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Orbital liquid in perovskite transition-metal oxides
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We study the effects of the degeneracy of égeorbitals in perovskite transition-metal oxides in the limit of
strong repulsive electron-electron interaction. The isospin field is introduced to describe the orbital degrees of
freedom and is represented by the boson with a constraint. The dispersion of this boson is flat along
(m/a,mla,k,) (a: lattice constantand the other two equivalent directions. This enables the orbital disordered
phase down to low temperatures. Some of the anomalous experiments in the low-temperature ferromagnetic
phase of La_,Sr,MnO; are interpreted in terms of this orbital liquid picture. The coupling between the orbital
degrees of freedom and the Jahn-Teller lattice distortion and its implications to the optical conductivity are also
discussed[S0163-18207)04426-3

. INTRODUCTION enhanced withy~5 mJ/K?mol 1®
(3) The anisotropy of the conduction and the spin excita-

The colossal negative magnetoresistance observed tions, which is expected with the orbital ordering, is not ob-
transition-metal oxides with perovskite structure, e.g., theserved even at low temperatur@g®
double-exchange system La,Sr,MnOj, has revived the (4) There is no symptom of the Jahn-Teller distortion in
interest in these systems: The valence of Mn ion is neutron-scattering experimertfsThe displacements of the
Mn®* for x=0, whose electron configuration is oxygen ions are independent of the temperature across the
(t2g)%(g)", and all the spins are aligned ferromagneticallyferromagnetic transition temperature.
due to the strong Hund coupling. Mn ion also has the |t js noted that the on-site repulsive interaction within
orbital degrees of freedom due to the degeneracy okthe each orbital plays no role in the ferromagnetic state because
orbitals. Because of the strong on-site Qoulor’gb repulsiongs payli's exclusion principle. Then it is suggested from the
the double occupancy @& orbitals is forblddeﬁ;_ and the  apove features that the orbital degrees of freedom play some
system is a Mott insulator. Then the pertgrbatlvg thgory Soles in the low-temperature phase.
not reliable to treat the electron-electron interaction in this In this paper we study the fluctuation in the orbital de-

system, and the strong-coupling theory is required. When

. - frees of freedom in perovskite transition-metal oxides. The
one La is replaced by Sr, one hole is introduced to Mn an : . X
mean-field and/or random-phase-approximation picture start-

Mn3* turns into Mrf*. These doped holes, which contrib- . : ) .
ute to the conduction. cannot be described in terms of thd'd from the noninteracting electrons leads to the conclusion
one-body theory. For é single band case, which is relevant t at the orbital degrees of freedom are ordered because of the

high-T, cuprates, extensive studies have been focused on trRirong electron-electron interaction and/or the Jah.n-TeIIer
doped holes to a Mott insulator. On the other hand, in the&oupling. However we present pelqw several theoretical rea-
orbital-degenerate case, the nature of the mobile hole and tR@nSs t0 expect that the fluctuation is large enough to prevent
spin and orbital fluctuations in the doped Mott insulator hashe ordering although the amplitude of the short-range order
not been fully discussed up to ndw. is large. The orbital degrees of freedom are represented by
Experimentally the orbital ordering has been establishedhe isospinT, which is the quantum dynamical variable with
in the low hole-concentration region, i.ex~0.08° where  T=1/2 for thee, orbitals. We found that its fluctuation has a
the system is insulating with tha-type antiferromagnetic two-dimensional character. Based on this, we propose that
long-range ordering’ As x increases the system becomesthe isospin is still disordered, i.e., liquid state, in the ferro-
more and more conductive, and finally shows the metallignagnetic state of La ,Sr,MnO; with x>0.2. We have
conduction below the ferromagnetic transition temperaturgione some numerical simulations based on this idea, and
Tc. In this metallic stateX>0.2), there are several anoma- their results are at least encouraging. We also mention the
lous features. coupling between the orbital and lattice degrees of freedom
(1) The optical conductivity shows a broad “Drude-like” and also the quantum nature of the lattice distortion is rel-
band up to around 1 eV which is growing with decreasingevant and the vibronic state remains down to low tempera-
temperaturé’ The integrated oscillator strength for this tyre. Its implications to the characteristic features in the op-
broad band and a narrow coherent peak changes down to thiga| conductivity are also discussed.
very low temperature where the ferromagnetic moment al-
ready saturates, which suggests that other degrees of freedom

still remain active.
L . Il. FORMULATION
(2) The photoemission spectra shows only a small discon-
tinuity at the Fermi energyEr followed by a gaplike In order to study the fluctuation in the orbital degrees of

behaviort?~** On the other hand, the specific heat is notfreedom, we start with the following Hamiltonian:
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HZEd.Z diTyo-diyO'+ 2 (tI)J,y di.ryg-djy’odl_H'c') He,e:UZ nmniyl-l-U’E NjaNip
hovy (ii)ory' by '
1 - 2 t
FHeot 5K X dl(0)gpbipe S (D) 1 2 dl, i, diag Ging )
i,y,0,0' i,o,0'

Here it is assumed that the Drbitals of oxygen have been Wheren; ,=d d;,, andn;,==,n;,,. The fourth-term in
integrated over, and only the orbitals of transition-metal EGd. (1) is the Hund coupling betwees, andt,q spins and
ions are considered. The operatﬂfrw creates an electron S{Zg is thet,y spin with S=3/2. The electron-electron inter-
with spin o(=1,]) in the orbital y(=a,b) at sitei. The actionH._. in Eq. (3) is rewritten by using the spin operator
transfer intensity}”" between they orbital in sitei and the ~ for the e, electron:S= 32 501d1,(0) yord,,r and the isos-
y' orbital in the nearest-neighbor sitds calculated by con- pin operatorT=3%,,,,d! (0),,/d,.,, for the orbital de-
sidering the overlap integral between the Md 8hd O »  grees of freedom. First notice the identities

orbitals. We choose the up and down isospin state in the 3 3 o
orbital space asa=(3z?—r?) andb=(x?>—y?) orbitals, re- SZ=Zn— 52 NN, +2S;+ Sy, (4)
spectively. ThertiVjV' is explicitly written by 7
and
1 3 fzzgn—zé -S,+Nany+ EZ n.,:n (5)
- Vo 4 a a 245 Y1yl
: 4 4 _—
" =t, A 3 , wheren=n,+n,. ThenH._, is rewritten as
3
EA He o= =2 (a9§%+aVT%4 6828, (6
where a®=2U+2U'-3, a®=U"'-1l, and B=—%(U
_} _\/_§ —U’—1). Because(i) B is the order ofl and is much
4’ 4 smaller thana(® and o, and(ii) the largeU’ forbids the
to J3 3 . simultaneous occupancy afandb orbitals, we will neglect
- 1 the S-S, term in Eq. (6). Since a'® and a® are both
vy positive, the electron-electron interaction tends to induce the
spin and isospin moments. By introducing two kinds of
Stratonovich-Hubbard auxiality fields, the partition function
¢ -1, 0 @) is given by
°% o, o

z= f I1 {H [Ddi,(7)Ddi,(1)ID G (7)D GV (7)
1 gy

for r;=r,=x, r;=r;=y, andr;=r;+z, respectively. The
constant, is positive, and depends on the distance between CrdiL
thed andp orbitals. The electron-electron interactibh,_, xe ' (@)
is explicitly written by with

L:_Z d_iy<r(‘97'+ Ed)diy(r+ 2 (tﬁy,d—iyvdjy’0+H'c')+Kz é_§29+Ltzg_22 (a(S)QZi(S)'é—’_a(t)q_;i(t)'fi)
| I

Ly (ij), 0,7,

2 (@972 algl?), ®

Whefe'—tzg is the Berry phase term of thg, spins. Equation jn each site, in order that its axis coincides with$(® and

(8) describes the, electrons moving in the background of 41 This is accomplished by the unitary matriddg) and

two fluctuating fields 2 ¢® and 220 ¢®. U® for the spin and orbital spaces, respectively, which
We introduce at this stage the approximation which istransform the fermion operator as fi,,

appropriate for the strong correlated case. In this case the(Ui(s))(r,(r(ui(t))y,ydiw_17 In this rotating frame the fields

magnitude of the local fields:®|4®)| and «®¢®| are G andG® are pointing in the direction of z, and accord-

much larger than the transfer intensily and the electron is ingly the density of states for thiefermion are divided into

forced to be aligned in the directions ¢f¥ and (" at each  four bands separated by the energy gaps. When the concen-

site. Thus, it is convenient to rotate the spin and isospin axegation of thee, electrons is one per each transition-metal



688 S. ISHIHARA, M. YAMANAKA, AND N. NAGAOSA 56

ion, only the lowest band, which correspondsateT and  freedom. Then we employed a method which is rather good
y=a, is occupied and the system becomes a Mott insulatorat describing the ordered state in order to avoid a bias toward
We keep only this lowest band, because the holes are dopéke disordered stafé:?°

to it and only this is important when the low-energy excita-

tions are concerned. We introduce the spinless and orbital- Ill. ORBITAL LIQUID STATES

less hole operatadn; as hiszaT. The virtual transition pro- ] ] ] .
cesses to the higher bands cause the exchange interacti_on'” this section, we study.nature of the orbital fluctuathn
termsL;, i.e., the so-called term in thet-J type modeld® i the ferromagnetic metallic states based on the effective

Then the effective Lagrangian up to the second order witrgction de_rived i_n the mean-fie_ld approximation. We show the
respect to the electron transfer is obtained as follows: energy dispersion for the orbital fluctuation and propose the
orbital liquid state which has the significant implications to

_Z = H E T Ot 1 the experimental results. L

L= i i(d-— pp)hi+ - (1= hih) (Ui 9:Ui")aa We first consider the kinetic energy 2 h;t;h; as-
suming thatxty>J whereJ is the typical exchange energy
and is of the order of3/a® or t3/a. Then in the limit of
strong correlation, we have the concentration region where
J/ty<x<<1, which we are now interested in. The exchange
+L;, (9 termsL; will be discussed later. We replace the fermion

where the chemical potential, is determined by the condi- OPerators by their average value, ieghih)=x,
tion (h'h)=x. The term 3U®79,Ul),, comes from (h;h))=—x, and quench the magnetic fluctuation by setting
Ly,, in EQ.(8). The Berry phase terms of the original electron z(9="71,0]. The constraink | Zi(ty)|2= 1 is imposed on aver-
di,, generates those for the rotated fermidms spins, and 29¢ by lntroduc_mg the chemlcal pojten_traD\._ Then _the ef-
isospins. Here we introduce the spinor bosonfective Lagrangian of the orbital excnatlaﬁ) is obtained as
z="2 2] to represent the unitary matrix

(U100 1+ 2 3(U§S”cw§5)>m—(iEj> hiTyh;

(ENS

zy"" (k)

(s) _ (9% L=E xto[ R

ufS):(ZIT o ) 10 (S

I (s) (s)x |’
Zi, Iy 3

where GO1| §(9|=3,529% (0),,23 and S,[292=1. Tplereas) STt g
Correspondingly we introducg(” for U . zZ(1=st) is X 3 3 0k
written by using the angles in the spin and orbital spaces as 7(—CX+ cy), — E(cx+ cy) zo (k)

z)=cos@"/2) andz{) = e'*sin(¢{"/2). Then the Berry phase
terms for spins are written as UfTo,Ul),, O 2\ (2
=3,29%5,29 , and its coefficient should be regarded as the + 2, Mz (k)2 (12)
spin quantum number 2 Then in the undoped case 7k
(x=0), the quantum numbers of the spin and isospin aryith c,=cos@k), etc. The eigenvalues for eakhare given
S=2 ande 1/2_, respectively. It is expgcted that the quan-p,, e(i)(IZ)z)\—xtofi(E) where
tum fluctuation is stronger for the isospin than the spin. -
Now the original electron operatat;,, with the con-
straint of no double occupancy is expressed as
diyo= hiTzi(ty)zi(?: which is the generalization of the slave- *[ci+ci+ci—c,cy—cyc,—C,0 ) 2 (13)
fermion formalism to the orbital degenerate case. Then we o _ _ ) )
nameh; , Zi(t) , andzi(ii) , holon, isospinon, and spinon, respec- The minimum of this energy are given by the flat dl_spersmn
tively. | thy' ict the effective t fer intensiv. of along the axis fr/a,n/a,k,) and the other two equivalent
t'r\]/e K In nis pic urbe, e effective transfer intensity; o directions. This situation is quite in contrast to the spin case
€ holon Is given by where the dispersion relation is proportional to
cosf@k,) +cos@k)+cos@k,). The above feature is originated
o= 29429 > Zv= v 5O 11 vy : :
tij Zi, Zjg Z, 7z, (1) from the structure off” given in Eq.(2). In the eigenstates
7 7Y 2, 72— x?) orbitals are

f.(K)=—(cxt+Cy+Cy)

for the flat dispersionx®—y? (y2— 22,

It should be mentioned that the spin and orbital fluctuati0n§""n°2St a"zgned in the two-dimensional layers. The electron in
cause the bond fluctuations, instead of the on-site fluctug!®X"—Y* orbital cannot hop perpendicular to thg plane
tions usually treated in the dynamical mean-field theory. InP€cause the overlap with the oxygpnorbital is vanishing
the ferromagnetic metallic states with the orbital degenerac@ue to the symmem[.OnIy the @a) component is nonzero
being lifted, the doped hole is identified as a spinless ferln the third matrix in Eq(2).] _

mion. Therefore, it is reasonable to adopt the generalized This flat dispersion leads to an important consequence.
slave-fermion method, where the doped hole is treated as B'® _ chemical  potential A is  determined by
fermion, while the fluctuations in the spin and orbital degreeiE,/zi(;)* zi(ty)>= (1/N)EyknB(e$)(k))= 1, where ng is the

of freedom are treated as bosons. Also, we want to discudose distribution function. Because of this flat dispersion,
the possibility of the disordering of the orbital degrees ofthe chemical potential-\ is always negative at finite tem-
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_ FIG. 1. The optical conductivity of the holam,(w) calculated _ FIG. 2. The density of states of the holdh(w) calculated in
in the 8X8x 8 system. The temperature and. the hole concentration, . g« gx g system. The temperature and the hole concentration
are chosen to b&=0.1t, andx=0.2, respectively. are chosen to b&=0.1t, andx=0.2, respectively. The broken line

. . shows the Fermi level.
perature although it becomes exponentially small below the

effective Bose condensation temperatlife~ xt,. Then the

orbital long-range ordering does not occur down to low tem-are, experimentally, measured in L, &r,MnO;, where the

peratures. very low intensity nearfE and the small discontinuity at
One may think that the physical quantities behave simiE¢ are reported:'>*3These features are also consistent with

larly to the orbital ordered state when the chemical potentiathe theoretical results attributed to the bond disordering in

is very small andz!) is almost Bose condensed. However the orbital liquid states.

this is not the case because there are three branches of theHere we discuss several possible effects which break the

low-lying fluctuations, i.e., along #t/a,n/a,k,) and two flat dispersion and/or make the orbitals long-range ordered.

equivalent directions. In order to show it, we generate theone possibility is the so-callediterms, i.e.L, in Eq. (9). It

random configuration o) at very low temperature where . ey
the chemical potential is already very small. In this case onl)}s noted that the transfer matrby = (tj” ) does not com-

the static component oV is important, which is obtained "Y€ with any of the Pauli matricas®. Then there is no

by the random numbers generated by the Gaussian functio‘??mi,m’ous rotational symmetry in the isospin space. Ne-
ex — O@IZWPITL. Then T, is obtained through Eq. glecting the terms of the order &f), L in the ferromagnetic

. . o phase has the same form as the first term in #8) with
(11), and we diagonalize the holon Hamiltonian for that con-_ (29) being replaced byT, (T, and xt, by

figuration of the transfer. We study the density of states anda 2 P 8 )
the optical conductivityr,(w) of the holon system by aver- —t/(U’—1).” Note that onlyT, andT, appear irL,. The

aging over 50 random samples for the cubic lattice ofdispersion has the same form as®-boson, i.e.,
8x8x8. In Fig. 1, we present the results for the optical e;.. (k)= —[t3/(U’—1)]f. (k). Then the minimum of the
conductivity obtained by the numerical calculatian,(w)  energy are given by the flat dispersion along the axis
shows an incoherent peak, the width of which is the order of r/a, 7r/a,k,) and the other two equivalent directions. For

to. If one looks att;; in each bond, it fluctuates in sign and the Jowest dispersion alongr{a,w/a,k,), T,=0 and only
magnitude violently, which explains the incoherent nature of-|-X is nonzero, which competes with the fact that the kinetic
onh(w). This incoherent nature remains at lower temperatureenergy prefers nonzer®,. As before the ordering of the

in comparison with the ferromagnetic transition temperaturgq,qnin js suppressed because there are three branches of the
gstimated as abomo. Experimgntally, the incoherent peak flat dispersion with the role of’'s being replaced byl’s.

in o(w) observed in manganites has a broad band up t%pplying the mean-field approximation 10,, which con-

about 1 eV and it is growing with decreasing temperature i _. : .
the ferromagnetic phase, where the spin degree of freedomr‘ ins the two-body '”teTaC“Or?S between 8 bosonsL
ges not generate a dispersion for the flat branch because

almost quenched. These results suggest the existence of t ) Re 2
other degree of freedom which is still active down to the low12iN€SS comes from the fact that the hopping ofxthe y

temperature. Based on the present numerical calculation, w€ctron along the axis is forbidden. We also note that the
propose that this broad peak observedr{mw) is interpreted ~ Orbital angular momentum is quenchecejporbitals, and the

as the results of the fluctuation in the orbital degree of freeSPin-orbit interaction is ineffective.

dom. Also, we present numerical results for the density of The orbital liquid, on the other hand, should be very sen-
states of the holon in Fig. 2. The density of states trails gitive to the anisotropy between they, andz axis. In this
skirt up to the region ofu~t,, and its global shape is far respect, when the orbital degeneracy is lifted out in the lay-
from the conventional one in the three-dimensional free-ered materials, e.g., ba »,Sr;,,,Mn,0-, the orbital liquid
fermion system. In this hole concentration, the density ofshould be absent. Another test on our scenario is the effects
states at the fermi level is fairly reduced due to the bondf the uniaxial pressure. We expect theftw) becomes an-
disorder. The photoemission spectra for the valence banigotropic and becomes sharp in the more conductive plane.
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IV. DISCUSSION AND CONCLUSIONS stable values ofg are mainly determined byi, and the

In the previous section, we have studied the orbital fluckinetic term inHege. By using the phase variabléiy is
tuation in the perovskite manganites where the eyarbit- rewritten as follows:
als are degenerate. Due to the strong electron-electron inter-
actions, the system becomes a doped Mott insulator, and the
guasi-two-dimensional nature of the orbital flcutations pre-
vents the orbital ordering. In this scenario, a characteristic

energy of the orbital fluctuation(¥) is given by the chemical Because of the negative signsif andB, in manganite§;®
potential of the isospinon, which is estimated asthis term becomes minimum a=0,+2/3, that is, the
Q~\~exp(—1tox/T), a very small energy scale at the low 372 2(3y2—r2, 3x?—r2)-type orbital is in favor inH,;.
temperature. The picture of the static orbital disordering dispn, the other hand, as previously pointed out, the kinetic term
cussed in the previous section and the static approximatiopy H_ . stabilizes thex?—y?(y2—z2,z2—x?)-type orbital.
used in the numerical calculations are applicable only in theyith assuming the uniform value of, Ho is rewritten as
energy region larger thaf). Therefore, the sharp Drude tg|ows:
peak, experimentally observed in the actual compounds, does

not appear in the numerical results presented in Fig. 1. Fur-

Hu= 2 cog36)[Byri+Byri(1—hlh)]l. (17

thermore, the large entropy, expected from the orbital disor- thtoxm[ [1—cog 6+ )] 1_Cog< 0+ T

dered states, is not consistent with the observed specific heat 3

which is not enhanced at the low temperature. Interactions 1) 3

which have not been taken into account thus far can affect X 1—cos< 0— - +0(x™®), (18
the nature of the orbital fluctuation and break the flatness of 3

the dispersion. In this section, as the most probable candi-
date, we introduce the interaction between the orbital an
Jahn-TellerJT) distortion, which brings about a new energy
scale for() in place ofA.

We consider the Hamiltoniaft, describing the couple
system between the orbital and lattice degrees of freedom,
follows:

hich becomes its minimum &= 7, *+ /3. It is noted that
e potential minima introduced by the above two terms al-
ternate in the Q,— Q3) plane. With increasing the hole con-
d centration, magnitudes oft, B;(A/K)2, andB,(A/K)? be-
%gme comparable with each other and the potential heights
ecome shallow. Then, the quantum tunneling between the
triple or sixfold potential well are expected to easily occur
H=Hegie+ H it Hyt Ho, (14)  and govern the orbital fluctuations. The tunneling frequency
gives the characteristic energy scale of the orbital fluctuation
whereHg is the Hamiltonian for the pure electronic system (), in place ofA. In this case, the effects of the dissipation on
given in Eq.(1). We introduce the two kinds of tHgy lattice  the quantum tunneling seems to be irrelevant with consider-
distortion modes described I§y; (1=2,3), which are repre- ing the results of the renormalization-group study in the
sented by the amplitude of the JT distortignand its phase double-well casé® The entropy at the low temperature is
6; in the (Q,—Q3) plane af;,=r;sing andQ;3=r;coss.  expected to be quenched, because the degeneracy is lifted on
H). includes the kinetic energy and the harmonic potentiakvery site where the singlet state is formed by the orbital-
for these modes with the spring const#nt The third term  |attice coupling.

Hj: represents the linear JT coupling given by Let us consider the motion of the holon interacting with
the system discussed above. When the energy of the holon
Hy= _AEi (T,Qia+ TixQia). (15) w is larger thar(}, the holon feels the static random potential

at each bond due to the orbital disordering. On the other
o _ hand, in the case of»<(), the holon feels the averaged
The last termH, is divided into the two parts: the anhar- ntential during a lot of tunneling processes. As a result, the
monic lattice potential and the nonlinear JT coupling as fo"optical conductivity of the holon has the structure around
lows: o~ and shows the two-component feature. The numerical
result presented in Fig. 1 corresponds to the cage-ef0 in
Hy= > {B1(Q%—3Q%Qi3) +Bo[(Q5— Q%) T, the present picture. In order to demonstrate the role of the
i finite value of(}, we introduce the following effective model
and calculate the optical conductivity based on it. We con-
+2Qi2QisTix]}- 19 Gider the double-well potential for the lattice at each site,
It is noted that the bandwidth of the holon is the order ofinstead of the triple or sixfold well in the original model.
Xto, not the order of,, due to the strong electron-electron Between the potential minima, the quantum tunneling occurs
interaction. Therefore, in comparison with the noninteractingwith the frequency(). The transfer intensity of the holon
system, the JT distortion brings out the more efficacious coubetween the nearest-neighbor sites depends on the states of
pling with the mobile carrier in the present case. Althoughthe lattice. The effective model are given as follows:
magnitudes of the several energy parameters in the actual
compounds are not clarified up to now, we assume, for sim-
plicity, the strong-coupling limit where the condition
[A(A/K)>xtg,B1(A/K)®,B2(AIK)?] is satisfied. In this H=3 (tottyofodhin+Het QS of,  (19)
limit, the phase degrees of freedom only remain and the i i



56 ORBITAL LIQUID IN PEROVSKITE TRANSITION- ... 691

15— . . . scale, i.e., the tunneling frequency, which explains qualita-
E tively the two-component feature of the optical conductivity.
Then the next question is what are the low-energy states?

If the mean-field theory in the slave-fermion formalism

given above is correct, it means that the electrons are in the

= 10F% T non-Fermi-liquid state. However there is not enough experi-
= mental and theoretical evidence to believe either the non-
_Z Fermi liquid or Fermi liquid. The main purpose of this work
& is to study the possibility of the ordering and/or disordering
3 of the orbital degrees of freedom. Because we obtain the
& o ] disordered state within the formalism which favors the order-

ing, we expect this result is convincing. However knowing
that the orbital degrees of freedom remain disordered, the
slave-boson formalism is another candidate to describe the
% low-energy states. In this formalism the slave bosons are
%.0 ol 02 03 04 05 0.6 expected to be condensed easily in three dimensions, and the
0 @EV) Iow-epergy state is. the usual Fermi quuiq with the two bands
crossing the Fermi energy. Actually Shie&al?* took the
FIG. 3. The optical conductivity of the holam,(w) calculated ~ Fermi-liquid viewpoint and calculated the optical conductiv-
by the model in Eq(19). Q is the tunneling frequency between the ity for the noninteracting electrons. In this viewpoint the
double well. Temperature is chosen to be 0.02 eV. “Drude part” in the optical conductivity corresponds to the
intraband transitions, while the “incoherent part” to the in-
terband transitions. However we believe that our slave-

where o} are the Pauli matrices describing the double-wellférmion theory is applicable at least to time scales shorter
potential. In Fig. 3, we present the optical conductivity specthan the characteristic one for the orbital fluctuations, be-
tra calculated by the memory function formalf@up to the ~ cause the electronic system feels the orbital order within that
order oft2. It is noted again that the numerical result in Fig. time scale. Furthermore the slave-fermion mean-field theory
1 corresponds to the case 8f—0 in the present scheme describes the small Drude weight without the heavy mass,

We find the two-component feature in,(w), that is, the because the carrier density is sma) {n this formalism. On
Re other hand, in the slave-boson mean-field theory with the

sharp Drude peak and the broad incoherent component dovx{) . ,
ose condensation, the small Drude weight suggests large

to w~4 Q. With decreasind}, the fine structure and the o S . . .
sharp Drude peak are thermally smeared and the weight gpecmc heat, which is not consistent with the experiment. In
ny case the fluctuations from the mean-field theory in both

transferred to the incoherent band. If we assum he ‘ ) d sl b f i d 1o b
1~0.02-0.03 eV, the two-component feature in the calcu-"€ S'iave-lermion and siave-boson formalisms need 1o be
studied in the future.

lated spectra are qualitatively consistent with the experimen?
tal ones in manganites, except for the small Drude weight
which is still an open question.
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