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Quantum scattering, resonant states, and conductance fluctuations
in an open square electron billiard

I. V. Zozoulenko and K.-F. Berggren
Department of Physics and Measurement Technology, Linko¨ping University, S–581 83 Linko¨ping, Sweden

~Received 5 March 1997; revised manuscript received 15 April 1997!

Electron transport was studied in an open square quantum dot with a dimension typical for current experi-
ments. A numerical analysis of the probability density distribution inside the dot was performed which enabled
us to unambiguously map the resonant states which dominate the conductance of the structure. It was shown
that, despite the presence of dot openings, transport through the dot is effectively mediated by just a few~or
even a single! eigenstates of the corresponding closed structure. In a single-mode regime in the leads, the
broadening of the resonant levels is typically smaller than the mean energy level spacing,D. On the contrary,
in the many-mode regime this broadening typically exceedsD and has an irregular, essentially non-Lorentzian,
character. It was demonstrated that in the latter case eigenlevel spacing statistics of the corresponding closed
system are not relevant to the averaged transport properties of the dot. This conclusion seems to have a number
of experimental as well as numerical verifications. The calculated periodicity of the conduction oscillations in
the open dot is related to the formation of the global shell structure of the corresponding isolated square. The
shell structure reflects periodic clustering of levels on the scale exceeding the mean level spacing separation.
Each shell can be ascribed to the certain family of the periodic orbits in the square. However, a particular
arrangement of the leads may lead to the selective coupling between them, so that not all shells~or, alterna-
tively, families of periodic orbits! mediate transport through the dot. This selective coupling leading to the
suppression of the contribution from some families of orbits can be tested experimentally on the dots with the
different arrangements of the leads.@S0163-1829~97!04535-9#
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I. INTRODUCTION

In nanoscaled semiconductor quantum dots, electron
tion is confined in all spatial dimensions and the lateral sh
of the dot can be controlled by an applied gate voltage.1–12In
high quality samples at low temperatures, the phase co
ence length often well exceeds the dimension of the de
and large-angle elastic scattering events occur only at
boundaries of the structure. Such a transport regime is
ally referred to as ballistic. During recent years a great d
of effort has been focused on the transport properties of
listic microstructures. In particular, the statistical propert
of the conductance fluctuations of quantum dots have
ceived great attention, both theoretically13–21 and
experimentally.1–9 Due to their reduced size, ballistic do
represent rewarding objects for studying the relation betw
quantum mechanics and the corresponding semiclas
electron dynamics. This reveals itself in the geomet
specific, nonaveraged features in the conducta
fluctuations.1,6,8–12,19–24

For interpretating the magnetoconductance oscillation
a circular quantum dot, a simple ‘‘shell structure’’~or ‘‘tun-
neling’’! model has been put forward by Perssonet al.6 It
relates the conductance fluctuations to the density of st
~DOS! of the corresponding closed system. The DOS is ch
acterized by the global shell structure which reflects a p
odic clustering of levels on the scale exceeding the m
level spacing separation. The DOS of the isolated dot is
sumed to be Lorentzian broadened due to the effects of
openings and it is calculated on the basis of the Gutzvi
periodic orbit theory23 or quantum mechanically.6,24 This
560163-1829/97/56~11!/6931~11!/$10.00
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model is well-justified for noninteracting systems in a tu
neling regime of the weak coupling to the leads. It has be
argued, however, that it can be used when the leads bec
open. The correspondence between magnetoconductanc
cillations and the oscillatory character of the DOS has a
been found in antidot arrays.25 In addition, shell structures
which have been detected experimentally in the spectra
small metal clusters, have been successfully interprete
terms of the periodic orbit theory for the DOS.26

Our present work is motivated in part, by a rece
experiment,11,12 where highly periodic conductance oscilla
tions have been found in the zero-field resistance of the
listic square dot as the Fermi wave vector,kF , was varied.
Here we critically examine the shell-structure model for t
square dot. We compare predictions given by this mode
the quantum mechanical calculations performed for the o
square geometry with the dimension typical for real stru
tures. We show that the calculated periodicity of the cond
tion oscillations in the open dot is related to the formation
the global shell structure in the DOS of the correspond
isolated square. There exists a certain correspondence
tween the character of eigenstates defining different sh
and the related families of periodic orbits. We also demo
strate that particular arrangements of the leads may lead
selective coupling such that only selected shells~or, alterna-
tively, periodic orbits! effectively mediate transport throug
the dot.

The second motivation of our work stems from the cu
rent interest in the highly topical area of ‘‘quantu
chaos.’’27 The statistics of the nearest level spacing in cl
sically non-integrable chaotic billiards in the absence o
magnetic field obeys the Wigner or Gaussian orthogonal
6931 © 1997 The American Physical Society
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6932 56I. V. ZOZOULENKO AND K.-F. BERGGREN
semble distribution. This is usually taken as a definition
quantum chaos, which is a quantum mechanical analo
classical chaotic dynamics in a closed billiard. In contra
for classically regular systems the corresponding statistic
Poisson-like, which reflects an integrable character of
underlying classical dynamics. Transport properties of o
systems are often analyzed on the basis of the level spa
statistics of the corresponding isolated dots. This is not aa
priori evident assumption and several conflicting reports
exist in the literature on the effects of leads on the elect
dynamics in open systems. In particular, Ref. 28 shows
the statistics of the spectra for open dots~which are defined
in terms of the dwell time! are exactly the same as those
the corresponding closed system. At the same ti
results20,29 suggest that the leads attached to the dot m
change the level statistics, so that transition to chaos
occur in a nominally regular system. On the contrary, Wa
et al.30 conclude that the openness of the dot makes cha
scattering nonessential.

Besides, in the current literature one can find a bro
spectrum of opinions on the possibility of resolving, in t
transport experiment on the open dot, resonant states re
to the eigenlevels of corresponding isolated structure.~When
the dot becomes open, eigenlevels interact and acquire
nite broadening due to the finite lifetime associated with
possibility for electrons to escape from the dot via leads.! In
the many-mode regime in the leads, this broadening m
well exceed the mean energy level separation,D, resulting in
an overlap of a vast number of resonances. Also, the p
ence of dot openings may cause a significant distortion
corresponding eigenstates. Under these circumstances
not clear whether a discussion of transport through an o
dot on the basis of the properties of the closed structur
still meaningful. To the best of our knowledge, up to now
direct theoretical calculations on the actual broadening of
resonant levels for the open dots in the transmissive reg
are available.

In this paper we hope to contribute to the clarification
the above mentioned issues. Our numerical analysis ena
us to unambiguously map the resonant states media
transport through the open square and to find their broad
ing. We demonstrate, that despite the openness, trans
through the dot takes place via just a few resonant ene
states. In a single-mode regime the broadening of the r
nant levels is typically smaller thanD. As far as the single-
mode regime is concerned, our results tend to support
conclusion28 that the statistics of the spectra for open d
follows that one of the corresponding closed system. Ho
ever, in the many-mode regime, energy broadening typic
exceedsD and has an irregular, essentially non-Lorentz
character. We demonstrate that in this case eigenlevel s
ing statistics of the corresponding closed system are not
evant to the averaged transport properties of the dot. T
conclusion seems to have a number of experimental as
as numerical verifications.

The paper is organized as follows. In Sec. II we pres
the basic theory which we use for our calculations of the
conductance and the mapping of resonant states medi
the transport in the dot. In Sec. III we discuss resonant st
of the open dot. We focus on the three different transp
regimes, namely, the tunneling, the single-mode, and
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many-mode regimes. In this section we also exam
‘‘scarred’’ features seen in the wave-function pattern in t
transmissive regime. Finally, we critically examine the po
sibility of discussing transport characteristics of open dots
the basis of the eigenlevel spacing statistics of the co
sponding isolated systems. In Sec. IV we review the ‘‘she
structure’’ model of conductance oscillations for the squ
dot and compare it with our full quantum mechanical calc
lations. A summary of the main results of Sec. V conclud
the paper. A very preliminary account on a part of this wo
has been presented previously.12

II. BASIC THEORY

The system under investigation is a relatively large squ
dot with the sideL51 mm which is typical for current ex-
periments. It is connected to reservoirs31 by quantum-point-
contact-~QPC-! like openings~leads!. While the dimension
of the square is fixed, the arrangement and number of le
are varied as will be depicted in the insets to the figures
the present work we concentrate mostly on the transp
through open dots, such that Coulomb charging is not imp
tant. For the sake of simplicity, hard wall confinement and
flat potential profile inside the dot are assumed which see
to be a good approximation for large dots.23,32 We disregard
effects of the soft impurity potential due to remote dono
Recent theoretical studies show that the influence of this
tential on quantum transport in the dots appears to play o
a minor role.33,34 As we focus on the ballistic regime o
transport when the phase coherence length,l f , exceeds the
dimension of the dot,L, inelastic scattering is disregarde
We briefly discuss effects of the inelastic scattering on
conductance through the dot in Sec. IV.

Our calculations are based on the Landauer-Bu¨ttiker for-
malism which relates the conductance properties of the
vice to its scattering characteristics.35 In the simplest case o
the two-terminal geometry zero-temperature conducta
readsG(e,T50)52e2/h Tr(tt†), where ta,b(e)5(t)a,b is
the transmission amplitude from incoming statea to outgo-
ing stateb at energye. The effects of a finite temperatur
are accounted for by the convolution ofG(e,0) with the
derivative of the Fermi-Dirac distribution,f (EF ,T), at the
given Fermi energy,EF , G(EF ,T)52*de G(e,0)] f (e
2EF ,T)/]e.35 The scattering matrixt is calculated on the
basis of a hybrid recursive Green-function technique36 which
is proven to be numerically efficient, in particular, for th
case of large structures and high magnetic fields.

In order to understand the relations between the cond
tance fluctuations and resonant energy states of the sq
we study the probability density distribution inside the d
C(x,y). A drawback of the Green function technique us
here is that one does not obtain the wave function eve
where in the system after the scattering problem is solv
Thus, to calculateC(x,y) we first solve a scattering problem
and find the Green functions in the inner (dot1openings)
region and transmission and reflection amplitudes~and,
therefore, wave functions! at the boundary slices between th
inner region and the reservoirs~i.e., wide leads!. Then, re-
cursively iterating slice by slice inside the dot by making u
of the Dyson equation, we recoverC(x,y) in the inner re-
gion. Details of the calculations are reported elsewhere.37
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56 6933QUANTUM SCATTERING, RESONANT STATES, AND . . .
Analyzing the probability density distribution inside th
dot we are in a position to identify resonant energy sta
which effectively mediate transport through the dot
a givenEF . To do this, we numerically expand the solutio
of the scattering problem in the open dot,C(x,y;E), in
the set of eigenstates of the closed dot,cmn5 (2/
L)sin(pmx/L)sin(pny/L) @with eigenenergies emn5\2/
2m* (km

2 1kn
2); km5 (pm/L) , kn5 (pn/L)#

C~x,y;E!5
2

L (
m

(
n

cmn~E!sin
pmx

L
sin

pny

L
. ~1!

To outline the meaning of the expansion coefficientscmn we
start from the trivial case of an isolated dot. In this situati
the wave function in the left hand side of Eq.~1! is one of the
eigenstates of the system, such thatcmn(E)5dE,emn

repre-
sent discrete eigenlevel spectrum of the dot. When the
tem becomes open, the time which electron spends in the
becomes finite. Therefore, eigenenergy levels acquire a fi
broadening and transform intoresonant states. Obviously,
coefficientscmn represent the contributions of the resona
states$m,n% ~associated with the corresponding eigensta
$m,n%! in the total wave function. An energy interval whe
ucmn(E)u2 is distinct from zero gives a broadening of th
resonant state$m,n%. With further opening of the dot, the
scattering state becomes a linear combination of the i
vidual broadened states$m,n%.

Similar mapping of the resonant states of the open dot
be performed for a structure of arbitrary shape and wit
finite magnetic field applied. In this case, generally, one
to start from the numerical solution of eigenvalue proble
calculating a complete set of eigenstates. This would ma
corresponding numerical analysis much more complica
and time consuming. For the square geometry, Eq.~1! is
simply equivalent to the complex space sine-Fourier tra
form. Therefore, we can use standard fast numerical meth
for performing such a transform which greatly facilitates o
calculations. Note, that a similar analysis based on the sp
sine-Fourier transform expansion of the experimentally
served ‘‘scarlets’’ pattern in the water surface driven by
high-frequency shaker in tanks with different shapes
been done in Ref. 38.

III. RESONANT STATES OF THE SQUARE DOT

A. Tunneling regime

In this section we discuss the relations between reso
eigenstates of the dot and conductance peaks in the tunn
regime, when the dot is weakly coupled to the leads~see
inset in Fig. 1!. In what follows we consider an idealize
model of noninteracting electrons.

Each conductance peak, as shown in Fig. 1, correspo
to an excitation of one single resonant energy level wh
effectively mediates transport at the given Fermi ener
Near its maximum, each peak is characterized by the Lor
zian shape, in accordance to the Breit-Wigner formalism39

~this can be seen on the scale much finer than that one of
1!. The positions of the peaks are shifted with respect to
corresponding eigenenergy levels of the isolated square@cf.
Figs. 1~a! and 1~b!#. Because of the presence of the tunneli
barriers of the finite height, the wave function in the dot
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somewhat extended into the barrier region. Thus, in
present arrangement of the leads, thex component of the
wave vector is always smaller than the corresponding va
for the isolated dot,km5pm/L. The larger the quantum
numberm, the more the wave function extends into the tu
neling barrier region. This lifts a level degeneracy and cau
the shifting of the positions of resonant level maxima
wards lower energies in comparison to the unperturbed
As an example, see Fig. 1, a double degenerate le
~13,15!,~15,13! of the isolated dot splits, with a larger shi
for the state~15,13! which has larger quantum numberm. A
shifting of resonant levels was also found in the case
tunneling through aT-shaped nanostructure whose size w
comparable to the Fermi wavelength.40

B. Single-mode regime

Figure 2~a! shows conductance fluctuations of the op
square dot where lead openings are adjusted to support
propagating mode. The probability density distributio
uCmnu2 is shown for two representative values of the Fer
wave vector,kF5A2m* EF/\5A2pns, where ns is the
sheet electron density. Here the pattern ofuC(x,y)u2 exhibits
a complicated structure, where eigenstates of the isola

FIG. 1. Lower left: The conductance of the square dot~sche-
matically depicted in the upper panel! in the tunneling regime as a
function of the sheet electron densityns5EFm* /p\2. Temperature
T50. Shadow regions in the leads represent tunneling barriers
the height exceeding the Fermi energy. Lower right: Eigenene
levels of the isolated dot. Height of the peaks represents the de
of degeneracy~1 or 2!. Upper panel shows the calculated probab
ity density distributionuC(x,y)u2 inside the dot for one of the tun
neling peaks~left! and the corresponding numerical results for t
coefficientsucmnu2 calculated on the basis of Eq.~1! ~right!. Dashed
lines indicate the circle with the radiusr 5kFL/p. A similar analy-
sis has been done for the rest of the peaks and the correspond
between eigenstates of the isolated square and resonant levels
dot is indicated by the arrows. Quantum numbers of the reson
states, (m,n), are shown in the parenthesis. In the case under c
sideration the side of the dot was chosen to beL50.5 mm ~in
contrast to the case of open dots, Figs. 2–5, whereL51 mm.!
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6934 56I. V. ZOZOULENKO AND K.-F. BERGGREN
FIG. 2. ~a! The conductance of the square d
~schematically depicted in the inset! as a function
of the sheet electron densityns5EFm* /p\2.
The side of the dotL51 mm; temperatureT50.
The lead openings support one propagati
mode. Insets show calculateduC(x,y)u2 inside
the dot for two representative values ofns and the
corresponding numerical results for the coef
cients ucmnu2 calculated on the basis of Eq.~1!.
Dashed lines indicate the circle with the radiu
r 5kFL/p. ~b! Dependence of the coefficient
ucmnu2 identifying the dominant resonant state
with the quantum numbers (m,n) on the sheet
electron densityns . A horizontal bar indicates
the mean energy level spacingD. ~c! Dwell time
of the dot calculated numerically on the basis
Eq. ~2!.
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square are not easily recognized. Thus, a numerical ana
on the basis of Eq.~1!, in contrast to the tunneling case,
essential. Calculating the expansion coefficientscmn , we
find that, at the givenkF , only those coefficients associate
with the circle in the k space with the radius
R5kF'A2m* emn/\5pAm21n2/L are distinct from zero,
see Fig. 2~a!. ~Note that nonvanishing contributions from
other coefficients would indicate that eigenstates of the
lated dot are essentially distorted by the lead openings s
that a discussion of the transport in open structure in term
eigenstates of the isolated dot does not make sense.! Typi-
cally, we find that only a few~and sometimes even a singl!
coefficients give a dominant contribution. A broadening
the resonant levels due to the effect of the dot opening
the k space is less than the distance between neighbo
eigenstates whose quantum numbers differ by o
Dk5ukn2kn61u5ukm2km61u5p/L. Therefore, we con-
clude thatdespite the presence of dot openings, transp
sis
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through the structure is still effectively mediated by a f
eigenstates of the corresponding closed dot with the eigen
ergies lying in close proximity to the Fermi energ,
emn'EF .

Calculating the coefficientscmn as a function of the Ferm
energy, we extract information about the lead-induced bro
ening of the energy levels of the dot. A contribution of th
dominant resonant energy states is shown in Fig. 2~b! ~at a
given Fermi energy, remaining coefficients are at least of
order of magnitude smaller than those shown in the figu!.
The mean energy level spacing,D52p\2/m* L2;70 mK,
is indicated by a horizontal bar. In contrast to the tunnel
regime, the line shape ofucmn(E)u2 can be non-Lorentzian
Moreover, different states are characterized by differ
broadenings and they may overlap with each other. Ho
ever, a broadening~half width! of the resonant energy level
is typically less thanD. Therefore,transport measurement
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56 6935QUANTUM SCATTERING, RESONANT STATES, AND . . .
at very low temperatures in a single-mode regime in
leads may probe a single resonant energy level of the d.

A comparison between Figs. 2~a! and 2~b! shows that
features in the conductance of the dot are related to ex
tions of the particular eigenstates of the square. Howe
this correspondence is rather complicated: different eig
states can be responsible for opposite features in the dot
ductance. As an example, the eigenstate~14,34! causes a
conductance peak, whereas the eigenstate~37,3! leads to a
dip.

The above features in the conductance can be unders
on the basis of a simple ‘‘resonant tunneling’’ model. If on
one single eigenstate is excited in the dot at the given Fe
energy, it gives rise to a conduction peak, similar to that o
in the tunneling regime~though much broadened due to th
effect of the lead openings!. If several eigenstates effectivel
mediate transport, interference between them may cause
amplitude of the total wave function in the vicinity of tw
dot openings to be different. This, in turn, will lead to
difference in coupling strengths between the state inside
dot and, correspondingly, incoming and outgoing states
the left and right leads. In this case ‘‘resonant’’ transmiss
with the unitary transmission coefficient is no longer po
sible. Therefore, in the case where several states sim
neously mediate transport in the dot, the phase relations
tween them and their mutual interference define the coup
strength to the outer states and govern the behavior of
transmission coefficient.

C. Many-mode regime

Figure 3, left panel, shows a probability density distrib
tion for one representative value ofkF in a square dot where
lead openings transmitN51,3,10 propagating modes. Th
corresponding expansion coefficientscmn calculated on the
basis of Eq.~1! are shown in the right panel. As the lea
openings become wider, a number of the resonant state
cited in the dot increases. Nevertheless, like in the sin
mode regime, at the given Fermi energy, a nonvanish
contribution comes only from the coefficients which lie
the closest proximity to the circle with the radiuskF in the
k space. Therefore, even in a many-mode regime, trans
through an open structure is still effectively mediated
eigenstates of the corresponding closed dot.

A broadening of the resonant energy levels increases
an increase of the lead openings. This is illustrated in Fig
for a square dot whereN55 propagating modes are ava
able in the leads. Wave-function patterns are analyzed on
basis of Eq.~1! and contributions from dominant states a
shown in a representative interval of the Fermi energy. Ty
cally, several states dominate transport at a givenEF . A
broadening of the energy levels has, as a rule, a complic
essentially non-Lorentzian character with half width bei
different for different states. In contrast to the single-mo
regime, a half width of the resonant energy levels is typica
larger than the mean energy level spacing,D. It is interesting
to note, however, that the broadening of some resonant s
still does not exceedD even with five modes in the leads
Comparing the conductance of the dot, Fig. 4 and the dep
dencecmn5cmn(EF), one can trace a certain corresponden
between the two. However, because many eigenstates
e
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cally contribute to the conductance at a givenEF , a detailed
explanation of the features of the dot conductance is
possible.

D. Wave-function scarring

A probability density distribution pattern has been visu
ized for a number of open structures, like stadium-shape18

circular,18,24 or square dots.10,41 The density distrubution of
both chaotic and regular structures forms patterns or reg
of enhanced density. Inclosed stadium billiards, for ex-
ample, such regions, so-called scars, sometimes rese
classical trajectories in a striking way.27,42 In analogy to this,
the diamondlike features found in the wave function patt
in an open square dot have been associated with the clas
trajectories of a particle bouncing in the square.10 The natural
question to be asked in this context is ‘‘Do scarred featu
in open dots represent a new ‘‘animal,’’ or can they be
lated to well-known ‘‘scarred’’ eigenstates of the classica
chaotic closed systems?’’

The probability density distribution of the total wav
function in the dot under consideration generally has a co
plicated character, see Figs. 2, 3. However, our expan
analysis, Eq.~1!, unambiguously shows that the comple
pattern observed is merely a result of a superposition o
few regular eigenstates of the square taken with differ
weights. Occasionally the pattern associated w
uC(x,y)u2 exhibits features resembling the classical ball t
jectories in the square@right image in Fig. 2~a!#. However,
they can hardly be identified with them. Indeed, according
the Heisenberg principle, the uncertainty in spatial coor

FIG. 3. Left panel: probability density distributionuC(x,y)u2

for the dot of Fig. 2 calculated for one representative value
kF51.153108 m21. Dot openings supportN51,3,10 modes~top
to bottom!. Right panel: corresponding expansion coefficien
ucmnu2 calculated on the basis of Eq.~1!. Dashed lines indicate the
circle with the radiusr 5kFL/p.
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6936 56I. V. ZOZOULENKO AND K.-F. BERGGREN
nate is Dx;1/Dk. The uncertainty of thek vector of an
electron in the dot is determined by the broadening of
resonant levels and, is shown in Sec. III B, to be of the or
of Dk5p/L. This gives usDx;L, indicating that an elec-
tron is delocalized in the dot and the above ‘‘scars’’ rep
sent an interference picture of a few sine-type particle-in-t
box eigenstates.

Note that our analysis has been performed for the squ
dot where particle-in-the-box eigenstates can be written
simple analytical form. However, we are confident that o
major conclusion that transport in an open structure is ef
tively mediated by the eigenstates of the correspond
closed system holds regardless of the shape and under
classical dynamics~regular or chaotic!. In particular, total
wave functions in an open circular dot calculated by Be
gren et al.24 show that transport through the dot occurs v
states resembling corresponding Bessel-type wave funct
for the isolated circle. Besides, it seems unlikely that a pr
ence of the weak magnetic field could change a situation
far as the cyclotron radius is~much! larger than the dot size
and the edge state regime is not achieved~i.e., adiabatic
transport via edge states does not take place!.

FIG. 4. ~a! The conductance of the square dot~see inset! in a
many-mode regime in the lead openings,N55. The side of the dot
L51 mm; temperatureT50. ~b! Coefficientsucmnu2 identifying the
dominant resonant states with the quantum numbers (m,n). A hori-
zontal bar indicates the mean energy level spacingD. ~c!, ~d! The
same as~b! but in a refined scale.@The contribution from the three
dominant states indicated in~b! is not shown.# ~e! Dwell time of the
dot calculated on the basis of Eq.~2!.
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Therefore, we conclude that scarred features seen in
wave-function density distribution in a square dot are n
related to classical trajectories, but can be thought of a
result of superposition and mutual interference of seve
regular eigenstates of the corresponding closed structure
diating transport at the given Fermi energy.~Occasionally
they may resemble classical trajectories,10 although scars in
this sense are scarce.! Instead, we shall focus on a differen
aspect of the probability density pattern in the square d
Namely, the features typically seen in the portraits
uC(x,y)u2 in a striking way resemble ‘‘scarlets,’’ the random
network of ridges resulting from the superposition of t
plane waves with random amplitudes, directions, and pha
but with the same wave-vector magnitude.43 In contrast, a
similar superposition of the plane waves but with the spre
of wave-vector magnitude produces a qualitatively differe
speckle-type pattern. The scarlets are thought to be the
secursors of scars, since they are much less organized
are not directly related to the periodic orbits.44 The above
similarity is not accidental and is merely due to the fact th
only states with the same wave vector~close tokF! are ex-
cited in the dot. Similar ‘‘scarlets’’ features have also be
experimentally observed as a network of capillary wav
formed on a water surface in agitated ripple tanks.38 Note
that in the latter case the behavior of the velocity potentia
the water surface is governed by the Helmholtz equat
which in a certain limit is equivalent to the two-dimension
stationary Schro¨dinger equation for a quantum particle.

E. Can one discuss transport characteristics of open dots
on the basis of the eigenlevel spacing statistics

of the corresponding isolated systems?

In this section we critically examine sever
approaches20,28 to the analysis of the statistics of the spec
of open dots. On the basis of our direct mapping of reson
states performed for an open square dot, we hope to con
ute to the clarification of some fundamental issues in t
context.

A statistical analysis of the distribution of the energies
resonances of conduction fluctuations in chaotic stadium
regular circular billiards has been performed by Ishio.20 In
both billiards the statistics follow the Wigner-type distrib
tion which was taken as an indication that ‘‘even a sm
perturbation around the holes~lead openings! immediately
causes some nonintegrable effect on the statistics.’’ With
gard to this analysis, the question immediately arises ‘‘d
the resonance energy statistics of the conductance fluc
tions reproduce the corresponding statistics of the isola
system?’’ In Sec. III B we have shown that features in t
conductance oscillations can be understood from the ana
of the set of eigenstates mediating transport at the gi
Fermi energy. However, even in a single-mode regime, re
nant energies in the conductance fluctuations only occas
ally correspond to resonant eigenstates of the isolated
Instead, in most cases resonant energies are related to
energies when more than one state is simultaneously exc
in the dot such that their mutual interference leads to
resonance behavior of the transmission coefficient. The
fore, in our opinion, Wigner-type statistics of the spacing
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the conductance fluctuation resonances cannot be taken
indication of the transition to chaos in a nominally regu
but open system.

Wanget al.28 analyzed statistics of the open system on
basis of the calculated electron dwell time,

t5E dsuC~x,y!u2/ j , ~2!

which identifies the time an electron spends inside the do
the above definition an integration is performed within t
dot area andj is the incoming flux. Statistics of the spect
~which was assumed to be reproduced by a statistics of
dwell time maxima energies separations; see also45 for a dis-
cussion of general relation between density of states
dwell times in mesoscopic systems! were found to be exactly
the same as that of the corresponding closed system. Ag
a similar question arises, ‘‘does the dwell time maxim
~which is integrated characteristic! unambiguously identify
individual resonant states of the open dot?’’

Figures 2~c! and Fig. 4~c! show the calculated dwell time
in the square dot in the single- and many-mode regim
respectively. In a single-mode regime all maxima in t
dwell time do correspond to the resonant eigenstates,@cf.
Figs. 2~b! and 2~c!#, in contrast to the conduction fluctuatio
resonances. However, dwell time does not identify reson
states unambiguously because some eigenstates are
looked by this analysis. For example, an eigenstate~24,28!
which gives rise to a broad maximum in the conductan
does not contribute appreciably to the dwell time. In ad
tion, some resonant levels cannot be resolved in the d
time dependence. As an example, a single maximum of
dwell time just belowns52.01431015 m22 represents a
contribution of two eigenstates,~28,24! and ~14,34!.

Nevertheless, despite the fact that the dwell times do
unambiguously identify resonant states, our analysis, as
as a single mode regime is concerned, tends to suppor
conclusion28 that the statistics of the dwell time spectra f
open dots are the same as that of the corresponding cl
systems. Indeed, it is important to stress that dwell ti
maxima are attributed to the resonant states only.~This is in
contrast to the statistics of the conductance fluctuati
where the majority of maxima are not directly related to t
resonant eigenstates.! Suppose resonant state spacings form
statistical ensemble characterized by the Wigner~or Poisson!
distribution. Obviously, dwell time maxima spacings rep
sent a subensemble of the whole ensemble, since, as we
shown above, some of the resonant states have not show
in the dwell time analysis. Since the number of missi
states is small, however, one can expect that this su
semble is characterized by the same statistical distributio
the original one.

Let us now discuss a many mode regime of a transp
through the dot. The calculated dwell time has two maxi
in the interval of the Fermi energy represented in Fig. 4.
the same time, as many as 14 resonant states dominat
conductance in this energy interval. Most of these states
example,~24,28!, ~11,35!, ~28,24!, do not contribute to the
dwell time maxima. The observed maxima in the dwell tim
are a result of overlapping of several eigenstates which
peaked near the same energy@like those depicted in Fig
4~b!#. This leads us to conclude that in a many-mode reg
an
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the dwell time does not properly identify resonant eige
states mediating transport through the dot.

Furthermore, the results of our analysis strongly sugg
that in a many-mode regime the resonant level spacing
tistics become ill-defined. This is not only because the bro
ening of resonant states typically exceeds mean level spa
~for Lorentzian broadening one can still define statistics
the spacings between peak maxima!. This is due to the fact
that the broadening itself in many cases is essentially n
Lorentzian. Consider, for example, state~18,32!, Fig. 4~c!.
Its energy dependence is characterized by two maxima
almost equal height, separated by a distance which sev
times exceedsD. Several other states@~31,20!, ~28,24!,
~7,36!# are characterized by similar behavior. Some oth
states, like~24,28!, dominate transport over the energy inte
val much greater than the mean level separation. At the s
time its energy dependence shows broad features with
any well-defined maximum. For the above mentioned sta
the concept of statistics of the spectra does not make
sense, since it is not possible to introduce any reason
definition of the spacing between resonances. Therefore
conclude thatfor the quantum dots strongly coupled to th
leads with several modes available in the lead openin
eigenlevel spacing statistics of the corresponding closed
tem are not relevant to the averaged transport properties
the structure.

This conclusion seems to have a number of experime
as well as numerical verifications. The difference betwe
statistical properties of the conductance oscillations in a c
otic ~stadium! and a regular~circular! dots has been studie
by Marcusat al.1 Corresponding averaged autocorrelati
functions are almost identical over the two decades of dec
although they exhibit quantitative distinctions in the tail. T
data, from the similar studies of Berryat al.3 for chaotic
~circular with a bar! and regular~circular! dots, does not
show any significant discrepancy over the four orders
magnitude in power. Note, that in the above mentioned
periments, the quantum-point-contact openings were
justed to support three or more modes in order to meet
requirements of the semiclassical predictions14 ~which are,
strictly speaking, valid for a large number of open chann
in the leads!. Numerical studies of autocorrelations functio
have been performed by Wanget al.30 for chaotic~stadium!
and regular~circular! dots. They found, that in a weakl
coupled regime, averaged autocorrelations functions beh
differently, with a correlation function for a stadium-shap
dot satisfying predictions of the semiclassical theory. In co
trast, in a strongly coupled regime, the difference betwe
two sets of data is negligible, which is in accordance w
our arguments.

We conclude this section by a brief discussion on
crossover between the single- and many-mode regi
Namely, about what number of open channels, lead-indu
broadening of resonant levels becomes essentially n
Lorentzian such that the concept of spectra statistics lose
meaning. One can expect that in smaller dots where the m
level spacing is greater, the above crossover might occur
a larger number of modes,N, in leads. However, with the
fixed width of the lead openings,w, the aspect ratiow/L is
greater for smaller dots, which causes an opposite effec
increase of the level broadening. Having performed calcu
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tions for dots of different sizes, we did not find a univers
recipe for the number of modesN at which such crossove
occurs. Its value depends on a number of factors, such a
dot size, the aspect ratiow/L, and the Fermi energy of elec
trons. For the structure under consideration, non-Lorentz
broadening is dominant atN.4;5.

IV. CONDUCTANCE OSCILLATIONS

A. The shell structure of the square dot

In the previous section we unambiguously showed t
the conductance of the open dot is mediated by the reso
states of the corresponding closed structure. Before we
ceed to the analysis of the calculated conductance it is ins
mental to consider a simple ‘‘shell-structure model’’ intr
duced for the interpretation of the experiments on conduc
fluctuations in the mesoscopic dots.6,23,24

A diagram illustrating the eigenspectrum of a square
the k space is shown in the inset of Fig. 5~a!. The shaded
band indicates a Fermi wave vector. A finite energy wind
is allowed for, in accordance with the above shell-struct
model. All states within this finite window are assumed
contribute, with equal weight and broadening, to the cond
tance through the corresponding open dot.

The existence of at least two different shells is imme
ately anticipated. The first one corresponds to the case w
kF hits clustered states with one of the quantum numbern
or m being close to one~and the second one is close
kFL/p!. Such states are schematically indicated by the h
zontal and vertical solid lines in the diagram. AskF is varied,
one repeatedly hits such states with the periodicity be
defined by the distance between neighboring sta
DkL5p. Another shell corresponds to the clustering of t
symmetric states,m'n ~diagonal solid lines!, separated by
the distanceDkL5p/&.

The Lorentzian broadened density of states of the squ
is shown in the inset of Fig. 5. Its Fourier transform reve
several pronounced peaks related to the formations of
shell structures. In particular, first and second peaks~with
DkL5p and DkL5p/&! reflect a formation of the two
shells discussed above. As a guide to the eye, the triangl
the figure indicate the values ofkF where one expects th
maxima in the DOS related to the formation of the first sh
kF5pm/L

The density of states of the quantum systems is relate
the underlying dynamics of the corresponding classical s
tems. In particular, for chaotic billiards, this relationships
given by the Gutzwiller trace formula,27 which approximates
the oscillating part of the density of states by the sum o
all classical periodic orbits. This approach was extended
the case of integrable systems, where the role of isola
orbits is typically taken over by degenerate families of no
isolated orbits.46 In a square dot each family of periodic o
bits can be labeled by two indices~winding numbers!, (i , j ),
describing the number of collisions with the vertical a
horizontal walls.47 Figure 5~a! shows expected contribution
from the different families of orbits estimated from the Boh
Sommerfeld quantization rules. Each major peak in the s
structure corresponds to the contribution from a certain fa
ily of orbits. We note a striking similarity between the cha
acter of eigenstates defining the shell and the correspon
l
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classical orbits. For example, the family~0,1! corresponds to
the ‘‘bouncing wall’’ orbits, where one of the components
the velocity,vy ~or vx! is zero. On the other hand, the co
responding shell, as discussed above, represents a con
tion from the states for whichkn'0 ~or km'0!.

FIG. 5. ~a! Upper right inset: A diagram illustrating the
eigenspectrum of the square dot in thek space. Each point in the
diagram represents an eigenvalue; the distance between the n
boring eigenvalues beingDk5p/L. Further explanations are give
in the text. Lower right inset: density of states~DOS! of the square
with the sideL51 mm calculated for the Lorentzian broadening
the levels corresponding to theT5500 mK. Left: A Fourier trans-
form of the DOS. Arrows show the expected contribution from t
families of primitive periodic orbits which are schematically d
picted in the figure. Numbers in the parenthesis indicate the w
ing numbers~see text!. The first peak in the Fourier transform~F.T.!
with 1/DkF'3231028 m corresponds to the periodicit
DkFL5p; the second one with 1/DkF'4431028 m corresponds
to the periodicityDkFL5p/&. ~b!, ~c! A Fourier transform of the
conductance fluctuations~lower left insets! of the square dot
(L51 mm) with different arrangements of the leads~upper left in-
sets!; T5250 mK. The right insets show averaged expansion co
ficients^ucmnu2&. ~d! Transmission coefficientsT41 ~solid lines! and
T31 ~dashed lines! for the square dot withL51 mm in the four-
terminal geometry~inset!; T5250 mK. Filled circles and open dia
monds mark the transmission peaks. Solid lines on the index
~right inset! correspond to the periodicityDkFL5p/&, dashed
lines correspond toDkFL5p.
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The second family of orbits with the winding numbers~1,1!
represents electrons with equal components of velocit
uvxu5uvyu. The corresponding shell is formed by the sym
metric states withkm'kn . Similar conclusions can be als
drawn for other shells/families of orbits. In the next secti
we examine the manifestation of the shell structure of
square in the conductance oscillations of the correspon
open dot.

B. Calculated conductance oscillations
and their relation to the shell structure

Figure 5~b! shows conductance oscillations of the squ
dot where leads are placed opposite to each other as sh
in the inset. The Fourier transform analysis reveals that
characteristic frequencies of the oscillations match those
the shell structure of the isolated square, cf. Figs. 5~a!, 5~b!.
However, in addition to the frequencies associated with
formation of the shell structure, a new Fourier compon
~1/DkF'1531028 m, which corresponds toDkFL'2p! is
present in the conductance of the open square. Its period
can be attributed to the nonclosed transversing trajec
connecting the two leads. Figure 5~c! shows conductance
oscillations of the same dot of the square geometry but w
the different arrangements of the leads which are now
tached to the opposite corners~inset!. Its Fourier transform
reveals a striking difference to the previous case. In
present case one frequency,DkFL5p, is clearly dominant,
indicating that only one selected set of eigenstates@corre-
sponding to the family of orbits~0,1!# effectively mediate
transport through the dot. To support this conclusion,
calculate the averaged expansion coefficients^ucmnu2&, see
Figs. 5~b!, 5~c!, right insets~averaging is performed in th
window in thek space which exceeds the largest charac
istic periodicity inkF!. The results of the calculations sho
that in the first case, Fig. 5~b!, both symmetric states an
states with$km'0,kn'kF% are excited in the dot. Howeve
in the second case, Fig. 5~c!, when the leads are attached
the diagonally opposite corners, symmetric states w
km'kn are represented with much less weight. This is c
sistent with the observed suppression of the correspon
harmonics of conductance oscillations,DkFL5p/&, which
originates from the symmetric states of the isolated dot. N
that the above calculations have been performed for the
of N53 propagating modes in the constrictions connect
the dot to the leads. A detailed analysis of the conducta
oscillations for the differentN shows that all the features i
the conductance associated with the shell structure of an
lated square are not sensitive to the number of modes in
constrictions.

In Ref. 12 the specific frequency of oscillations seen
the four-probe symmetric dot has also been attributed to
excitation of the particular set of eigenstates of the squ
These selection rules were interpreted on the basis of
injection properties of the single QPC which directs an el
tron beam over the diagonal of the square due to the clas
horn collimation effect. Our present analysis shows that
above injection alone cannot account for all the obser
characteristics of the conductance. Namely, in both the qu
tum dots considered here all QPC’s are identical. Howe
presumably due to a different coupling between entrance
s,
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exit, contributions from some sets of the eigenstates~alter-
natively, families of periodic orbits! are suppressed. We d
not have any convincing explanation concerning the parti
lar selections rules which hold for a certain lead arran
ment. On the contrary, consider the first dot with leads
tached horizontally. One may expect that in this case
family of orbits ~0,1!, where electrons bounce between t
opposite wallsx50,L would be dominant. However, th
relative peak heights of the main frequencies of the cond
tance oscillations are the same as those of the shell struc
of the isolated dot. This indicates that in this case the sim
‘‘shell-structure model’’ is a reasonable approximatio
which accounts for the major features of the oscillations
the geometry under consideration~excluding harmonics re-
lated to the traversing trajectories!.

In the case of the second dot one would expect that
QPC openings placed over the diagonal of the square wo
be most effectively coupled by the the orbits belonging to
family ~1,1!. However, as we have found above, this cont
bution is strongly suppressed and, instead, orbits~0,1! are
dominant. Thus, in this case the simple ‘‘shell-structu
model’’ fails to predict a single characteristic frequency
the conductance oscillations.

Interpretation of the selection rules becomes even m
difficult when several leads are attached to the dot. Fig
5~d! shows the transmission coefficientsT41 andT21 for the
dot in a four-terminal geometry depicted in the inset~Ti j is
the transmission probability from the leadj to the leadi !.
Arrows indicate the positions of the dominant peaks. O
can clearly see a striking transition in periodicity ofT41
(T21) at kF'1.231015 m22, when the characteristic fre
quencyDkFL5p/& (DkFL5p) is taken over by the fre-
quency DkFL5p (DkFL5p/&). This once again illus-
trates the observation that in the very same dot different
of states~families of periodic orbits! effectively couple dif-
ferent leads in different energy windows.

In our calculations we did not account for an effect
inelastic scattering in the dot. Semi-classically, howev
even if l f@L, inelastic scattering suppresses a contribut
from the long trajectories where electrons bounce in the
for a long time. This effectively reduces high-frequen
components of the fluctuations. Results12 suggest that in a
relatively large square dot~with the size of 2.4mm! only
certain shells corresponding to the shortest orbits~or contri-
butions from the transversing trajectories! dominate the con-
ductance oscillations. One can expect that for dots of the
1 mm considered here, with the typical phase coherent len
l f;5 – 10mm, one can trace in the conductance fluctu
tions, contributions from the families of orbits up to~2,2! the
length, l (2,2)52LA8, of which does not exceedl f .

To conclude this section we stress once again that
established correspondence between the conductance
tuations and the Lorentzian broadened density of states h
regardless the particular shape of the dot. We have also
formed calculations for a dot of triangular shape and foun
one-to-one correspondence between the periodicity of
conductance oscillations of open triangular and the den
of states of the corresponding isolated structure. These
sults, together with the related experiment, will be publish
elsewhere.48
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V. CONCLUSIONS

In this paper we study electron transport in an open squ
quantum dot with a size typical for current experiments. O
numerical analysis enables us to unambiguously identify
resonant states which dominate the conductance of the s
ture. On this basis we discuss various aspects of the elec
transport through the dot.

The main results and findings of our work can be summ
rized as follows.

~i! Despite of the presence of dot openings, transp
through the dot is effectively mediated by just a few eige
states of the corresponding closed structure. This holds
even in the case of several propagating modes in the lea

~ii ! In a single-mode regime in the leads the broadening
the resonant levels is typically smaller than the mean ene
level spacing,D. Thus, at zero temperature, transport me
surement in a single-mode regime may probe a single r
nant energy level of the dot. On the contrary, in the ma
mode regime the broadening exceedsD and has essentially
non-Lorentzian character.

~iii ! Transport characteristics of open dots~chaotic vs
regular! are usually discussed on the basis of the statistic
the nearest level spacing of the corresponding closed sys
As far as the single-mode regime is concerned, our res
tend to support the conclusion that the statistics of the sp
tra for open dots follow those of the corresponding clos
system. In the many-mode regime we argue that the con
of the statistics of the spectra does not make any sense,
it is not possible to introduce any reasonable definition of
spacings between resonances due to irregular character o
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broadening of resonant states. Thus we conclude that for
quantum dots strongly coupled to the leads, eigenlevel sp
ing statistics of the corresponding closed system are not
evant to the averaged transport properties of the struct
This conclusion seems to have a number of experimenta
well as numerical verifications.

~iv! The density of states of the isolated square is cha
terized by the global shell-like structures which reflect pe
odic clustering of levels on the scale exceeding the m
level spacing separation. Each shell can be ascribed to
certain family of the periodic orbits in the square. The
exists a striking correspondence between the characte
eigenstates defining different shells and the correspond
families of orbits.

~v! The observed periodicity of the conduction oscill
tions in the open dots is related to the formation of the glo
shell structure of the corresponding isolated square. H
ever, a particular arrangement of the leads may lead to
selective coupling between them, such that only selec
shells ~or, alternatively, families of periodic orbits! would
dominate transport through the dot. These predictions ca
experimentally tested in the two-terminal magnetoresista
measurement on the square dots with different arrangem
of the leads.
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