PHYSICAL REVIEW B VOLUME 56, NUMBER 11 15 SEPTEMBER 1997-I

Coherent states of alternating current

D. A. lvanov
12-127, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
and L. D. Landau Institute for Theoretical Physics, Moscow 117940, Russia

H. W. Lee
Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

L. S. Levitov
12-112, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
and L. D. Landau Institute for Theoretical Physics, Moscow 117940, Russia
(Received 2 December 1996

We study counting statistics of electric current pumped by pulses of an external field. The fluctuations
depend on the pulse shape, and can be minimized by choosing the pulse shape properly. For an optimal pulse
shape, the fluctuations are reduced to the dc level, i.e., they do not depend on the duty cycle of the signal. We
develop an approach that allows us to calculate all counting statistics for various driving fields, optimal and
nonoptimal. The statistics depend in an interesting way on the analytic structure of the field time dependence,
and display an analogy with coherent states and instant804.63-18207)04735-§

I. INTRODUCTION that gives not just the mean square of current fluctuations,
but all statistics of transmitted chardéAlthough the free
One of the fundamental problems of “single electronics” fermion counting statistics problem captures only part of the
is that of quantized charge transfer monitored by an externddhysics relevant for operation of a real device, it is interest-
field.! A real device such as electronic pump or turnstile ising enough and nontrivial by itself.
operated by a periodically alternating field that drives elec- It turns out that the fluctuations strongly depend on the
tric current at a rate of one electron per cy¢lBue to a pulse shape of the driving ac signal. The character of this
microscopic scale of the currently studied systems, the issudependence resembles tHetheorem. It was shown recently
of current fluctuations, classical and quantum, becomes veryy two of us that at fixed average current the fluctuations
important. Ideally, in order to reduce current fluctuations/evel is bounded from below by the fluctuations of the dc
well below the level of the ac signal, the pump should trans€urrent with the same mean valti Moreover, there exist
fer charge adiabaticalfj/For a perfectly operating pump, the “optimal” ac signals for which the minimum is reached, and
cycle durationT is much longer thari/E,, whereE, is  the fluctuations remain on the dc levidee Fig. 1 It is
charging energy. If the adiabatic lim, T>7 is achieved, interesting that for opfumal S|gnaI§ the ﬂuctuan_ons are inde-
the current fluctuations are exponentially small. pendent on the relative pulse widtHT (the signal duty
In practice, the adiabatic parameter can be of the order d§ycle), no matter how sharp the pulses are.
1, which makes the analysis very difficult, since one has to The case is appealing to an analogy with coherent states
consider many effects simultaneously: cotunnefifigite re-
laxation rates, quantum fluctuation of chardeetc. In this
paper we consider the problem in the nonadiabatic limit
E.<#/T, where the charging energy can be ignored. With
the usual assumption that the interaction of the Fermi-liquid
guasiparticles vanishes near the Fermi surface, the pump can T
be described by single-particle scattering amplitudes periodi-
cally varying in time. In this case the only effective mecha-
nism of the current fluctuation suppression is due to Fermi
statistics, which makes electron transmission events corre-

V(1)

lated in the time domain. The effect of Fermi statistics on the t
dc current fluctuations has been studied/e shall extend
this theory to the ac current. |ﬁ—ef

From the point of view of the pump quality, the extreme
nonadiabatic limit we consider is the least-efficiency mode. FiG. 1. Voltage time dependenfggs.(45), (46), and(30)] that
So, it gives an upper estimate of the fluctuations at low temmakes current fluctuations minimal. Shown is the simplest solution:
perature, and provides a reference for understanding real sygeriodic sequence of Lorentzian peaks of the dweaeach. For the
tems where nonadiabatic effects are strong. Actually, for theptimal pulse shape the fluctuations do not depend on the pulse
noninteracting fermions one can develop a complete theorwidth 7.
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that minimize quantum-mechanical uncertainty. Similarly,Sec. IX we summarize our discussion. In order to make the
the optimal ac signals drive current in such a way that quanreaders’ burden less heavy, some technical details are moved
tum noise is reduced to the dc minimum level. Coherenfrom the main body of the paper to Appendixes A and D. For
states are known to possess an interesting analytiéompleteness, we review relevant results of Refs. 9 and 12 in
structure!® and one encounters a similar situation in thisAppendixes B and C. In Appendix E we recall gauge trans-
problem. We study analytic structure of the problem, andormations that relate the ac flux problem to the ac bias prob-
show that it is related to the group of modular transformajema whlch is essential for the issue of the determinant regu-
tions. The analytic structure facilitates the study of counting@rization.

statistics. We develop a method discussed in our previous

work,!! and use it to calculate complete counting statistics Il. MODEL

for various interesting examples of the driving signal.

To be specific, we study a one-dimensional model of 4,
Fermi gas of electrons transferred through a potential barrielg
by an external ac field. Electrons are incident from the left
and the right reservoirs that supply zero-temperature Fermi
distribution. In the ac field, the scattering becomes nonelasH =T(x) +ev(x,t)+U(x)|¥(x),
tic, and electrons with different energies interfere due to their )
Fermi statistics. We treat the problem as a multichannel scat-
tering problem with the scattering amplitudes given by thewhereW'(x) and ¥ (x) are the canonical operators of elec-
Fourier components of the external field, and present a gerirons,U(x) is the scattering potential, arx,t) andv(x,t)
eral formalism that gives counting statistics. are the external electromagnetic field vector and scalar po-

We compute the distribution exactly for a particular classtentials, respectively. We shall treat electrons as spinless and
of external fields, which includes the optimal signals. Fornoninteracting. The scattering potentidl(x) will be de-
these fields the law of time dependence is a periodic analytiscribed by the matrix of scattering amplitudes
function of time given by a rational functions of the “circu-
lar” variable z=¢e'"!. We find exact statistics of the charge (ALL ARL)

We consider the following model of a microscopic con-
ct. One-dimensional ideal Fermi gas scatters off a potential
arrierU(x), so that the Hamiltonian of the system is

2

1 . Jd e )
2| Thax T gy

@

transfer, and show that it displays interesting features ex-
plained by the analytic character of the time-dependence law. . ]
In particular, we shall discuss Lorentzian pulses of voltages© that the scattering states have the standard asymptotic
with quantized fluxcfV(t)dt=nd,, wheren is an integer, fOrm:

and®,= hc/e is the flux quantum. We find that the pulses

represent a quantum analog of the classical picture iof v, =
dependent attempts to transmit electrons through the scat- ’
terer. We arrive at this result by means of the method of Ref. ,
12 combined with a special treatment that allows one to re- Age ™, x——o

duce the problem in an infinite-dimensional space to a finite- Vri= e 4 Agel®X, X o0, ()
dimensional problentcf. Ref. 1. '

The paper is organized as follows. In Secs. Il and Il we we would like to study the response of the system to a
describe the model and state the mathematical problem tgme-dependent external field, electric or magnetic. Let us
solve. We introduce a generating function of the chargerecall that by a gauge transformation one can go from a
transfer statistics and express it as the determinant of a scajroblem with the electric potential(x,t) to that with the
tering operator in an infinite-dimensional space. For computyector potentiak(x,t) and vice versdsee Appendix E In
ing the determinant it is important to find physically the limit of instant scatteringwhich we shall assume from
meaningful regularization. The regularization problem isnow on, the external field may be taken into account by

treated in Sec. IV. Weflnd that the regularizatior? is -SGHSitiVQntroducing a time_dependent phase in the Scattering amp"_
to gauge transformation of the electromagnetic field, angyges:

choose the gauge so that the regularization becomes simple.
In Sec. V we address the question of noise minimization and -
recall that the signals that give minimal noise have particular A—>A(t)=(
analytic structure: rational functions of the circular variable

€' analytic inside the unit diskWe show how this result with

follows from our expression for the generating function.

Next, in Sec. VI we treat the case of a rational time depen- t ) , ,
dence of the external field for which we reduce the problem ‘P(t):eﬁx[v(x: +oo, ) —o(x=—e,t)]dt
to finding the determinant of a finite-dimensional matrix, and

compute the probability distribution explicitly. Section VII N e f+°°

eikx+ALLe7ikx, X— —

ALReikX’ X—)—}—OO'

ALl Ag e e
ALRei¢<t) Arr

(4)

contains the discussion of the symmetries of the problem. _alx.tdx. )

We observe that the system possesses a symmetry group of

conformal transformations isomorphicBRSL(2,R). Section  Instant scattering means that the external fiel(s,t) and

VIII treats several interesting examples of the driving signalv(x,t) (and thuse'¢® as wel) vary slowly in comparison
that reveal interesting features of the counting statistics. Iwith the scattering timers~#|dA,z/JE|, whereA,, are
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the scattering amplitudes arifl is the energy of electrons. +oo _

The physical meaning ot is the time that the particle x(\)= > Ppeirn (11
spends inside the scatterer. Technically, neglectipgneans -

that the scattering amplitudés,; do not depend on the en-

ergy.

is the generating function per one cycle of the field.

This factorization can be explained by recalling that the
zero-temperature equilibrium fluctuations are essentially due
to the counting beginning and ending. It is completely analo-

Now, after the model is defined, we are ready to state th@ous to the fluctuations of the number of particles in one-
problem of the counting statistics of electron transmissiondimensional ideal Fermi ga&ere the role of the dimension
Namely, we are interested in finding the probabilities of ais taken by the time One can regard the field-induced fluc-
given charge transfer over a fixed time interval. We assuméuations as “extensive in the time domain,” and the equilib-
that the counting timd@(® is much longer than the periodl  fium fluctuations as “boundary effects.” As usual, to treat
of the external field. Let us observe the system under théhe “bulk” effects separately from “boundary” ones, we
action of the external field during a long time interviP). ~ @dopt periodic boundary conditions on the evolution of the
The field from now on is treated only as the phase factoSystem(l) in the time domain. Below we argue that this
e'¢() in Eq. (4). Let us denote the probabilities of transmit- @SSumption leads to the factorizatidi0).
ting exactlyn electrons during this time bp{"). The prob- In general, periodic external fieldgx,t) andv(x,t) cor-

abilities can be conveniently combined into a generatind®SPond to a quasiperiodic phase(t): ¢(t+T)= (1)
+ A . First, consider the case whéxp is a multiple of 27

lll. STATING THE PROBLEM

function - To(t .
(periodic phase factoe'¢() and then we can easily extend
te ‘ our results to arbitrar¢. If we observe the system during a
xO)= > PPen, (6)  large numbeM of field cycles and impose boundary condi-
n:—DO

tions periodic in time, it selects a disctrete set of energies out
This function of the auxiliary parametarwill be the main  of the continuum spectrum of the Hamiltonian. The energy
quantity we shall work with. It encodes all the information spacing between the levels is inversely proportional to the
about the statistics of the charge transfer. The moments afbservation timeAE=h/MT=#Q/M (Q=2=/T is the cir-
the distribution are given by the coefficients of the Taylorcular frequency of the external figldAt the same time, scat-
expansion of¢(®(\) around\ =0. In particular, the average tering is possible only between energy levels separated by a
charge transfer is multiple of #Q=h/T. Thus, since the energy is conserved
modulo#(), we haveM noninterfering copies of the scatter-
©()) 7) ing problem with discrete energy levels spacediby. Since
X : M=TO)/T, this proves our formul&L0).
In the case of a quasiperiodic phase factor, the generating
and the dispersion function of the statistics per cycle is constructed in the fol-
lowing way. One has to find the smallest positefor which
Iny©(\). @ the phase factore'#*'«* is periodic. Then x(\)=
A=0 X1 ¢(\)x5(M\), wherey; and x, are found for the periodic
_ , , __phase factorg' ¢ i€t gndel ¢(D+i(e=2mMt For the proof and
N(.)t'(?e that even if we apply no external f|2eld.there eXistiscussion of the guasiperiodic case we refer to our previous
equilibrium fluctuat|(oog\f3. At zero temperatu@)) is grow-  yaerll |y this paper only periodic phase factors appear.
ing with time as IT™.~ The zero-temperature equntlbrlum The above argument shows that the field-driven contribu-
fluctuations can be neglected if the external field® IS tion y(\) can be extracted by closing the time axis into a
periodic in time: in this case the field-induced fluctuationsgj,cje of periodT, thus quantizing the energy with the quan-
grow linearly with T and dominate over the equilibrium ,m #0=h/T. The problem becomes a multichannel scat-
noise:* In this paper we disregard the equilibrium noise andering problem, where the channels represent the discrete en-
study only the effect_ of_ the periodic field, a_n_d pnly brl_eﬂy_ ergy levels. For such a problegt\) can be quite generally
consider the nonperiodic case and the equilibrium noise ixpressed in terms of scattering amplitufel this method

Appendix D. o o the function y(\) depends on a vector argument
There exists a useful description of the field-induced stay — (), ... \.), m being the number of channels. The

tistics in terms of the quantities that do not depend on theqyrier transform of(\) gives the probabilities of scattering
counting time. Let us introduce between channels. IA is the matrix of the multichannel

P,,={probability of transmittingn electrons per cycle scattering gmplltudes_,n is the occupation numper
9) operator (diagonal in the energy representadion

(n) -
n=-—j—
L N

(92

(n2)=(n%) = ()=~ —

A=Diag(e', ... ,e*m), 1is the unit matrix, then
The advantage oP,, is that the total generating function
xD(\) for a long time intervall (9> T can be written as an YO\ =def1+n(S—1)], (12)
exponent:
©) where
XN ~[x(]TT as TO -, (10

where S=ATATAA, (13
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and “det” means the determinant of anxX m matrix. The
proof of this formula is reviewed in Appendix A.

Although derived under the implicit assumption of a finite
number of channelsn, Eq. (12) will further be used for
infinite-dimensional matrices. This will require a careful
definition of determinant in the infinite-dimensional case,
which will be done in the next section.

In our treatment of the periodic problem the operatars
A, A, etc. act in the linear space

H=VaV (14)

of left and right states with discrete energies. Formalys

D. A. IVANOV, H. W. LEE, AND L. S. LEVITOV

IV. REGULARIZATION OF THE DETERMINANT

Now, the problem is to find the determinafi2) of an
infinite matrix. Because of the infinite dimensionality, this
determinant needs to be understood properly. Eventually, to
compute the determinant, we are going just to cut a finite
submatrix ofl+n(S—1) at some positive and negative en-
ergies way off the Fermi level, and to take its determinant.
However, one has to be careful and to make sure that the
infinite parts of the matrix thrown away do not matter. Physi-
cally, the reason is that all incident states with very high
energies are empty, and remain so after scattering off an
alternating field. Similarly, all states with very low energies

the C* space of the states of the discrete spectrum, and bgre deep in the Fermi sea, and remain doubly occupied
Fourier transformation it can be treated as the space of perihroughout the scattering. Thus, in order that our regulariza-

odic functions of time, with the period. Two copies ofV

tion procedure has no effect on the determinant, we have to

correspond to the left and right channels. Further, the comassure that the unitarity of scattering is preserved when a

putations will be performed in the basig,m), where «
e{R,L} specifies the sidene Z labels the Fourier harmon-

submatrix is cut. Then the infinite submatrices that we re-
move will contain only the contribution of “Fermi vacuum”

ics. To be specific about notation, we shall sometimes writestates, and will not affect the counting statistics, and thus the

operatorg- acting inH in the form
I:RL

e e

whereF ,; are operators acting i=C".

. FLL

(19

FLR

determinant.

More formally, we have an infinite number of states be-
low the Fermi level in the left and the right reservoirs to be
put in a one-to-one correspondence. Shifting states in one
reservoir with respect to the states in the other one can be
achieved by a gauge transformations different for the left and

In the application to our problem, the scattering matrix isthe right reservoirs. The key observation is that the matrix

time dependent:

xz( )

where A and B are the transmission and reflection ampli-
tudes for the potential barriet(x), |A|?+|B|?=1;
z=exp(2mit/T) is the variable on the unit circle; the phase
factor f(z) = exfdi¢(t)]. We choose the formal variablas to

B
Af(z)

AE(D]

o 1)

1+n(S—1) is not invariant under a gauge transformation.
(The transformation rule of the particle number operatés
reviewed in Appendix E, and the matricAsandS transform
the same way as the density matriof course, since the
determinant ofL+n(S—1) gives counting statistics, the de-
terminant regularization must depend on the gauge transfor-
mation in such a way that the regularized determinant is
gauge invariant.

In order to clarify the relation between the regularization

count only total charge transfer, regardless of the energy oind the gauge transformations, let us consider a system with

transmitted electrons:

AMm=0, Agm=A\. 17)
Then from Eq.(13) we get
S=ATATAA
|A2(e ™ =1)+1 A*B*(e*-1)[f(2)]*
"\ —ABe M -1)f(z)  |AAEr-1)+1 )
(18)

where the function$(z) and[f(z)]* =1/f(z) should be un-
derstood as operators acting\ihby multiplication:

dz f(2)
(m[f(2)|n)= é 5 AT (19
We consider the system at zero temperature, thus
|@,m), m=0 )
Mlam)=1, m=>0. 20

By that, formally, all operators in Eqg12) and (13) are
specified, and we can proceed with the calculation.

no barrier. TherA=1, B=0, and the scattering is only for-
ward, no backward. Then the matri& given by Eq.(18)
becomes diagonal and time independent:

-
In this case, one could try to compute the determinant of
1+n(S—1) by using “naive” regularization, i.e., by simply
cutting all columns and rows above some large positive and
below some large negative energy. Thef\)=det©S)=1:

no transport for anyp(t), which is unreasonable. The prob-
lem becomes even more striking if one thinks of a gauge
transformation. Under a gauge transformation$tgiven by

Eq. (21) does not change, amdis transformed according to
rule (E9) (see Appendix E For example, if the gauge phase
#(1)=nQt, in the energy representation one gets

—iN

0

(DN

S=

(21)

0 e

n(E)=n.(E), ni(E)=ng(E-nhQ). (22
Now, by using the naive regularization one finds
x(\)=e"™, (23)

which means that the result is not gauge invariant.
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At this point one can conclude that the correct regularizaaverage charge transfén) belong to the class of rational
tion must change together with the gauge. For the generdlinctions. The problem of noise minimization has been con-
scattering problen{16) we proceed in the following way. sidered in detail in Ref. 9, and here we briefly review the
We choose a gauge transformation sg that the scattering meesult. The rate of charge transfgr) is simply proportional
trix A becomes time independent. Th8ris also time inde- to the phase gain per period:
pendent, and all phase factors are shifted.té/e argue that
after such gauge transformation one can use the naive regu-
larization. The transformation is ch that all depen- _ia2le _ =T
arization. The transformation is chosen so that all depen (ny=|A| 5 Ap=argf(z)|!=], (27)
dence on the ac field is moved to the occupation of the in- ™
coming one-, two-, or many-particle states. The advantage of
going to a purely elastic scattering is that all outgoing chanwhile the noise((n?)) depends on the whole functidifz):
nels that enter the scattering unitarity relation will have equal
energies. Thus, while removing from+' n(S—1) all states dz,dz, f(z0)f*(2,)—1
with energies below some large negative energy we preserve ((n?))=2|A|?|B|? #; % — —
the unitarity of scattering. In other words, the states that in- (2m)" (21~ 2))
terfere at the scattering are either both included in the trun- (28)
cated matrix, or both are removed. Therefore, for our gauge ) . ] .
transformation the naive regularization is meaningful. More-For completeness, both expressions are derived in Appendix
over, it is clear that such transformation is unique, ungiss : o ) o )
diagonal*® The v_ar|at|or_1al problem arises of finding the function

On the basis of this consideration, we argue that the def(2), which defines a map of a fixed degrile= A ¢/27 of

terminant(12) must be understood in the following way: ~ the unit circle into itself and minimizes the noise functional
(28). In Appendix C we review the proof of Ref. 9 that

[f(2)]* O optimalf(z) is analytic either inside or outside the unit circle
0 1 |zZ/l=1. In other words, its Laurent expansion
f(z2)==,7_.c,z" contains either only nonpositive or only

y(N\)=def1+n(S— 1)]=de{1+n

f(z) O non-negative powers. Such a function can be written as
X(S—1)
0 1
Noz-a
f(z) 0\ [[f(]* © f(z=]1 —, (29)
=de{1+ 0 1)n( 0 1 (S—1) i1 1-afz
=def{1+n(S-1)], (24 where either alla;|>1, or all |a]|<1. The corresponding

time dependence of the phase is
where

_(IAI2<e“—1>+1 A*B* (e - 1) 28 % [ (A=laP)sin(t-t)
—AB(e —1) |AX(eM-1)+1 ‘P(t)_i:1 tan (1+]aj]?) codd(t—t;) — 2| ay o,
is the time-independent scattering matrix, and (30
f(z) 0\ [[f(2)]* O where t;=argg; /), ¢o=2;argy;. Thus the optimal phase
= ( 0 1) n( 0 1) (26)  time dependence is a sum Nf“elementary excitations,” or

“kinks,” each corresponding to a2 phase change of the
is the time-dependent occupation number operator. In the lag€attering amplitude per one cycle of the signal.
line of Eq. (24) we can assign an unambiguous meaning to For any of such functions the mean square fluctuation of
the determinanicf. Ref. 11. Namely, we note thaS is  the transmitted chargg((en)?)) is equal toe?| AB|*N per
unitary and has unit determinant. Alsotends to 0 at high cycle. It is remarkable that the noise does not depend on
energies and to 1 at low energies. Therefore, the matrixelative displacement of the kinks in the time domain, nor on
[1+7(S—1)] behaves at infinity like a block-diagonal ma- their durations. The degeneracy is described by-2 real
trix, with 22 blocks each having a unit determinant. We parameters.
define the determinant in E€R4) by cutting the matrix along It is interesting that for the time dependen@) all the
one of these blocks at infinity. In such a way the determinanprobabilitiesP, can be computed and admit a simple inter-
is well defined and depends essentially on the matrix entrieBretation ofN noninterfering attempts of electrons to pass
around the Fermi level. Below we shall be able to compute ithrough the barrietsee Examples 1 and 2 in Sec. Vllin
explicitly for a special choice of(z). fact, the class of functions to which our method applies is
broader: it includes all rational functior{29) regardless of
the location of the polegThe phase time dependence then
has the form(30) with arbitrary signs of different termswe

It turns out that the analytic structure 6{z) plays an show that for any such(z) the generating functiog(\) can
important role in the current fluctuations. In particular, thebe expressed as the determinant éihée matrix, and that it
functionsf(z) which minimize the noisé(n?)) for a given  yields only afinite number of nonzero probabilitieR,, .

V. NOISE MINIMIZATION
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VI. COMPUTATION where the Laurent expansions are chosen to converge on the
Let f(z) be a rational function that maps the unit circle unit circle. We shall treat the functions1) and (32 as

into itself: |f(z)|=1 for |z|=1. Then it has the forn{29) opeNrators acting ;IN fb3|/| mgltlpllgaﬂon. he d :
with arbitrary|a;|# 1, not necessarily all inside or all outside ow we use the following trick to compute the determi-

the unit circle. Let nant:
N
Q(2) =l;[ (z—a), Y(\) =def1+A(S—1)]
Q/P 0 P/Q 0
N =de{ 1+ n (S-1)
P(2=]I (1-a}2), (3D) 1 1
=1
_ Pl 0 0
so thatf(z) =Q(z)/P(z). We shall also use the functions =det 1+ 0 ot n 0 Q (S—-1)|. (33
- — — (Q) 5k L
Q)= Q(2) _gz G2 Here we performed the gauge transformation in both left and
right channels simultaneously. This does not change the de-
terminant.
_ 1 Simple computations show that the matrid@s'nP and
Ly = (P)k
P P(2) k;z G 2 (32 Q™ nQ have the following form:
1 * * *
1 = * *
Pi .- Dy
P~'nP = . (34)
PN1 ... DPNN
* * K
* * *
1 * * *
1 = * *
qu .- QN
Q—an= R (35)
gyvr --- gNN
* * *
* * *
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blank spaces stand for zeros, crossing lines mark the Fermi level, asterisks denote arbitrary entries not used in cgigulations,
andq;; are functions of the parametefa;}. Therefore

S * * *
S * *
Xu Xin Xn Xin
x(A) = det =det| ... ... ... |, (36)
Xn1 Xnn Xn XNN
* * * 1
* * * 1
|
where rametersa; for f(z) and 7(2)_are also rel_atgd b}g:
e Do i £
xij=(3—1)( 0 q +18; (37
are 2< 2 matrices. Vill. EXAMPLES

The determinant36) is finite and determineg(\) as a Let us illustrate our discussion by actual computation of

fU}'\"Ction (zf_}\the parameters;}, A, andB. As a function of o probability distribution according to E¢B6) for several
e'* ande ', the determinant is a finite degree polynomial, specially chosen function@9).

since all entries oK;; are suchisee Eq.(33)]. As a result,
there is only dfinite number of nonzero probabilitieB, in
the expansiorf11) for y(\) [limited by the degre&\ in Eq.
(29): |k|=<N].

Example 1.The simplest case i?N=1. Obviously the
transformationa;— 1/a; just switches the direction of the
charge transfer. Therefore, without loss of generality let
|a|>1. Then by using expansioli82) and substituting them
into Egs.(34) and(35), one gets
VIl. THE PSL(2,R) SYMMETRY

Ju11=1,
Before we turn to the discussion of examples, let us men-
tion that the system possesses an interesting symmetry group p1,=0,
PSL(2,R) defined as the group of real unimodular matrices.
The symmetries are realized by the gro@pof linear- x(\)=|A|2eM+|B2. (39)

fractional transformations preserving the unit disk<1

[this group is three-dimensional and isomorphic toThus we have exactly one attempt to pass the barrier per
PSL(2,R)]. We claim the following: if two phase factors period with the probabiliiegA|? to pass andB|? to re-

f(z) and f(z) are related by such a transformation bound. Such a situation already occurred in the problem with
(?(z):f[g(z)] for somege G), then the generating func- constant voltagé? Constant voltage is a special case of this

tion of the distributiony(\) is the same foff (z) and f(z). example corresponding toa=0 or a=« [ie,
Indeed, let us notice tha(\) is expressed as the deter- f=€Xp(iQY)], .
minant (12) of an operator in the space of functions on the Example 2Let nowN>1, and thes;, i=1,... N, be all

circle|z|=1. Also, anyg e G commutes with the occupation inside or all outside the unit disksee Fig. 2a)]. Again,
tive and negative Fourier harmonjc#f we perform the con-

jugation byg, expressior(12) remains the same, except that aij = 6ij »
f(2) gets replaced by(z). The determinant, however, does
not change under a conjugation. This proves our statement. pi;=0,

Let us note thaf(z) is uniquely determined by its zeroes _
a; (or, equivalently, by its poles af). The sets of the pa- x(\)=(|A|2e*+|B|?)N. (39
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a; —a;dy

Vi(t) ﬂ A A 1

(qu)zﬁ

1 —a,

x(\)=1-2F+F(e*+e ™),

where

1-afa)
—IAI2IR|2
ABf g (@1

~

Note that in this example the probabilities of the electron
transfer in both directions are equal, and thus the average

vit) 5 charge flux is zero, although for arbitrary parameterand
m ﬂ ﬁ a, the signal can be asymmetfisee Fig. 20)]. In this case
| x(\) cannot be represented as a product of independent con-
T, | tributions of the two elementary excitations, but exhibit their

interference. To make this clear, let us show what happens if
one tries to factor the generating function:

U K x(N)=(u+we) (u+we ), (42)

/ t, where the “probabilities”u,w= % (1+ \1—4F), so in this
case there is no natural relation between the factongf
(b) and off(z).

Example 4. N-1. a;=a, a;=b fori>1.|a|>1, |b|<1.
FIG. 2. Voltage optimal time dependence corresponding to a&Computations can be most easily performed for the case
pair of 2m kinks of (t)=(e/f)[" . V(t')dt’. For the pulses of b=0 (which corresponds to a constant voltage applied
equal sign(a) the counting statistics do not depend on the relativeagainst one elementary excitatjonThen by using the

position of the pulses; , and on their duratior; , [see Example 2, pPS|(2 R) symmetry one can extend the result to arbittary
Eq. (39)]. For the pulses of opposite si@gn) average current is zero

and other statistics show nontrivial interference of the kifdese —_r1_ in —ix 240N 2\N-2
Example 3, Eqs(40) and(41)]. X(\)=[1-2F+F(e"+e M)](|A%e"+B[%) '

(43
We see thak(\) containsN equal factors, each correspond- where
ing to one of the factors of (z). This means that each “el-
ementary excitation” in Eq(30) corresponds to one attempt a2 2|1—a*b|2
to pass the barrier with the one-particle outcome probabili- F=|Al"B| la—b|? (44)

ties. Of course, the actual scattering state in this case, as well

as in Example 1, is a many-particle coherent state. One coulds in Example 3, there is an interference of the kinks of
expect this result when adl;=c0 (this again corresponds to opposite sign. It is interesting that the factorsygk) can be
constant voltage However, here we get the same expressiorinterpreted by saying that one positive and one negative kink
for the superposition odny set of “elementary excitations” interfere and form a “neutral” system with which other
(Example 1 of the same polarization with no dependence onkinks do not interfere. The degree of interference is mea-
the values of, . It is a surprising result. Of course, in this sured byA=|1—a*b|/[a—b|, and varies from 0 to 1 de-
example different sets ofa;} cannot be transformed into Pending on how much the kinks overlap in time, or by how
each other by the symmetry gro@, therefore we cannot much their durations differ. For exampl&é,— 1 if the kinks
explain this invariance merely by tHeSL(2,R) symmetry almost not overlap, and they(\) factors into 's.e'parate con-
discussed previously. At present we look at this invariance agiPutions of independent kinks: the “probabilitiesy andvz

at a miracle and admit this to be a consequence of a broad&t ('qu g42) become just the one-particle probabilitigs|

group of symmetries. and|B|?.
We shall also list the answers for two other examples of

f(z) that demonstrate the interference of excitations with op- IX. DISCUSSION

posite polarizations. ) S
Example 3. N=2. |a;|>1, |a,|<1. Then one has To summarize, we found the probability distribution for

the charge transfer under the action of a periodic external
field described by a rational function af=e'*!. According
a* -1 to our previous remarks about the equivalence between mag-
( ) , (40) netic and electric fieldgalso, see Appendix)Ewe can treat

(pij) =
! the fieldf(z) of form (29) as the alternating voltagé(t):

aj—a; \aja; -—a}
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v i d It 0Oz E 1—|a? Ipurpd to be binomial and “generalized binomial,” respec-
= — — — = —_— e .
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excitations. Each elementary excitation alone represents one

attempt of an electron to pass th_e barrler_, Wlth the probabl_llty APPENDIX A- EXPRESSION FOR THE GENERATING

to pass given by the transmission coefficient of the barrier. FUNCTION

We found that if the excitations are of the same sign, then

these attempts do not interfere. The general form@GB) In this Appendix we review the proof of Eq12) from
holds for anyV(t) composed of elementary excitations of Ref. 12. First we express the determinét®) as

arbitrary signs. It predicts a nontrivial interference of the
excitations of opposite signs.

= — = Illk — N A
Each elementary excitation in E@5) can be written as a x(\)=detl=n+nS)= 2 i\ S'l'“ikil;la (1 n')il:i[a i

{ig, ... ik

sum of Lorentzian pulses: (A1)
Q 1-pk where the summation is over all subsets of channels
V()= e T+ p2_2pc0d 0t —gp) {ig, ... HereSfi_'_'fiJ: denotes the determinant of the sub-
" matrix of S formed by the entries in the rowWs, , . . . ,i} and
-3 g 27 (46) in the columng(j,, ... ,j}. From Eq.(13) it follows that
mee € (t—te—mT)2+ 72’
) . _ PRI eI D Vi) Ve i1t ikl2
with the width 7,=Q In(p %), centered att,=Q ‘¢y. S.i---ikk_{j 2, } el N, xk)|Aii...i: .
Each of the pulses carries flux proportional to its area. The bk (A2)

flux is quantized: )
where the determinants

jw Q 27'kdt hc ® (47)
C —_— = —= . . . . .
e (t-temmnirZ e o AT =S g (p)AlP@... AP0 (A3)
177 P 1 k
The flux quantization is just another way to say that each ) ) .
elementary excitation corresponds to & ghase shift. aren-particle scattering amplitudes. Note that
Using representatiofd6) our results can be to some ex- o
tent translqted to the nor_1periodic case. '_rhe limiting form of Pil"'ikljl"'jk:-H (1_ni)_H nilA;i:::;:|2 (A4)
the excitation as the periol—» ({1 —0) is i#iy i=i,
o , are the probabilities of the many-electron scattering from the
t)=— ———>—, (48) channelsiq, ... iy to the channelg,, ... ,jc. This proves
e (t_to) + 7 that
a single Lorentzian pulse with the ardd/(t)dt=h/e. If
many such pulses all of the same sign are generated continu- y ()= 2 Piioi i PSS TRAR 2 NPt Nttt NI
ously at a finite rate so that average current dominates over {igeo i Lok
the equilibrium fluctuations, then the calculation will tell that (ERERENTY

each pulse corresponds to a “one-electron-like” attempt to (AS)
pass the barrier, and the distribution of outcomes is binomiak the generating function for the probability distribution
(exactly as for constant voltageThe interference of the p, li,---j, Of the charge transfer.

field-driven current with the equilibrium noise will be dis- * %

cussed elsewhere. APPENDIX B: EXPRESSIONS FOR (N) AND ((NZ2))

X. CONCLUSION From Eq.(24) we can derive expressions for the total

) ) o charge transfer and its dispersion in terms of the external
We studied quantum counting statistics of an ac currenfig|q ei¢®® We shall perform the calculations for the peri-
driven by pulses of external field. There are special pulseodiC field e'¢® =f('21). One can write
configurations that create many-particle coherent scattering

states in which the quantum noise is reduced to a dc mini- 9 9

mum. The analytic structure of such states is studied, and put (Ny=—i—| x(\)=—i—| Inxy(\)
: . . N, N

in connection with the modular symmetry group of the prob- =0 A=0

lem. A general method to calculate counting statistics is pre- P

sented and applied to the coherent states and to other states =—iTr— [1+Nn(S—1)]
“naturally related” to them. The counting statistics are IN ]y Zo
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~ 0 f(zy)f*(z2)
=—j — — T e 0
I Tr n a)\ )\:O(S 1) —_ Zz(l+5)_zl
N(z1,23) =2 1
N(_IA|2 _A*B*” ®1) Lo
:Tr n 2 . Bl 22 + _Zl
Therefore,
. * —
In the time representatiorz€ e'*), <n>:|A|ZJ> lim f(z)f"(z)—1 E
2,002, 21— 2, 2i
dz
=—|A|23g —f(2)9f*(2)
(21.2)= 3, 7 "Be” - ®2 o
N(zy,25)= 2, z; '25e"=2y———F——,
PR (1t e) - , [ de®) A
=|A jg - =IAPo (B4)
whereAg is the phase change per period.
where § is infinitesimal positive. Thus one gets Similarly,
&2 2
AN — - nsS—
{(n%))= g Iny(\)=—Tr | IN[1+n(S—-1)]
A=0 A=0
J 2 _ 5
=—Tr|n— (S—l)) -n—— (S—l)}
( 2 A=0 2 A=0
_[—|A]Z —A*B*\_[—|A]? —A*B*\ _[|A|? —A*B*)
TN _ag a2 M A AR TN aB  jAP
3 dz i jg dz; Al f(zy)f*(zp)+1
"7 2w 0| T 2mi A T 0lz—5(15 )]
NE fz)f*(z) +(z)f*(z) | 2/A]P
[21-23(1+0)][23—22(1+6)])  z1—2(1+6)

B dz;dz, f(z))f*(z,)—1
2B § § o gz (69

The last line shows thatn?)) depends in a nontrivial way *
on the whole functiorf(z), unlike (n), which depends only f_(2)= >, a,z’ "
on the total phase shifA¢ per period. This recovers the n=0
result of Ref. 9 for a periodically varying field. Then, by the Cauchy theorem,
dz . dz N
APPENDIX C: VARIATIONAL PROBLEM 4’ o (+(2f2(2)= fﬁ o -(2)df3(2)=0.
In this Appendix we review the proof of Ref. 9 that the (€2
variational problem of minimizing(n?)) for a fixed value of  Therefore,
(n) is equivalent to the analyticity of(z) either inside or
outside the unit circle. _ ) dz .
We decompose(z) into a sum off,(z) and f_(2), (m=—1A] > [(2)df*(2)
which are analytic inside and outside the unit circle, respec- g
i z
fvely - IAP § SEIf @@+ @t (2]

f+(z):n§0 a’z", (C1) =|A|2; n(laf|?-|a, |3, (C3)
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and

() -2iapep § § LT fEM e 2

(2mi)?  (z-2y)°

d
=VWHM2§ 5§{anxn—atxnﬁ*u>
d
“IAIBI § 5= (o1 @@ —0f (21%(2)]

=|ABS n(la; [2+[aq ?). )

By comparing the two expressions we see that at fiked
the fluctuation((n?)) is minimal whenf, or f_ vanishes:

then <<n2>>min: |B|2|<n>|

APPENDIX D: NONPERIODIC SIGNAL

Here we make a remark on how formulds) and (13)

6849

x(\) is quite general and can be applied to the nonperiodic
case as well. Suppose the charge is measured during a finite
time T(®). This can be taken into account by making the
parametein of the generating function time dependent, and
by “turning it on” only for the time interval of the measure-
ment. If the external field is encoded into(monperiodi¢
phase factorf (t), then the distribution is given by expres-
sions(24) and (13), where

ei)\(t) 0
A=At)= , D1
o0 e

A, 0<t<TO
A= D2
®) 0, t<O0 or t>TO, ©2

The operatorS(t) becomes unity outside the observation
time interval, and this makes the determinéh2) well de-
fined. We postpone a general discussion of the nonperiodic
case to elsewhere. Here we only demonstrate that this ap-
proach gives the correct answer for the equilibrium noise

can be applied to the case of a nonperiodic field. Actually{(n?)) in the absence of external field.

expression(12) for the multichannel characteristic function

()= —Tr 2y

IN[1+7A(S—1)]
0

A=

By the argument of Appendix B,

2|A?

o dty
= — lim

70 dt3
2|A|4f = . — .
0 27i sty 0 2i (tl—t3+IO)(t3—t2+I0) tl_t2+|0

10 dts 1

IGEH)
0

27 (t;—ta+i0)(t3—t,+i0)

1

2i

tzétl

0 dt
=2|A|2fT Y Iim{
0

dt; 1

whereris the ultraviolet cutoff set by a characteristic scat-

tering time of the system dA(E)/JE.

It is straightforward to check that the fluctuations given

by the last line of Eq(D3) agree with the Nyquist equilib-
rium noise spectrun$,=(e%h)G(w)|w|. Indeed,

(o= [t argimieny)

g

|A|2 TO

=—>In ,
v Tsc

do |1—ei‘”t|2S
27 Y @

(D4)

where|A|?=|A(Eg)|?=G(w=0), and#/ 74 is the ultravio-
let frequency cutoff.

JT(O) dt,
o 2w (t;—tz+i0)(tz—t,+i0) t;—t,+i0

- ZAzJT@ dtf AP
=—2/A o 2mi t;?m 27 (t—t3)?2 2772

Az T
=—zIn—:y)
T Tsc

7 1 1
fo dt T(T_t‘f' 1 (D3)

APPENDIX E: GAUGE TRANSFORMATIONS

In this Appendix we show how by gauge transformations
one can switch between the problem with an electric poten-
tial and that with a vector potential. Recall that the gauge
transformation

¥ =we 19X (ED)

changes the vector potentia{x,t) and the electric potential
v(x,t) as

C d(t,x)
a=a— - ,
e X
- 1 0¢(t,
U:U‘i‘g d)c(ﬂ X). (E2)
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Assume that we apply a time-dependent magnetic field with ~ nn

the vector potentiad(x,t) localized around the scatterer. For N(w)= ; 8(w—Ey) iy, (=)

example, this can be realized as a varying magnetic flux

threading a conducting loop with the contact. Then, by thavhere the summation is over all reservoir states. In the de-

gauge transformatiofE1) with terminant we have=(n) averaged over actual distribution.
In the time representation

X
¢(t,x)=E f a(t,x)dx (EJ o
€ Jo n(tt) =2, eSCU (R = eB-ng(Ey),
we can turn to the problem with the zero vector potential and K K E9)
the electric potential
whereng(E) is Fermi distribution. Under the gauge transfor-
v(t,X) = E dp(t,x) . (E4) mation (E1) with the gauge phas@?3) the occupation num-
e ot ber operator transforms as

In this case, the gauge phase shift across the scatterer is ALt =n (tt),
+ oo

@(t)=o(t,%) iZfZi:gf _atxjdx, (ED Ar(t,t") =ng(t,t")ele®—et)l (E9)

for the left and the right reservoirs, respectively.

and it can be viewed as the time-dependent voltage We assume that the scattering is instant, then the alternat-

1 de(t) ing field effect on the scattering states is entirely determined
V(t)= s o (E6) by the phase shiftp(t). This means that the ac magnetic
field can be introduced simply by adding the phase in the
applied to the contact. scattering amplitude@), while in the problem with the elec-

Thus we recalled the familiar gauge transformation for thetric field we have the energies of occupied states in one res-
one-particle problem. When looking at a many-body prob-ervoir to be shifted with respect to those in the other one. By
lem, one also has to transform the density matrix andsirtue of gauge invariance, these two formulations are obvi-
Green'’s functions according to ru(E1). Let us consider the ously equivalent, and we make use of this in the discussion
occupation number operator of a reservoir: of the determinant regularizatigsee Eq.(24)].
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