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Suppression of chaotic dynamics and localization of two-dimensional electrons by a weak
magnetic field

M. M. Fogler, A. Yu. Dobin,* V. I. Perel,* and B. I. Shklovskii
Theoretical Physics Institute, University of Minnesota, 116 Church St. Southeast, Minneapolis, Minnesota 55455
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We study a two-dimensional motion of a charged particle in a weak random potential and a perpendicular
magnetic field. The correlation length of the potential is assumed to be much larger than the de Broglie
wavelength. Under such conditions, the motion on not too large length scales is described by classical equa-
tions of motion. We show that the phase-space averaged diffusion coefficient is given by the Drude-Lorentz
formula only at magnetic fieldsB smaller than certain valueBc . At larger fields, the chaotic motion is
suppressed and the diffusion coefficient becomes exponentially small. In addition, we calculate the quantum-
mechanical localization length as a function ofB at the minima ofsxx . At B,Bc it is exponentially large but
decreases with increasingB. At B.Bc , this decrease becomes very rapid and the localization length ceases to
be exponentially large at a fieldB* , which is only slightly larger thanBc . Implications for the crossover from
the Shubnikov–de Haas oscillations to the quantum Hall effect are discussed.@S0163-1829~97!00735-2#
a
e
o
e
e
t.
e
lo
h

o
la

d
ng
io
-

ts

e

c
a
th

-

the

etic

n
r-
ius,
he
t
o

de-
g-
n
etic

-
er-
n-
its

ee-
ex-
eral

e
cy-

g
s of
all
mo-
I. INTRODUCTION

In this paper we study a two-dimensional motion of
charged particle in a weak random potential and a perp
dicular magnetic field. This problem has deep historical ro
and the limiting cases of a weak and a very strong magn
field are fairly well understood. As we will see below, th
nature of the motion in these two limits is crucially differen
Surprisingly, until now no theory for the crossover betwe
the two limits has been proposed. Our goal is to deve
such a theory. We will start with a classical description of t
transport.

An important prediction of the classical magnetotransp
theory is that the conductivity in the direction perpendicu
to the magnetic field is reduced,

sxx5
s0

11~vct!2
, ~1.1!

wheres0 is the zero-field conductivity~the magnetic fieldB
is assumed to be along theẑ direction!, vc5eB/mc is the
cyclotron frequency, andt is the transport time determine
by the properties of the random potential. Strictly speaki
in classical theory it is more consistent to study the diffus
coefficient D. So, we would write the Drude-Lorentz for
mula ~1.1! in the form

D5
D0

11~vct!2
, ~1.2!

whereD05 1
2 v2t is the diffusion coefficient in zero field,v

being the particle velocity. Drude-Lorentz formula predic
that if the magnetic field is not too weak so thatvct.1, then
the diffusion coefficient falls off inversely proportional to th
square of the magnetic field.

Let us examine the physical picture of the motion in su
magnetic fields. It is easy to verify that the Lorentz force h
a dominant effect on the motion and the deviations from
560163-1829/97/56~11!/6823~16!/$10.00
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perfectly circular cyclotron orbit are small. In such circum
stances, the original coordinatesr5(x,y) are not very useful
anymore. Instead, it is convenient to study the motion of
guiding centerr5(rx ,ry) of the cyclotron orbit.

Suppose the cyclotron gyration is clockwise~this is the
case if, e.g., the particle charge is negative and the magn
field is in the negativeẑ direction!. The guiding center coor-
dinates are defined as follows:

rx5x1
vy

vc
, ry5y2

vx

vc
. ~1.3!

Drude-Lorentz formula~1.2! results from the assumptio
that the guiding centerr performs a random walk. The cha
acteristic step of such a random walk is the cyclotron rad
Rc5v/vc , and the time interval between the steps is t
transport timet. As we will see below, this is the correc
description of the motion if the magnetic field is not to
strong.

Perhaps the first work that demonstrated that the Dru
Lorentz formula may not be valid in the limit of strong ma
netic field was that of Alfve´n1 where he studied the motio
of a charged particle in an inhomogeneous electromagn
field. This and subsequent study2–4 have led to the recogni
tion that instead of the random walk, the guiding center p
forms a slow adiabatic drift along some well defined co
tours. The attention to this problem was stimulated by
plasma physics applications, and mostly the thr
dimensional case was considered. Not so long ago, the
tension to the two-dimensional case was proposed by sev
authors5 motivated by the quantum Hall effect studies.6 We
will discuss the two-dimensional case from now on.

Conventionally, the drift approximation is applied to th
regime where the magnetic fields are so strong that the
clotron radius Rc5v/vc is smaller than the correlation
length d of the random potential. In this case the guidin
center performs a drift along the constant energy contour
the random potential. For the potential of a general type
such contours except one are closed loops and thus the
6823 © 1997 The American Physical Society
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6824 56FOGLER, DOBIN, PEREL, AND SHKLOVSKII
tion is finite. The motion is infinite only when a guidin
center happens to be on the so-called percolating contou5 If
one takes the drift picture literally, and attempts to calcul
the average diffusion coefficient, the result will be equal
zero because the percolating contour has a zero measu

Certainly, it has been understood that the drift picture
only an approximation. Nevertheless, the diffusion coe
cient should be significantly smaller than the Drude-Lore
prediction~1.2!. We will show that the diffusion coefficien
is, in fact,exponentially small.

Comparing the transport properties in the two regim
described above, we see that the increase in the mag
field drives the system from the essentially delocalized, c
otic regime to the regime where the motion is regular and
trajectories of the particles are localized. We call this p
nomenon the ‘‘classical localization.’’ The classical localiz
tion occurs because of an extremely ineffective energy
change between two degrees of freedom, the cyclo
motion, and the guiding center motion. Without such an
change the guiding center is bound to a certain constant
ergy contour. At the same time, the energy exchange is
pressed because the two degrees of freedom have
different characteristic frequencies, the cyclotron freque
vc being much larger than the drift frequencyvd . Naturally,
the present problem is directly related to the problem o
nonconservation of adiabatic invariants. The latter is kno
to be exponentially small,7 and therefore it is not so surpris
ing that the diffusion coefficient turns out to be exponentia
small as well.8

One of the quantities we calculate in this paper is
valueBc of the magnetic field where the diffusion gives in
the classical localization asB increases. A naive guess wou
be the field whereRc5d. Let us, however, comparevc and
vd at such a field. We denote the amplitude of the rand
potentialU(r ) by W. We will assume that the potential i
weak,W!E, whereE5mv2/2 is the particle’s energy. The
characteristic drift velocity isvd;¹U/mvc;W/mvcd, and
the drift frequencyvd;vd /d;W/mvcd

2. Hence, the ratio
g of the two frequencies is

g5
vd

vc
;

W

mvc
2d2

;
W

E S Rc

d D 2

, Rc&d. ~1.4!

We see that at the point whereRc5d, this ratio is of the
order of W/E!1. Surprisingly, the classical localizatio
must first arise already whenRc@d. To understand wha
kind of drift takes place in this case one can use the ave
ing method. This method was extensively developed by K
lov, Bogolyubov, and Mitropolsky9 and in application to the
problem at hand by Kruskal.3 In the spirit of this method, one
has to imagine that the slowly moving guiding center is e
tirely ‘‘frozen’’ on the time scale of the cyclotron period
One then calculates the average potential

U0~rx ,ry!5 R df

2p
U~rx1Rccosf,ry1Rc sin f!,

~1.5!

acting on the particle during one cyclotron rotation. Acco
ing to the averaging method, the drift of the guiding cente
performed along the constant energy contours of the a
e
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aged potentialU0(r). This conclusion was previously
reached by Laikhtman.10 If Rc!d, then the averaged poten
tial coincides with the bare one and so, in agreement with
previous studies, the drift is performed along the const
energy contours of the bare potential. However, ifRc@d,
thenU0 differs fromU. The averaging reduces the amplitud
of the potential by a factorARc /d, which is the square roo
of the number of uncorrelated ‘‘cells’’ of sized along the
cyclotron orbit of length 2pRc . Hence,U0 has the ampli-
tudeW0;WAd/Rc.

Now we can find the true boundaryBc of the classical
localization. To this end we have to replaceW by W0 in Eq.
~1.4!, which gives

g;
W

E S Rc

d D 3/2

, Rc*d, ~1.6!

and then solveg51 for B. The result is

Bc5
Amc2E

ed S W

E D 2/3

. ~1.7!

The change of the transport regime at such field was p
dicted earlier by Baskinet al.11 and by Laikhtman.10 These
authors noted that the displacementdr of the guiding center
after one cyclotron period is a decreasing function of
magnetic field,dr;gd in our notations. Thus, atB.Bc
whereg,1, such a displacement is smaller than the cor
lation length of the random potential. As a result, the sc
tering by the potential is no longer a sequence of unco
lated acts and the motion of the guiding center is differ
from the random walk, which invalidates Eq.~1.2!.

Although the crossover pointBc has been identified cor
rectly, the understanding of the transport regime at lar
magnetic fields remained not entirely satisfactory. For
ample, Baskinet al.11 arrived at a strange conclusion that
B.Bc the diffusion coefficient becomes larger than th
given by Drude-Lorentz formula~1.2!. On the other hand
the calculation of Laikhtman10 relies on the existence of th
random inelastic scattering processes. In this paper we
dress the question ofzero-temperature transport where all th
scattering acts are due to the static random potential onl

The key point of our approach is that the drift picture
albeit excellent but an approximation. A more accura
analysis given in Sec. II reveals that the diffusive motion
not restricted to the very percolating contour but pers
within an area of finite width, so-called stochastic layer12

surrounding this contour. Such a layer turns out to be ex
nentially narrow if the magnetic field is larger thanBc . As a
result, the phase-space averaged diffusion coefficientD is
also exponentially small,

D;vcd
2e2B/Bc. ~1.8!

Thus, the ‘‘classical localization’’ aboveBc causes strong
deviations from the conventional Drude-Lorentz formu
~1.2!.

The existence of the stochastic layer around the perco
ing contour is quite natural. Indeed, the classical localizat
is owing to the fact that drift trajectories are closed loops
turns out that the drift along the loops passing sufficien
close to the saddle points of the random potential is unsta
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The instability is realized as a slow diffusion of the guidin
center in the direction transverse to the drift velocity. Su
pose that the percolation level isU050. By virtue of a small
transverse displacement, the particle drifting along the c
tour U052e can move to another closed conto
U051e. Although this displacement may be small, it wi
in fact, lead to a much larger displacement at a later ti
because the center of the other loop is typically locate
large distance away. Eventually, the particle can travel i
nitely far from its initial position. This is the nature of th
diffusion mechanism inside the stochastic layer.

The suppression of chaotic motion with increasing m
netic field proceeds as follows. AtB,Bc the chaotic motion
takes place in the majority of the phase space, while
regular motion is restricted to small stability islands.12 In this
regime the correlations among the scattering acts can b
nored and Eq.~1.1! applies. As the magnetic field increase
the regions of regular motion expand while the stocha
layer shrinks. AboveBc the width of the stochastic laye
starts to decrease exponentially leading to formula~1.8!.

So far, we have discussed a purely classical dynam
One can also study the transport properties of a noninter
ing electron system quantum mechanically. Due to quan
interference, the conductivity of such a system turns ou
be length-scale dependent.15 The knowledge of classical dy
namics enables one to find ‘‘classical’’sxx , i.e., the conduc-
tivity, which would be measured on not too large leng
scales where effects of quantum interference are weak. C
sical sxx is calculated as a product of the classical diffusi
coefficientD and the quantum density of statesm/p\2 ~ex-
ponentially small de Haas–van Alphen oscillations being
glected!. It is given by Drude-Lorentz formula~1.1! at
B,Bc . At B;Bc classical sxx reaches a value o
(e2/h)G, where

G5kFdS W

E D 2/3

, ~1.9!

kF5(1/\)A2mE being the Fermi wave vector (E has the
meaning of the Fermi energy!. Finally, at B.Bc classical
sxx is given by

sxx;
e2

h
Ge2B/Bc. ~1.10!

Strictly speaking, the correct preexponential factor in t
formula is not justG but a power-law function ofB. We
neglect this weaker dependence on the background of
overall exponential decrease of classicalsxx . The sketch of
classicalsxx as a function ofB is given in Fig. 1. As one can
see, classicalsxx quickly drops aboveB5Bc . In Fig. 1 we
indicated one special value of the magnetic field,B* , at
which classicalsxx reachese2/h,

B* 5BclnG. ~1.11!

Here we assume thatG@1, i.e., that

d@kF
21S E

WD 2/3

. ~1.12!
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As we will see below magnetic fieldB* plays an impor-
tant role in the quantum transport.

At this point we would like to remind the reader that th
true sxx , i.e., the one which is measured experimentally,
the conductivity on a large length scale~of the order of the
sample size!. The calculation of this quantity is much mor
difficult. Similar to the classical transport theory, there ex
two mutually contradicting approaches. One is the theory
the Shubnikov–de Haas~SdH! effect, which aspires to pre
dict the behavior ofsxx in weak magnetic fields. The other i
the theory of the quantum Hall effect~QHE!, which is con-
ventionally applied to strong fields.

At present, the transition from the SdH regime to t
QHE is not well understood even for a noninteracting s
tem. The traditional explanation of the QHE is based on
idea of localization; viz., it is believed that at zero tempe
ture an electron can propagate diffusively only if its ener
is precisely at the center of a Landau level~in strong fields!.6

This leads to isolated peaks insxx , which are the signature
of the QHE. On the other hand, in the theory of the S
effect,13,14 the suppression ofsxx is related merely to the
dips in the density of states between neighboring Lan
levels, while the idea of localization is totally discarded. Th
crucial difference leads to different predictions for the co
ductivity minima. Arguing from the QHE standpoint, on
expects zero dissipative conductivity, whereas the theory
SdH effect predicts a finite one.

In this paper we will advocate the following way to re
solve this apparent contradiction. We will argue that at
QHE conductivity minima the states at the Fermi level a
localized. At B,B* whereB* is given by Eq.~1.11!, the
localization lengthj0 of such states isexponentially large
but decreases from one minima to the next asB increases.
Above Bc the falloff of j0 is extremely sharp and a
B.B* , which is only logarithmically larger thanBc , the
localization length ceases to be exponentially large. Con
quently,B5B* is the smallest magnetic field at which th
observability of the QHE does not requireexponentially
small temperatures. This fact motivates us to identify t
field B5B* as the starting point of the QHE. In other word
this is the position of the ‘‘first’’ QHE plateau.

To avoid confusion let us further elaborate on this iss

FIG. 1. Classical conductivitysxx ~solid line! and the localiza-
tion lengthj0 ~solid line with dots! at theQHE conductivity minima
as functions of the magnetic field~schematically!. Dots serve as a
reminder thatj0 is defined at discrete values of the magnetic fie
The curves are labeled by the equation numbers, which render
functional form in the corresponding intervals.
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6826 56FOGLER, DOBIN, PEREL, AND SHKLOVSKII
Precisely at zero temperature one will observe the Q
peaks. Between the peakssxx will be exactly zero because o
the quantum localization. At finite temperatureT.0 inelas-
tic processes appear, which break the quantum coherenc
length scales exceeding some temperature-dependent le
Lf(T). Thus, ifj0.Lf(T), then the quantum localization i
not important and the QHE features disappear. It is belie
that the dependence ofLf on T is some power law.16 There-
fore, if j0 is exponentially large, then the inequali
j0.Lf(T) is met already at exponentially small temper
tures.

There is yet another way to see why the observability
the QHE requires smallT whenj0 is large. It is known from
experiment~see the bibliography of Ref. 17! that the low-
temperature magnetotransport data at thesxx minima is con-
sistent with the law

sxx}e2AT0 /T, ~1.13!

which can be interpreted17 in terms of the variable-rang
hopping in the presence of the Coulomb gap.18 In this theory
T0 is directly related toj0,

T05const
e2

kj0
, ~1.14!

where k is the dielectric constant of the medium. De
minima of sxx are observable only ifT!T0. Thus, if j0 is
exponentially large, then the QHE can be observed only
exponentially smallT. So, we reiterate once more that
practical terms there exists a starting point of the QHE. T
precipitous drop ofj0(B) aboveBc leaves only a minimal
ambiguity in identifying this point withB5B* .

Our calculation of the localization lengthj0 at the QHE
minima of sxx is based on the followingansatz,16,19 which
we discuss in more detail in Sec. IV,

j0}exp~p2g0
2!, g0@1. ~1.15!

Here g05(h/e2)sxx is the dimensionless classical condu
tance. Substituting Eqs.~1.1! and~1.10! into formula~1.15!,
we immediately find

j0}expS G2
Bc

4

B4D , Bc~W/E!4/3,B,Bc , ~1.16!

j0}exp~G2e22B/Bc!, Bc,B,B* . ~1.17!

The low-field end of the interval in Eq.~1.16! corresponds to
vct;1.

As one can see from Eqs.~1.16! and ~1.17!, the localiza-
tion length indeed drops precipitously aboveB5Bc . At
B5B* , which is only logarithmically larger thanBc , g0
becomes of the order of unity andj0 ceases to be exponen
tially large. The dependence ofj0 on B in the interval
Bc(W/E)4/3,B,B* is illustrated by Fig. 1. The dependenc
of j0 on B at even stronger magnetic fields,B.B* , will be
discussed in a forthcoming paper. At this point we can o
say that at such fields the localization length is determi
mainly by quantum tunneling and exhibits a power-law d
pendence onB.
E
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In order to verify our predictions concerningj0(B) ex-
perimentally, one has to measuresxx at very low tempera-
tures and fit the data to the form~1.13!. From such a fit one
can deduceT0, which is directly related toj0 by virtue of
Eq. ~1.14!.

The paper is organized as follows. In Sec. II we discu
the classical dynamics in strong (B@Bc) magnetic fields and
demonstrate that the diffusion coefficient is exponentia
small. In Sec. III we analyze the same problem from t
quantum-mechanical point of view. Section IV is devoted
the derivation of Eqs.~1.16! and~1.17!. Finally, in Sec. V we
summarize our findings and discuss their relation to the
periment.

II. CLASSICAL DYNAMICS AT B@Bc

In this section we study the classical dynamics of a s
tem with the Hamiltonian

H5

S p1
e

c
A D 2

2m
1U~r !, A5~0,2Bx,0!. ~2.1!

It corresponds to a particle with negative charge2e and the
magnetic field in the negativeẑ direction. Thus, the cyclotron
gyration is clockwise. By means of the canonical transform
tion with the generating function

F~x,y,u,ry!5mvcFx~y2ry!1
~y2ry!2

2
cotuG ,

we obtain new momenta 2]F/]ry5mvcrx and
2]F/]u[I . In terms of the new variables, the Hamiltonia
~2.1! acquires the following form:

H5Ivc1U~rx1R cosu,ry2R sin u!, R[A 2I

mvc
.

~2.2!

It is easy to see that the pair (rx ,ry) matches the earlie
definition ~1.3! of the guiding center coordinates. The ge
metrical meaning of the other variables is illustrated by F
2.

The equations of motion are

ṙx52
1

mvc

]U

]ry
, ṙy5

1

mvc

]U

]rx
, ~2.3!

FIG. 2. The guiding center and cyclotron motion coordinate
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u̇5vc1
]U

]I
, İ 52

]U

]u
. ~2.4!

This system contains four dynamical variables, which ma
its solution difficult. We can eliminate one of the variable
e.g.,I , using the energy conservation. To this end we nee
solve the equation

E5Ivc1U~r,u,I !

for I , or equivalently, the equation

R25
2

mvc
2 @E2U~r,u,R!#

for R. For the potentialU of an arbitrary strength this can b
quite cumbersome. However, at least when the amplit
W of potentialU is small enough,

W!E
d

R
, ~2.5!

it is sufficient to use an approximate solution

R.Rc[A 2E

mvc
2
.

Condition~2.5! guarantees that the deviation ofR from Rc is
much smaller than the correlation lengthd of potentialU.
Under this condition we can also neglect the deviation ou̇
from vc . As a result, Eqs.~2.3! and ~2.4! can be treated a
the equations of motion for the time-dependent Hamilton

H5U~rx1Rc cosvct,rx2Rc sin vct !, ~2.6!

with ry being the canonical coordinate andmvcrx being the
canonical momentum. It is customary to classify the syste
of this kind as systems with 112 degrees of freedom.

It is useful to expand Hamiltonian~2.6! in the Fourier
series,

H5(
k

Uk~r !e2 ikvct, ~2.7!

with the expansion coefficients given by

Uk~r ![ R df

2p
U~rx1Rc cosf,ry1Rc sin f!e2 ikf,

~2.8!

@compare with Eq.~1.5!#. The new equation of motion fo
rx is

ṙx52
1

mvc

]U0

]ry
2

1

mvc
(
kÞ0

]Uk

]ry
e2 ikvct, ~2.9!

and similarly for ṙy . If we drop the sum on the right-han
side of Eq.~2.9!, then the remaining term will describe th
drift of the guiding center along the contours of consta
U0. The local drift velocityvd(r) is given by

vd~r !5
1

mvc
S 2

]U0

]ry
,
]U0

]rx
D . ~2.10!
s
,
to

e

n

s

t

Such a drift leads to the classical localization described
the previous section. The characteristic drift frequency is
the order ofvd;W0 /mvcd

2, whereW0 is the amplitude of
U0 ~see Sec. I!. If the parameterg5vd/vc is small, then all
the terms in the sum on the right-hand side Eq.~2.9! have
frequencies much larger than thevd . They can be consid-
ered a high-frequency perturbation imposed on the ‘‘unp
turbed’’ drift motion.

The presence of a small parameter calls for the pertu
tion theory treatment~averaging method! developed in Refs.
2–4. Unfortunately, it is not possible to calculate the diff
sion coefficient perturbatively.12,23The calculation of the dif-
fusion coefficient requires a different approach based on
consideration of the chaotic dynamics of the system withi
narrow stochastic web surrounding the percolating cont
of potentialU0(r).

Due to an extreme difficulty of the problem, we restri
our consideration by two particular examples: a chessbo
potential and a Gaussian random potential.

A. Chessboard geometry

Consider a chessboard potential

U~x,y!52WS cos
x

d
1cos

y

dD .

In this caseU0 is given by

U052WJ0~Rc /d!S cos
rx

d
1cos

ry

d D . ~2.11!

More generally,

Uk52WJkS Rc

d D H i k cos
rx

d
1cos

ry

d
, even k

i S i k sin
rx

d
1sin

ry

d D , odd k,

whereJk’s are the Bessel functions.
As explained above, one can introduce the dimension

parameterg, which governs the classical dynamics. Equati
~2.11! suggests that the appropriate definition forg is

g5
W

mvc
2d2

uJ0~Rc /d!u.

Note that with this definitiong vanishes wheneverRc /d
coincides with a zero ofJ0. This property is a peculiarity of
the periodic geometry. It leads to oscillations in the diffusi
coefficient with the magnetic field, which are well known
exist both from theory and from experiment.20,21This behav-
ior is nonuniversal and is not of primary interest to us. In t
following we will assume that the ratioRc /d is always close
to midpoints between the successive zeros ofJ0. In this case,
the dependence ofg on Rc is given by Eqs.~1.4! and ~1.6!.
We will focus on the caseg!1.

The ‘‘unperturbed’’ motion is described by the Hami
tonian

H05U0~r !,
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6828 56FOGLER, DOBIN, PEREL, AND SHKLOVSKII
which is time independent. Hence,U0 is the integral of mo-
tion in agreement with the statement that the drift is p
formed along the contoursU05const. The motion has a pe
riodic array of hyperbolic~or saddle! points. Some of them
(pd,0), (0,pd), (2pd,0), (0,2pd) are shown in Fig. 3,
the others can be obtained by periodic translations. The
perbolic points are connected by heteroclinic orbits or se
ratrices. One of them, which runs from (pd,0) to (0,pd) is
shown in Fig. 3. It has the following time dependence:

ry52darctanegvc~ t2t0!, rx5pd2ry , ~2.12!

where t0 is the moment of crossing the surface of sect
S0

t ~see Fig. 3!. The heteroclinic orbits passing through th
other ‘‘time surfaces’’Sq

t ~see Fig. 3! have a similar func-
tional form and an analogous dependence on the cros
times tn’s.

As explained in the Introduction, the unperturbed sepa
trix is dressed with a narrow stochastic layer. In the case
the chessboard potential, this layer has a topology of a sq
network. We are interested in the long-time asymptotic
havior of the chaotic transport along this network. An ef
cient tool to study such a transport is the separatrix map.22,23

The separatrix map is an approximate map describing
dynamics near the separatrix. The application of the sep
trix map to transport problems has been previously con
ered in Refs. 24–28.

To construct the separatrix map we will consider ‘‘ener
surfaces’’Sq

e in addition to the introduced above time su
facesSq

t . To avoid confusion we will elaborate a bit on th
definition of such surfaces.Sq

e ’s andSq
t ’s are introduced for

each chessboard cell. Indexq runs from 0 to 3. The energy
surfaces come through the saddle points and the time
faces are drawn through the links connecting the neighbo
saddle points. The locations ofSq

e ’s and Sq
t ’s near the pe-

FIG. 3. A sketch illustrating the construction of the separat
map. Two unperturbed orbits,r0(t) and re(t) are shown. They
follow two constant energy contours,U050 ~the separatrix! and
U05e,0, respectively. The energy-time coordinatesen and tn are
defined by the crossings of the trajectories with the surfaces
sectionSq

e andSq
t ~shown by bold segments!.
-
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rimeter of the cell at the origin are clear from Fig. 3. Th
locations of the surfaces of section in the other cells can
obtained by periodic translations. Thus, indexq in Sq

t refers
to the position of the corresponding link with respect to
given cell’s center. Similarly, indexq in Sq

e refers to the
position of the saddle point.

Let r(t) be the exact trajectory near the separatrix. At
increases,r(t) crosses the surfacesSq

e in certain order. We
denote byqn the index ofSq

e at nth crossing and byen the
value ofU0 at this moment. Due to the time-dependent ter
in the Hamiltonian,en changes withn. Let us find the dif-
ferenceen112en . The time derivative ofU0 is given by

dU0

dt
52 (

kÞ0
~vd¹Uk!@r~ t !#e2 ikvct,

wherevd is the drift velocity, see Eq.~2.10!. Notationr(t)
stands for the exact trajectory, which is not known. Follo
ing Refs. 12,22,23, we perform the following approxim
tions. First we replace the exact trajectory by the unpertur
one withU05en . Second, having in mind thatuenu!W0, we
replace the trajectory withU05en by the separatrix motion
r0(t2tn), wherer0(t) is given by equations similar to Eq
~2.12! and tn is the moment of time whenr(t) crosses the
surface of sectionSqn

t . As a result, we find

en112en5Mn~ tn!, ~2.13!

whereMn is given by

Mn~ t !52 (
kÞ0

Dk~ t !, ~2.14!

Dk~ t ![E
2`

`

dt8~vd“Uk!@r0~ t82t !#e2 ikvct8, ~2.15!

and is termed the Melnikov function.29 It can be shown that
the D1 and D21 yield the dominant contribution toMn .
After some algebra, the sum of these two terms acquires
form

Mn~ t !.2gvcW Re E
2`

`

dt8
tanh@gvc~ t82t !#

cosh@gvc~ t82t !#

3J1~Rc /d!expS 2 ivct81
p

4
1

pqn

2 D .

~2.16!

The integral can be evaluated by shifting the integration p
to the complex plane oft. ThenMn(t) can be represented b
the sum of residues at the poles of the integrand. The r
dues from the poles closest to the real axis dominate the s
Retaining only these terms, we arrive at

Mn~ t !.De sin qn , ~2.17!

De54A2pmvc
2d2
J1~Rc /d!

J0~Rc /d!
e2p/2g, ~2.18!

qn5vctn1
p

4
1

pqn

2
. ~2.19!

of
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Combining formulas~2.13! and ~2.17!, we obtain the first
equation of the separatrix mapping

en115en1De sin qn . ~2.20!

To have the mapping in a closed form we need another e
tion relatingtn11 to tn anden . Following Refs. 12,22,23, we
take

tn115tn1
1

4
T~en11!, ~2.21!

where T(e) is the period of the unperturbed orb
U0(r)5e. A straightforward computation gives

T~e!

4
5

1

gvc
KS 12

e2

4W0
2D .

1

gvc
lnU8W0

e U, ueu!W0 ,

~2.22!

K being the complete elliptic integral of the first kind.
Although it is a common practice12,22–29to make the ap-

proximations similar to those we made above, their valid
is far from being obvious. The justification has come on
recently with a development by Treschev.30

Using his method, it is quite easy to show that the na
calculation of the Melnikov function is correct forRc!d,
where uJk(Rc/d)u!uJ0(Rc /d)u for all k.0. On the other
hand, ifRc@d, then there is a large number ofk, k&Rc /d,
such thatJk(Rc /d) is of the same order of magnitude a
J0(Rc /d). In this case the straightforward application
Treschev’s method is not an easy task. In this respect,
problem is much more complicated than the two model pr
lems treated by Treschev.30 However, the results obtaine
from the model problems strongly suggest that the right-h
side of Eq.~2.18! may be modified by at most a numeric
factor. To summarize, in Eq.~2.18! the replacement

J1~Rc /d!

J0~Rc /d!
→ j ~Rc /d! ~2.23!

is needed. Without tedious calculations we can only say
function j (x) tends to one in the limitx→0 while it remains
of the order of one at 0,x,`.

In addition to analytical work, the validity of the separ
trix map has been investigated numerically by seve
authors23,28 and has been rated from ‘‘satisfactory’’ to ‘‘ex
cellent.’’ In the rest of this subsection we will assume th
this is the case and calculate two quantities relevant for
transport, the widthDeweb of the stochastic layer around th
separatrix and the average diffusion coefficientD.

The stochastic layer widthDeweb can be defined as th
largest deviation ofU0 from zero found on the bundle o
chaotic trajectories, which surround the destroyed unp
turbed separatrixU050. We estimateDeweb following Ref.
23. First, we note that the relative change inen after one
application of the separatrix map is small provid
uenu@De. Under this condition Eq.~2.21! can be linearized
and then the map can be cast into the form of the stand
map.23 The standard map is characterized by a dimension
parameter,
a-

y

e

ur
-

d

at

l

t
e

r-

rd
ss

K[
1

cosqn
S ]qn11

]qn
21D . ~2.24!

In our caseK is given by

K5
vcDe

4

dT~en!

den
52

De

gen
. ~2.25!

The crossover to the global stochasticity in the standard m
occurs atuKu.0.97 ~Ref. 31!, which yields the estimate

Deweb.18j ~Rc /d!
mvc

2d2

g
e2p/2g ~2.26!

for the stochastic layer’s width. Note thatDeweb;De/g is
much larger thanDe, and so the approximation by the sta
dard map is justified.

Let us now turn to the evaluation of the diffusion coef
cient D. For the chessboard geometry this problem has b
considered previously by Ahn and Kim.28 Unfortunately,
they calculated the diffusion coefficient averaged only o
the trajectories inside the stochastic layer. We, however,
interested in the diffusion coefficient averaged over theen-
tire phase space. Our approach to calculatingD is close in
spirit to the ones used for calculation of the diffusion co
ficient in planar periodic vortical flows, e.g., Rayleigh
Bénard cells.32,33 The details of the calculation can be foun
in Appendix A. The result is

D50.45
De

mvc
. ~2.27!

With the help of Eqs.~2.18! and ~2.23! this translates into

D57.9j ~Rc /d!vcd
2e2p/2g. ~2.28!

One may question the usefulness of the numerical facto
this formula on the grounds that functionj (x) is not known
anyway. In regard of this we can say that first, the calculat
of this numerical factor~Appendix A! and the calculation of
j (x) are two separate problems. Therefore, as soon as so
one finds j (x) using, say, Treschev’s method,30 Eq. ~2.28!
will yield the diffusion coefficient with no extra work. Sec
ond, our calculation demonstrates a close connection of
problem at hand with problems from a different field
physics, the fluid dynamics.

If the numerical factor is not desired, thenD can be ob-
tained from following simple arguments. Consider an e
semble of particles moving in the chessboard potential. Th
diffusive motion can be visualized as a random walk fro
one chessboard cell to the next. The motion of each part
is a combination of the drift along the cell perimeter and t
series of random displacements in the transverse direc
The rate of diffusion depends on the distance of a part
from the cell boundaries. The particles located within a d
tance of one transverse step from the cell boundaries pos
the fastest rate because they can cross to the neighboring
after a single passage along the cell’s side. Particles fur
away from the perimeter remain trapped within the same
for much longer time. Hence, their diffusion rate is neg
gible. Naturally, we can consider a model with a
e-dependent diffusion coefficien
D(e)5Q(De2ueu)d0

2/T(e), where Q(x) is the step func-
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tion andd05A2pd is the length of the cell’s side. The ne
diffusion coefficient can be obtained by averagingD(e) over
the phase space, i.e., over the area in coordinates (rx ,ry),

D5
1

d0
2E0

De

deD~e!
dS~e!

de
,

whereS(e) is the area of the cell’s region bounded by t
contours U050 and U05e. It is trivial to show that
dS(e)/de5T(e)/mvc ; therefore,D5De/mvc , which re-
produces Eq.~2.27! up to a numerical factor.

Finally, the diffusion coefficient can be written as a fun
tion of the magnetic fieldB,

lnS D

vcd
2D ;2S B

Bcb
D 3/2

, ~2.29!

where

Bcb5
27/6

p

Amc2E

ed S W

E D 2/3

@cf. Eq. ~1.7!#. Formula ~2.29! was derived assuming tha
g!1, i.e., that B@Bcb. In addition, we assumed tha
Rc@d, which is equivalent toB!Bcb(E/W)2/3. As one can
see, the dependence ofD on B for the chessboard geometr
is given by a squeezed exponential with the exponent 3/2
the next subsection we treat a more general case of a Ga
ian random potential. We will show that the squeezed ex
nential is replaced by a simple one as given by Eq.~1.8!.

B. Gaussian random potential

A Gaussian random potential is fully specified by its tw
point correlatorC(r 12r 2),

C~r 12r 2!5^U~r 1!U~r 2!&, C~0![W2.

In many cases, it is also convenient to deal with the Fou
transforms ofU, which have the following correlator:

^Ũ~q1!Ũ~q2!&5~2p!2d~q11q2!C̃~q1!

~Fourier transforms are denoted by tildes!. Given the func-
tion C(r ), we want to calculate the diffusion coefficient
strong magnetic fields. Similar to the case of the chessbo
potential, let us first investigate the ‘‘unperturbed’’ motio
the drift along the contoursU0(r)5const. Clearly,U0(r) is
also a Gaussian random potential with correlatorC0 related
to C by

C̃0~q!5@J0~qRc!#
2C̃~q!.

The unperturbed motion is determined by the proper
of the level lines ofU0. It is known that all such lines excep
one, the percolating contour, are closed loops. The Gaus
random potential shares this property with the chessbo
potential considered above. In addition, the position of
percolation level is the same for both potentials:U050.
There exists, however, an important difference in the pr
erties of level lines in the two cases. The diameters of
loops in the chessboard do not exceed 2pd. On the other
hand, constant energy contours of the random potential
In
ss-
-

r

rd

s

ian
rd
e

-
e

an

have arbitrarily large diameters. Such large loops are fo
in the vicinity of the percolating contour.~The latter one can
be considered as a loop with infinitely large diameter.! As
the diameter of the contour increases, the range ofU0 found
at such contours shrinks, tending to the percolation le
U050.

Similar to the chessboard geometry case, the exact tra
tories do not simply follow the level lines ofU0(r) but
exhibit small transverse deviations from them. As a resul
finite diffusion coefficient appears. As we will see below th
diffusion coefficient ismuch largerthan that for the chess
board potential of the same amplitude and correlation len
The reason for this difference comes from an important r
of rare placeswhere drift trajectories pass nearby unusua
large maxima ofU0.

To calculateD we will use a close analogy of the proble
at hand with the problem of calculating the effective diff
sion constant of a particle diffusing in an incompressib
flow.34 Below we essentially reproduce the basic argume
of Isichenkoet al.34 with slight modifications appropriate fo
our problem.

Borrowing the terminology of Ref. 34, we call a bundle
constantU0 contours with diameters betweena and 2a a
convection cell or ana cell ~see Fig. 17 of Ref. 34!. The
values of U0 in typical a cells belong to an interva
@2w(a),w(a)#, which narrows with increasinga. Let us
denote byL(a) the perimeter length of typicala cells and by
De(a) the change inU0 accumulated along the trajector
following the perimeter, for which the timeT(a);L(a)/vd
is required. The key point in estimatingD is a ramification
between mixing @with De(a).w(a)# and nonmixing
@De(a),w(a)# cells. It takes a single periodT(a) or even a
fraction of thereof for the particle to leave a mixing ce
whereas particles in nonmixing cells remain trapped for ti
intervals much larger thanT(a). The dominant contribution
to the transport comes from the mixing cells of the larg
width w(a) for which De(a);w(a). We denote the diam-
eter by such cells byam . The particles situated in such cel
perform a random walk from one optimal cell to the ne
The characteristic step of the random walk isam and the
characteristic rate of the steps is 1/T(am). Thus, the diffu-
sion coefficient of such ‘‘active’’ particles is of the order o
am

2 /T(am). The net diffusion coefficient can be found b
multiplying this diffusion coefficient by the fraction of th
total area occupied by the optimal convection cells. Note t
the width of theam cells in the real space is of the order
De(am)d/W0. Using this, the fraction of the area ca
be estimated to be@De(am)d/W0#L(am)/am

2 5@De(am)/
mvc#T(am)/am

2 . Finally, we obtain

D;
De~am!

mvc
, ~2.30!

which closely resembles Eq.~2.27! for the chessboard.35

However, nowDem[De(am) depends on the diameteram of
the optimal cells, which has yet to be found. We see that
calculation ofD hinges upon the calculation ofDem . To
accomplish the latter task we can make the same kind
approximations as in deriving the separatrix mapping for
chessboard. Then we obtain the following expression@cf.
Eqs.~2.14! and ~2.15!#:
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Dem
2 5 (

nÞ0
uDnu2, ~2.31!

Dn[ R dt~vd“Un!@r0~ t !#e2 invct, ~2.32!

where the integration path is the unperturbed or
U0@r0(t)#5const belonging to a givenam cell. Observe that
the integrand is the product of a slowly changing functi
f n(t)5(vd“Un)@r0(t)# and a rapidly oscillating exponen
tial factor e2 invct. It is customary to estimate such integra
by shifting the integration path into the lower half plane
complext where the oscillating factor decays exponential
By using the method, one arrives at the following estima

Dem
2 ;uD1u25U(

k
2p iRke

2uIm tkuvcU2

, ~2.33!

wheretk are the singular points of the functionf 1(t) in the
lower half plane plane andRk are some preexponential fac
tors. For example, iff 1(t) has a simple pole attk , thenRk is
up to a phase factor the residue of such a pole. Equa
~2.33! is similar to Eqs.~2.17!–~2.19! for the chessboard
potential.

We denote the coordinate along the drift trajectory bys,
then f 1(t)5vd(dU1 /ds). The singularities off 1(t) may
originate either fromvd or from (dU1 /ds). Let us investi-
gate the former possibility. To get the necessary insight
will use the exactly solvable model of the chessboard po
tial, which we studied above. In the latter case

vd~ t !5
A2gvcd

cosh@gvc~ t2t0!#
~2.34!

@see Eq.~2.12!# and the singularities ofvd(t) in the lower
half plane consist of the ‘‘parent’’ pole att02 ip/2gvc and
a series of ‘‘daughter’’ poles att02 ip(k11/2)/gvc ,
k51,2 . . . .Note that the imaginary part of the parent pole
of the order of the characteristic time scale (gvc)

21 of the
drift motion.

In the case of the random potential, we also expect to
a series of singularities ofvd(t). However, there will be not
a single series but a large numberN(am) of them. Indeed,
vd(t) has aboutL(am)/d minima on the trajectorys(t). The
points of minima divide the trajectory intoL(am)/d intervals
of length;d. In each intervalvd(t) first rises, then reache
a maximum, then decreases, i.e., it exhibits the same kin
behavior as in the chessboard case. Therefore, a naive
mate ofN(am) is N(am);L(am)/d. Since Imtk’s enter Eq.
~2.33! in the arguments of the exponentials, the domin
contribution toDem comes from theseN(am) parent singu-
larities. Let us now discuss Imtk’s. It is obvious that differ-
ent am cells give rise to different Imtk’s, i.e., there exists a
certain distribution of Imtk’s. What kind of distribution
should we expect? Clearly, thetypical value of the imaginary
parts of the parent singular points should be of the orde
the characteristic time scale of the drift motion, (gvc)

21,
whereg can be defined as follows:

g5
W0

mvc
2d2

,

it

.
:

n

e
n-

d

of
sti-

t

f

with W0 andd being

W05AC0~0!, d5A2
C0

2“

2C0

.

However, it would be a mistake to think thatDem is deter-
mined by this typical value. Indeed, the deviations of Imtk
from their average value are dramatically enhanced inDem
due to a large value ofvc compared tovd . Therefore, we
can expect an extremely broad range of the exponential
tors entering the sum on the right-hand side of Eq.~2.33!. At
the same time, there is no such enhancement forRk . This
kind of argument implies that we can estimateDem consid-
ering only the distribution of Imtk’s, i.e.,

Dem
2 ;U(

k
eiqke2uIm tkuvcU2

,

whereqk is the phase of the complex numberRk . We will
further assume thatqk’s are uncorrelated, which results in

Dem
2 ;(

k
e22uIm tkuvc.

From this, we find that

Dem
2 ;W0

2 L~am!

d E
0

`

dg8P~g8!e22/g8, ~2.35!

whereg851/Im tvc andP(g8) is the distribution function
of g8. The first factor on the right-hand side is written sole
to provide the correct dimensionality.

In general, P(g8) depends on the functional form o
C(r ). Suppose thatC(r ) is isotropic, i.e., depends only o
r 5Ax21y2. It is possible to show that forC(r ) with
‘‘good’’ analytical properties,P(g8) has the Gaussian tail,

P~g8!;expS 2
Ag82

g2 D , g8@g, ~2.36!

whereA;1 is some number. The conditions for Eq.~2.36!
to hold are as follows. FunctionC(r ) must be analytic for all
real r . In addition,C(r ) must be analytic in some comple
neighborhood ofr 50. Note that such conditions can be m
only if C̃(q) decays exponentially or faster at largeq, e.g.,

lnC~r !;2~qd!b, b>1.

For example, a ‘‘realistic’’ potential defined by Eq.~B1! be-
low corresponds tob51 and therefore meets the requir
ments. In fact, we found the value ofA55.0 for potentials of
this type. We omit the details of the calculation and the pro
of Eq. ~2.36! ~Ref. 36! for the sake of keeping the size of th
paper within the manageable limits. Instead, we chose
present simple physical arguments leading to Eq.~2.36!.

Let us again examine the chessboard model. As one
see from Eq.~2.34!, vd as a function oft exhibits a brief
pronounced pulse near its maximum att5t0. The duration of
the pulse is of the order of (gvc)

21. It is this time scale that
determines the imaginary part of the closest singular po
Let us now return to the random potential case. One
speculate that singular points ofvd(t) are always associate
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6832 56FOGLER, DOBIN, PEREL, AND SHKLOVSKII
with such kind of pulses. By this argument, the singularity
the point ts5t12 i t 2 with 0,t2!(gvc)

21 requires an un-
usually short pulse of durationDt;t2. To produce such a
pulsevd(s) must have a large and sharp maximum. In oth
words, the gradient ofU0 must be untypically large at thi
point. Let us estimate, e.g., the height of the maximum
vd(s). The half widthDs of the maximum is of the order o
Ds;A2vd /vd9. On the other hand, we should hav
Ds;vdt2. Thus,vdvd9;2t2

22 , which shows that small val
ues of Imts require large values ofvd and its second deriva
tive, vd;d/t2 and vd9;1/t2d. Recall now that the distribu
tion functions of bothvd andvd9 have Gaussian tails, so tha
the probability of finding an unusually largevd is of the
order of exp(2A1vd

2/g2vc
2d2) and similarly forvd9 (A1;1 is

some number!. Substitutingd/t2;g8vcd for vd , we arrive
at Eq.~2.36!.

The estimation of the integral in Eq.~2.35! by the saddle-
point method results in

Dem
2 ;W0

2 L~am!

d
expS 2

3A1/3

g2/3 D . ~2.37!

On the other hand,L(am) obeys the scaling law

L~am!}uDemu2ndh, ~2.38!

wheren and dh are some exponents, which depend on
properties of the correlatorC̃0(q) ~Ref. 34!. Their actual
values are not very important at this point. Equations~2.37!
and ~2.38! enable one to findDem , which can then be sub
stituted into Eq.~2.30!. As a result, we find the diffusion
coefficient,

D;vcd
2gaexpS 2

J

g2/3D , ~2.39!

wherea is some number and

J5
3A1/3

11ndh

is another number. Strictly speaking, we cannot calculate
correct preexponential factor in formula~2.39!. The particu-
lar choice of this factor made in Eq.~2.39! provides a match-
ing of this equation with Drude-Lorentz formula~1.2! at
g51 where both formulas giveD;vcd

2 ~up to purely nu-
merical factors!. This can be seen from Eqs.~1.2!, ~1.6!, and
~2.39! if one takes into account the approximate expressio38

for the transport timet,

t;
d

vS E

WD 2

.

In this subsection we implicitly assumed that the inequ
ity Rc@d holds. In this caseg}B23/2 @Eq. ~1.6!#. Substitut-
ing this into Eq.~2.39!, we obtain

D}vcd
2e2B/Bc, B.Bc ,
t

r

n

e

e

l-

declared previously in Sec. I. The factorga on the right-hand
side is dropped under the assumption that in the inte
Bc,B,B* , discussed in Sec. I, this factor does not app
ciably deviate from unity.

Concluding this section, we would like to point out th
the dependence ofD on the magnetic field is given by
simple exponential not the squeezed one as in the chessb
model @Eq. ~2.29!#. The reason for this difference come
from the important role of rare places on the trajectories w
unusually sharp features of the averaged potentialU0.37

III. INTER-LANDAU-LEVEL TRANSITION AMPLITUDES

In the preceeding section we showed that in strong m
netic fields,B.Bc , the guiding center of the cyclotron orb
closely follows the level linesU05const of the averaged
potential U0. A nonvanishing diffusion coefficient appea
due to small deviations from the level lines. The charact
istic value Dem of such a deviation was calculated pure
classically. Due to the energy conservation,Dem also repre-
sents the change in the kinetic energyIvc of the particle@Eq.
~2.2!#.

The purpose of this section is to calculate the change
kinetic energy quantum mechanically by taking into acco
the discreetness of the spectrum, i.e., the existence of
Landau levels~LL’s !. Note that this is not yet a consisten
quantum-mechanical treatment of the problem. For exam
in this section we ignore localization and/or quantum tunn
ing. An attempt to touch on some of those complicated iss
will be postponed until the next section.

In quantum-mechanical terms, the change in kinetic
ergy results from inter-LL transitions. Indeed, the change
kinetic energy due toN→N1k transition is equal to
k\vc . We denote the transition amplitude upon the comp
tion of the loopU05const byAN,N1k , then^Dem

2 & is given
by

^Dem
2 &5~\vc!

2(
k

k2uAN,N1ku2. ~3.1!

It is obvious from this formula that the inter-LL transition
may be significant only within a certain band of LL’s.
Dem is larger than\vc , then the number of LL’s in that
band should be of the order ofDem /\vc . We denote by
B* the field whereDem5\vc . In fact, this notation has
already been used in Sec. I@Eq. ~1.11!#. If B.B* , then
Dem,\vc and even the transitions to the neighboring LL
must be suppressed. In this case the sum overk is dominated
by the two terms,k561; therefore,

uAN,N61u25
^Dem

2 &

2~\vc!
2

. ~3.2!

In deriving Eqs.~3.1! and ~3.2! we implicitly assumed that
the classical and the quantum calculations of^Dem

2 & give the
same result. This will be demonstrated below.

Before we do so, let us mention one interesting fact. U
ing Eq. ~2.30! and the Einstein relationsxx5e2nD, where
n5m/p\2 is the density of states~de Haas–van Alphen os
cillations neglected!, one arrives at the following formula:
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sxx;
e2

h

Dem

\vc
.

It can be interpreted in the following way: the transport
determined by the aforementioned band of ab
(Dem /\vc) LL’s with energies near the Fermi energy. Ea
level contributese2/h to sxx ~cf. Ref. 39!.

The general formula forAN,N1k derived in Appendix C
reads

AN,N1k5E
0

2p du

2p
e2 ikuexpS 2 (

nÞ0

Dn

n\vc
e2 inuD , ~3.3!

whereDn’s are given by Eq.~2.32!. Substituting this expres
sion into formula~3.1! and taking advantage of the identit

E
0

2p du

2p (
k52`

`

k2eiku f ~u!52 f 9~0!,

we recover the classical formula~2.31! for Dem
2 .

Finally, it is easy to see that Eq.~3.2!, which we derived
without any calculations, is consistent with formula~3.3!.
Indeed,uD1u.Dem . If Dem!\vc , then the second expo
nential in Eq.~3.3! can be expanded in the Taylor serie
which trivially leads to Eq.~3.2!.

IV. QUANTUM LOCALIZATION LENGTH

In Sec. I we argued that the localization length is exp
nentially large in weak magnetic fields and has to decay
the magnetic field increases. This statement is an oversim
fication in two respects. First,j is, in fact, expected to di-
verge at certain discreet valuesBN of the magnetic field

j5j0UBN112BN

B2BN
Um

, ~4.1!

where m is a critical exponent.6 Second, such divergence
neglected,j starts decreasing only fromB;\c/eltr , at
which the magnetic lengthl 5A\/mvc becomes of the orde
of the transport lengthl tr5vt.

Let us discuss these issues in some detail. Scaling th
of localization is one possible way to approach this diffic
problem.15 In scaling theory one tries to understand the
calization by considering the behavior of the dimensionl
conductanceg[(h/e2)sxx as a function of system sizeL.
This behavior is described by the scaling function

b~g!5
] lng

] lnL
. ~4.2!

One starts with calculating the conductanceg05g( l 0) at
some short length scaleL5 l 0, where it is large and then
finds howg is renormalized towards largerL. The localiza-
tion length is the length scale whereg(L) becomes of the
order of unity.~If g0 is of the order of unity or smaller, the
a different approach has to be used, see below.!

It has been conjectured40 that all physical systems can b
grouped into certain universality classes with the same fu
tional form of the scaling function. If we neglect the spi
orbit coupling, then the appropriate universality class for o
system is determined by the relation betweenL and the mag-
t

,

-
s
li-

ry
t
-
s

c-

r

netic lengthl . ForL! l , the system belongs to the orthogon
class, where the scaling function is given by15,40

b~g!.2
2

pg
, L! l . ~4.3!

For L@ l the system is in the unitary class. The scaling fun
tion is given by

b~g!.2
1

2p2g2
, L@ l . ~4.4!

The latter result was derived both by the conventional d
gram technique42,43 and by an effective field theory.40 Solv-
ing the scaling equation~4.2! for g(L), we find thatj expe-
riences a growth from the value of

j; l tr expS p

2
kFl trD ~4.5!

at B50 to

j; l tr exp~p2kF
2 l tr

2! ~4.6!

at B;\c/eltr
2 , where l 5 l tr . In stronger fields,B.\c/eltr

2 ,
the system belongs to the unitary class at all relevant len
scales andj is given by the formula16,19

j5 l 0 exp@p2g0~B!2# ~4.7!

following from Eq. ~4.4!. The dimensionless conductanc
g0(B) decreases withB. For the case of a long-range rando
potential this follows from the results of the preceeding s
tions. Therefore, the initialgrowth of j at very weak mag-
netic fields is followed by the exponentialdecayof j as B
increases. This is the statement we put forward in Sec. I

Unfortunately, Eq.~4.7! cannot be entirely correct be
cause it does not reproduce the critical divergences@Eq.
~4.1!#. Pruisken41 argued that the critical behavior is a no
perturbative effect. His field-theoretical treatment yields
expression for theb function, in principle, different from the
simple form ~4.4!. However, the deviations from Eq.~4.4!
become significant only when the renormalized value og
approaches unity. On this basis we speculate that Eq.~4.7!
gives only the lower bound for the localization lengthj. We
further assume that this lower bound is close to the ac
value of j away from criticality. In other words, Eq.~4.7!
gives, in fact, notj itself but its noncritical prefactorj0
entering Eq.~4.1!.

Note that j.j0 at the midpoints between neighborin
divergences ofj, i.e., at the QHE conductivity minima. Thi
is exactly the quantity discussed in Sec. I where we pos
lated theansatz~1.15! @the same as Eq.~4.7! but with j0
instead ofj#. By virtue of thisansatz, the calculation ofj0
boils down to the evaluation of the short length-scale c
ductanceg0.

Previous attempts41–43 to treat the localization problem in
the QHE have been focused on the case of a short-ra
random potential, i.e., the potential whose correlation len
is much smaller than de Broglie wavelength 2p/kF . In this
caseg0 has to be calculated quantum mechanically, e
within a self-consistent Born approximation.13,14 Recall that
our theory applies to the casekFd*(E/W)2/3@1, see Eq.



on
f

e
on
in

nd
e

ll

by
.
s
he

t

er
de
th
e
ct

f a
d
s
e

s
ne

ca
an
do

po
ho
le

se

as

s to
n
tant

e
ort

not
e ac-
see

ure

e
cti-

y at

ly if

-

s a
the

int
first

be
elds
kh

y.
of

.
e-
g
er

6834 56FOGLER, DOBIN, PEREL, AND SHKLOVSKII
~1.12!. Therefore, there is a whole intermediate regi
1!kFd!(E/W)2/3 separating the domains of applicability o
our and the previous theories. The calculation ofj0 in that
region is a separate problem and will be discussed elsewh

In the case of long-range random potential, which we c
sider here,g0(B) can be calculated with the help of Einste
relation,

g0~B!5hn~B!D~B!,

wheren(B) is the density of states at the Fermi level a
D(B) is the classical diffusion coefficient. According to th
results of the previous sections,D(B) is given by Drude-
Lorentz formula~1.2! at B,Bc and by formula~2.39! at
B.Bc . Let us now discuss the behavior ofn(B). In prin-
ciple, n(B) oscillates with B around its zero-field value
n(0)5m/p\2. However, for B smaller or at least not to
much larger thanBc such oscillations are exponentially sma
because the width of LL’s, which is of the order ofW0 ~Ref.
44!, is much larger than the distance\vc between them.
Therefore, we can use the zero-field valuen(0).

Substituting all these results into Eq.~1.15!, we obtain
j0(B). The functional form of this dependence is given
Eqs.~1.16! and~1.17!. Graphically, it is illustrated by Fig. 1
Observe that the overall decay ofj0 asB increases become
extremely sharp atB.Bc . As a consequence, already at t
field B5B* , which is only logarithmically larger thanBc
@see Eq. ~1.7!#, j0 ceases to be exponentially large. A
B.B* , g0 becomes less than one and Eq.~1.15! does not
hold anymore. In this region the localization length is det
mined mainly by quantum tunneling rather than by the
structive interference of classical diffusion paths. Thus,
calculation of j0 requires a different approach. It will b
discussed in a forthcoming paper together with the prefa
in formula ~1.17!. At this point we can only say thatj0 is
expected to have a power-law dependence onB and eventu-
ally match the predictions of Raikh and Shahbazyan45 at suf-
ficiently largeB.

V. DISCUSSION AND CONCLUSIONS

In this paper we studied a two-dimensional motion o
charged particle in a weak long-range random potential an
perpendicular magnetic field. We showed that the pha
space averaged diffusion coefficient is given by Drud
Lorentz formula only at magnetic fieldsB smaller than cer-
tain value Bc . At larger fields, the chaotic motion i
suppressed and the diffusion coefficient becomes expo
tially small.

To make a connection with the experiment our results
be applied to the following model. We suppose that the r
dom potential is created by randomly positioned ionized
nors with two-dimensional densityni set back from the two-
dimensional electron gas by an undoped layer of widthd.
We will assume thatnid

2@1 and also thatd@aB , where
aB is the effective Bohr radius. In this case the random
tential can be considered a Gaussian random potential w
correlator is given in Appendix B. As a particular examp
we consider a special case where the density ofrandomly
positioneddonors is equal to the densitykF

2/(2p) of the
electrons. We call it the standard potential. It is easy to
re.
-

-
-
e

or

a
e-
-

n-

n
-
-

-
se

,

e

that for the standard potentialE/W;kFd and the domain of
applicability of our theory@Eq. ~1.12!# is simply kFd@1. In
modern high-mobility GaAs devices this parameter can be
large as ten. It is easy to verify that the magnetic fieldBc
where the classical localization takes place correspond
the LL indexNc;(kFd)5/3, which can be a number betwee
10 and say, 50 for GaAs heterostructures. Another impor
magnetic fieldB* @Eq. ~1.11!# corresponds to LL index
N* , which is only slightly smaller thanNc . As explained in
Sec. I,N* is the number of the ‘‘first’’ QHE plateau in the
sense that the observability of plateaus with largerN require
exponentially smalltemperatures.

The pointN5N* plays another important role. It is th
largestN where it is possible to see the activated transp
sxx}e2Ea /T, Ea.\vc /2 at the minima ofsxx . Indeed, it is
known that in strong fields or for smallN’s the dissipative
conductivity demonstrates the Arrhenius-type behavior at
too low temperatures. As the temperature decreases, th
tivation becomes replaced by the variable-range hopping,
Eq. ~1.13!.

Equating the two exponentials, we find the temperat
Th at which the activation gives in to the hopping,

Th;
~\vc!

2

T0
. ~5.1!

This formula can also be written in another form,

Th

\vc
;

\vc

T0
5const

j0

r sRc
, ~5.2!

wherer s5A2e2/k\vF is the gas parameter, which is of th
order of unity in practice. Let us demonstrate that the a
vated behavior should not be observable atB,B* . Indeed,
it makes sense to talk about the activated behavior onl
temperatures below the activation energyEa.\vc /2.
Therefore, the activated transport can be observable on
the right-hand side of Eq.~5.2! is less than unity. Thus, the
Arrhenius-type behavior ofsxx cannot be detected in mag
netic fields much smaller thanB* wherej0 is still exponen-
tially large. On the other hand, it can be shown, and it i
subject of a forthcoming paper, that in the standard case
ratio j0(Bc)/Rc is smaller than one. Consequently, the po
where the activated transport becomes observable for the
time with an increase inB is indeed the pointB.B* .

The behavior ofj0 in magnetic fields stronger thanB*
has not been investigated in the present paper. It will
discussed elsewhere. We expect that at such magnetic fi
j0(B) is a certain power law matching the results of Rai
and Shahbazyan45 at sufficiently largeB. As explained in
Sec. I, such a dependence can be studied experimentall

Finally, in this paper we have neglected the influence
electron-electron interaction onj0. This complicated issue
warrants further study.
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APPENDIX A: DIFFUSION COEFFICIENT IN THE
CHESSBOARD MODEL

To calculate the numerical factor in Eq.~2.27! for the
diffusion coefficient we proceed as follows. First, we w
introduce the random-phase model28 arguing as follows. The
well-known property of the standard map is a fast mixing
the phase variableq. The correlations in phase decay a
cording to ^ei (qn2q0)&;uKu2n/2 ~Ref. 12! as a function of
the iteration numbern and the map parameterK @Eq. ~2.24!#;
therefore, foruKu@1 the phase memory is typically lost afte
a single iteration of the map. The situation with the sepa
trix map is similar, which allows a simplification of the prob
lem. We will assume thaten is still transformed according to
Eq. ~2.20! as long asuen11u<Deweb. If the new value of
uen11u is larger thanDeweb, then en115en . At the same
time, qn will be a purely random variable uniformly distrib
uted in the interval (0,2p). As we will see below, for trans
port only the narrow boundary layerueu;De is important
~cf. Refs. 32,33!, where uKu@1 @see Eq.~2.25!# and there-
fore, such a random-phase model is adequate. Ahn
Kim28 studied this model numerically and found an excelle
agreement between the diffusion coefficients found from
random-phase model and from the original separatrix m
~Of course, the random-phase model lacks certain feature
the original separatrix mapping, e.g., a rich hierarchical
land structure.!

Consider now an ensemble of particles, each having
same total energyE but different initial conditions att50.
In the original problem with Hamiltonian~2.7!, we can de-
scribe this ensemble by a distribution function~guiding cen-
ter density! f (r,t). We will calculate the diffusion coeffi-
cient as the coefficient of proportionality between t
average particle flux and the average gradient off in the
stationary state. It is convenient to rotate the coordinate
tem by p/4. We denote new coordinates byj and h. The
gradient off is in the ĥ direction ~Fig. 4!.

In fact, the description of the ensemble by functionf ,
which is a function of a vector argument, is reasonable o
when we study the exact dynamics. After we have repla
the exact dynamics with that of the separatrix map and n
even of the random-phase model, this kind of descript
became too detailed. Instead, it is sufficient to introduce a
of the distribution functionsf n

6(e) of a single argument
Each function in the set represents the deviation off from its
average value at the intersections of the contourU05e with
the surfaces of sectionSn

e . The superscripts distinguish be
tween the positive and negativee contours~Fig. 4!. Func-
tions f n

1 are taken to be zero fore,0 and similarly,
f n

2(e)50 for e.0. We also define ‘‘full’’ functionsf n by
f n(e)5 f n

1(e)1 f n
2(e).

We denote the length of the chessboard cells byd0

(d05A2pd) and the average gradient^u¹ f u& by D f /d0, then

D5
F

D f
5

F12F0

D f
, ~A1!
-

-

nd
t
e
p.
of
-

e

s-

ly
d
w
n
et

where F is the total flux through the side
$0,j,d0 ,h50% and Fn is the flux incident upon theSn

e

surface,

Fn5E
0

pd

dlvd~ l ! f n
1@e~ l !#5

1

mvc
E

0

W0
de f n

1~e!. ~A2!

Here l is the coordinate alongSn
e andvd( l ) is the drift ve-

locity.
To obtain the equation forf n’s note that within the

random-phase model,f n11 is quite simply related tof n . For
example,

f 2~e!5E
0

2pdq

2p
f 1~e2De sin q!5Ss f 1~e!. ~A3!

Similarly ~see Fig. 4!,

D f Q~2e!1 f 3
2~e!1 f 1

1~e!5Ss@D f Q~2e!1 f 2
2~e!

1 f 0
1~e!#, ~A4!

whereQ(x) is the step function. Suppose that allf n’s are
equal to zero at the center of the cell, then the chessbo
symmetry dictatesf 352 f 1 and f 252 f 0 and also that func-
tions f n’s are even. These relations can be substituted
Eq. ~A4!. Then one can eliminatef 0 and obtain an equation
solely for f 1,

~11I sSsI sS! f 1~e!5~ I sS2I !D f Q~2e!, ~A5!

where (I s f )(e)[sgn(e) f (e). Equation~A5! is an integral
equation, in principle solvable by the Winer-Hopf metho
However, we have not been able to find its solution anal
cally. At the same time, a numerical solution is obtain

FIG. 4. The chessboard in the coordinate system rotated
p/4. Pluses and minuses at the centers of the chessboard cells
the maxima and minima of the potential. The direction of the d
velocity is indicated by arrows. Bold segments are the surface
sectionSn

e , the same as in Fig. 3. Distribution functionsf n
6 repre-

sent the deviation of the guiding center density from the sam
averaged value at those parts ofSn

e ’s, which are inside of the two
cells on the right. SurfacesS0

e andS1
e also penetrate the two cell

on the left. The corresponding distribution functions are related
f 2

6 , f 3
6 as shown.
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rather easily. The result is shown in Fig. 5. By calculati
the area bounded from above by the graph of functionf 1,
from below by the graph off 0, and from the left by the
vertical line e50, we have obtained the numerical fact
0.45 in the expression~2.27! for the diffusion coefficient.

Both f 0(e) and f 1(e) decay exponentially atueu@De.
This is in accordance with the statement above that on
narrow boundary layer is important for the transport. Simi
to the conventional advection-diffusion problems,32,33 the
width of this layer,dDe/W0, is of the order of the charac
teristic displacement of the particle in the direction perp
dicular to the flow upon traveling the length of the che
board’s cell.

APPENDIX B: REALISTIC RANDOM POTENTIAL

It has been suggested that a good model for the ran
potential really existing in GaAs devices is the followin
one:

C̃~q!58pW2d2e22qd, ~B1!

or equivalently,

C~r !5
W2

~11r 2/4d2!3/2
. ~B2!

Equations~B1! and ~B2! correspond to the potential cre
ated in the plane of the two-dimensional electron gas
randomly positioned ionized donors set back by an undo
layer of widthd. The amplitude of the potential has the fo
lowing relation to the parameters of the heterostructure:

W25
p

8

ni~e2aB!2

d2
, ~B3!

FIG. 5. The distribution functionsf 0 and f 1. The density~ver-
tical axis! is in units ofD f and the energy~horizontal axis! in units
of De.
a
r

-
-

m

y
d

whereni is the density of the donors andaB is the effective
Bohr radius of the electron gas. Equation~B3! applies pro-
vided d@aB . The random potential can be considered
Gaussian random potential ifnid

2@1.
Using Eq.~B1! for the bare potential, one can also obta

the real-space correlatorC0(r) of the averaged potential. Le
Rc@d, then the following relations hold:

C0~r!.W0
2S 12

r2

8d2D , 0<r&d,

.W0
2 4Rcd

rA4Rc
22r2

, r*d and 2Rc2r*d,

.W2
8d3

r3 S 11
9

2

Rc
2

r2 D , r@2Rc ,

where

W05WA 2d

pRc
.

Note that the 1/r decay ofC0(r) for d!r!Rc is a univer-
sal feature ofC0(r).

APPENDIX C: CALCULATION OF QUASICLASSICAL
TRANSITION AMPLITUDES

To derive Eq.~3.3! we start with quantizing the classica
Hamiltonian~2.2!. The result is

Ĥ5
mvc

2

2
~R̂x

21Ry
2!1U~ r̂x1R̂x ,ry1Ry!,

where hats are used to denote the operators, viz.,

R̂x5 i l 2
]

]Ry
, r̂x52 i l 2

]

]ry
,

with l 5A\/mvc being the magnetic length. Since the gui
ing center motion is slow and quasiclassical, we can tr
rx as a classical dynamic variable with the equation of m
tion ~2.9! and similarly forry .

As in Sec. II, we replace the exact trajectoryr(t) by the
‘‘unperturbed’’ one,r0(t). Everything, which was said in
Sec. II about the validity of such an approximation, appl
here as well.

The Schro¨dinger equation

i\
]

]t
C~Ry ,t !5ĤC~Ry ,t !, ~C1!

where from now on

Ĥ5
mvc

2

2
~R̂x

21Ry
2!1U@r0x~ t !1R̂x ,r0y~ t !1Ry#

describes the evolution of the cyclotron motion under
influence of time-dependent perturbationÛ(t). The solution
of Eq. ~C1! will be sought in the form



d

i-

e

r

-

-
e

n-

56 6837SUPPRESSION OF CHAOTIC DYNAMICS AND . . .
C~Ry ,t !5 (
M50

`

cM~ t !FM
0 ~Ry!e2 i [ M1~1/2!]vct, ~C2!

where functionFM
0 (Ry), given by

FM
0 ~Ry!5

1

A2MM ! l ~p!1/4
e2Ry

2/2l 2HMS Ry

l D ,

represents the unperturbed wave function ofM th LL (HM is
the Hermite polynomial!. Using this expression, one can fin
the matrix elementsUM ,M1k(t)5^M uÛ(t)uM1k&. If M is
large anduku!M , then it is sufficient to use the quasiclass
cal approximation~cf. Ref. 46, Sec. 51!

UM ,M1k~ t !.Uk@r0~ t !#,

where Uk is the Fourier coefficient defined by Eq.~2.8!.
With the help of this approximation, the equation for th
expansion coefficientcM can be written as follows:

i\
dcM

dt
5 (

k52`

`

cM1kUk@r0~ t !#e2 ikvct.

It has the solution

cM5E
0

2p du

2p
l0~u!e2 iM u expS (

k
Sk~ t !e2 ikuD ,

wherel0(u) depends on the initial conditions att5t0 and

Sk~ t !52
i

\Et0

t

Uk~ t8!e2 ikvct8dt8.

To elucidate the structure of this solution note that fo
mula ~C2! can be rewritten in the form
k

d

.

e
d

-

C~Ry ,t !5(
n

bn~ t !Fn~Ry ,t !e2~ i /\!Ent,

where the relation ofFn(Ry ,t)’s to FM
0 (Ry)’s is as follows:

Fn5(
M

FM
0 E

0

2p du

2p
ei ~n2M !u expF (

kÞ0

Uk~ t !

k\vc
e2 ik~vct1u!G .

The new expansion coefficientsbn’s are given by

bn5E
0

2p du

2p
l~u!e2 inu expF2 (

kÞ0

Dk~ t0 ,t !

k\vc
e2 ikuG ,

~C3!

where initial conditions now enter through functionl(u) and
Dk(t0 ,t) denotes the following integral:

Dk~ t0 ,t !5E
t0

t

U̇k@r0~ t8!#e2 ikvct8dt8.

FunctionsFn(Ry ,t) represent the ‘‘instantaneous’’ LL func
tions at a given pointr0(t) on the drift trajectory. They are
the eigenfunctions ofĤ with a ‘‘frozen’’ value of r0. The
corresponding eigenvaluesEn , however, turn out to be time
independentEn5(n11/2)\vc1U0. The transitions be-
tween the instantaneous statesFn not between the unper
turbed statesFM

0 have the direct physical meaning. It is th
former transition amplitudes we are going to calculate~see a
similar discussion in Ref. 46, Sec. 41!.

After Eq. ~C3! is obtained, we can choose any initial co
ditions, for instance,l(u)5eiNu such thatbn(t0)5dn,N . In
this casebN1k(t) gives the desiredN→N1k inter-LL tran-
sition amplitude, i.e.,AN,N1k @Eq. ~3.3!#.
ov

y,
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od.
*Permanent address: 194021 St.-Petersburg, Polytekhniches
26, A. F. Ioffe Institute, Russian Federation.

1H. Alfvén, Ark. Mat. Astron. Fys.27A, 22 ~1940!; Cosmical
Electrodynamics~Oxford University Press, Oxford, 1950!.

2N. N. Bogolyubov and D. N. Zubarev, Ukr. Mat. Zh.7, 5 ~1955!;
M. D. Kruskal,Proceedings of the Third Conference on Ionize
Gases~Venice, Societa´ Italiana di Fisica, Milano, 1957!.

3M. D. Kruskal, J. Math. Phys.~N.Y.! 3, 806 ~1962!.
4T. G. Northrop,The Adiabatic Motion of Charged Particles~In-

terscience, New York, 1963!; B. Lehnert,Dynamics of Charged
Particles ~Elsevier, New York, 1964!.

5M. Tsukada, J. Phys. Soc. Jpn.41, 1466~1976!; S. V. Iordansky,
Solid State Commun.43, 1 ~1982!; R. F. Kazarinov and S.
Luryi, Phys. Rev. B25, 7626~1982!; S. A. Trugman,ibid. 27,
7539 ~1983!.

6The Quantum Hall Effect,edited by R. E. Prange and S. M
Girvin ~Springer-Verlag, New York, 1990!.

7Apparently, the first result of this sort was obtained by F
Hertweck and A. Schlu¨ter in Z. Naturforsch.12A, 844~1957!. A
more detailed analysis, including the calculation of the pr
exponential factor, can be found in von G. Backus, A. Lenar
and R. Kulsrud,ibid. 15A, 1007 ~1960!; A. M. Dykhne, Zh.
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