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Coherent states of alternating current
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We study counting statistics of electric current pumped by pulses of an external field. The fluctuations
depend on the pulse shape, and can be minimized by choosing the pulse shape properly. For an optimal pulse
shape, the fluctuations are reduced to the dc level, i.e., they do not depend on the duty cycle of the signal. We
develop an approach that allows us to calculate all counting statistics for various driving fields, optimal and
nonoptimal. The statistics depend in an interesting way on the analytic structure of the field time dependence,
and display an analogy with coherent states and instantons.@S0163-1829~97!04735-8#
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I. INTRODUCTION

One of the fundamental problems of ‘‘single electronic
is that of quantized charge transfer monitored by an exte
field.1 A real device such as electronic pump or turnstile
operated by a periodically alternating field that drives el
tric current at a rate of one electron per cycle.2 Due to a
microscopic scale of the currently studied systems, the is
of current fluctuations, classical and quantum, becomes
important. Ideally, in order to reduce current fluctuatio
well below the level of the ac signal, the pump should tra
fer charge adiabatically.3 For a perfectly operating pump, th
cycle durationT is much longer than\/Ec , where Ec is
charging energy. If the adiabatic limitEcT@\ is achieved,
the current fluctuations are exponentially small.

In practice, the adiabatic parameter can be of the orde
1, which makes the analysis very difficult, since one has
consider many effects simultaneously: cotunneling,4 finite re-
laxation rates,5 quantum fluctuation of charge,6 etc. In this
paper we consider the problem in the nonadiabatic li
Ec!\/T, where the charging energy can be ignored. W
the usual assumption that the interaction of the Fermi-liq
quasiparticles vanishes near the Fermi surface, the pump
be described by single-particle scattering amplitudes peri
cally varying in time. In this case the only effective mech
nism of the current fluctuation suppression is due to Fe
statistics, which makes electron transmission events co
lated in the time domain. The effect of Fermi statistics on
dc current fluctuations has been studied.7 We shall extend
this theory to the ac current.

From the point of view of the pump quality, the extrem
nonadiabatic limit we consider is the least-efficiency mo
So, it gives an upper estimate of the fluctuations at low te
perature, and provides a reference for understanding real
tems where nonadiabatic effects are strong. Actually, for
noninteracting fermions one can develop a complete the
560163-1829/97/56~11!/6839~12!/$10.00
al

-

ue
ry

-

of
o

it

d
an
i-

-
i

e-
e

.
-

ys-
e
ry

that gives not just the mean square of current fluctuatio
but all statistics of transmitted charge.11 Although the free
fermion counting statistics problem captures only part of
physics relevant for operation of a real device, it is intere
ing enough and nontrivial by itself.

It turns out that the fluctuations strongly depend on
pulse shape of the driving ac signal. The character of
dependence resembles theH theorem. It was shown recentl
by two of us that at fixed average current the fluctuatio
level is bounded from below by the fluctuations of the
current with the same mean value.8,9 Moreover, there exist
‘‘optimal’’ ac signals for which the minimum is reached, an
the fluctuations remain on the dc level~see Fig. 1!. It is
interesting that for optimal signals the fluctuations are in
pendent on the relative pulse widtht/T ~the signal duty
cycle!, no matter how sharp the pulses are.

The case is appealing to an analogy with coherent st

FIG. 1. Voltage time dependence@Eqs.~45!, ~46!, and~30!# that
makes current fluctuations minimal. Shown is the simplest solut
periodic sequence of Lorentzian peaks of the areah/e each. For the
optimal pulse shape the fluctuations do not depend on the p
width t.
6839 © 1997 The American Physical Society
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that minimize quantum-mechanical uncertainty. Similar
the optimal ac signals drive current in such a way that qu
tum noise is reduced to the dc minimum level. Coher
states are known to possess an interesting ana
structure,10 and one encounters a similar situation in th
problem. We study analytic structure of the problem, a
show that it is related to the group of modular transform
tions. The analytic structure facilitates the study of count
statistics. We develop a method discussed in our prev
work,11 and use it to calculate complete counting statist
for various interesting examples of the driving signal.

To be specific, we study a one-dimensional model o
Fermi gas of electrons transferred through a potential ba
by an external ac field. Electrons are incident from the
and the right reservoirs that supply zero-temperature Fe
distribution. In the ac field, the scattering becomes none
tic, and electrons with different energies interfere due to th
Fermi statistics. We treat the problem as a multichannel s
tering problem with the scattering amplitudes given by
Fourier components of the external field, and present a g
eral formalism that gives counting statistics.

We compute the distribution exactly for a particular cla
of external fields, which includes the optimal signals. F
these fields the law of time dependence is a periodic ana
function of time given by a rational functions of the ‘‘circu
lar’’ variable z5eiVt. We find exact statistics of the charg
transfer, and show that it displays interesting features
plained by the analytic character of the time-dependence
In particular, we shall discuss Lorentzian pulses of volta
with quantized flux:c*V(t)dt5nF0 , wheren is an integer,
andF05 hc/e is the flux quantum. We find that the pulse
represent a quantum analog of the classical picture ofn in-
dependent attempts to transmit electrons through the s
terer. We arrive at this result by means of the method of R
12 combined with a special treatment that allows one to
duce the problem in an infinite-dimensional space to a fin
dimensional problem~cf. Ref. 11!.

The paper is organized as follows. In Secs. II and III
describe the model and state the mathematical problem
solve. We introduce a generating function of the char
transfer statistics and express it as the determinant of a
tering operator in an infinite-dimensional space. For comp
ing the determinant it is important to find physical
meaningful regularization. The regularization problem
treated in Sec. IV. We find that the regularization is sensit
to gauge transformation of the electromagnetic field, a
choose the gauge so that the regularization becomes sim
In Sec. V we address the question of noise minimization
recall that the signals that give minimal noise have particu
analytic structure: rational functions of the circular variab
eiVt analytic inside the unit disk.9 We show how this resul
follows from our expression for the generating functio
Next, in Sec. VI we treat the case of a rational time dep
dence of the external field for which we reduce the probl
to finding the determinant of a finite-dimensional matrix, a
compute the probability distribution explicitly. Section V
contains the discussion of the symmetries of the probl
We observe that the system possesses a symmetry gro
conformal transformations isomorphic toPSL(2,R). Section
VIII treats several interesting examples of the driving sig
that reveal interesting features of the counting statistics
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Sec. IX we summarize our discussion. In order to make
readers’ burden less heavy, some technical details are m
from the main body of the paper to Appendixes A and D. F
completeness, we review relevant results of Refs. 9 and 1
Appendixes B and C. In Appendix E we recall gauge tra
formations that relate the ac flux problem to the ac bias pr
lem, which is essential for the issue of the determinant re
larization.

II. MODEL

We consider the following model of a microscopic co
tact. One-dimensional ideal Fermi gas scatters off a poten
barrierU(x), so that the Hamiltonian of the system is

H5C†~x!F1

2 S 2 i
]

]x
2

e

c
a~x,t ! D 2

1ev~x,t !1U~x!GC~x!,

~1!

whereC†(x) andC(x) are the canonical operators of ele
trons,U(x) is the scattering potential, anda(x,t) andv(x,t)
are the external electromagnetic field vector and scalar
tentials, respectively. We shall treat electrons as spinless
noninteracting. The scattering potentialU(x) will be de-
scribed by the matrix of scattering amplitudes

A5S ALL ARL

ALR ARR
D , ~2!

so that the scattering states have the standard asymp
form:

CL,k5H eikx1ALLe2 ikx, x→2`

ALReikx, x→1`;

CR,k5H ARLe
2 ikx, x→2`

e2 ikx1ARReikx, x→1`.
~3!

We would like to study the response of the system to
time-dependent external field, electric or magnetic. Let
recall that by a gauge transformation one can go from
problem with the electric potentialv(x,t) to that with the
vector potentiala(x,t) and vice versa~see Appendix E!. In
the limit of instant scattering, which we shall assume from
now on, the external field may be taken into account
introducing a time-dependent phase in the scattering am
tudes:

A→Ã~ t !5S ALL ARLe
2 iw~ t !

ALReiw~ t ! ARR
D ~4!

with

w~ t !5eE
2`

t

@v~x51`,t8!2v~x52`,t8!#dt8

1
e

c E
2`

1`

a~x,t !dx. ~5!

Instant scattering means that the external fieldsa(x,t) and
v(x,t) ~and thuseiw(t) as well! vary slowly in comparison
with the scattering timetsc;\u]Aab /]Eu, whereAab are
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56 6841COHERENT STATES OF ALTERNATING CURRENT
the scattering amplitudes andE is the energy of electrons
The physical meaning oftsc is the time that the particle
spends inside the scatterer. Technically, neglectingtsc means
that the scattering amplitudesAab do not depend on the en
ergy.

III. STATING THE PROBLEM

Now, after the model is defined, we are ready to state
problem of the counting statistics of electron transmissi
Namely, we are interested in finding the probabilities o
given charge transfer over a fixed time interval. We assu
that the counting timeT(0) is much longer than the periodT
of the external field. Let us observe the system under
action of the external field during a long time intervalT(0).
The field from now on is treated only as the phase fac
eiw(t) in Eq. ~4!. Let us denote the probabilities of transm
ting exactlyn electrons during this time byPn

(0) . The prob-
abilities can be conveniently combined into a generat
function

x~0!~l!5 (
n52`

1`

Pn
~0!eiln. ~6!

This function of the auxiliary parameterl will be the main
quantity we shall work with. It encodes all the informatio
about the statistics of the charge transfer. The moment
the distribution are given by the coefficients of the Tay
expansion ofx (0)(l) aroundl50. In particular, the averag
charge transfer is

^n&52 i
]

]l U
l50

x~0!~l!, ~7!

and the dispersion

^^n2&&5^n2&2^n&252
]2

]l2U
l50

lnx~0!~l!. ~8!

Notice that even if we apply no external field there ex
equilibrium fluctuations. At zero temperature^^n2&& is grow-
ing with time as lnT(0).13 The zero-temperature equilibrium
fluctuations can be neglected if the external fieldeiw(t) is
periodic in time: in this case the field-induced fluctuatio
grow linearly with T(0) and dominate over the equilibrium
noise.14 In this paper we disregard the equilibrium noise a
study only the effect of the periodic field, and only briefl
consider the nonperiodic case and the equilibrium noise
Appendix D.

There exists a useful description of the field-induced s
tistics in terms of the quantities that do not depend on
counting time. Let us introduce

Pn5$probability of transmittingn electrons per cycle%.
~9!

The advantage ofPn is that the total generating functio
x (0)(l) for a long time intervalT(0)@T can be written as an
exponent:

x~0!~l!;@x~l!#T~0!/T as T~0!→`, ~10!

where
e
.

e

e

r

g

of
r

t

in

-
e

x~l!5 (
n52`

1`

Pneiln ~11!

is the generating function per one cycle of the field.
This factorization can be explained by recalling that t

zero-temperature equilibrium fluctuations are essentially
to the counting beginning and ending. It is completely ana
gous to the fluctuations of the number of particles in on
dimensional ideal Fermi gas~here the role of the dimensio
is taken by the time!. One can regard the field-induced flu
tuations as ‘‘extensive in the time domain,’’ and the equili
rium fluctuations as ‘‘boundary effects.’’ As usual, to tre
the ‘‘bulk’’ effects separately from ‘‘boundary’’ ones, we
adopt periodic boundary conditions on the evolution of t
system~1! in the time domain. Below we argue that th
assumption leads to the factorization~10!.

In general, periodic external fieldsa(x,t) andv(x,t) cor-
respond to a quasiperiodic phasew(t): w(t1T)5w(t)
1Dw. First, consider the case whenDw is a multiple of 2p
~periodic phase factoreiw(t)! and then we can easily exten
our results to arbitraryDw. If we observe the system during
large numberM of field cycles and impose boundary cond
tions periodic in time, it selects a disctrete set of energies
of the continuum spectrum of the Hamiltonian. The ener
spacing between the levels is inversely proportional to
observation time:DE5h/MT5\V/M ~V52p/T is the cir-
cular frequency of the external field!. At the same time, scat
tering is possible only between energy levels separated
multiple of \V5h/T. Thus, since the energy is conserv
modulo\V, we haveM noninterfering copies of the scatte
ing problem with discrete energy levels spaced by\V. Since
M5T(0)/T, this proves our formula~10!.

In the case of a quasiperiodic phase factor, the genera
function of the statistics per cycle is constructed in the f
lowing way. One has to find the smallest positivee for which
the phase factoreiw(t)1 i et is periodic. Then x(l)5
x1

12e(l)x2
e(l), wherex1 andx2 are found for the periodic

phase factorseiw(t)1 i et andeiw(t)1 i (e22p)t. For the proof and
discussion of the quasiperiodic case we refer to our previ
paper.11 In this paper only periodic phase factors appear.

The above argument shows that the field-driven contri
tion x~l! can be extracted by closing the time axis into
circle of periodT, thus quantizing the energy with the qua
tum \V5h/T. The problem becomes a multichannel sc
tering problem, where the channels represent the discrete
ergy levels. For such a problemx~l! can be quite generally
expressed in terms of scattering amplitudes.12 In this method
the function x~l! depends on a vector argume
l5(l1 , . . . ,lm), m being the number of channels. Th
Fourier transform ofx~l! gives the probabilities of scatterin
between channels. IfA is the matrix of the multichanne
scattering amplitudes,n is the occupation numbe
operator ~diagonal in the energy representation!,
L5Diag(eil1, . . . ,eilm), 1 is the unit matrix, then

x~l!5det@11n~S21!#, ~12!

where

S5A†L†AL, ~13!
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and ‘‘det’’ means the determinant of anm3m matrix. The
proof of this formula is reviewed in Appendix A.

Although derived under the implicit assumption of a fin
number of channelsm, Eq. ~12! will further be used for
infinite-dimensional matrices. This will require a caref
definition of determinant in the infinite-dimensional cas
which will be done in the next section.

In our treatment of the periodic problem the operatorsn,
A, L, etc. act in the linear space

H5V% V ~14!

of left and right states with discrete energies. Formally,V is
the C` space of the states of the discrete spectrum, and
Fourier transformation it can be treated as the space of p
odic functions of time, with the periodT. Two copies ofV
correspond to the left and right channels. Further, the c
putations will be performed in the basis (a,m), where a
P$R,L% specifies the side,mPZ labels the Fourier harmon
ics. To be specific about notation, we shall sometimes w
operatorsF acting inH in the form

F5S FLL FRL

FLR FRR
D , ~15!

whereFab are operators acting inV>C`.
In the application to our problem, the scattering matrix

time dependent:

Ã5S B A* @ f ~z!#*

A f~z! 2B* D , ~16!

where A and B are the transmission and reflection amp
tudes for the potential barrierU(x), uAu21uBu251;
z5exp(2pit/T) is the variable on the unit circle; the pha
factor f (z)5exp@iw(t)#. We choose the formal variablesl i to
count only total charge transfer, regardless of the energ
transmitted electrons:

lL,m50, lR,m5l. ~17!

Then from Eq.~13! we get

S̃5Ã†L†ÃL

5S uAu2~e2 il21!11 A* B* ~eil21!@ f ~z!#*

2AB~e2 il21! f ~z! uAu2~eil21!11 D ,

~18!

where the functionsf (z) and@ f (z)#* 51/f (z) should be un-
derstood as operators acting inV by multiplication:

^mu f ~z!un&5 R dz

2p i

f ~z!

zm2n11 . ~19!

We consider the system at zero temperature, thus

nua,m&5H ua,m&, m<0

0, m.0.
~20!

By that, formally, all operators in Eqs.~12! and ~13! are
specified, and we can proceed with the calculation.
,
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IV. REGULARIZATION OF THE DETERMINANT

Now, the problem is to find the determinant~12! of an
infinite matrix. Because of the infinite dimensionality, th
determinant needs to be understood properly. Eventually
compute the determinant, we are going just to cut a fin
submatrix of11n(S̃21) at some positive and negative e
ergies way off the Fermi level, and to take its determina
However, one has to be careful and to make sure that
infinite parts of the matrix thrown away do not matter. Phy
cally, the reason is that all incident states with very hi
energies are empty, and remain so after scattering off
alternating field. Similarly, all states with very low energi
are deep in the Fermi sea, and remain doubly occup
throughout the scattering. Thus, in order that our regular
tion procedure has no effect on the determinant, we hav
assure that the unitarity of scattering is preserved whe
submatrix is cut. Then the infinite submatrices that we
move will contain only the contribution of ‘‘Fermi vacuum’
states, and will not affect the counting statistics, and thus
determinant.

More formally, we have an infinite number of states b
low the Fermi level in the left and the right reservoirs to
put in a one-to-one correspondence. Shifting states in
reservoir with respect to the states in the other one can
achieved by a gauge transformations different for the left a
the right reservoirs. The key observation is that the ma
11n(S̃21) is not invariant under a gauge transformatio
~The transformation rule of the particle number operatorn is
reviewed in Appendix E, and the matricesA andS̃ transform
the same way as the density matrix.! Of course, since the
determinant of11n(S̃21) gives counting statistics, the de
terminant regularization must depend on the gauge trans
mation in such a way that the regularized determinan
gauge invariant.

In order to clarify the relation between the regularizati
and the gauge transformations, let us consider a system
no barrier. ThenA51, B50, and the scattering is only for
ward, no backward. Then the matrixS̃ given by Eq.~18!
becomes diagonal and time independent:

S̃5S e2 il 0

0 eilD . ~21!

In this case, one could try to compute the determinant
11n(S̃21) by using ‘‘naive’’ regularization, i.e., by simply
cutting all columns and rows above some large positive
below some large negative energy. Thenx(l)5det(S̃)51:
no transport for anyw(t), which is unreasonable. The prob
lem becomes even more striking if one thinks of a gau
transformation. Under a gauge transformation theS̃ given by
Eq. ~21! does not change, andn is transformed according to
rule ~E9! ~see Appendix E!. For example, if the gauge phas
f(t)5nVt, in the energy representation one gets

nL8~E!5nL~E!, nR8 ~E!5nR~E2n\V!. ~22!

Now, by using the naive regularization one finds

x~l!5einl, ~23!

which means that the result is not gauge invariant.
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At this point one can conclude that the correct regulari
tion must change together with the gauge. For the gen
scattering problem~16! we proceed in the following way
We choose a gauge transformation so that the scattering
trix A becomes time independent. ThenS̃ is also time inde-
pendent, and all phase factors are shifted ton. We argue that
after such gauge transformation one can use the naive r
larization. The transformation is chosen so that all dep
dence on the ac field is moved to the occupation of the
coming one-, two-, or many-particle states. The advantag
going to a purely elastic scattering is that all outgoing ch
nels that enter the scattering unitarity relation will have eq
energies. Thus, while removing from11n(S21) all states
with energies below some large negative energy we pres
the unitarity of scattering. In other words, the states that
terfere at the scattering are either both included in the tr
cated matrix, or both are removed. Therefore, for our ga
transformation the naive regularization is meaningful. Mo
over, it is clear that such transformation is unique, unlessS̃ is
diagonal.15

On the basis of this consideration, we argue that the
terminant~12! must be understood in the following way:

x~l!5det@11n~S̃21!#5detF11nS @ f ~z!#* 0

0 1D
3~S21!S f ~z! 0

0 1D G
5detF11S f ~z! 0

0 1D nS @ f ~z!#* 0

0 1D ~S21!G
5det@11ñ~S21!#, ~24!

where

S5S uAu2~e2 il21!11 A* B* ~eil21!

2AB~e2 il21! uAu2~eil21!11D ~25!

is the time-independent scattering matrix, and

ñ5S f ~z! 0

0 1D nS @ f ~z!#* 0

0 1D ~26!

is the time-dependent occupation number operator. In the
line of Eq. ~24! we can assign an unambiguous meaning
the determinant~cf. Ref. 11!. Namely, we note thatS is
unitary and has unit determinant. Also,ñ tends to 0 at high
energies and to 1 at low energies. Therefore, the ma
@11ñ(S21)# behaves at infinity like a block-diagonal ma
trix, with 232 blocks each having a unit determinant. W
define the determinant in Eq.~24! by cutting the matrix along
one of these blocks at infinity. In such a way the determin
is well defined and depends essentially on the matrix ent
around the Fermi level. Below we shall be able to comput
explicitly for a special choice off (z).

V. NOISE MINIMIZATION

It turns out that the analytic structure off (z) plays an
important role in the current fluctuations. In particular, t
functions f (z) which minimize the noisê^n2&& for a given
-
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average charge transfer^n& belong to the class of rationa
functions. The problem of noise minimization has been c
sidered in detail in Ref. 9, and here we briefly review t
result. The rate of charge transfer^n& is simply proportional
to the phase gain per period:

^n&5uAu2
Dw

2p
, Dw5argf ~z!u t50

t5T , ~27!

while the noisê ^n2&& depends on the whole functionf (z):

^^n2&&52uAu2uBu2 R R dz1dz2

~2p i !2

f ~z1! f * ~z2!21

~z12z2!2 .

~28!

For completeness, both expressions are derived in Appe
B.

The variational problem arises of finding the functio
f (z), which defines a map of a fixed degreeN5Dw/2p of
the unit circle into itself and minimizes the noise function
~28!. In Appendix C we review the proof of Ref. 9 tha
optimal f (z) is analytic either inside or outside the unit circ
uzu51. In other words, its Laurent expansio
f (z)5(n52`

1` cnzn contains either only nonpositive or onl
non-negative powers. Such a function can be written as

f ~z!5)
i 51

N
z2ai

12ai* z
, ~29!

where either alluai u.1, or all uai u,1. The corresponding
time dependence of the phase is

w~ t !5(
i 51

N

tan21S ~12uai u2!sinV~ t2t i !

~11uai u2!cosV~ t2t i !22uai u
D1f0 ,

~30!

where t i5argai /V, f05( iargai . Thus the optimal phase
time dependence is a sum ofN ‘‘elementary excitations,’’ or
‘‘kinks,’’ each corresponding to a 2p phase change of the
scattering amplitude per one cycle of the signal.

For any of such functions the mean square fluctuation
the transmitted chargê̂ (en)2&& is equal toe2uABu2N per
cycle. It is remarkable that the noise does not depend
relative displacement of the kinks in the time domain, nor
their durations. The degeneracy is described by 2N21 real
parameters.

It is interesting that for the time dependence~29! all the
probabilitiesPn can be computed and admit a simple inte
pretation ofN noninterfering attempts of electrons to pa
through the barrier~see Examples 1 and 2 in Sec. VIII!. In
fact, the class of functions to which our method applies
broader: it includes all rational functions~29! regardless of
the location of the poles.~The phase time dependence th
has the form~30! with arbitrary signs of different terms.! We
show that for any suchf (z) the generating functionx~l! can
be expressed as the determinant of afinite matrix, and that it
yields only afinite number of nonzero probabilitiesPn .
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VI. COMPUTATION

Let f (z) be a rational function that maps the unit circ
into itself: u f (z)u51 for uzu51. Then it has the form~29!
with arbitraryuai uÞ1, not necessarily all inside or all outsid
the unit circle. Let

Q~z!5)
i 51

N

~z2ai !,

P~z!5)
i 51

N

~12ai* z!, ~31!

so thatf (z)5Q(z)/P(z). We shall also use the functions

Q21~z!5
1

Q~z!
5 (

kPZ
ck

~Q!zk,

P21~z!5
1

P~z!
5 (

kPZ
ck

~P!zk, ~32!
where the Laurent expansions are chosen to converge on
unit circle. We shall treat the functions~31! and ~32! as
operators acting inV by multiplication.

Now we use the following trick to compute the determ
nant:

x~l!5det@11ñ~S21!#

5detF11S Q/P 0

0 1D nS P/Q 0

0 1D ~S21!G
5detF11S P21 0

0 Q21D nS P 0

0 QD ~S21!G . ~33!

Here we performed the gauge transformation in both left a
right channels simultaneously. This does not change the
terminant.

Simple computations show that the matricesP21nP and
Q21nQ have the following form:
~34!

~35!
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blank spaces stand for zeros, crossing lines mark the Fermi level, asterisks denote arbitrary entries not used in calculpi j
andqi j are functions of the parameters$ai%. Therefore

~36!
al

en
ro
es

to
s
n
-

r-
he
n

at
s

en
s

-

of

let

per

ith
is
where

Xi j 5~S21!S pi j 0

0 qi j
D 11d i j ~37!

are 232 matrices.
The determinant~36! is finite and determinesx~l! as a

function of the parameters$ai%, A, andB. As a function of
eil ande2 il, the determinant is a finite degree polynomi
since all entries ofXi j are such@see Eq.~33!#. As a result,
there is only afinite number of nonzero probabilitiesPk in
the expansion~11! for x~l! @limited by the degreeN in Eq.
~29!: uku<N#.

VII. THE PSL„2,R… SYMMETRY

Before we turn to the discussion of examples, let us m
tion that the system possesses an interesting symmetry g
PSL(2,R) defined as the group of real unimodular matric

The symmetries are realized by the groupG of linear-
fractional transformations preserving the unit diskuzu,1
@this group is three-dimensional and isomorphic
PSL(2,R)#. We claim the following: if two phase factor
f (z) and f̃ (z) are related by such a transformatio
„ f̃ (z)5 f @g(z)# for somegPG…, then the generating func
tion of the distributionx~l! is the same forf (z) and f̃ (z).

Indeed, let us notice thatx~l! is expressed as the dete
minant ~12! of an operator in the space of functions on t
circle uzu51. Also, anygPG commutes with the occupatio
number operatorn at zero temperature~g does not mix posi-
tive and negative Fourier harmonics!. If we perform the con-
jugation byg, expression~12! remains the same, except th
f (z) gets replaced byf̃ (z). The determinant, however, doe
not change under a conjugation. This proves our statem

Let us note thatf (z) is uniquely determined by its zeroe
ai ~or, equivalently, by its poles 1/ai* !. The sets of the pa
,

-
up
.

t.

rameters ai for f (z) and f̃ (z) are also related byg:
ai5g(ãi). Therefore, as a function of$ai%, x~l! is invariant
under the simultaneous mapping of allai by gPG.

VIII. EXAMPLES

Let us illustrate our discussion by actual computation
the probability distribution according to Eq.~36! for several
specially chosen functions~29!.

Example 1.The simplest case isN51. Obviously the
transformationai°1/ai just switches the direction of the
charge transfer. Therefore, without loss of generality
uau.1. Then by using expansions~32! and substituting them
into Eqs.~34! and ~35!, one gets

q1151,

p1150,

x~l!5uAu2eil1uBu2. ~38!

Thus we have exactly one attempt to pass the barrier
period with the probabilitiesuAu2 to pass anduBu2 to re-
bound. Such a situation already occurred in the problem w
constant voltage.12 Constant voltage is a special case of th
example corresponding to a50 or a5` @i.e.,
f 5exp(6iVt)#,

Example 2.Let nowN.1, and theai , i 51, . . . ,N, be all
inside or all outside the unit disk@see Fig. 2~a!#. Again,
without loss of generality let alluai u.1. Now, we obtain

qi j 5d i j ,

pi j 50,

x~l!5~ uAu2eil1uBu2!N. ~39!
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We see thatx~l! containsN equal factors, each correspon
ing to one of the factors off (z). This means that each ‘‘el
ementary excitation’’ in Eq.~30! corresponds to one attemp
to pass the barrier with the one-particle outcome probab
ties. Of course, the actual scattering state in this case, as
as in Example 1, is a many-particle coherent state. One c
expect this result when allai5` ~this again corresponds t
constant voltage!. However, here we get the same express
for the superposition ofany set of ‘‘elementary excitations’’
~Example 1! of the same polarization with no dependence
the values ofai . It is a surprising result. Of course, in th
example different sets of$ai% cannot be transformed int
each other by the symmetry groupG, therefore we canno
explain this invariance merely by thePSL(2,R) symmetry
discussed previously. At present we look at this invariance
at a miracle and admit this to be a consequence of a bro
group of symmetries.

We shall also list the answers for two other examples
f (z) that demonstrate the interference of excitations with
posite polarizations.

Example 3. N52. ua1u.1, ua2u,1. Then one has

~pi j !5
1

a1* 2a2*
S a1* 21

a1* a2* 2a2*
D , ~40!

FIG. 2. Voltage optimal time dependence corresponding t
pair of 2p kinks of w(t)5( e/\ )*2`

t V(t8)dt8. For the pulses of
equal sign~a! the counting statistics do not depend on the relat
position of the pulsest1,2 and on their durationt1,2 @see Example 2,
Eq. ~39!#. For the pulses of opposite sign~b! average current is zero
and other statistics show nontrivial interference of the kinks@see
Example 3, Eqs.~40! and ~41!#.
i-
ell
ld

n

n

s
er

f
-

~qi j !5
1

a12a2
S a1 2a1a2

1 2a2
D ,

x~l!5122F1F~eil1e2 il!,

where

F5uAu2uBu2
u12a1* a2u2

ua12a2u2 . ~41!

Note that in this example the probabilities of the electr
transfer in both directions are equal, and thus the aver
charge flux is zero, although for arbitrary parametersa1 and
a2 the signal can be asymmetric@see Fig. 2~b!#. In this case
x~l! cannot be represented as a product of independent
tributions of the two elementary excitations, but exhibit th
interference. To make this clear, let us show what happen
one tries to factor the generating function:

x~l!5~u1weil!~u1we2 il!, ~42!

where the ‘‘probabilities’’u,w5 1
2 (16A124F), so in this

case there is no natural relation between the factors ofx~l!
and of f (z).

Example 4. N.1. a15a, ai5b for i .1. uau.1, ubu,1.
Computations can be most easily performed for the c
b50 ~which corresponds to a constant voltage appl
against one elementary excitation!. Then by using the
PSL(2,R) symmetry one can extend the result to arbitraryb:

x~l!5@122F1F~eil1e2 il!#~ uAu2eil1uBu2!N22,
~43!

where

F5uAu2uBu2
u12a* bu2

ua2bu2
. ~44!

As in Example 3, there is an interference of the kinks
opposite sign. It is interesting that the factors ofx~l! can be
interpreted by saying that one positive and one negative k
interfere and form a ‘‘neutral’’ system with which othe
kinks do not interfere. The degree of interference is m
sured byL5u12a* bu/ua2bu, and varies from 0 to 1 de
pending on how much the kinks overlap in time, or by ho
much their durations differ. For example,L→1 if the kinks
almost not overlap, and thenx~l! factors into separate con
tributions of independent kinks: the ‘‘probabilities’’u andv
in Eq. ~42! become just the one-particle probabilitiesuAu2
and uBu2.

IX. DISCUSSION

To summarize, we found the probability distribution fo
the charge transfer under the action of a periodic exte
field described by a rational function ofz5eiVt. According
to our previous remarks about the equivalence between m
netic and electric fields~also, see Appendix E!, we can treat
the field f (z) of form ~29! as the alternating voltageV(t):

a

e
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V~ t !52
i

e

d

dt
lnf ~eiVt!5

Vz

e (
i 51

N
12uai u2

11uai u22~ai* z1aiz
21!

5
V

e (
i 51

N 12r i
2

11r i
222r icos~Vt2w i !

, ~45!

whereai5r ie
iw i.

This expression representsV(t) as a sum of elementar
excitations. Each elementary excitation alone represents
attempt of an electron to pass the barrier, with the probab
to pass given by the transmission coefficient of the barr
We found that if the excitations are of the same sign, th
these attempts do not interfere. The general formula~36!
holds for anyV(t) composed of elementary excitations
arbitrary signs. It predicts a nontrivial interference of t
excitations of opposite signs.

Each elementary excitation in Eq.~45! can be written as a
sum of Lorentzian pulses:

Vk~ t !5
V

e

12rk
2

11rk
222rkcos~Vt2wk!

5 (
m52`

`
V

e

2tk

~ t2tk2mT!21tk
2 , ~46!

with the width tk5V21ln(rk
21), centered attk5V21wk .

Each of the pulses carries flux proportional to its area. T
flux is quantized:

cE
2`

` V

e

2tkdt

~ t2tk2mT!21tk
2 5

hc

e
5F0 . ~47!

The flux quantization is just another way to say that ea
elementary excitation corresponds to a 2p phase shift.

Using representation~46! our results can be to some e
tent translated to the nonperiodic case. The limiting form
the excitation as the periodT→` (V→0) is

V~ t !5
2\

e

t

~ t2t0!21t2 , ~48!

a single Lorentzian pulse with the area*V(t)dt5h/e. If
many such pulses all of the same sign are generated con
ously at a finite rate so that average current dominates
the equilibrium fluctuations, then the calculation will tell th
each pulse corresponds to a ‘‘one-electron-like’’ attempt
pass the barrier, and the distribution of outcomes is binom
~exactly as for constant voltage!. The interference of the
field-driven current with the equilibrium noise will be dis
cussed elsewhere.

X. CONCLUSION

We studied quantum counting statistics of an ac curr
driven by pulses of external field. There are special pu
configurations that create many-particle coherent scatte
states in which the quantum noise is reduced to a dc m
mum. The analytic structure of such states is studied, and
in connection with the modular symmetry group of the pro
lem. A general method to calculate counting statistics is p
sented and applied to the coherent states and to other s
‘‘naturally related’’ to them. The counting statistics a
ne
y
r.
n

e

h

f

u-
er

o
al

t
e
g
i-
ut
-
-
tes

found to be binomial and ‘‘generalized binomial,’’ respe
tively.
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APPENDIX A: EXPRESSION FOR THE GENERATING
FUNCTION

In this Appendix we review the proof of Eq.~12! from
Ref. 12. First we express the determinant~12! as

x~l!5det~12n1nS!5 (
$ i 1 , . . . ,i k%

Si 1••• i k

i 1••• i k )
iÞ i a

~12ni ! )
i 5 i a

ni ,

~A1!

where the summation is over all subsets of chann
$ i 1 , . . . ,i k%. HereSi 1••• i k

j 1••• j k denotes the determinant of the su

matrix of S formed by the entries in the rows$ i 1 , . . . ,i k% and
in the columns$ j 1 , . . . ,j k%. From Eq.~13! it follows that

Si 1••• i k

i 1 ••• i k5 (
$ j 1 ,•••, j k%

ei ~l j 1
1•••1l j k

2l i 1
2•••2l i k

!uAi 1••• i k

j 1••• j ku2,

~A2!

where the determinants

Ai 1••• i k

j 1••• j k5(
P

«~P!Ai 1

j P~1!•••Ai k

j P~k! ~A3!

aren-particle scattering amplitudes. Note that

Pi 1••• i ku j 1••• j k
5 )

iÞ i a
~12ni ! )

i 5 i a

ni uAi 1••• i k

j 1••• j ku2 ~A4!

are the probabilities of the many-electron scattering from
channelsi 1 , . . . ,i k to the channelsj 1 , . . . ,j k . This proves
that

x~l!5 (
$ i 1 , . . . ,i k%
$ j 1 , . . . ,j k%

Pi 1••• i ku j 1••• j k
ei ~l j 1

1•••1l j k
2l i 1

2•••2l i k
!

~A5!

is the generating function for the probability distributio
Pi 1••• i ku j 1••• j k

of the charge transfer.

APPENDIX B: EXPRESSIONS FOR ŠN‹ AND ŠŠN2
‹‹

From Eq. ~24! we can derive expressions for the tot
charge transfer and its dispersion in terms of the exte
field eiw(t). We shall perform the calculations for the per
odic field eiw(t)5 f (eiVt). One can write

^n&52 i
]

]l U
l50

x~l!52 i
]

]l U
l50

lnx~l!

52 i Tr
]

]l U
l50

@11ñ~S21!#
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52 i TrF ñ
]

]l U
l50

~S21!G
5TrF ñS 2uAu2 2A* B*

2AB uAu2 D G . ~B1!

In the time representation (z5eiVt),

n~z1 ,z2!5 (
n<0

z1
2nz2

nedn5z2

1

z2~11d!2z1
, ~B2!

whered is infinitesimal positive. Thus one gets
e

e

e

ñ~z1 ,z2!5z2S f ~z1! f * ~z2!

z2~11d!2z1
0

0
1

z2~11d!2z1

D .

~B3!

Therefore,

^n&5uAu2 R S lim
z2→z1

f ~z1! f * ~z2!21

z12z2
D dz1

2p i

52uAu2 R dz

2p i
f ~z!] f * ~z!

5uAu2 R dw~ t !

2p
5uAu2

Dw

2p
, ~B4!

whereDw is the phase change per period.
Similarly,
^^n2&&52
]2

]l2U
l50

lnx~l!52Tr
]2

]l2 U
l50

ln@11ñ~S21!#

52TrF S ñ
]

]l U
l50

~S21! D 2

2ñ
]2

]l2 U
l50

~S21!G
5TrF ñS 2uAu2 2A* B*

2AB uAu2 D ñS 2uAu2 2A* B*

2AB uAu2 D 2ñS uAu2 2A* B*

AB uAu2 D G
5 R dz1

2p i
lim

z2→z1

F R dz3

2p i S uAu4
f ~z1! f * ~z2!11

@z12z3~11d!#@z32z2~11d!#

1uAu2uBu2
f ~z1! f * ~z3!1 f ~z3! f * ~z2!

@z12z3~11d!#@z32z2~11d!# D2
2uAu2

z12z2~11d!G
52uAu2uBu2 R R dz1dz2

~2p i !2

f ~z1! f * ~z2!21

~z12z2!2 . ~B5!
The last line shows that̂̂ n2&& depends in a nontrivial way
on the whole functionf (z), unlike ^n&, which depends only
on the total phase shiftDw per period. This recovers th
result of Ref. 9 for a periodically varying field.

APPENDIX C: VARIATIONAL PROBLEM

In this Appendix we review the proof of Ref. 9 that th
variational problem of minimizinĝ^n2&& for a fixed value of
^n& is equivalent to the analyticity off (z) either inside or
outside the unit circle.

We decomposef (z) into a sum of f 1(z) and f 2(z),
which are analytic inside and outside the unit circle, resp
tively,

f 1~z!5 (
n50

`

an
1zn, ~C1!
c-

f 2~z!5 (
n50

`

an
2z2n.

Then, by the Cauchy theorem,

R dz

2p i
f 1~z!] f 2* ~z!5 R dz

2p i
f 2~z!] f 1* ~z!50.

~C2!

Therefore,

^n&52uAu2 R dz

2p i
f ~z!] f * ~z!

52uAu2 R dz

2p i
@ f 1~z!] f 1* ~z!1 f 2~z!] f 2* ~z!#

5uAu2(
n

n~ uan
1u22uan

2u2!, ~C3!
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and

^^n2&&52uAu2uBu2 R R dz1dz2

~2p i !2

f ~z1! f * ~z2!21

~z12z2!2

5uAu2uBu2 R dz

2p i
@] f 1~z!2] f 2~z!# f * ~z!

5uAu2uBu2 R dz

2p i
@] f 1~z! f 1* ~z!2] f 2~z! f 2* ~z!#

5uAu2uBu2(
n

n~ uan
1u21uan

2u2!. ~C4!

By comparing the two expressions we see that at fixed^n&
the fluctuation^^n2&& is minimal whenf 1 or f 2 vanishes:
then ^^n2&&min5uBu2u^n&u.

APPENDIX D: NONPERIODIC SIGNAL

Here we make a remark on how formulas~12! and ~13!
can be applied to the case of a nonperiodic field. Actua
expression~12! for the multichannel characteristic functio
at

en
-

,

x~l! is quite general and can be applied to the nonperio
case as well. Suppose the charge is measured during a
time T(0). This can be taken into account by making t
parameterl of the generating function time dependent, a
by ‘‘turning it on’’ only for the time interval of the measure
ment. If the external field is encoded into a~nonperiodic!
phase factorf (t), then the distribution is given by expres
sions~24! and ~13!, where

L5L~ t !5S eil~ t ! 0

0 1D , ~D1!

l~ t !5H l, 0,t,T~0!

0, t,0 or t.T~0!.
~D2!

The operatorS(t) becomes unity outside the observatio
time interval, and this makes the determinant~12! well de-
fined. We postpone a general discussion of the nonperio
case to elsewhere. Here we only demonstrate that this
proach gives the correct answer for the equilibrium no
^^n2&& in the absence of external field.

By the argument of Appendix B,
^^n2&&52Tr
]2

]l2U
l50

ln@11ñ~S21!#

5E
0

T~0! dt1
2p i

lim
t2→t1

F2uAu4E
0

T~0! dt3
2p i

1

~ t12t31 i0!~ t32t21 i0!
2

2uAu2

t12t21 i0

12uAu2uBu2E
0

T~0! dt3
2p i

1

~ t12t31 i0!~ t32t21 i0!G
52uAu2E

0

T~0! dt1
2p i

lim
t2→t1

F E
0

T~0! dt3
2p i

1

~ t12t31 i0!~ t32t21 i0!
2

1

t12t21 i0G
522uAu2E

0

T~0! dt

2p i E t,0
t.T~0!

dt3
2p i

1

~ t2t3!2 5
uAu2

2p2 E
0

T~0!

dtF 1

T~0!2t
1

1

t G5
uAu2

p2 ln
T~0!

tsc
, ~D3!
ns
en-
ge

l

wheretsc is the ultraviolet cutoff set by a characteristic sc
tering time of the system\ ]A(E)/]E.

It is straightforward to check that the fluctuations giv
by the last line of Eq.~D3! agree with the Nyquist equilib
rium noise spectrumSv5( e2/h )G(v)uvu. Indeed,

^^n2&&5E
0

T~0!

dtE
0

T~0!

dt8^^ j ~ t ! j ~ t8!&&

5E dv

2p

u12eivtu2

v2 Sv

5
uAu2

p2 ln
T~0!

tsc
, ~D4!

whereuAu25uA(EF)u25G(v50), and\/tsc is the ultravio-
let frequency cutoff.
- APPENDIX E: GAUGE TRANSFORMATIONS

In this Appendix we show how by gauge transformatio
one can switch between the problem with an electric pot
tial and that with a vector potential. Recall that the gau
transformation

C5C̃e2 if~ t,x! ~E1!

changes the vector potentiala(x,t) and the electric potentia
v(x,t) as

ã5a2
c

e

]f~ t,x!

]x
,

ṽ5v1
1

e

]f~ t,x!

]t
. ~E2!
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Assume that we apply a time-dependent magnetic field w
the vector potentiala(x,t) localized around the scatterer. F
example, this can be realized as a varying magnetic
threading a conducting loop with the contact. Then, by
gauge transformation~E1! with

f~ t,x!5
e

c E
2`

x

a~ t,x!dx ~E3!

we can turn to the problem with the zero vector potential a
the electric potential

v~ t,x!5
1

e

]f~ t,x!

]t
. ~E4!

In this case, the gauge phase shift across the scatterer i

w~ t !5f~ t,x!ux52`
x51`5

e

c E
2`

1`

a~ t,x!dx, ~E5!

and it can be viewed as the time-dependent voltage

V~ t !5
1

e

]w~ t !

]t
~E6!

applied to the contact.
Thus we recalled the familiar gauge transformation for

one-particle problem. When looking at a many-body pro
lem, one also has to transform the density matrix a
Green’s functions according to rule~E1!. Let us consider the
occupation number operator of a reservoir:
y
.

.
ev

n
b

v.
h

x
e

d

e
-
d

n̂~v!5(
k

d~v2Ek!ĉk
†ĉk , ~E7!

where the summation is over all reservoir states. In the
terminant we haven5^n̂& averaged over actual distribution
In the time representation

n~ t,t8!5(
k

eiEk~ t2t8!^ĉk
†ĉk&5(

k
eiEk~ t2t8!nF~Ek!,

~E8!

wherenF(E) is Fermi distribution. Under the gauge transfo
mation~E1! with the gauge phase~E3! the occupation num-
ber operator transforms as

ñL~ t,t8!5nL~ t,t8!,

ñR~ t,t8!5nR~ t,t8!ei [w~ t !2w~ t8!] , ~E9!

for the left and the right reservoirs, respectively.
We assume that the scattering is instant, then the alter

ing field effect on the scattering states is entirely determin
by the phase shiftw(t). This means that the ac magnet
field can be introduced simply by adding the phase in
scattering amplitudes~4!, while in the problem with the elec
tric field we have the energies of occupied states in one
ervoir to be shifted with respect to those in the other one.
virtue of gauge invariance, these two formulations are ob
ously equivalent, and we make use of this in the discuss
of the determinant regularization@see Eq.~24!#.
e
e-
ry

in
an
be

us
ase
er-
tly.

, no
1Single Charge Tunneling, Vol. 294 of NATO Advanced Stud
Institute, Series B: Physics, edited by H. Grabert and M. H
Devoret~Plenum, New York, 1992!; G. Schön and A. D. Zaikin,
Phys. Rep.198, 238 ~1990!.

2L. J. Geerligs, V. F. Anderegg, P. Holweg, J. E. Mooij, H
Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. R
Lett. 64, 2691~1990!.

3D. Esteve, inSingle Charge Tunneling~Ref. 1!, p. 109.
4D. V. Averin and A. A. Odintsov, Phys. Lett. A140, 251~1989!.
5D. V. Averin and K. K. Likharev, inMesoscopic Phenomena i

Solids, edited by B. L. Altshuler, P. A. Lee, and R. A. Web
~Elsevier, Amsterdam, 1991!, p. 167.

6K. A. Matveev, Zh. Eksp. Teor. Fiz.99, 1598~1991! @Sov. Phys.
JETP72, 892 ~1991!#.

7G. B. Lesovik, Pı´s’ma Zh. Eksp. Teor. Fiz49, 513 ~1989! @JETP
Lett. 49, 594~1989!#; B. Yurke and G. P. Kochanski, Phys. Re
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