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Electron transport was studied in an open square quantum dot with a dimension typical for current experi-
ments. A numerical analysis of the probability density distribution inside the dot was performed which enabled
us to unambiguously map the resonant states which dominate the conductance of the structure. It was shown
that, despite the presence of dot openings, transport through the dot is effectively mediated by jugbra few
even a single eigenstates of the corresponding closed structure. In a single-mode regime in the leads, the
broadening of the resonant levels is typically smaller than the mean energy level spactdig,the contrary,
in the many-mode regime this broadening typically exceedsd has an irregular, essentially non-Lorentzian,
character. It was demonstrated that in the latter case eigenlevel spacing statistics of the corresponding closed
system are not relevant to the averaged transport properties of the dot. This conclusion seems to have a number
of experimental as well as numerical verifications. The calculated periodicity of the conduction oscillations in
the open dot is related to the formation of the global shell structure of the corresponding isolated square. The
shell structure reflects periodic clustering of levels on the scale exceeding the mean level spacing separation.
Each shell can be ascribed to the certain family of the periodic orbits in the square. However, a particular
arrangement of the leads may lead to the selective coupling between them, so that not albshelisrna-
tively, families of periodic orbits mediate transport through the dot. This selective coupling leading to the
suppression of the contribution from some families of orbits can be tested experimentally on the dots with the
different arrangements of the leadi$0163-182807)04535-9

I. INTRODUCTION model is well-justified for noninteracting systems in a tun-
neling regime of the weak coupling to the leads. It has been
In nanoscaled semiconductor quantum dots, electron margued, however, that it can be used when the leads become
tion is confined in all spatial dimensions and the lateral shapepen. The correspondence between magnetoconductance os-
of the dot can be controlled by an applied gate voltagéln  cillations and the oscillatory character of the DOS has also
high quality samples at low temperatures, the phase cohefeen found in antidot arrays.In addition, shell structures
ence length often well exceeds the dimension of the devic®hich have been detected experimentally in the spectra of
and large-angle elastic scattering events occur only at thgmall metal clusters, have been successfully interpreted in
boundaries of the structure. Such a transport regime is usi€MS Of the periodic orbit theory for the DGS.
ally referred to as ballistic. During recent years a great deal OUr Present work is motivated in part, by a recent

; 1,12 ; indi Mav
of efort has been focused on the ransport propertes of baBXbEEA, WASI® FIOT Perocie condueinee SelEr
listic microstructures. In particular, the statistical propertie

Sjistic square dot as the Fermi wave vectkg,, was varied.

of the conductance fluctuations of quantum dotls have regere we critically examine the shell-structure model for the
ceived great attention, both theoreticifiy’! and

; tally:® Due to their reduced si ballistic dot square dot. We compare predictions given by this model to
expenmentally. - Due to their requced size, balistc dots ,q guantum mechanical calculations performed for the open
represent rewarding objects for studying the relation betweegquare geometry with the dimension typical for real struc-

quantum mechanics and the corresponding semiclassicgjres. We show that the calculated periodicity of the conduc-
electron dynamics. This reveals itself in the geometry-ion oscillations in the open dot is related to the formation of
specific, nonaveraged features in the conductancge global shell structure in the DOS of the corresponding
fluctuations.®8-1219-24 isolated square. There exists a certain correspondence be-
For interpretating the magnetoconductance oscillations ifween the character of eigenstates defining different shells
a circular quantum dot, a simple “shell structurédr “tun-  and the related families of periodic orbits. We also demon-
neling”) model has been put forward by Perssatral® It strate that particular arrangements of the leads may lead to a
relates the conductance fluctuations to the density of stateselective coupling such that only selected shélls alterna-
(DOY) of the corresponding closed system. The DOS is chartively, periodic orbit$ effectively mediate transport through
acterized by the global shell structure which reflects a perithe dot.
odic clustering of levels on the scale exceeding the mean The second motivation of our work stems from the cur-
level spacing separation. The DOS of the isolated dot is agent interest in the highly topical area of “quantum
sumed to be Lorentzian broadened due to the effects of leathaos.”?’ The statistics of the nearest level spacing in clas-
openings and it is calculated on the basis of the Gutzvillesically non-integrable chaotic billiards in the absence of a
periodic orbit theor§® or quantum mechanicalf?* This  magnetic field obeys the Wigner or Gaussian orthogonal en-
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semble distribution. This is usually taken as a definition ofmany-mode regimes. In this section we also examine
guantum chaos, which is a quantum mechanical analog téscarred” features seen in the wave-function pattern in the
classical chaotic dynamics in a closed billiard. In contrasttransmissive regime. Finally, we critically examine the pos-
for classically regular systems the corresponding statistics isibility of discussing transport characteristics of open dots on
Poisson-like, which reflects an integrable character of thdhe basis of the eigenlevel spacing statistics of the corre-
underlying classical dynamics. Transport properties of opegPonding isolated systems. In Sec. IV we review the “shell-
systems are often analyzed on the basis of the level spacir(ﬁiﬁrucwre" model (_)f c_onductance oscillations for t_he square
statistics of the corresponding isolated dots. This is nca an 9ot and compare it with our full quantum mechanical calcu-
priori evident assumption and several conflicting reports dgations: A summary of the main results of Sec. V concludes
exist in the literature on the effects of leads on the electrorlihe paper. A very prehmm_ary account on a part of this work
dynamics in open systems. In particular, Ref. 28 shows thataS been presented previouSty.
the statistics of the spectra for open dotdich are defined
in terms of the dwell timepare exactly the same as those of IIl. BASIC THEORY
the corresponding closed system. At the same time,
result€®?® suggest that the leads attached to the dot may The system under investigation is a relatively large square
change the level statistics, so that transition to chaos cafot with the sideL =1 um which is typical for current ex-
occur in a nominally regular system. On the contrary, WangPeriments. It is connected to reservdirby quantum-point-
et al*° conclude that the openness of the dot makes chaotigontact-(QPC) like openings(leads. While the dimension
scattering nonessential. of the square is fixed, the arrangement and number of leads
Besides, in the current literature one can find a broadire varied as will be depicted in the insets to the figures. In
spectrum of opinions on the possibility of resolving, in thethe present work we concentrate mostly on the transport
transport experiment on the open dot, resonant states relatérough open dots, such that Coulomb charging is not impor-
to the eigenlevels of corresponding isolated struct(¢hen  tant. For the sake of simplicity, hard wall confinement and a
the dot becomes open, eigenlevels interact and acquire a fiat potential profile inside the dot are assumed which seems
nite broadening due to the finite lifetime associated with theo be a good approximation for large déts*We disregard
possibility for electrons to escape from the dot via leptts.  effects of the soft impurity potential due to remote donors.
the many-mode regime in the leads, this broadening mighRRecent theoretical studies show that the influence of this po-
well exceed the mean energy level separationresulting in ~ tential on quantum transport in the dots appears to play only
an overlap of a vast number of resonances. Also, the preg minor role?®** As we focus on the ballistic regime of
ence of dot openings may cause a significant distortion ofransport when the phase coherence lenigsh,exceeds the
corresponding eigenstates. Under these circumstances it @mension of the dotl., inelastic scattering is disregarded.
not clear whether a discussion of transport through an opeWe briefly discuss effects of the inelastic scattering on the
dot on the basis of the properties of the closed structure i§onductance through the dot in Sec. IV. )
still meaningful. To the best of our knowledge, up to now no  Our calculations are based on the LandauettiBer for-
direct theoretical calculations on the actual broadening of théhalism which relates the conductance properties of the de-
resonant levels for the open dots in the transmissive regimece to its scattering characteristitsin the simplest case of
are available. the two-terminal geometry zero-temperature conductance
In this paper we hope to contribute to the clarification ofreadsG(e, T=0)=2e’h Tr(t"), wheret, z(€)=(t),.z is
the above mentioned issues. Our numerical analysis enabl&e transmission amplitude from incoming staté¢o outgo-
us to unambiguously map the resonant states mediatingg stateg at energye. The effects of a finite temperature
transport through the open square and to find their broade@re accounted for by the convolution &f(e,0) with the
ing. We demonstrate, that despite the openness, transpaterivative of the Fermi-Dirac distributiorf(Eg,T), at the
through the dot takes place via just a few resonant energgiven Fermi energy,Er, G(Eg,T)=—[de G(¢,0)df(e
states. In a single-mode regime the broadening of the reso- Eg,T)/de.® The scattering matrix is calculated on the
nant levels is typically smaller thah. As far as the single- basis of a hybrid recursive Green-function technijwehich
mode regime is concerned, our results tend to support this proven to be numerically efficient, in particular, for the
conclusior® that the statistics of the spectra for open dotscase of large structures and high magnetic fields.
follows that one of the corresponding closed system. How- In order to understand the relations between the conduc-
ever, in the many-mode regime, energy broadening typicallyance fluctuations and resonant energy states of the square,
exceedsA and has an irregular, essentially non-Lorentzianwe study the probability density distribution inside the dot,
character. We demonstrate that in this case eigenlevel spad:(x,y). A drawback of the Green function technique used
ing statistics of the corresponding closed system are not rehere is that one does not obtain the wave function every-
evant to the averaged transport properties of the dot. Thighere in the system after the scattering problem is solved.
conclusion seems to have a number of experimental as wellhus, to calculat& (x,y) we first solve a scattering problem
as numerical verifications. and find the Green functions in the inner (¢lapenings)
The paper is organized as follows. In Sec. Il we presentegion and transmission and reflection amplitudesd,
the basic theory which we use for our calculations of the dotherefore, wave functionst the boundary slices between the
conductance and the mapping of resonant states mediatinigner region and the reservoifse., wide leads Then, re-
the transport in the dot. In Sec. Il we discuss resonant statezursively iterating slice by slice inside the dot by making use
of the open dot. We focus on the three different transporpf the Dyson equation, we recovaf(x,y) in the inner re-
regimes, namely, the tunneling, the single-mode, and thgion. Details of the calculations are reported elsewfiére.
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Analyzing the probability density distribution inside the
dot we are in a position to identify resonant energy states
which effectively mediate transport through the dot at
a givenEg. To do this, we numerically expand the solution
of the scattering problem in the open ddt,(x,y;E), in
the set of eigenstates of the closed dak,,,= (2/
L)sin(mmxL)sin(zny/L) [with eigenenergies ey =2/
2m* (k2,+k2); k= (7m/L), ko= (7n/L)]

(20.3)
(20,2) |
a6

mny

2 . oammx
‘I’(x,y;E)=[§ ; Cnr(E)sin——sin——. (1) (15,13)

13,15)
(14,14),
10.,17)
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1
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]

To outline the meaning of the expansion coefficientg we
start from the trivial case of an isolated dot. In this situation R
the wave function in the left hand side of Ed) is one of the 1 <
eigenstates of the system, such tba,p(E)z&E,Emn repre- S ‘

1 L

sent discrete eigenlevel spectrum of the dot. When the sys- 1
tem become_s open, the time which electron spends_ in the_: QOt Y41 243 245 24 25
becomes finite. Therefore, eigenenergy levels acquire a finite 0 (10° m™) n (10° m)
broadening and transform int@sonant statesObviously, : ’
coefficientscy, represent t_he contributions o_f the_resonant FIG. 1. Lower left: The conductance of the square Ghe-
states{m,n} (associated with the corresponding eigenstatesnatically depicted in the upper pahéh the tunneling regime as a
{m,n}) in the total wave function. An energy interval where function of the sheet electron density= Egm*/7#2. Temperature
lcmn(E)|? is distinct from zero gives a broadening of the T=0. Shadow regions in the leads represent tunneling barriers with
resonant stat¢m,n}. With further opening of the dot, the the height exceeding the Fermi energy. Lower right: Eigenenergy
scattering state becomes a linear combination of the indilevels of the isolated dot. Height of the peaks represents the degree
vidual broadened statgsn,n}. of degeneracyl or 2. Upper panel shows the calculated probabil-

Similar mapping of the resonant states of the open dot caity density distribution ¥ (x,y)|? inside the dot for one of the tun-
be performed for a structure of arbitrary shape and with aneling peakgleft) and the corresponding numerical results for the
finite magnetic field applied. In this case, generally, one hasoefficients/cy,,|? calculated on the basis of E€) (right). Dashed
to start from the numerical solution of eigenva|ue prob'em“nes indicate the circle with the radius= k|:|_/7T. A similar analy-
calculating a complete set of eigenstates. This would make $is has be_en done for the rgst of the peaks and the correspondence
corresponding numerical analysis much more complicateaet"‘_’e‘?” (_algenstates of the isolated square and resonant levels of the
and time consuming. For the square geometry, @.is dot is indicated by the arrows. Quantum_ numbers of the resonant
simply equivalent to the complex space sine-Fourier trans§FateS’,m'n)’ are shown in the parenthesis. In the case undgr con-
form. Therefore, we can use standard fast numerical methodddération the side of the dot was chosen tolbe0.5 um (in
for performing such a transform which greatly facilitates oyrcontrast to the case of open dots, Figs. 2-5, wherd um.)

calculations. Note, that a similar analysis based on the spacg, ..o\ hat extended into the barrier region. Thus, in the

sine-Fourier transform expansion of the experimentally ob—present arrangement of the leads, theomponent of the

served “scarlets” pattem in the water surface driven by thewave vector is always smaller than the corresponding value

high-frequency shaker in tanks with different shapes ha?or the isolated dotk,=mm/L. The larger the quantum
been done in Ref. 38. numberm, the more the wave function extends into the tun-
neling barrier region. This lifts a level degeneracy and causes
lIl. RESONANT STATES OF THE SQUARE DOT the shifting of the positions of resonant level maxima to-
wards lower energies in comparison to the unperturbed dot.
) ) ) ) As an example, see Fig. 1, a double degenerate level
_ In this section we discuss the relations betyveen resonqr@h,ls,(l&m of the isolated dot splits, with a larger shift

eigenstates of the dot apd conductance peaks in the tunnelifg, ihe statg(15,13 which has larger quantum number A
regime, when the dot is weakly coupled to the le&sise  ghiting of resonant levels was also found in the case of
inset in Fig. 3. In what follows we consider an idealized tunneling through a-shaped nanostructure whose size was

model of noninteracting electrons. comparable to the Fermi wavelendth.
Each conductance peak, as shown in Fig. 1, corresponds

to an excitation of one single resonant energy level which
effectively mediates transport at the given Fermi energy.
Near its maximum, each peak is characterized by the Lorent- Figure 2@ shows conductance fluctuations of the open
zian shape, in accordance to the Breit-Wigner formallsm square dot where lead openings are adjusted to support one
(this can be seen on the scale much finer than that one of Figropagating mode. The probability density distribution
1). The positions of the peaks are shifted with respect to thé¥ s * is shown for two representative values of the Fermi
corresponding eigenenergy levels of the isolated sqleire wave vector,kg=2m*Eg/fi=\2mn,, where ng is the

Figs. 1@) and Xb)]. Because of the presence of the tunnelingsheet electron density. Here the patterfb{x,y)|? exhibits
barriers of the finite height, the wave function in the dot isa complicated structure, where eigenstates of the isolated

A. Tunneling regime

B. Single-mode regime
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m FIG. 2. (a) The conductance of the square dot
(schematically depicted in the ingets a function
of the sheet electron density;=Em*/m42.
The side of the dot. =1 um; temperaturd =0.
The lead openings support one propagating
mode. Insets show calculatd® (x,y)|? inside
the dot for two representative valuesmafand the
corresponding numerical results for the coeffi-
cients|cp? calculated on the basis of EdL).
Dashed lines indicate the circle with the radius
r=KkeL/7. (b) Dependence of the coefficients
|cmnl? identifying the dominant resonant states
with the quantum numbersr(;n) on the sheet
electron densityng. A horizontal bar indicates
the mean energy level spacidg (c) Dwell time
of the dot calculated numerically on the basis of

Eq. (2).

dwell time
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square are not easily recognized. Thus, a nhumerical analysisrough the structure is still effectively mediated by a few
on the basis of Eq(1), in contrast to the tunneling case, is eigenstates of the corresponding closed dot with the eigenen-
essential. Calculating the expansion coefficieats,, we  ergies lying in close proximity to the Fermi energy
find that, at the giverkg, only those coefficients associated ¢, ,~E.

with the circle in the k space with the radius  Calculating the coefficients,,, as a function of the Fermi
R=kg~ y2m* e, /fi=7ym“+n</L are distinct from zero, energy, we extract information about the lead-induced broad-
see Fig. 2a). (Note that nonvanishing contributions from ening of the energy levels of the dot. A contribution of the
other coefficients would indicate that eigenstates of the isogominant resonant energy states is shown in Fif) &t a
lated dot are essentially distorted by the lead openings SU%\ven Fermi energy, remaining coefficients are at least of the
that a discussion of the transport in open structure in terms Qdrger of magnitude smaller than those shown in the figure
eigenstates of the isolated dot does not make sefiypi- The mean energy level spacin=27#2m*L%~70 mK,

Ca”)f/f,i vivenf[lnd it\?at Oglyrﬁrfemandnstﬁgn%“Teiegren g ilif:]ble fis indicated by a horizontal bar. In contrast to the tunneling
coetlicients give a dominant co ution. oadening O.regime, the line shape 9¢€,,(E)|? can be non-Lorentzian.
the resonant levels due to the effect of the dot openings in . . )

. . . . Moreover, different states are characterized by different
the k space is less than the distance between neighborin

eigenstates whose quantum numbers differ by onefroadent;ngs dan_d thehé’ ".‘d"’:{] Oﬁﬂap with e?ch othelr ' HIOW'
AK=|K,— Kz 1| =|Ky—Kns 1| = /L. Therefore, we con- ver, a broadeninghalf width) of the resonant energy levels

clude thatdespite the presence of dot openings, transportS typically less tham. Therefore transport measurements
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at very low temperatures in a single-mode regime in the | 2
leads may probe a single resonant energy level of the dot _— Cmn
A comparison between Figs.(@ and 2b) shows that i 20
features in the conductance of the dot are related to excita- _ Z§iiE ]
tions of the particular eigenstates of the square. However, N=1 GEh E 20
this correspondence is rather complicated: different eigen- it " 10
states can be responsible for opposite features in the dot con- LS 1
ductance. As an example, the eigenstéitd,34 causes a ] B 0 b 1o 20 30
conductance peak, whereas the eigensaied leads to a S
dip. 2 1 .
The above features in the conductance can be understood N=3 80
on the basis of a simple “resonant tunneling” model. If only - 20 |
one single eigenstate is excited in the dot at the given Fermi " 10
energy, it gives rise to a conduction peak, similar to that one : ]
in the tunneling regiméthough much broadened due to the : : 0 T 2 5
effect of the lead openingslf several eigenstates effectively n
mediate transport, interference between them may cause the ‘77””“ 1 _
amplitude of the total wave function in the vicinity of two N=10 : B 30 -
dot openings to be different. This, in turn, will lead to a 20
difference in coupling strengths between the state inside the 3NZ i n 10
dot and, correspondingly, incoming and outgoing states in 2 Sl ]
the left and right leads. In this case “resonant” transmission = U S
with the unitary transmission coefficient is no longer pos- 0 10 ,272 30

sible. Therefore, in the case where several states simulta-

neously mediate transport in the dot, the phase relations be- FIG. 3. Left panel: probability density distribution¥(x,y)|?

tween them and their mutual interference define the couplindpr the dot of Fig. 2 calculated for one representative value of

strength to the outer states and govern the behavior of thg-=1.15<10° m~’. Dot openings suppofi=1,3,10 modestop

transmission coefficient. to bottom). Right panel: corresponding expansion coefficients
|cmnl? calculated on the basis of E€L). Dashed lines indicate the
circle with the radiug =kgL/ .

C. Many-mode regime

cally contribute to the conductance at a gi\lgn, a detailed

explanation of the features of the dot conductance is not

possible.

Figure 3, left panel, shows a probability density distribu-
tion for one representative value kg in a square dot where
lead openings transmil=1,3,10 propagating modes. The
corresponding expansion coefficierds,, calculated on the
basis of Eq.(1) are shown in the right panel. As the lead
openings become wider, a number of the resonant states ex- A probability density distribution pattern has been visual-
cited in the dot increases. Nevertheless, like in the singleized for a number of open structures, like stadium-shdped,
mode regime, at the given Fermi energy, a nonvanishingircular®?* or square dot$>*! The density distrubution of
contribution comes only from the coefficients which lie in both chaotic and regular structures forms patterns or regions
the closest proximity to the circle with the radils in the  of enhanced density. Ilosed stadium billiards, for ex-

k space. Therefore, even in a many-mode regime, transpoaimple, such regions, so-called scars, sometimes resemble
through an open structure is still effectively mediated byclassical trajectories in a striking way“*?In analogy to this,
eigenstates of the corresponding closed dot. the diamondlike features found in the wave function pattern

A broadening of the resonant energy levels increases witin an open square dot have been associated with the classical
an increase of the lead openings. This is illustrated in Fig. 4rajectories of a particle bouncing in the squ#t&he natural
for a square dot wherBl=5 propagating modes are avail- question to be asked in this context is “Do scarred features
able in the leads. Wave-function patterns are analyzed on the open dots represent a new “animal,” or can they be re-
basis of Eq.(1) and contributions from dominant states arelated to well-known “scarred” eigenstates of the classically
shown in a representative interval of the Fermi energy. Typichaotic closed systems?”
cally, several states dominate transport at a gisgn A The probability density distribution of the total wave
broadening of the energy levels has, as a rule, a complicatednction in the dot under consideration generally has a com-
essentially non-Lorentzian character with half width beingplicated character, see Figs. 2, 3. However, our expansion
different for different states. In contrast to the single-modeanalysis, Eq.(1), unambiguously shows that the complex
regime, a half width of the resonant energy levels is typicallypattern observed is merely a result of a superposition of a
larger than the mean energy level spacifig]t is interesting  few regular eigenstates of the square taken with different
to note, however, that the broadening of some resonant statesights. Occasionally the pattern associated with
still does not exceead even with five modes in the leads. |¥(x,y)|? exhibits features resembling the classical ball tra-
Comparing the conductance of the dot, Fig. 4 and the depefjectories in the squarfgight image in Fig. 2(a)]. However,
dencec,,,=cmn(Eg), One can trace a certain correspondencehey can hardly be identified with them. Indeed, according to
between the two. However, because many eigenstates typghe Heisenberg principle, the uncertainty in spatial coordi-

D. Wave-function scarring
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Therefore, we conclude that scarred features seen in the
wave-function density distribution in a square dot are not
related to classical trajectories, but can be thought of as a
result of superposition and mutual interference of several
regular eigenstates of the corresponding closed structure me-
diating transport at the given Fermi enerd@ccasionally
they may resemble classical trajectori®s|though scars in
this sense are scargénstead, we shall focus on a different
aspect of the probability density pattern in the square dot.
Namely, the features typically seen in the portraits of
|W(x,y)|? in a striking way resemble “scarlets,” the random
network of ridges resulting from the superposition of the
plane waves with random amplitudes, directions, and phases
but with the same wave-vector magnitutien contrast, a
similar superposition of the plane waves but with the spread
of wave-vector magnitude produces a qualitatively different,
speckle-type pattern. The scarlets are thought to be the pre-

— (28,24) . :
— (14,34) secursors of scars, since they are much less organized and

are not directly related to the periodic orbifsThe above

4
. F similarity is not accidental and is merely due to the fact that
a2 only states with the same wave vecfolose tokg) are ex-
B cited in the dot. Similar “scarlets” features have also been
00 experimentally observed as a network of capillary waves
5 formed on a water surface in agitated ripple tarfkslote
o that in the latter case the behavior of the velocity potential of
20 ' ‘ ‘ ’ the water surface is governed by the Helmholtz equation
2.004 2.006 2.008 2.010 2.012 2.014 2.016 2.018

5 which in a certain limit is equivalent to the two-dimensional
n (10" m") . “ g .
. stationary Schrdinger equation for a quantum patrticle.

FIG. 4. (a) The conductance of the square dsée inséetin a
many-mode regime in the lead openinlyss 5. The side of the dot
L=1 um; temperaturd = 0. (b) Coefficients|c,,,|? identifying the
dominant resonant states with the quantum numbmrga). A hori-
zontal bar indicates the mean energy level spadingc), (d) The

E. Can one discuss transport characteristics of open dots
on the basis of the eigenlevel spacing statistics
of the corresponding isolated systems?

same agb) but in a refined scaldThe contribution from the three In this section we critically examine several
dominant states indicated ib) is not shown} (¢) Dwell time of the  approache€?8to the analysis of the statistics of the spectra
dot calculated on the basis of E@). of open dots. On the basis of our direct mapping of resonant

states performed for an open square dot, we hope to contrib-
nate isAx~1/Ak. The uncertainty of the vector of an Ute to the clarification of some fundamental issues in this
electron in the dot is determined by the broadening of th&ONntext.

resonant levels and. is shown in Sec. 11l B. to be of the order A Statistical analysis of the distribution of the energies at
of Ak=/L. This gives usAx~L, indicating that an elec- resonances of conduction fluctuations in chaotic stadium and

tron is delocalized in the dot and the above “scars” repre—regLJIar circular billiards has been performed by Istiion

sent an interference picture of a few sine-type particle—in—the?c’th billiards the statistics foliow the ngner—‘:cype distribu-
: tion which was taken as an indication that “even a small
box eigenstates.

. erturbation around the holdfead openingsimmediately
Note that our analysis has been performed for the SquarFéauses some nonintegrable effect on the statistics.” With re-

d.Ot where partlcle-ln-the-box eigenstates can _be written in %ard to this analysis, the question immediately arises “does
simple analytical form. However, we are confident that oury,o regonance energy statistics of the conductance fluctua-
major conclusion that transport in an open structure is effeCong reproduce the corresponding statistics of the isolated
tively mediated by the eigenstates of the correspondingystem?” In Sec. Ill B we have shown that features in the
closed system holds regardless of the shape and underlyirgnductance oscillations can be understood from the analysis
classical dynamicsgregular or chaotic In particular, total  of the set of eigenstates mediating transport at the given
wave functions in an open circular dot calculated by Berg-Fermi energy. However, even in a single-mode regime, reso-
grenet al** show that transport through the dot occurs vianant energies in the conductance fluctuations only occasion-
states resembling corresponding Bessel-type wave functiorslly correspond to resonant eigenstates of the isolated dot.
for the isolated circle. Besides, it seems unlikely that a presinstead, in most cases resonant energies are related to those
ence of the weak magnetic field could change a situation agnergies when more than one state is simultaneously excited
far as the cyclotron radius ignuch larger than the dot size in the dot such that their mutual interference leads to the
and the edge state regime is not achieyee., adiabatic resonance behavior of the transmission coefficient. There-
transport via edge states does not take place fore, in our opinion, Wigner-type statistics of the spacing of
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the conductance fluctuation resonances cannot be taken aste dwell time does not properly identify resonant eigen-
indication of the transition to chaos in a nominally regularstates mediating transport through the dot.

but open system. Furthermore, the results of our analysis strongly suggest
Wanget al?® analyzed statistics of the open system on thethat in a many-mode regime the resonant level spacing sta-
basis of the calculated electron dwell time, tistics become ill-defined. This is not only because the broad-
ening of resonant states typically exceeds mean level spacing

sz dsw(x,y)|%], 2) (for Lorentzian broadening one can still define statistics of

the spacings between peak maxjmahis is due to the fact

which identifies the time an electron spends inside the dot; ithat the broadening itself in many cases is essentially non-
the above definition an integration is performed within theLorentzian. Consider, for example, stdt8,32, Fig. 4(c).
dot area and is the incoming flux. Statistics of the spectra Its energy dependence is characterized by two maxima of
(which was assumed to be reproduced by a statistics of thelmost equal height, separated by a distance which several
dwell time maxima energies separations; see*afew a dis- times exceedsA. Several other statef(31,20, (28,24,
cussion of general relation between density of states an¥,36)] are characterized by similar behavior. Some other
dwell times in mesoscopic systeynwsere found to be exactly states, like(24,28, dominate transport over the energy inter-
the same as that of the corresponding closed system. Agaiwal much greater than the mean level separation. At the same
a similar question arises, “does the dwell time maximatime its energy dependence shows broad features without
(which is integrated characteristitnambiguously identify any well-defined maximum. For the above mentioned states
individual resonant states of the open dot?” the concept of statistics of the spectra does not make any

Figures 2Zc) and Fig. 4c) show the calculated dwell time sense, since it is not possible to introduce any reasonable
in the square dot in the single- and many-mode regimegjefinition of the spacing between resonances. Therefore, we
respectively. In a single-mode regime all maxima in theconclude thafor the quantum dots strongly coupled to the
dwell time do correspond to the resonant eigenstdigfs, leads with several modes available in the lead openings,
Figs. 2b) and Zc)], in contrast to the conduction fluctuation eigenlevel spacing statistics of the corresponding closed sys-
resonances. However, dwell time does not identify resonartem are not relevant to the averaged transport properties of
states unambiguously because some eigenstates are ovére structure
looked by this analysis. For example, an eigens(ate28 This conclusion seems to have a number of experimental
which gives rise to a broad maximum in the conductanceas well as numerical verifications. The difference between
does not contribute appreciably to the dwell time. In addi-statistical properties of the conductance oscillations in a cha-
tion, some resonant levels cannot be resolved in the dwelbtic (stadium) and a regulafcirculan dots has been studied
time dependence. As an example, a single maximum of thby Marcus at al! Corresponding averaged autocorrelation
dwell time just belowng=2.014x 10" m 2 represents a functions are almost identical over the two decades of decay,
contribution of two eigenstate£28,24 and(14,34. although they exhibit quantitative distinctions in the tail. The

Nevertheless, despite the fact that the dwell times do nodata, from the similar studies of Bert al® for chaotic
unambiguously identify resonant states, our analysis, as fdcircular with a bayr and regular(circulan dots, does not
as a single mode regime is concerned, tends to support tlehiow any significant discrepancy over the four orders of
conclusiorR® that the statistics of the dwell time spectra for magnitude in power. Note, that in the above mentioned ex-
open dots are the same as that of the corresponding closgériments, the quantum-point-contact openings were ad-
systems. Indeed, it is important to stress that dwell timgusted to support three or more modes in order to meet the
maxima are attributed to the resonant states qiljis is in  requirements of the semiclassical predictidngvhich are,
contrast to the statistics of the conductance fluctuationstrictly speaking, valid for a large number of open channels
where the majority of maxima are not directly related to thein the leads Numerical studies of autocorrelations functions
resonant eigenstat@Suppose resonant state spacings form dhave been performed by Warg al 3% for chaotic(stadium
statistical ensemble characterized by the WigioeiPoissop  and regular(circulan dots. They found, that in a weakly
distribution. Obviously, dwell time maxima spacings repre-coupled regime, averaged autocorrelations functions behave
sent a subensemble of the whole ensemble, since, as we hadidferently, with a correlation function for a stadium-shaped
shown above, some of the resonant states have not shown dpt satisfying predictions of the semiclassical theory. In con-
in the dwell time analysis. Since the number of missingtrast, in a strongly coupled regime, the difference between
states is small, however, one can expect that this subetwo sets of data is negligible, which is in accordance with
semble is characterized by the same statistical distribution agur arguments.
the original one. We conclude this section by a brief discussion on the

Let us now discuss a many mode regime of a transpor¢crossover between the single- and many-mode regime.
through the dot. The calculated dwell time has two maximaNamely, about what number of open channels, lead-induced
in the interval of the Fermi energy represented in Fig. 4. Atbroadening of resonant levels becomes essentially non-
the same time, as many as 14 resonant states dominate therentzian such that the concept of spectra statistics loses its
conductance in this energy interval. Most of these states, faneaning. One can expect that in smaller dots where the mean
example, (24,28, (11,39, (28,24, do not contribute to the level spacing is greater, the above crossover might occur for
dwell time maxima. The observed maxima in the dwell timea larger number of mode$y, in leads. However, with the
are a result of overlapping of several eigenstates which arfixed width of the lead openingsy, the aspect ratiov/L is
peaked near the same enerdike those depicted in Fig. greater for smaller dots, which causes an opposite effect of
4(b)]. This leads us to conclude that in a many-mode regiméncrease of the level broadening. Having performed calcula-
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tions for dots of different sizes, we did not find a universal () P
recipe for the number of modds at which such crossover 0.0 21 BE:
occurs. Its value depends on a number of factors, such as the - m k,

dot size, the aspect ratiw/L, and the Fermi energy of elec-

. . . 1,1)
trons. For the structure under consideration, non-Lorentzian l(
broadening is dominant &>4~5. 2.2)

IV. CONDUCTANCE OSCILLATIONS

o FET
|
——

A. The shell structure of the square dot (b)

In the previous section we unambiguously showed that ﬂ—ﬂ—
the conductance of the open dot is mediated by the resonant 2 E’\/\WMIC"
states of the corresponding closed structure. Before we pro- W\[\M1 ..... )

ceed to the analysis of the calculated conductance it is instru- 10 ao'm™e

F.T.

mental to consider a simple “shell-structure model” intro- © "
duced for the interpretation of the experiments on conduction |
fluctuations in the mesoscopic d&t&2* l
A diagram illustrating the eigenspectrum of a square in |
the k space is shown in the inset of Fig@ The shaded
band indicates a Fermi wave vector. A finite energy window 0
is allowed for, in accordance with the above shell-structure
model. All states within this finite window are assumed to
contribute, with equal weight and broadening, to the conduc-
tance through the corresponding open dot.
The existence of at least two different shells is immedi- 4

il

F.T.

ately anticipated. The first one corresponds to the case when " oo
ke hits clustered states with one of the quantum numbers, |

or m being close to ondand the second one is close to 11
keL/7). Such states are schematically indicated by the hori- 0

zontal and vertical solid lines in the diagram. Ksis varied,
one repeatedly hits such states with the periodicity being
defined by the distance between neighboring states, kp (10m™)
AkL= . Another shell corresponds to the clustering of the
symmetric statesm~n (diagonal solid lines separated by FIG. 5. (@ Upper right inset: A diagram illustrating the
the distanceAkL= 7/v2. e!genspectrum of the square dot in ﬂhespgce. Each point in the .
The Lorentzian broadened density of states of the Squar@au;ram_represents an eigenvalue; the distance bgtween th_e neigh-
is shown in the inset of Fig. 5. Its Fourier transform reveals?0ring eigenvalues beingk= /L. Further explanations are given
several pronounced peaks related to the formations of thi the text. Lower right inset: density of staté8OS) of the square
shell structures. In partcular, first and second peméh [T R C B ERREE T o e
B T o e 11 1 DOS. Ao shon he wecedsonuton o e
the figure indicate the Valuesgtkf: where or¥e’expects ?he {milies of primitive periodic orbits which are schematically de-

. . : i picted in the figure. Numbers in the parenthesis indicate the wind-
maxima in the DOS related to the formation of the first shell,ing numbergsee text The first peak in the Fourier transfori®.T)

Ke=mm/L . with  1/Ake~32x10"8 m corresponds to the periodicity
The density of states of the quantum systems is related ty_| = 7 the second one with Akg~44x10~® m corresponds

the underlying dynamics of the corresponding classical sysp the periodicityAkeL = m/v2. (b), (c) A Fourier transform of the
tems. In particular, for chaotic billiards, this relationships isconductance fluctuationglower left insets of the square dot
given by the Gutzwiller trace formufd,which approximates (L=1 wm) with different arrangements of the lea@sper left in-

the oscillating part of the density of states by the sum ovegety; T=250 mK. The right insets show averaged expansion coef-
all classical periodic orbits. This approach was extended tdicients(|cnq|2). (d) Transmission coefficients,, (solid lineg and

the case of integrable systems, where the role of isolateds, (dashed linesfor the square dot witi=1 um in the four-
orbits is typically taken over by degenerate families of non-terminal geometryinsed; T=250 mK. Filled circles and open dia-
isolated orbit$ In a square dot each family of periodic or- monds mark the transmission peaks. Solid lines on the index plot
bits can be labeled by two indicésinding numbery (i,j),  (right insel correspond to the periodicithAkeL=/v2, dashed
describing the number of collisions with the vertical andlines correspond takeL = .

horizontal walls*’ Figure §a) shows expected contributions

from the different families of orbits estimated from the Bohr- classical orbits. For example, the fam{l§,1) corresponds to
Sommerfeld quantization rules. Each major peak in the shethe “bouncing wall” orbits, where one of the components of
structure corresponds to the contribution from a certain famthe velocity,v, (or vy) is zero. On the other hand, the cor-
ily of orbits. We note a striking similarity between the char- responding shell, as discussed above, represents a contribu-
acter of eigenstates defining the shell and the correspondirton from the states for whichk,~0 (or k,~0).
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The second family of orbits with the winding numbeis1) exit, contributions from some sets of the eigenstdtder-
represents electrons with equal components of velocitieqatively, families of periodic orbijsare suppressed. We do
lvx|=|vy|. The corresponding shell is formed by the sym-not have any convincing explanation concerning the particu-
metric states wittkp,~k,. Similar conclusions can be also lar selections rules which hold for a certain lead arrange-
drawn for other shells/families of orbits. In the next sectionment. On the contrary, consider the first dot with leads at-
we examine the manifestation of the shell structure of thQached horizonta”y_ One may expect that in this case a
square in the conductance oscillations of the correspondingim”y of orbits (0,1), where electrons bounce between the
open dot. opposite wallsx=0,L would be dominant. However, the
relative peak heights of the main frequencies of the conduc-
tance oscillations are the same as those of the shell structure
of the isolated dot. This indicates that in this case the simple
“shell-structure model” is a reasonable approximation
Figure §b) shows conductance oscillations of the squareyhich accounts for the major features of the oscillations for

dot where leads are placed opposite to each other as showge geometry under considerati¢excluding harmonics re-
in the inset. The Fourier transform analysis reveals that aljzieq to the traversing trajectorjes

characteristic frequencies of the oscillations match those of | e case of the second dot one would expect that two

}_Te shell s.tructduc;_(i_ of tthet;]solfated square, cf. Fi.g‘ti)’?(b.)t .h th QPC openings placed over the diagonal of the square would
OWEVET, In addition 1o Ihe Irequencies associated wi e most effectively coupled by the the orbits belonging to the
formation of the shell structure, a new Fourier componen amily (1,1). However, as we have found above, this contri
~ —8 . ~ . ,4). s , -
(L/Akg~15x10" " m, which corresponds tAkeL~2m) is gution is strongly suppressed and, instead, ortiitg) are

B. Calculated conductance oscillations
and their relation to the shell structure

resent in the conductance of the open square. Its periodici . . . .
P P q P ominant. Thus, in this case the simple “shell-structure

connecting the two leads. Figuréch shows conductance odel” fails to predi(_:t a single characteristic frequency of
oscillations of the same dot of the square geometry but wittin€ conductance oscillations.
the different arrangements of the leads which are now at- I_nterpretatlon of the selection rules becomes even more
tached to the opposite cornelissed. Its Fourier transform difficult when several leads are attached to the dot. Figure
reveals a striking difference to the previous case. In thé(d) shows the transmission coefficierftg; and T,; for the
present case one frequenaykeL =, is clearly dominant, dot in a four-terminal geometry depicted in the in§gf is
indicating that only one selected set of eigenstatesre- the transmission probability from the leadto the leadi).
sponding to the family of orbit$0,1)] effectively mediate Arrows indicate the positions of the dominant peaks. One
transport through the dot. To support this conclusion, wecan clearly see a striking transition in periodicity of;
calculate the averaged expansion coefficidiits,|%), see (T,) at kge~1.2x10* m™?, when the characteristic fre-
Figs. 5b), 5(c), right insets(averaging is performed in the quencyAkgL=m/v2 (AkeL=m) is taken over by the fre-
window in thek space which exceeds the largest characterquency AkeL=m (AkgL=m/v2). This once again illus-
istic periodicity inkg). The results of the calculations show trates the observation that in the very same dot different sets
that in the first case, Fig.(B), both symmetric states and of states(families of periodic orbits effectively couple dif-
states with{k,,~0k,~kg} are excited in the dot. However, ferent leads in different energy windows.
in the second case, Fig(d, when the leads are attached to  In our calculations we did not account for an effect of
the diagonally opposite corners, symmetric states wittinelastic scattering in the dot. Semi-classically, however,
kn~k, are represented with much less weight. This is coneven ifl ;2>L, inelastic scattering suppresses a contribution
sistent with the observed suppression of the correspondiniom the long trajectories where electrons bounce in the dot
harmonics of conductance oscillatiodskL = 7/v2, which ~ for a long time. This effectively reduces high-frequency
originates from the symmetric states of the isolated dot. Notéomponents of the fluctuations. Restdtsuggest that in a
that the above calculations have been performed for the cagelatively large square ddivith the size of 2.4um) only
of N=3 propagating modes in the constrictions connectingeertain shells corresponding to the shortest orfaitscontri-
the dot to the leads. A detailed analysis of the conductanckutions from the transversing trajectodie®minate the con-
oscillations for the differenN shows that all the features in ductance oscillations. One can expect that for dots of the size
the conductance associated with the shell structure of an isd-um considered here, with the typical phase coherent length
lated square are not sensitive to the number of modes in thg,~5-10um, one can trace in the conductance fluctua-
constrictions. tions, contributions from the families of orbits up(®,2) the

In Ref. 12 the specific frequency of oscillations seen inlength, |, »=2L V8, of which does not excedd, .
the four-probe symmetric dot has also been attributed to the To conclude this section we stress once again that the
excitation of the particular set of eigenstates of the squareestablished correspondence between the conductance fluc-
These selection rules were interpreted on the basis of thiiations and the Lorentzian broadened density of states holds
injection properties of the single QPC which directs an electegardless the particular shape of the dot. We have also per-
tron beam over the diagonal of the square due to the classictdrmed calculations for a dot of triangular shape and found a
horn collimation effect. Our present analysis shows that the@ne-to-one correspondence between the periodicity of the
above injection alone cannot account for all the observedonductance oscillations of open triangular and the density
characteristics of the conductance. Namely, in both the quaref states of the corresponding isolated structure. These re-
tum dots considered here all QPC'’s are identical. Howeversults, together with the related experiment, will be published
presumably due to a different coupling between entrance anelsewherd?®

can be attributed to the nonclosed transversing trajector
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V. CONCLUSIONS broadening of resonant states. Thus we conclude that for the
uantum dots strongly coupled to the leads, eigenlevel spac-

u;:mi %i?svritvr\:eassijzdeyteleiggf fr;) :rggﬁzﬁ;téz agri(r)r?eer?t;qgirr' g statistics of the corresponding closed system are not rel-
q . ) yp 1L expernim y evant to the averaged transport properties of the structure.
numerical analysis enables us to unambiguously identify th

: . his conclusion seems to have a humber of experimental as
resonant states which dominate the conductance of the Stru\‘fv'ell as numerical verifications

ture. On this basis we discuss various aspects of the electron (iv) The density of states of the isolated square is charac-

tra?ﬂ()aorrrgatlihr:?ggﬂlt?gnddo;i.ndin s of our work can be summa:[erized by the global shell-like structures which reflect peri-
. 9 odic clustering of levels on the scale exceeding the mean
rized as follows. | ; . h shell . h
(i) Despite of the presence of dot openings transpor(Leve spacing separatlon._Ea_\c shetl can be ascribed to the

! ertain family of the periodic orbits in the square. There

g;;?ggZfﬂtfed&t,r'fesﬁgr?g?ﬁechiggg:jatﬁ?ugtﬂ:ﬁﬁi];e\r'lvoféget?l}e”s‘s a striking correspondence between the character of

: P 9 ) L &genstates defining different shells and the corresponding
even in the case of several propagating modes in the lead amilies of orbits

(ii) In asmgle-que regime in the leads the broadening o (v) The obser.ved periodicity of the conduction oscilla-

the resongnt levels is typically smaller than the mean ENeI9¥ons in the open dots is related to the formation of the global

lseuvrilrr?gr?tc;EgaAs.irTr;Z?rhg:jéer;O itrizeﬁ;aturfo’btéagss?r?r:er?gg;)s_hell structure of the corresponding isolated square. How-

9 9 yp . 9 ever, a particular arrangement of the leads may lead to the

nant energy level of the dot. On the contrary, in the many-

mode regime the broadening exceddand has essentially a selective coupling between them, such that only selected
gimé 9 Y2 ghells (or, alternatively, families of periodic orbjtsvould
non-Lorentzian character.

(iii) Transport characterist f n ddehaotic v dominate transport through the dot. These predictions can be
ansport characteristics of oper aotic vs xperimentally tested in the two-terminal magnetoresistance
regulay are usually discussed on the basis of the statistics o

: ) easurement on the square dots with different arrangements

the nearest level spacing of the corresponding closed systenc')lr

. . ) the leads.
As far as the single-mode regime is concerned, our results
tend to support the conclusion that the statistics qf the spec- ACKNOWLEDGMENTS
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