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Orbital liquid in perovskite transition-metal oxides

S. Ishihara,* M. Yamanaka, and N. Nagaosa
Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 7 February 1997!

We study the effects of the degeneracy of theeg orbitals in perovskite transition-metal oxides in the limit of
strong repulsive electron-electron interaction. The isospin field is introduced to describe the orbital degrees of
freedom and is represented by the boson with a constraint. The dispersion of this boson is flat along
(p/a,p/a,kz) (a: lattice constant! and the other two equivalent directions. This enables the orbital disordered
phase down to low temperatures. Some of the anomalous experiments in the low-temperature ferromagnetic
phase of La12xSrxMnO3 are interpreted in terms of this orbital liquid picture. The coupling between the orbital
degrees of freedom and the Jahn-Teller lattice distortion and its implications to the optical conductivity are also
discussed.@S0163-1829~97!04426-3#
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I. INTRODUCTION

The colossal negative magnetoresistance observed
transition-metal oxides with perovskite structure, e.g.,
double-exchange system La12xSrxMnO3, has revived the
interest in these systems.1–4 The valence of Mn ion is
Mn31 for x50, whose electron configuration i
(t2g)

3(eg)
1, and all the spins are aligned ferromagnetica

due to the strong Hund coupling. Mn31 ion also has the
orbital degrees of freedom due to the degeneracy of theeg
orbitals. Because of the strong on-site Coulomb repuls
the double occupancy ofeg orbitals is forbidden,

5,6 and the
system is a Mott insulator. Then the perturbative theory
not reliable to treat the electron-electron interaction in t
system, and the strong-coupling theory is required. W
one La is replaced by Sr, one hole is introduced to Mn a
Mn31 turns into Mn41. These doped holes, which contrib
ute to the conduction, cannot be described in terms of
one-body theory. For a single band case, which is relevan
high-Tc cuprates, extensive studies have been focused on
doped holes to a Mott insulator. On the other hand, in
orbital-degenerate case, the nature of the mobile hole and
spin and orbital fluctuations in the doped Mott insulator h
not been fully discussed up to now.7

Experimentally the orbital ordering has been establis
in the low hole-concentration region, i.e.,x;0.0,8,9 where
the system is insulating with theA-type antiferromagnetic
long-range ordering.10 As x increases the system becom
more and more conductive, and finally shows the meta
conduction below the ferromagnetic transition temperat
Tc . In this metallic state (x.0.2), there are several anom
lous features.

~1! The optical conductivity shows a broad ‘‘Drude-like
band up to around 1 eV which is growing with decreas
temperature.11 The integrated oscillator strength for th
broad band and a narrow coherent peak changes down t
very low temperature where the ferromagnetic moment
ready saturates, which suggests that other degrees of free
still remain active.

~2! The photoemission spectra shows only a small disc
tinuity at the Fermi energyEF followed by a gaplike
behavior.12–14 On the other hand, the specific heat is n
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enhanced withg;5 mJ/K2mol.15

~3! The anisotropy of the conduction and the spin exci
tions, which is expected with the orbital ordering, is not o
served even at low temperatures.15,16

~4! There is no symptom of the Jahn-Teller distortion
neutron-scattering experiments.16 The displacements of the
oxygen ions are independent of the temperature across
ferromagnetic transition temperature.

It is noted that the on-site repulsive interaction with
each orbital plays no role in the ferromagnetic state beca
of Pauli’s exclusion principle. Then it is suggested from t
above features that the orbital degrees of freedom play s
roles in the low-temperature phase.

In this paper we study the fluctuation in the orbital d
grees of freedom in perovskite transition-metal oxides. T
mean-field and/or random-phase-approximation picture s
ing from the noninteracting electrons leads to the conclus
that the orbital degrees of freedom are ordered because o
strong electron-electron interaction and/or the Jahn-Te
coupling. However we present below several theoretical r
sons to expect that the fluctuation is large enough to prev
the ordering although the amplitude of the short-range or
is large. The orbital degrees of freedom are represented

the isospinTW , which is the quantum dynamical variable wit
T51/2 for theeg orbitals. We found that its fluctuation has
two-dimensional character. Based on this, we propose
the isospin is still disordered, i.e., liquid state, in the ferr
magnetic state of La12xSrxMnO3 with x.0.2. We have
done some numerical simulations based on this idea,
their results are at least encouraging. We also mention
coupling between the orbital and lattice degrees of freed
and also the quantum nature of the lattice distortion is
evant and the vibronic state remains down to low tempe
ture. Its implications to the characteristic features in the
tical conductivity are also discussed.

II. FORMULATION

In order to study the fluctuation in the orbital degrees
freedom, we start with the following Hamiltonian:
686 © 1997 The American Physical Society
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H5ed (
i ,s,g

digs
† digs1 (

^ i j &,s,g,g8
~ t i j

gg8digs
† djg8s1H.c.!

1He2e1
1

2
K (
i ,g,s,s8

digs
† ~sW !ss8digs8•S

W
i
t2g. ~1!

Here it is assumed that the 2p orbitals of oxygen have bee
integrated over, and only thed orbitals of transition-meta
ions are considered. The operatordigs

† creates an electron
with spin s(5↑,↓) in the orbital g(5a,b) at site i . The

transfer intensityt i j
gg8 between theg orbital in sitei and the

g8 orbital in the nearest-neighbor sitej is calculated by con-
sidering the overlap integral between the Mn 3d and O 2p
orbitals. We choose the up and down isospin state in
orbital space asa5(3z22r 2) andb5(x22y2) orbitals, re-

spectively. Thent i j
gg8 is explicitly written by

t i j
gg85t0S 2

1

4
,

A3
4

A3
4
, 2

3

4
D

gg8

,

t0S 2
1

4
, 2

A3
4

2
A3
4
, 2

3

4
D

gg8

,

t0S 21, 0

0, 0D
gg8

, ~2!

for rW j5rW i6 x̂, rW j5rW i6 ŷ, and rW j5rW i6 ẑ, respectively. The
constantt0 is positive, and depends on the distance betw
the d andp orbitals. The electron-electron interactionHe2e
is explicitly written by
f

i
t

x

e

n

He2e5U(
ig

nig↑nig↓1U8(
i
nianib

1I (
i ,s,s8

dias
† dibs8

† dias8dibs , ~3!

wherenigs5digs
† digs andnig5(snigs . The fourth-term in

Eq. ~1! is the Hund coupling betweeneg and t2g spins and
SW i
t2g is the t2g spin withS53/2. The electron-electron inter
actionHe2e in Eq. ~3! is rewritten by using the spin operato
for the eg electron:SW 5 1

2(gss8dgs
† (sW )ss8dgs8 and the isos-

pin operatorTW 5 1
2(gg8sdgs

† (sW )gg8dg8s , for the orbital de-
grees of freedom. First notice the identities

SW 25
3

4
n2

3

2(g
ng↑ng↓12SW a•SW b , ~4!

and

TW 25
3

4
n22SW a•SW b1nanb1

1

2(g
ng↑ng↓ , ~5!

wheren5na1nb . ThenHe2e is rewritten as

He2e52(
i

~a~s!SW i
21a~ t !TW i

21bSW ia•SW ib!, ~6!

where a (s)5 2
3U1 1

3U82 1
6I , a (t)5U82 1

2I , and b52 4
3(U

2U82I ). Because~i! b is the order of I and is much
smaller thana (s) anda (t), and ~ii ! the largeU8 forbids the
simultaneous occupancy ofa andb orbitals, we will neglect
the SW ia•SW ib term in Eq. ~6!. Sincea (s) and a (t) are both
positive, the electron-electron interaction tends to induce
spin and isospin moments. By introducing two kinds
Stratonovich-Hubbard auxiality fields, the partition functio
is given by

Z5E )
i

H)
sg

@D d̄ isg~t!Ddisg~t!#DfW i
~s!~t !DfW i

~ t !~t !J
3e2*dtL, ~7!

with
L5 (
i ,g,s

d̄ igs~]t1ed!digs1 (
^ i j &,s,g,g8

~ t i j
gg8 d̄ igsdjg8s1H.c.!1K(

i
SW i•SW i

t2g1Lt2g22(
i

~a~s!fW i
~s!
•SW i1a~ t !fW i

~ t !
•TW i !

1(
i

~a~s!fW i
~s! 21a~ t !fW i

~ t ! 2!, ~8!
ich

cen-
tal
whereLt2g is the Berry phase term of thet2g spins. Equation
~8! describes theeg electrons moving in the background o
two fluctuating fields 2a (s)fW (s) and 2a (t)fW (t).

We introduce at this stage the approximation which
appropriate for the strong correlated case. In this case
magnitude of the local fieldsa (s)ufW (s)u and a (t)ufW (t)u are
much larger than the transfer intensityt0, and the electron is
forced to be aligned in the directions offW (s) andfW (t) at each
site. Thus, it is convenient to rotate the spin and isospin a
s
he

es

in each site, in order that itsz axis coincides withfW (s) and
fW (t). This is accomplished by the unitary matricesUi

(s) and
Ui
(t) for the spin and orbital spaces, respectively, wh

transform the fermion operator as f ig8s8
5(Ui

(s))s8s(Ui
(t))g8gdigs .

17 In this rotating frame the fields

fW (s) andfW (t) are pointing in the direction of1z, and accord-
ingly the density of states for thef fermion are divided into
four bands separated by the energy gaps. When the con
tration of theeg electrons is one per each transition-me
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ion, only the lowest band, which corresponds tos5↑ and
g5a, is occupied and the system becomes a Mott insula
We keep only this lowest band, because the holes are do
to it and only this is important when the low-energy exci
tions are concerned. We introduce the spinless and orb
less hole operatorhi ashi5 f ia↑

† . The virtual transition pro-
cesses to the higher bands cause the exchange intera
termsLJ , i.e., the so-calledJ term in thet-J type models.18

Then the effective Lagrangian up to the second order w
respect to the electron transfer is obtained as follows:

L5(
i

h̄ i~]t2mh!hi1(
i

~12 h̄ ihi !@~Ui
~ t !†]tUi

~ t !!aa

1~Ui
~s!†]tUi

~s!!↑↑#1(
i
3~Ui

~s!†]tUi
~s!!↑↑2(̂

i j &
h̄ i t̃ i j hj

1LJ , ~9!

where the chemical potentialmh is determined by the condi
tion ^hi

†hi&5x. The term 3(Ui
(s)†]tUi

(s))↑↑ comes from
Lt2g in Eq. ~8!. The Berry phase terms of the original electr

digs generates those for the rotated fermionshi , spins, and
isospins. Here we introduce the spinor bos
zi
(s)5 t@zi↑

(s) ,zi↓
(s)# to represent the unitary matrix

Ui
~s!5S zi↑~s! , 2zi↓

~s!*

zi↓
~s! , zi↑

~s!* D , ~10!

where fW i
(s)/ufW i

(s)u5(abzia
(s)* (sW )abzib

(s) and (suzis
(s)u251.

Correspondingly we introducezi
(t) for Ui

(t) . zis
( l )( l5s,t) is

written by using the angles in the spin and orbital space
zi↑
( l )5cos(ui

(l)/2) andzi↓
( l )5eifsin(ui

(l)/2). Then the Berry phase
terms for spins are written as (Ui

(s)†]tUi
(s))↑↑

5(szis
(s)* ]tzis

(s) , and its coefficient should be regarded as
spin quantum number 2S. Then in the undoped cas
(x50), the quantum numbers of the spin and isospin
S52 andT51/2, respectively. It is expected that the qua
tum fluctuation is stronger for the isospin than the spin.

Now the original electron operatordigs with the con-
straint of no double occupancy is expressed
digs5hi

†zig
(t)zis

(s) , which is the generalization of the slave
fermion formalism to the orbital degenerate case. Then
namehi , zig

(t) , andzis
(s) , holon, isospinon, and spinon, respe

tively. In this picture, the effective transfer intensityt̃ i j of
the holon is given by

t̃ i j5S (
s

zis
~s!* zjs

~s!D S (
g,g8

zig
~ t !* t i j

gg8zjg8
~ t ! D . ~11!

It should be mentioned that the spin and orbital fluctuatio
cause the bond fluctuations, instead of the on-site fluc
tions usually treated in the dynamical mean-field theory.
the ferromagnetic metallic states with the orbital degener
being lifted, the doped hole is identified as a spinless
mion. Therefore, it is reasonable to adopt the generali
slave-fermion method, where the doped hole is treated
fermion, while the fluctuations in the spin and orbital degre
of freedom are treated as bosons. Also, we want to disc
the possibility of the disordering of the orbital degrees
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freedom. Then we employed a method which is rather go
at describing the ordered state in order to avoid a bias tow
the disordered state.19,20

III. ORBITAL LIQUID STATES

In this section, we study nature of the orbital fluctuati
in the ferromagnetic metallic states based on the effec
action derived in the mean-field approximation. We show
energy dispersion for the orbital fluctuation and propose
orbital liquid state which has the significant implications
the experimental results.

We first consider the kinetic energy2(^ i j & h̄ i t̃ i j hj as-
suming thatxt0@J whereJ is the typical exchange energ
and is of the order oft0

2/a (s) or t0
2/a (t). Then in the limit of

strong correlation, we have the concentration region wh
J/t0!x!1, which we are now interested in. The exchan
terms LJ will be discussed later. We replace the fermio
operators by their average value, i.e.,̂h̄ ihi&5x,

^ h̄ ihj&52x, and quench the magnetic fluctuation by setti
zis
(s)5 t@1,0#. The constraint(guzig

(t)u251 is imposed on aver-
age by introducing the chemical potential2l. Then the ef-
fective Lagrangian of the orbital excitationzig

(t) is obtained as

L5(
kW
xt0F za~ t !* ~kW !

zb
~ t !* ~kW !

G
3F2

1

2
~cx1cy14cz!,

A3
2

~2cx1cy!

A3
2

~2cx1cy!, 2
3

2
~cx1cy!

G F za~ t !~kW !

zb
~ t !~kW !

G
1(

g,kW
luzg

~ t !~kW !u2, ~12!

with cx5cos(akx), etc. The eigenvalues for eachkW are given
by e6

(t)(kW )5l2xt0f6(kW ) where

f6~kW !52~cx1cy1cz!

6@cx
21cy

21cz
22cxcy2cycz2czcx#

1/2. ~13!

The minimum of this energy are given by the flat dispers
along the axis (p/a,p/a,kz) and the other two equivalen
directions. This situation is quite in contrast to the spin ca
where the dispersion relation is proportional
cos(akx)1cos(aky)1cos(akz). The above feature is originate

from the structure oft i j
gg8 given in Eq.~2!. In the eigenstates

for the flat dispersion,x22y2 (y22z2, z22x2) orbitals are
almost aligned in the two-dimensional layers. The electron
the x22y2 orbital cannot hop perpendicular to thexy plane
because the overlap with the oxygenp orbital is vanishing
due to the symmetry.@Only the (aa) component is nonzero
in the third matrix in Eq.~2!.#

This flat dispersion leads to an important consequen
The chemical potential l is determined by

^(gzig
(t)* zig

(t)&5(1/N)(gknB„eg
(t)(kW )…51, where nB is the

Bose distribution function. Because of this flat dispersio
the chemical potential2l is always negative at finite tem
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56 689ORBITAL LIQUID IN PEROVSKITE TRANSITION- . . .
perature although it becomes exponentially small below
effective Bose condensation temperatureT*;xt0. Then the
orbital long-range ordering does not occur down to low te
peratures.

One may think that the physical quantities behave si
larly to the orbital ordered state when the chemical poten
is very small andz(t) is almost Bose condensed. Howev
this is not the case because there are three branches o
low-lying fluctuations, i.e., along (p/a,p/a,kz) and two
equivalent directions. In order to show it, we generate
random configuration ofz(t) at very low temperature wher
the chemical potential is already very small. In this case o
the static component ofz(t) is important, which is obtained
by the random numbers generated by the Gaussian func
exp@2e6

(t)(kW)uz6
(t)(kW)u2/T#. Then t̃ i j is obtained through Eq

~11!, and we diagonalize the holon Hamiltonian for that co
figuration of the transfer. We study the density of states
the optical conductivitysh(v) of the holon system by aver
aging over 50 random samples for the cubic lattice
83838. In Fig. 1, we present the results for the optic
conductivity obtained by the numerical calculation.sh(v)
shows an incoherent peak, the width of which is the orde
t0. If one looks att̃ i j in each bond, it fluctuates in sign an
magnitude violently, which explains the incoherent nature
sh(v). This incoherent nature remains at lower temperat
in comparison with the ferromagnetic transition temperat
estimated as aboutxt0. Experimentally, the incoherent pea
in s(v) observed in manganites has a broad band up
about 1 eV and it is growing with decreasing temperature
the ferromagnetic phase, where the spin degree of freedo
almost quenched. These results suggest the existence o
other degree of freedom which is still active down to the lo
temperature. Based on the present numerical calculation
propose that this broad peak observed ins(v) is interpreted
as the results of the fluctuation in the orbital degree of fr
dom. Also, we present numerical results for the density
states of the holon in Fig. 2. The density of states trail
skirt up to the region ofv;t0, and its global shape is fa
from the conventional one in the three-dimensional fr
fermion system. In this hole concentration, the density
states at the fermi level is fairly reduced due to the bo
disorder. The photoemission spectra for the valence b

FIG. 1. The optical conductivity of the holonsh(v) calculated
in the 83838 system. The temperature and the hole concentra
are chosen to beT50.1t0 andx50.2, respectively.
e

-

i-
l

the

e

ly

on

-
d

f
l

f

f
e
e

to
n
is
the

e

-
f
a

-
f
d
nd

are, experimentally, measured in La1-xSrxMnO3, where the
very low intensity nearEF and the small discontinuity a
EF are reported.

5,12,13These features are also consistent w
the theoretical results attributed to the bond disordering
the orbital liquid states.

Here we discuss several possible effects which break
flat dispersion and/or make the orbitals long-range orde
One possibility is the so-calledJ terms, i.e.,LJ in Eq. ~9!. It

is noted that the transfer matrixt i j5(t i j
gg8) does not com-

mute with any of the Pauli matricessa. Then there is no
continuous rotational symmetry in the isospin space. N
glecting the terms of the order ofxJ, LJ in the ferromagnetic
phase has the same form as the first term in Eq.~12! with
za
(t) (zb

(t)) being replaced byTz (Tx) and xt0 by
2t0

2/(U82I ).18 Note that onlyTz andTx appear inLJ . The
dispersion has the same form asz(t)-boson, i.e.,

eJ6(kW )52@ t0
2/(U82I )# f6(kW ). Then the minimum of the

energy are given by the flat dispersion along the a
(p/a,p/a,kz) and the other two equivalent directions. F
the lowest dispersion along (p/a,p/a,kz), Tz50 and only
Tx is nonzero, which competes with the fact that the kine
energy prefers nonzeroTz . As before the ordering of the
isospin is suppressed because there are three branches
flat dispersion with the role ofz’s being replaced byT’s.
Applying the mean-field approximation toLJ , which con-
tains the two-body interactions between thez(t) bosons,LJ
does not generate a dispersion for the flat branch bec
flatness comes from the fact that the hopping of thex22y2

electron along thez axis is forbidden. We also note that th
orbital angular momentum is quenched ineg orbitals, and the
spin-orbit interaction is ineffective.

The orbital liquid, on the other hand, should be very se
sitive to the anisotropy between thex, y, andz axis. In this
respect, when the orbital degeneracy is lifted out in the l
ered materials, e.g., La222xSr112xMn2O7, the orbital liquid
should be absent. Another test on our scenario is the eff
of the uniaxial pressure. We expect thats(v) becomes an-
isotropic and becomes sharp in the more conductive pla

n
FIG. 2. The density of states of the holonNh(v) calculated in

the 83838 system. The temperature and the hole concentra
are chosen to beT50.1t0 andx50.2, respectively. The broken line
shows the Fermi level.
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IV. DISCUSSION AND CONCLUSIONS

In the previous section, we have studied the orbital fl
tuation in the perovskite manganites where the twoeg orbit-
als are degenerate. Due to the strong electron-electron i
actions, the system becomes a doped Mott insulator, and
quasi-two-dimensional nature of the orbital flcutations p
vents the orbital ordering. In this scenario, a characteri
energy of the orbital fluctuation (V) is given by the chemica
potential of the isospinon, which is estimated
V;l;exp(2t0x/T), a very small energy scale at the lo
temperature. The picture of the static orbital disordering d
cussed in the previous section and the static approxima
used in the numerical calculations are applicable only in
energy region larger thanV. Therefore, the sharp Drud
peak, experimentally observed in the actual compounds, d
not appear in the numerical results presented in Fig. 1. F
thermore, the large entropy, expected from the orbital dis
dered states, is not consistent with the observed specific
which is not enhanced at the low temperature. Interacti
which have not been taken into account thus far can af
the nature of the orbital fluctuation and break the flatnes
the dispersion. In this section, as the most probable ca
date, we introduce the interaction between the orbital
Jahn-Teller~JT! distortion, which brings about a new energ
scale forV in place ofl.

We consider the Hamiltonian,21 describing the coupled
system between the orbital and lattice degrees of freedom
follows:

H5Hele1H latt1H jt1Hnl , ~14!

whereHele is the Hamiltonian for the pure electronic syste
given in Eq.~1!. We introduce the two kinds of theEg lattice
distortion modes described byQil ( l52,3), which are repre-
sented by the amplitude of the JT distortionr i and its phase
u i in the (Q22Q3) plane asQi25r isinui andQi35r icosui .
H latt includes the kinetic energy and the harmonic poten
for these modes with the spring constantK. The third term
H jt represents the linear JT coupling given by

H jt52A(
i

~TizQi31TixQi2!. ~15!

The last termHnl is divided into the two parts: the anha
monic lattice potential and the nonlinear JT coupling as f
lows:

Hnl5(
i

$B1~Qi3
3 23Qi2

2 Qi3!1B2@~Qi3
2 2Qi2

2 !Tiz

12Qi2Qi3Tix#%. ~16!

It is noted that the bandwidth of the holon is the order
xt0, not the order oft0, due to the strong electron-electro
interaction. Therefore, in comparison with the noninteract
system, the JT distortion brings out the more efficacious c
pling with the mobile carrier in the present case. Althou
magnitudes of the several energy parameters in the ac
compounds are not clarified up to now, we assume, for s
plicity, the strong-coupling limit where the conditio
@A(A/K)@xt0 ,B1(A/K)

3,B2(A/K)
2# is satisfied. In this

limit, the phase degrees of freedom only remain and
-
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stable values ofu are mainly determined byHnl and the
kinetic term inHele. By using the phase variable,Hnl is
rewritten as follows:

Hnl5(
i
cos~3u i !@B1r i

31B2r i
2~12hi

†hi !#. ~17!

Because of the negative signs ofB1 andB2 in manganites,
8,9

this term becomes minimum atu50,62p/3, that is, the
3z22r 2(3y22r 2,3x22r 2)-type orbital is in favor inHnl .
On the other hand, as previously pointed out, the kinetic te
in Hele stabilizes thex22y2(y22z2,z22x2)-type orbital.
With assuming the uniform value ofu, Hele is rewritten as
follows:

Ht5t0x
5/3H @12cos~u1p!#F12cosS u1

p

3 D G
3F12cosS u2

p

3 D G J 1/31O~x7/3!, ~18!

which becomes its minimum atu5p,6p/3. It is noted that
the potential minima introduced by the above two terms
ternate in the (Q22Q3) plane. With increasing the hole con
centration, magnitudes ofxt0, B1(A/K)

3, andB2(A/K)
2 be-

come comparable with each other and the potential heig
become shallow. Then, the quantum tunneling between
triple or sixfold potential well are expected to easily occ
and govern the orbital fluctuations. The tunneling frequen
gives the characteristic energy scale of the orbital fluctua
V, in place ofl. In this case, the effects of the dissipation
the quantum tunneling seems to be irrelevant with consid
ing the results of the renormalization-group study in t
double-well case.22 The entropy at the low temperature
expected to be quenched, because the degeneracy is lifte
every site where the singlet state is formed by the orbi
lattice coupling.

Let us consider the motion of the holon interacting w
the system discussed above. When the energy of the h
v is larger thanV, the holon feels the static random potent
at each bond due to the orbital disordering. On the ot
hand, in the case ofv,V, the holon feels the average
potential during a lot of tunneling processes. As a result,
optical conductivity of the holon has the structure arou
v;V and shows the two-component feature. The numer
result presented in Fig. 1 corresponds to the case ofV→0 in
the present picture. In order to demonstrate the role of
finite value ofV, we introduce the following effective mode
and calculate the optical conductivity based on it. We co
sider the double-well potential for the lattice at each s
instead of the triple or sixfold well in the original mode
Between the potential minima, the quantum tunneling occ
with the frequencyV. The transfer intensity of the holon
between the nearest-neighbor sites depends on the stat
the lattice. The effective model are given as follows:

H5(̂
i j &

~ t01t1s i
zs j

z!hi
†hj1H.c.1V(

i
s i
x , ~19!
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wheres i
l are the Pauli matrices describing the double-w

potential. In Fig. 3, we present the optical conductivity sp
tra calculated by the memory function formalism23 up to the
order oft1

2. It is noted again that the numerical result in F
1 corresponds to the case ofV→0 in the present scheme
We find the two-component feature insh(v), that is, the
sharp Drude peak and the broad incoherent component d
to v;4 V. With decreasingV, the fine structure and th
sharp Drude peak are thermally smeared and the weig
transferred to the incoherent band. If we assu
V;0.0220.03 eV, the two-component feature in the calc
lated spectra are qualitatively consistent with the experim
tal ones in manganites, except for the small Drude wei
which is still an open question.

In summary we have shown that there are reasons to
pect that the orbital degrees of freedom remain disordere
the low-temperature ferromagnetic metallic state even w
the well developed local orbital moments due to the stro
electron-electron interaction. These are~1! the anisotropic
character of the transfer integral leads to the quasi-t
dimensional dispersion for the isospinon.~2! When the JT
effect is considered, there occurs competition between
energy gain in the kinetic energy and the nonlinear poten
for the distortion. This competition enhances the quant
tunneling of the JT distortion and hence the vibronic state
expected to survive. This introduces the characteristic ene

FIG. 3. The optical conductivity of the holonsh(v) calculated
by the model in Eq.~19!. V is the tunneling frequency between th
double well. Temperature is chosen to beT50.02 eV.
ve
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scale, i.e., the tunneling frequency, which explains qual
tively the two-component feature of the optical conductivit

Then the next question is what are the low-energy stat
If the mean-field theory in the slave-fermion formalis
given above is correct, it means that the electrons are in
non-Fermi-liquid state. However there is not enough expe
mental and theoretical evidence to believe either the n
Fermi liquid or Fermi liquid. The main purpose of this wor
is to study the possibility of the ordering and/or disorderi
of the orbital degrees of freedom. Because we obtain
disordered state within the formalism which favors the ord
ing, we expect this result is convincing. However knowin
that the orbital degrees of freedom remain disordered,
slave-boson formalism is another candidate to describe
low-energy states. In this formalism the slave bosons
expected to be condensed easily in three dimensions, and
low-energy state is the usual Fermi liquid with the two ban
crossing the Fermi energy. Actually Shibaet al.24 took the
Fermi-liquid viewpoint and calculated the optical conducti
ity for the noninteracting electrons. In this viewpoint th
‘‘Drude part’’ in the optical conductivity corresponds to th
intraband transitions, while the ‘‘incoherent part’’ to the in
terband transitions. However we believe that our sla
fermion theory is applicable at least to time scales sho
than the characteristic one for the orbital fluctuations, b
cause the electronic system feels the orbital order within t
time scale. Furthermore the slave-fermion mean-field the
describes the small Drude weight without the heavy ma
because the carrier density is small (x) in this formalism. On
the other hand, in the slave-boson mean-field theory with
bose condensation, the small Drude weight suggests la
specific heat, which is not consistent with the experiment.
any case the fluctuations from the mean-field theory in b
the slave-fermion and slave-boson formalisms need to
studied in the future.
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