single-particle
Hamiltonian. We will adopt the three-body scattering a
proach where this expansion is truncated to include just
e-h pair: the state with one removed electron of moment
k and spins is expanded in terms of the basis set includi
one-hole configurations and three-particle configuratio
~one hole plus onee-h pair! we will denote byus& and ut&,
respectively,

us&[âknsuF0&, ut&[âq3n3s3

† âq2n2s2
âq1n1s1

uF0&,
~3.5!

with

q11q22q35k, s11s22s35s.

To be consistent the basis set for theNe-particle interact-
ing system will include zero- and two-particle configur
tions. The ground state of the interactingNe-particle system
coincides then with the noninteracting one; this is obvio
for the single-band Hamiltonian discussed in Ref. 6~the state
with zero and onee-h pair added coincide due tok-vector
conservation! and still holds in the present case of multiba
Hamiltonian sinceHH has no off-diagonal matrix element
among two-particle configurations. As a consequence in
3BS approximation the hole propagator is the average of
resolvent over statesus&.

By projecting the Hamiltonian~2.6! over the complete se
appropriate for the (Ne21)-particle system we get an ap
proximate expression forĤH appropriate to describe one
electron removal,

ĤNe21
H .Ĥ11Ĥ31V̂. ~3.6!

Here Ĥ1 is associated to one-hole configurations,

Ĥ15^suĤHus&us&^su,

Ĥ3 describes the contribution of three-particle configu
tions,
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Ĥ35(
tt8

^tuĤHut8&ut&^t8u,

andV̂ is the coupling between one- and three-particle sta

V̂5(
t

^suĤHut&us&^tu1H.c.

We leave the detailed expression of the matrix element
the multibandĤH to Appendix A and proceed to sketch th
method for the calculation of the resolvent~3.3!. We define
the three-particle resolvent, that is, the resolvent associ
to the three-particle interaction

F̂3~z!5
1

z2Ĥ3

and the Dyson equation which relatesĜ(z) to it,

Ĝ~z!5F̂3~z!1F̂3~z!@Ĥ11V̂#Ĝ~z!. ~3.7!

It is a matter of simple algebra to show that the hole pro
gator can then be expressed in terms ofF̂3 as

G2~kns,v!52Gss~z!

5
1

v2E0~Ne!1Hss
H 1(

tt8
F3tt8Vt8sVst

,

~3.8!

with the notationGss[^suĜus&, F3tt8[^tuF̂3ut8&, etc. Since
the difference between the ground state energy of
Ne-particle systemE0(Ne) and the average ofHH over us&
states turns out to be

E0~Ne!2Hss
H 5ekns

H 1Qks
n 5ekns

MF

the band eigenvalues appear naturally in the denominato
the hole propagator and, comparing Eq.~3.8! with Eq. ~3.4!,
we can identify the self-energy correction to band eigenv
ues we are interested in as

S2~kns,v!52(
tt8

F3tt8Vt8sVst . ~3.9!

The determination of the hole propagator is then redu
to the calculation ofF3tt8. This is done according to th
Faddeev scattering theory24 as described for the single-ban
case in Ref. 6. The method consists in separating the th
body Hamiltonian in diagonal and nondiagonal parts

Ĥ3
D5(

t
^tuĤHut&ut&^tu,

Ĥ3
ND5(

tt8
^tuĤHut8&ut&^t8u,

defining the diagonal three-body resolvent
s,

of

ed

-

e

of

l-

d

e-

F̂3
D~z!5

1

z2Ĥ3
D

and the scattering operator

Ŝ5Ĥ3
ND1Ĥ3

NDF̂3
DŜ.

The three-body resolvent can then be written as

F̂35F̂3
D1F̂3

DŜF̂3
D . ~3.10!

As shown in Appendix A and Ref. 6 the nondiagonal thre
body interaction is the sum of two potentials,

Ĥ3
ND5V̂h-h1V̂h-e ,

which describeh-h andh-e multiple scattering.
We define partial scattering operators

Ŝh-h5V̂h-h1Ĥh-hF̂3
DŜ,

Ŝh-e5V̂h-e1Ĥh-eF̂3
DŜ

which are related to the scatteringT matrices,

T̂h-h5V̂h-h1V̂h-hF̂3
DT̂h-h , ~3.11a!

T̂h-e5V̂h-e1V̂h-eF̂3
DT̂h-e , ~3.11b!

through

Ŝh-h5T̂h-h1T̂h-hF̂3
DŜh-e , ~3.12a!

Ŝh-e5T̂h-e1T̂h-eF̂3
DŜh-h . ~3.12b!

These are the Faddeev equations which must be solve
order to get Ŝ5Ŝh-h1Ŝh-e , F̂3 from Eq. ~3.10!, and
G2(kns,v) from Eq. ~3.8!. Inserting Eq.~3.12! into Eq.
~3.10! one gets the expression for the three-particle resolv
in terms of scattering operatorsSh-e andTh-h ,

F̂35F̂3
D1F̂3

D~ T̂h-h1T̂h-hF̂3
DŜh-e1Sh-e!F̂3

D . ~3.13!

Further steps are necessary in order to make this gen
method practical for real calculations — and further appro
mations as well. In the following we will specialize to va
lence and core states.

IV. VALENCE STATES

We adopt some simplifying assumptions for the descr
tion of photoemission from valence states of nickel. We w
considere-e correlation amongd electrons only and neglec
the orbital dependence of one-center integrals involving
lenced electrons; we set

Uab5H Uvv for a,b5 d orbitals

0 elsewhere

and similarly for the exchange parameterJab ; moreover we
will neglect Uvv2Jvv with respect toUvv . In this way the
Hamiltonian~2.6! reduces to
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ĤH5(
kns

ekns
H âks

n†
âks

n

1(
ab

Uab (
kk8p

(
nn8

(
mm8

(
s

1

2N
Cas

n ~k!*

3Cas
n8 ~k1p!Cb2s

m ~k8!* Cb2s
m8 ~k82p!

3âks
n†âk1ps

n8 âk82s
m† âk82p2s

m8 . ~4.1!

Finally we will exclude configurations withe-h pair added to
the majority-spin band as it would be strictly correct in t
strong ferromagnetic limit where no empty states are av
able in the majority-spin band.

The states which define the basis set for theNe21 system
are schematically illustrated in Fig. 1; the nonzero interact
potentials responsible forh-h and e-h scattering are also
indicated. Notice that holes and electrons of parallel spin
not interact due to the assumptionUvv2Jvv. 0.

We have already stressed that the Hubbard correla
enters the definition of quasiparticle energies twice: first a
mean-field correction tobareeigenvalues, transforming them
into band ones according to Eq.~2.8!; second through the
addition of self-energy~3.9!. The calculation of this las
quantity requires a generalization of the method illustrated
detail in Ref. 6 for the much simpler case of a single-ba
Hamiltonian. The situation here is complicated by the su
over orbital indices appearing in the effective Hamiltonia
This requires the definition of orbital-dependent diago
Green functions andT matrices as described in Appendix B
As a result the self-energy correction to a band eigenvalu
wave vectork, spins, and band indexn turns out to depend
on the quantum numbersn andk as

Skns
2 ~v!5(

b
uCbs

n ~k!u2F(
a

Uab

1

N (
k8

empty

uCa2s
n8 ~k8!u2

2Sbs~v!G . ~4.2!

The k-vector and band-index dependence of self-energ
associated to the local orbital coefficients which modulate
orbital self-energy

FIG. 1. Schematic representation of the basis set for the c
figuration expansion of the interacting state with one electron

moved from the majority-spin band.V̂, V̂h-h , V̂h-e describe the
coupling between one- and three-particle states, the hole-hole
the hole-electron interaction, respectively.
l-

n

o

n
a

n
d
s
.
l

of

is
n

Sbs
2 ~v!5(

a
E

Ef

`

dena2s~e!Th2h
ab ~v2e!

3@11UabAab~v2e!#, ~4.3!

wherenas(e) is the spin-dependent orbital density ofd va-
lence states andTh2h

ab is the orbital-dependentt matrix de-
scribing the hole-hole multiple scattering,

Th2h
ab ~v!5

Uab

11Uabg3
ab~v!

, ~4.4!

with

g3
ab~v!5E

2`

Ef
de8E

2`

Ef
de

na2s~e!nb~e8!

v2e82e2 id
. ~4.5!

Aab includes the hole-electron scattering; it is determined
solving the integral equation

Aab~v,e!5Bab~v,e!1E
Ef

`

de8na2s~e8!

3Kab~v,e,e8!Aab~v,e8!, ~4.6!

where

Kab~v,e,e8!5E
2`

Ef
de9na2s~e9!g2

b~v1e92e!Th2e
ab

3~v1e9!g2
b~v1e92e8!Th2h

ab ~v2e9!,

~4.7!

Bab~v,e!5E
2`

Ef
de8na2s~e8!g2

b~v1e82e!Th2e
ab

3~v1e8!S g1
ab~v2e8!1E

Ef

`

de9na2s~e9!

3g2
b~v1e82e9!g3

ab~v2e9!Th2h
ab ~v2e9! D .

~4.8!

Th2e
ab is the orbital-dependentt matrix describing the hole-

electron scattering,

Th2e
ab ~v!5

2Uab

12Uabg1
ab~v!

, ~4.9!

with

g1
ab~v!5E

2`

Ef
de8E

Ef

`

de
na2s~e!nbs~e8!

v2e81e2 id
~4.10!

and finally

g2
b~v!5E

2`

Ef
de8

nbs~e8!

v2e82 id
. ~4.11!

Equations~4.2!–~4.11! describe the procedure we have fo
lowed to calculate in practice self-energy corrections for
valence states of Ni reported in Sec. VI.
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V. CORE STATES

The localized character of core states is responsible
much stronger correlation effects associated with larger
site Coulomb and exchange integrals. In order to adapt
Hamiltonian ~2.6! to the case of core states we make t
following assumptions: we neglect the correlation among
lence electrons and assume them to be described by a s
band. In Eq.~2.6! the band indexn can have just two value
as does the orbital index and we are left with a two-ba
Hamiltonian

ĤH5Ĥvv1Ĥcc1Ĥcv , ~5.1!

where Ĥvv is the band Hamiltonian for valence electro
with thee-e interaction treated in the mean-field approxim
tion,

Ĥvv5(
ks

ekvs
MF âkvs

† âkvs

and

Ĥcc5(
ks

ecs
H âkcs

† âkcs

1 (
kk8p

(
s

Ucc

N
âkcs

† âk1pcsâk8c2s
† âk82pc2s ,

Ĥcv5 (
kk8p

(
s

1

N
@UcvCv2s~k8!* Cv2s~k82p!

3âkcs
† âk1pcsâk8v2s

† âk82pv2s1~Ucv2Jcv!

3Cvs~k8!* Cvs~k82p!âkcs
† âk1pcsâk8vs

† âk82pvs#.

Here Ucc5Jcc , Ucv , and Jcv describe the interactions be
tween core-core and core-valenced electrons.

Figure 2 shows schematically the configurations to be

FIG. 2. Schematic representation of the basis set for the c
figuration expansion of core states.
or
n-
e

-
gle

d

-

-

cluded for the 3BS description. Notice that configuratio
with one e-h pair added to the majority-spin band are no
considered: even if the number of empty states availabl
small, the stronger value of the interactions makes these s
tering channels no longer negligible. As shown in Fig. 2
have then to take into account scattering between particle
parallel spin proportional toUcv2Jcv and between particles
of opposite spin proportional toUcv . The extra configura-
tions where all the particles~holes and electrons! have the
same spin are calleduz&.

The procedure to calculate self-energy for core states
straightforward extension of the one outlined for valen
states. The core hole propagator turns out to be given b

G2~kcs,v!5
1

v2ecs
MF2(

tt8
F3tt8Vt8sVst2(

zz8
F3zz8Vz8sVsz

.

~5.2!

The presence here of extra configurations and extra inte
tions does not imply any major difference with respect to
case of valence states — just the addition of an extra term
the denominator of Eq.~5.2! and the necessity to solve sep
rately two Faddeev problems to calculateF3tt8 andF3zz8 for
opposite and parallel spin interactions, respectively. This
consequence of the fact that the Hamiltonian~5.1! does not
mix uz& andut& configurations. The Faddeev problem for th
determination ofF3zz8 is solved in the same way as de
scribed in Appendix B forF3tt8, substituting Ucv with
Ucv2Jcv and parallel spin instead of opposite ones. Mo
over the description of the core state in terms of a zero-wi
band with ad function as orbital density of states drastica
reduces the computational effort required to evaluate
noninteracting Green functions~4.5!, ~4.10!, and~4.11!.

The relationship between the energyecs
MF and the bare

core eigenvalue involves as usualQks
n @see Eqs.~2.8! and

~2.9!#; explicitly one has

ecs
MF5ecs

H 1@~Ucv2Jcv!^n̂vs&1Ucv^n̂v2s&#1Ucc^n̂c2s&.
~5.3!

It is interesting to make a comment concerning the role
the Coulomb repulsionUcc . Since any three-particle~one
hole plus onee-h pair! configuration must involve empty
states, no multiple scattering is associated withUcc and this
quantity gives rise just to a mean-field contribution. Co
valence interactionsUcv andJcv on the contrary modify the
bare core energies both through the mean-field contribu
and by self-energy corrections which originate from ho
hole and electron-hole scattering of opposite and para
spin described byF3tt8 andF3zz8, respectively.

VI. RESULTS

The calculation of self-energy corrections requires as
input ~i! the mean-field eigenvalues and eigenvectors for
lence electrons,~ii ! the energy of the core level, and~iii ! the
values of the Coulomb and exchange parametersUvv ,
Ucc , Ucv , Jcv . All these quantities can in principle be de
duced from anab initio density functional calculation; Cou
lomb integrals in particular can be obtained in the so-cal

n-
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constrained-density functional scheme25 — a procedure
which is, however, not free of ambiguities~see, for instance,
the discussion reported in Ref. 13! and can lead to large
variations in the estimated values. We have therefo
adopted a mixed strategy, using results ofab initio band
calculations to get quantities~i! only, treating all the others
as free parameters.

The band structure of ferromagnetic nickel has been ca
culated with the linear muffin-tin orbital~LMTO! method in
the atomic-spheres approximation~ASA! including the com-
bined correction term.26 The tight-binding LMTO basis set27

has been used, including nine orbitals (s, p d) per atom. The
resulting energy dispersion is shown in Fig. 3; the occup
tion numbers for valenced orbitals turn out to bê nv↑&5
4.68, ^nv↓&5 4.07. We have used the single-particle eigen
values and the correspondingd contribution to eigenfunc-
tions and orbital densities of states to calculate self-ener
corrections and spectral functions according to the theo
described in the previous sections. A value ofUvv5 2 eV
has been chosen in order to reproduce the observed ene
position of the valence band satellite; as we will show belo
we are able in this way to reproduce also other characterist
of the valence quasiparticle states such as bandwidth, qua
particle energy dispersion, and exchange splitting; this is
important result and represents a success of the present
proach: previous methods based on a simplified descripti
of the scattering channels14,15 in fact have not been able to
reproduce at the same time the satellite energy position a
the valence band width which turned out to be systematica
overestimated for values of the Coulomb integral fixed t
reproduce the satellite binding energy.

Figure 4 shows the comparison between our results a
recent angle-integrated/spin-resolved photoemission dat3

We find that the calculated total spectral functionDs
2(v)

defined as

Ds
2~v!5(

kn
Dkns

2 ~v!

closely reproduces the experimental energy distributio
curves for each spin component; notice in particular that th
6 eV satellite is observed clearly only in the photoemissio

FIG. 3. Single-particle band structure of nickel obtained usin
the LMTO method. Energies are referred to the Fermi energy. Op
triangles, minority-spin states; filled triangles, majority-spin state
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from majority-spin states in agreement with our results. T
two approximations we have adopted for the description
valence states, that is,Uvv2Jvv.0 and the strong ferromag
netic limit, make the self-energy corrections exactly zero
minority-spin bands and the comparison between our res
and the spin-resolved experimental data confirms the vali
of both these assumptions. As a further evidence of this
report in Fig. 4 the minority-spin spectral function calculat
after removing the assumption of strong ferromagnetism,
considering alsoe-h pairs added to the majority-spin ban
the small number of empty states and the relatively sm
value of the interactionUvv make these scattering channe
not efficient and the calculated spectrum is not significan
altered.

It is possible to perform a more refined analysis by loo
ing at thek-resolved spectral function; Fig. 5~a! shows the
spectral function for theK point andekn↑

MF 5 23.6 eV to-
gether with the corresponding self-energySkn↑

2 (v). The
spectral function shows a quasiparticle peak plus a sate
the first structure is associated to the pole of the hole p
pagator shown in Fig. 5~b! as the interception betwee
Re@Skn↑

2 (v)# and the straight linev2ekn↑
MF . The second

structure is associated to the maximum of Im@Skn↑
2 (v)# and

as such it will occur at the same energy at anyk vector. This
appears more clearly by extending the same analysis to
k points along the high symmetry line of the Brillouin zon
and plotting the energy position of the maxima
Dks

2 (v)5(nDkns
2 (v) to get the quasiparticle band structu

g
n
.

FIG. 4. Density of quasiparticle states of nickel for majority sp
~a! and minority spin~b! compared with experimental results o
angle-integrated spin-resolved photoemission results~filled tri-
angles! of Ref. 3. The results for minority-spin bands obtained wit
out the strong-ferromagnetic-limit approximation are shown a
broken line in panel~b!.
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7156 56F. MANGHI, V. BELLINI, AND C. ARCANGELI
of Fig. 6. By comparing the quasiparticle band structure wit
the single-particle results it appears that the majority-sp
eigenvalues are heavily affected by self-energy correction
showing a strong reduction of thed-band width and the pres-
ence of the above mentioned 6 eV satellite. Since th
majority-spin eigenvalues are shifted to lower binding ene
gies while the minority-spin ones are unaffected, the splittin
between majority and minority states becomes smaller th
in the original single-particle bands. This goes in the righ
direction since it is well known that single-particle calcula
tions overestimate this quantity; from Fig. 6 it appears th

FIG. 5. Spectral function~a! and self-energy~b! for theK point
and ekn↑

MF 5 23.6 eV. The interception between Re@S2(kn↑,v)#
and the straight linev2ekn↑

MF indicate the position of the quasipar-
ticle pole.

FIG. 6. Quasiparticle band structure of nickel along the hig
symmetry directions of the Brillouin zone. Energies are referred
the Fermi energy. Open triangles, minority-spin states; filled tr
angles, majority-spin states.
h
n
s,

e
r-
g
n
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t

the energy separation between majority and minority qu
particle peaks around theG point is 0.2 eV for the topmos
band. This result is in remarkable agreement with a rec
estimate reporting a split of 20468 meV along theS
direction.28 The same is true for the quasiparticle energy d
persion as a whole, which is shown in Fig. 7 compared w
the results of angle-resolved spin-integrated photoemis
spectroscopy of Ref. 29.

As far as core levels are concerned we consider here
3p level of nickel as a test case. Since the core levels of
isolated atom are degenerate in spin their spin dependen
a solid state effect, associated to the interaction between
atom and the solid it is embedded in; in other words the s
dependence of core-level energies is related to the spin
larization of the valence band on one side and to co
valence interactions on the other. According to our view
relevant quantities are the Coulomb and exchange integ
between core and valence orbitals which affect the b
atomic core energies both through the mean-field termQks

n

and self-energy corrections. The mean-field contribution
Eq. ~5.3! gives rise to a spin splitting proportional toJcv and
to the valence band spin polarization

ec↑
MF2ec↓

MF5Jcv~^n̂v↓&2^n̂v↑&!.

Notice thatUcv and Ucc do not enter this expression; the
affect the bare core levelec↑

H 5ec↓
H according to

ec↑
H 1@Ucv~^n̂v↑&1^n̂v↓&!1Ucc^n̂c↓&#[ec , ~6.1!

o
-

FIG. 7. Comparison between the calculated dispersion of h
quasiparticle states~circles! for majority-spin bands and angle
resolved spin-integrated photoemission results~diamonds! of Ref.
29.
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56 7157ON-SITE CORRELATION IN VALENCE AND CORE . . .
giving rise to a modified core energy levelec which is still
spin independent. The mean-field eigenvalues are relate
this quantity as

ecs
MF5ec2Jcv^n̂vs&.

We have used spin-orbit split values ofec , that is,ec
3/2 and

ec
1/2, to fix the absolute value of the core-level binding e

ergy, choosing thenJcv to reproduce the spin splitting of th
main peak observed in the core-level photoemission.3 The
last parameter, that is,Ucv , has been fixed in order to repro
duce the satellite’s energy position. The values which o
mize the agreement between our calculation and the exp
mental results are listed in Table I.

Figure 8 shows the calculated self-energy for the crea
of both majority- and minority-spin hole in the core lev
3p1/2. The same analysis obviously applies to the other sp
orbit split level 3p3/2. In the case of the minority-spin cor
hole the self-energy presents two well defined structures:
one at lower binding energy is related to the scattering
tween particles of parallel spin with strength proportional
Ucv2Jcv @see Fig. 2~f!# while the structure at higher bindin
energy is related toUcv and to the scattering between opp
site spin particles@see Fig. 2~e!#. Notice that two indepen-
dent factors determine the efficiency of the scattering p

TABLE I. Parameters used in the calculations of Ni 3p core
hole spectrum.

Ucv Jcv ec
1/2 ec

3/2

5.00 eV 2.50 eV 259.00 eV 257.50 eV

FIG. 8. Self-energy for the creation of majority-spin~a! and
minority-spin hole~b! in the core level 3p1/2.
to

-

i-
ri-

n

-

e
-

-
cess, the strength of the interaction on one side and
number of available states in the valence band on the ot
In the case of a minority-spin core hole the weaker para
spin interaction is compensated by the larger number
empty valence states and both the scattering channels inv
ing parallel and opposite spin particles play a role. The sa
argument applies to the case of the majority-spin core h
but now the weaker parallel spin interaction is associated
a small number of available empty valence states@see Fig.
2~c!#; for this reason the interaction between opposite s
particles@see Fig. 2~b!# remains the only efficient scatterin
channel. As a consequence the self-energy for the majo
spin core hole presents a single structure associate
Ucv .

As discussed in the preceding section satellite structu
are expected to occur at energies where the imaginary pa
self-energy has a maximum giving rise to a complex pole
the hole propagator and therefore to a short lived excitat
The structures in the calculated self-energy we have just
scribed and their origin are therefore essential in order to
a physical interpretation of the observed photoemission sp
trum. We report in Fig. 9 the calculated spin-integrated sp
tral density for the creation of a 3p core hole compared with
the photoemission results of Ref. 22. The spectrum show
main peak at about 66 eV with two characteristic spin-or
split structures (A, B) and two satellites (C,D). The decom-
position of the spectral function into contributions from th
two spin-orbit split levels 3p1/2 and 3p3/2 and from different

FIG. 9. Spin-integrated spectral function for the creation o
3p core hole compared with the photoemission results of Ref. 3~a!
and its decomposition into contributions from the spin-orbit sp
level 3p1/2 ~continuous line! and 3p3/2 ~dashed line!. ~b! refers to
majority-spin state and~c! to the minority-spin one.
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7158 56F. MANGHI, V. BELLINI, AND C. ARCANGELI
spins is also shown. The spectral function for the creation
a majority-spin core hole shows a main peak and a sate
for each spin-orbit split level; as discussed above in term
the self-energy this satellite is associated to the only effic
scattering channel which comes into play after the remo
of one majority-spin electron, that is, to configurations
Fig. 2~b! where the majority-spin core hole interacts wi
opposite spin particles in the valence band, with a stren
proportional toUcv . The spectral function for the creation o
a minority-spin core hole presents instead two satellites
each spin-orbit split level: the one at the higher binding
ergy is associated to the configurations of Fig. 2~e! where the
spin-down core hole interacts with opposite spin particles
the valence band with a strength proportional toUcv . Due to
the small number of empty states available in the spin
band this satellite is less pronounced here than in
majority-spin spectrum. The satellite at lower binding ene
is related to configurations of Fig. 2~f! and to scattering be
tween parallel spin particles of strength proportional
Ucv2Jcv .

The one-to-one correspondence between the config
tions of Fig. 2 and the satellite structures allows us to int
pret them as shakeup processes occurring after the rem
of either a minority- or a majority-spin core electron. Th
satellite at lower binding energy (C) is then associated to th
creation of one minority-spin core hole plus ane-h pair in
the valence band of the same spin, giving rise to a bo
state of three parallel spin particles which can be defined
triplet state; the satellite at higher binding energy (D) is
related to the creation of either a majority- or a minority-sp
core hole plus a valencee-h pair of opposite spin giving rise
to a singlet state.

To analyze the spin polarization of the whole core h
spectrum in more detail it is useful to consider the sp
resolved spectra and their differenceD↑

2(v)2D↓
2(v) re-

ported in Fig. 10. It appears that the spin polarity of stru
turesA,B,C, andD of Fig. 9 is ‘‘down,’’ ‘‘up,’’ ‘‘down,’’
‘‘up,’’ respectively. This is again in agreement with what h
been seen experimentally and reported in Refs. 19, 22,
23.

VII. SUMMARY

We have described a method for including short-ran
on-site interactions in the description of both valence a
core states of a solid system. When applied to valence s
of ferromagnetic nickel the method allows us to get a qua
particle band structure which compares much more favora
with the experimental observation than conventional me
field LDA band structure eigenvalues, reproducing the
served bandwidth, the energy dispersion, the satellite st
ture, and the exchange splitting. Since the method does
rely on a perturbation expansion it has a wide range of
plication, including any correlation regime. The extension
core levels is quite natural and allows us to take fully in
account the itinerant character of valence electrons. We
then a physical picture of the 3p core-level spectrum wher
the spin splitting of the main line is associated to the vale
band spin polarization and to the core-valence exchange
teraction; the two satellites are interpreted as arising fr
shakeup processes occurring after the removal of a core
f
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tron, involving the creation of ad-band e-h pair. Even
though our present choice of empirically determining the
rameters of the Hubbard Hamiltonian ensures that we ob
an overall good agreement with experiments we believe
the possibility of reproducing both the satellite structures,
main line, and their spin dependence with just four para
eters can be seen as a nontrivial result. The widely u
atomic models — which use empirical parameters as wel
require also anad hoc evaluation of the so-called extra
atomic effects which allow us to take into account the role
electrons on neighboring atoms;21 such effects are on the
contrary included here from the beginning since the full d
tails of the valence band structure of the solid system
considered. In this sense the present approach can be co
ered an appropriate tool to describe the response of an
erant electron system to the creation of a core hole.

APPENDIX A: MATRIX ELEMENTS OF THE
MULTIORBITAL HUBBARD HAMILTONIAN

As discussed in Sec. IV the application of the 3B
method to the valence band states of nickel requires the
plicit definition of matrix elements of the Hamiltonian~4.1!

containing a noninteracting part that we call hereĤ0 and the
on-site interaction among opposite spin electrons that we

note byĤ8. The matrix elements involve statesus& and ut&
defined in Eq.~3.5! and pictorially depicted in Fig. 1. We
have

FIG. 10. ~a! Calculated spectrum for the creation of a majorit
spin ~continuous line! and minority-spin~dashed line! 3p core hole.
~b! Difference spectrum between the two spin components.



integral

ones are

on

56 7159ON-SITE CORRELATION IN VALENCE AND CORE . . .
^suĤ0us&5 (
k8n8s8

occ

ek8n8s8
H

2ekns
H ,

^suĤ0ut&50,

^tuĤ0ut&5 (
k8n8s8

occ

ek8n8s8
H

1eq3n32s
H 2eq2n22s

H 2eq1n1s
H ,

^suĤ8us&5(
ab

Uab

N (
k9n9

uCa2s
n9 ~k9!u2H (

k8n8
uCbs

n8 ~k8!u22uCbs
n ~k!u2J ,

^suĤ8ut&52(
ab

Uab

N
Ca2s

n2 ~q2!* Ca2s
n3 ~q3!Cbs

n1 ~q1!* Cbs
n ~k!dk2q1 ,q22q3

,

^tuĤ8ut&5(
ab

Uab

N H (
k8n8

uCa2s
n8 ~k8!u2 (

k9n9
uCbs

n9 ~k9!u21uCa2s
n3 ~q3!u2 (

k8n8
uCbs

n8 ~k8!u2

2uCa2s
n2 ~q2!u2 (

k8n8
uCbs

n8 ~k8!u22uCbs
n1 ~q1!u2 (

k8n8
uCa2s

n8 ~k8!u2J ,

^t8uĤ8ut&52(
ab

Uab

N
C

a2s

n38 ~q38!* Ca2s
n3 ~q3!Cbs

n1 ~q1!* C
bs

n18 ~q18!dq2 ,q
28
dn2 ,n

28
dq12q3 ,q

182q
38

1(
ab

Uab

N
Ca2s

n2 ~q2!* C
a2s

n28 ~q28!Cbs
n1 ~q1!* C

bs

n18 ~q18!dq3 ,q
38
dn3 ,n

38
dq11q2 ,q

181q
28
.

As discussed in Sec. V the description of core states requires the inclusion of the interaction involving the exchange
that we call hereĤ9 and the extension of the complete set to the three-particle configurationsuz& of Fig. 2. It is easy to show
that in this case the diagonal matrix elements are similar to the previous ones and that the nonzero off-diagonal

^suĤ8ut& , ^tuĤ8ut8& , ^zuĤ9uz8& .

APPENDIX B: FADDEEV EQUATIONS FOR THE MULTIBAND HUBBARD HAMILTONIAN

We illustrate the procedure which leads to Eqs.~4.2!–~4.10! for the removal of one spin-up electron. The relationship~3.8!
between the diagonal hole propagator and the three-body resolvent is obtained by inserting the completeness relati

(
s

us&^su1(
t

ut&^tu51

into the identity

K sU~z2ĤH!
1

z2ĤH UsL 51,

that is,

@z2~H1!ss#Gss~z!2(
t

VstGts~z!51. ~B1!

SinceGts(z) can be obtained by Eq.~3.7! as

Gts~z!5(
ts8

Ftt8Vt8s8Gss8~z!, ~B2!

one gets

@z2~H1!ss#Gss~z!2(
tt8

VstVt8sFtt8Gss1(
tt8

(
sÞs8

VstVt8s8Ftt8Gss851. ~B3!
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By substituting the explicit definition of the matrix elements ofV̂ it appears that the two summations in Eq.~B3! involve terms
of the kind

(
bd

Cb↑
n ~k!Cd↑

n8~k!* ,

with n5n8, nÞn8 in the first and second sum, respectively. For this reason it seems reasonable to neglect in Eq.~B3! the last
summation with respect to the first one getting in this way Eq.~3.8! as a result.

According to Eq.~3.9! the self-energy is given by the sum

(
tt8

F3tt8Vt8sVst5
U2

N2 (
q1q2q3

(
n1n2n3

(
ab

Ca↑
n1 ~q1!* Ca↓

n3 ~q3!Cb↓
n2 ~q2!* Cb↑

n ~k!

3 (
q18q28q38

(
n18n28n38

(
gd

C
g↑
n18 ~q18!Cg↓

n38 ~q38!* Cd↓
n28~q28!Cd↑

n ~k!* ^q1n1↑q2n2↓q3n3↓uuF̂3
D

1F̂3
D~Ŝh2e1T̂h2hF̂3

DŜh2e!F̂3
Duq18n18↑q28n28↓q38n38↓&, ~B4!

where we have used the definition~3.5! for ut& andut8&. Let us define now the orbital-dependent free propagator describinh-
h scattering,

g3
ab~q3n3v!5

1

N2 (
q1n1q2n2

Ca↑
n1 ~q1!* Ca↑

n1 ~q1!Cb↓
n2 ~q2!* Cb↓

n2 ~q2!

v2~E02eq1n1↑
MF 2eq2n2↓

MF 1eq3n3↓
MF !

,

where the summation is over filled states of band indicesn1 andn2. By using the definition~3.11! it is easy to show that

(
q1n1q2n2

Ca↑
n1 ~q1!* Cb↓

n2 ~q2!* ^q1n1↑q2n2↓q3n3↓uĜ3
DT̂h2huq18n18↑q28n28↓q38n38↓&55

Ca↑
n1 ~q1!* Cb↓

n2 ~q2!* g3
ab~q3v!

12Uabg3
ab~q3v!

dq3,q
38
.

It is also useful to define the orbital-dependentt matrix for h-h scattering,

Th2h
ab ~q3n3v!5

Uab

12Uabg3
ab~q3n3v!

.

Similar definitions and relations hold fore-h scattering. It is then a matter of simple algebra to transform Eq.~B4! into the
form

(
tt8

F3tt8Vt8sVst5(
b

uCb
n~k↑ !u22(

a

Uab

N (
q3n3

$uCb
n~q3↓ !u21Th2h

ab ~q3n3!@ uCb
n~q3↓ !u21UabAab~q3n3!#%,

where

Aab~q3n3!5
1

N(
q1q2

(
n1n2

Ca↑
n1 ~q1!* Cb↓

n2 ~q2!* Ca↓
n3 ~q3! (

q18q28q38
(

n18n28n38
C

g↑
n18 ~q18!Cg↓

n38 ~q38!* Cd↓
n28~q28!

3^q1n1↑q2n2↓q3n3↓uF̂3
DŜh2eF̂3

Duq18n18↑q28n28↓q38n38↓&.

From now on the procedure is the same as the one described in Ref. 6, adopting in particular the so-call
approximation10 which allows us to transform all the summations overk vectors into integrals involving the density of state
1L. C. Davis, J. Appl. Phys.59, R25 ~1986!, and references
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