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We study a two-dimensional motion of a charged particle in a weak random potential and a perpendicular
magnetic field. The correlation length of the potential is assumed to be much larger than the de Broglie
wavelength. Under such conditions, the motion on not too large length scales is described by classical equa-
tions of motion. We show that the phase-space averaged diffusion coefficient is given by the Drude-Lorentz
formula only at magnetic field8 smaller than certain valuB.. At larger fields, the chaotic motion is
suppressed and the diffusion coefficient becomes exponentially small. In addition, we calculate the quantum-
mechanical localization length as a functionBat the minima ofo,,. At B<Bq it is exponentially large but
decreases with increasify At B>B,, this decrease becomes very rapid and the localization length ceases to
be exponentially large at a fielBl, , which is only slightly larger thaB . Implications for the crossover from
the Shubnikov—de Haas oscillations to the quantum Hall effect are disc(iS€8663-182@7)00735-3

[. INTRODUCTION perfectly circular cyclotron orbit are small. In such circum-
stances, the original coordinates (x,y) are not very useful
In this paper we study a two-dimensional motion of aanymore. Instead, it is convenient to study the motion of the
charged particle in a weak random potential and a perperguiding centep=(py,p,) of the cyclotron orbit.
dicular magnetic field. This problem has deep historical roots Suppose the cyclotron gyration is clockwigis is the
and the limiting cases of a weak and a very strong magneticase if, e.g., the particle charge is negative and the magnetic
field are falrly well understood. As we will see below, the field is in the negativé direction. The guiding center coor-
nature of the motion in these two limits is crucially different. ginates are defined as follows:
Surprisingly, until now no theory for the crossover between
the two limits has been proposed. Our goal is to develop vy Uy
such a theory. We will start with a classical description of the Px=XT T py=Y T 13
transport. ¢ ¢
An important prediction of the classical magnetotransporDrude-Lorentz formula(1.2) results from the assumption
theory is that the conductivity in the direction perpendicularthat the guiding centgs performs a random walk. The char-

to the magnetic field is reduced, acteristic step of such a random walk is the cyclotron radius,
R.=v/w¢, and the time interval between the steps is the
oo transport timer. As we will see below, this is the correct
Oxx=7 7 3° (1.)  description of the motion if the magnetic field is not too
1+ (wc7) strong.
whereao, is the zero-field conductivitjthe magnetic field Perhaps the first work that demonstrated that the Drude-

: A B . Lorentz formula may not be valid in the limit of strong mag-
is assumed to be along tiredirection, w.=eB/mc is the netic field was that of Alfve' where he studied the motion

cyclotron frquency, and is the tranqurt t|me_ determlne_d of a charged particle in an inhomogeneous electromagnetic
by the properties of the random potential. Strictly speakmgﬁeld. This and subsequent stdd{have led to the recogni-

in classical theory it is more consistent to study the diffusion,. ; -
coefficient D. So. we would write the Drude-Lorentz for- tion that instead of the random walk, the guiding center per

mula (1.1) in the form forms a slow adi_abatic dr_ift along some We_II defined con-
' tours. The attention to this problem was stimulated by its
plasma physics applications, and mostly the three-
_ Do (1.2) dimensional case was considered. Not so long ago, the ex-
1+ (wcr)z' tension to the two-dimensional case was proposed by several
authors motivated by the quantum Hall effect studfeve
whereD,= 3v?7 is the diffusion coefficient in zero field,  will discuss the two-dimensional case from now on.
being the particle velocity. Drude-Lorentz formula predicts Conventionally, the drift approximation is applied to the
that if the magnetic field is not too weak so thatr>1, then regime where the magnetic fields are so strong that the cy-
the diffusion coefficient falls off inversely proportional to the clotron radius R.=v/w. is smaller than the correlation
square of the magnetic field. length d of the random potential. In this case the guiding
Let us examine the physical picture of the motion in suchcenter performs a drift along the constant energy contours of
magnetic fields. It is easy to verify that the Lorentz force haghe random potential. For the potential of a general type all
a dominant effect on the motion and the deviations from thesuch contours except one are closed loops and thus the mo-
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tion is finite. The motion is infinite only when a guiding aged potentialUy(p). This conclusion was previously
center happens to be on the so-called percolating cortéur. reached by Laikhtmatf If R.<d, then the averaged poten-
one takes the drift picture literally, and attempts to calculatejal coincides with the bare one and so, in agreement with the
the average diffusion coefficient, the result will be equal toprevious studies, the drift is performed along the constant
zero because the percolating contour has a zero measure.energy contours of the bare potential. HoweverRi&d,
Certainly, it has been understood that the drift picture ishenu, differs fromU. The averaging reduces the amplitude
only an approximation. Nevertheless, the diffusion coeffi-of the potential by a factot/R./d, which is the square root
cient should be significantly smaller than the Drude-Lorentzyf the number of uncorrelated “cells” of size along the
prediction(1.2). We will show that the diffusion coefficient cyclotron orbit of length ZR,. Hence,U, has the ampli-

is, in fact, exponentially small tude Wy~ W+/d/R..
Comparing the transport properties in the two regimes n\ow we can find the true boundas, of the classical

described above, we see that the increase in the mag”e%calization To this end we have to repladeby W, in Eq
field drives the system from the essentially delocalized, cha(1.4) which. gives 0 '

otic regime to the regime where the motion is regular and the

trajectories of the particles are localized. We call this phe- W[ R\ 32

nomenon the “classical localization.” The classical localiza- ~ E( E) ,  Re=d, (1.6)
tion occurs because of an extremely ineffective energy ex-

change between two degrees of freedom, the cyclotroand then solvey=1 for B. The result is

motion, and the guiding center motion. Without such an ex-

change the guiding center is bound to a certain constant en- JMCAE( W\ 23

ergy contour. At the same time, the energy exchange is sup- <~ ed (E) 1.7

pressed because the two degrees of freedom have very
different characteristic frequencies, the cyclotron frequencyfhe change of the transport regime at such field was pre-
, being much larger than the drift frequeney . Naturally, ~ dicted earlier by Baskiret al** and by Laikhtmart? These
the present problem is directly related to the problem of eauthors noted that the displacementof the guiding center
nonconservation of adiabatic invariants. The latter is knowrgfter one cyclotron period is a decreasing function of the
to be exponentially smalfland therefore it is not so surpris- magnetic field,ér~yd in our notations. Thus, aB>B,
ing that the diffusion coefficient turns out to be exponentiallywhere y<1, such a displacement is smaller than the corre-
small as welf lation length of the random potential. As a result, the scat-
One of the quantities we calculate in this paper is thetering by the potential is no longer a sequence of uncorre-
valueB, of the magnetic field where the diffusion gives in to lated acts and the motion of the guiding center is different
the classical localization @& increases. A naive guess would from the random walk, which invalidates Ed..2).
be the field wherdR.=d. Let us, however, compare, and Although the crossover poig; has been identified cor-
wq at such a field. We denote the amplitude of the randonfectly, the understanding of the transport regime at larger
potential U(r) by W. We will assume that the potential is magnetic fields remained not entirely satisfactory. For ex-
weak, W<E, whereE=muv?/2 is the particle’s energy. The ample, Baskiret al! arrived at a strange conclusion that at
characteristic drift velocity i® 4~ VU/mw.~W/mw.d, and B>B. the diffusion coefficient becomes larger than that

the drift frequencywy~v4/d~W/me d2. Hence, the ratio given by Drude-Lorentz formul&l.2). On the other hand,
y of the two frequencies is the calculation of Laikhtmaf relies on the existence of the

random inelastic scattering processes. In this paper we ad-
0g W W/ R,\2 dress the question akerotemperature transport where all the
= (—) . R.=d. (1.4  scattering acts are due to the static random potential only.

d The key point of our approach is that the drift picture is
albeit excellent but an approximation. A more accurate
L . . 7 analysis given in Sec. Il reveals that the diffusive motion is
order of W/E<1. Surprisingly, the classical localization o regtricted to the very percolating contour but persists
must first arise already wheR.>d. To understand what \yithin an area of finite width, so-called stochastic lafer,
kind of drift takes place in this case one can use the averags,rounding this contour. Such a layer turns out to be expo-
ing method. This method was extensively developed by Kryyangially narrow if the magnetic field is larger thBq. As a

lov, Bogolyubov, and Mitropolskyand in application to the result, the phase-space averaged diffusion coeffidieris
problem at hand by Kruskalln the spirit of this method, one also exponentially small

has to imagine that the slowly moving guiding center is en-
tirely “frozen” on the time scale of the cyclotron period. D~ w.d%e B/Be, (1.8
One then calculates the average potential

We see that at the point whef.=d, this ratio is of the

Thus, the “classical localization” abov8, causes strong

do _ deviations from the conventional Drude-Lorentz formula

Uo(px.py) = 3{5 5> YU(px+ReCos¢,py+ R sin ), (1.2.

(1.5 The existence of the stochastic layer around the percolat-

ing contour is quite natural. Indeed, the classical localization

acting on the particle during one cyclotron rotation. Accord-is owing to the fact that drift trajectories are closed loops. It
ing to the averaging method, the drift of the guiding center isturns out that the drift along the loops passing sufficiently
performed along the constant energy contours of the averlose to the saddle points of the random potential is unstable.
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The instability is realized as a slow diffusion of the guiding
center in the direction transverse to the drift velocity. Sup-
pose that the percolation levelligy,=0. By virtue of a small
transverse displacement, the particle drifting along the con-
tour Up=—¢€¢ can move to another closed contour
Uy= + €. Although this displacement may be small, it will,
in fact, lead to a much larger displacement at a later time
because the center of the other loop is typically located a
large distance away. Eventually, the particle can travel infi-
nitely far from its initial position. This is the nature of the R
diffusion mechanism inside the stochastic layer. B. B

The suppression of chaotic motion with increasing mag- Magnetic field
netic field proceeds as follows. B<B. the chaotic motion . o o .
takes place in the majority of the phase space, while the FIG. 1. Classical conductivity,, (solid line) and the localiza-

regular motion is restricted to small stability islarfdsn this ~ tion lengthé, (solid line with dot3 at theQHE conductivity minima

regime the correlations among the scattering acts can be ig_s functions of the magnetic fiel[dchematically. Dots serve as a

. o : eminder that, is defined at discrete values of the magnetic field.
Phoererdegig?\sEgg‘lé)gﬁlpaprl"ransc-)t'io(\)Sntgipngign\?vtrz?lélifelns(;z)iarl]zes?[i’The curves are labeled by the equation numbers, which render their

Sunctional form in th ding intervals.
layer shrinks. AboveB. the width of the stochastic layer unctiona form in the corresponding intervais

starts to decrease exponentially leading to form{(@la). As we will see below magnetic fielB, plays an impor-

So far, we have discussed a purely classical dynamicsgnt role in the guantum transport.
One can also study the transport properties of a noninteract- At this point we would like to remind the reader that the
ing electron system quantum mechanically. Due to quantungye ¢, i.e., the one which is measured experimentally, is
interference, the conductivity of such a system turns out tqne conductivity on a large length scalef the order of the
be length-scale dependéﬁtThe knowledge of classical dy- sample sizg The calculation of this quantity is much more
namics enables one to find “classicat, i.e., the conduc- ditficult. Similar to the classical transport theory, there exist
tivity, which would be measured on not too large lengthywo mutually contradicting approaches. One is the theory of
scales where effects of quantum interference are weak. Clagie Shubnikov—de HaaSdH) effect, which aspires to pre-
sical oy is calculated as a product of the classical diffusiongijct the behavior obr,, in weak magnetic fields. The other is

coefficientD and the quantum density of staén%? (€x-  the theory of the quantum Hall effe@®HE), which is con-
ponentially small de Haas—van Alphen oscillations being neyentionally applied to strong fields.

Q
=%
:

Classical o,

=y
T

glected. It is given by Drude-Lorentz formulgl.l) at At present, the transition from the SdH regime to the
Bj B.. At B~B. classical o, reaches a value of QHE is not well understood even for a noninteracting sys-
(e“/h)G, where tem. The traditional explanation of the QHE is based on the

idea of localization; viz., it is believed that at zero tempera-
213 ture an electron can propagate diffusively only if its energy
G=ked IS (1.9 is precisely at the center of a Landau letiel strong field$.®
This leads to isolated peaks in,, which are the signature
ke=(1/1)2mE being the Fermi wave vectorE( has the of the QHE. On the other hand, in the theory of the SdH
meaning of the Fermi energyFinally, at B>B, classical effect!®!* the suppression oé,, is related merely to the

oy IS given by dips in the density of states between neighboring Landau
levels, while the idea of localization is totally discarded. This

e? crucial difference leads to different predictions for the con-

axx~FGe*B’Bc. (1.10  ductivity minima. Arguing from the QHE standpoint, one

expects zero dissipative conductivity, whereas the theory of
Strictly speaking, the correct preexponential factor in thisSd:_r'] ?;fiesdapri?'s\z 3\/;“”;2\/%22@ the following wav to re-
formula is not justG but a power-law function oB. We olve thispa § arent contradiction. We will ar ?Je th);t at the
neglect this weaker dependence on the background of th HE condch)Evity minima the sta{tes at the Igermi level are
overall exponential decrease of classiaa). The sketch of localized. AtB<B, whereB, is given by Eq.(1.1D, the

classicalo,, as a function oB is given in Fig. 1. As one can localization lenath f h states iexponentially lar
see, classicatr,, quickly drops aboveB=B. . In Fig. 1 we ocalization lengthé, o such stales igxponentally large
oo . I but decreases from one minima to the nextBaBicreases.
indicated one special value of the magnetic fiel],, at .
which classicalr.... reaches?/h Above B, 'ghe _faIIoff of §o_ is _extremely sharp and at
XX ' B=B, , which is only logarithmically larger thaB., the

localization length ceases to be exponentially large. Conse-
quently, B=B, is the smallest magnetic field at which the
observability of the QHE does not requiexponentially
small temperatures. This fact motivates us to identify the
o3 field B=B, as the starting point of the QHE. In other words,
d>k‘1(5) _ (1.12 this is the position of the “first” QHE plateau.

Flw To avoid confusion let us further elaborate on this issue.

B, =B.InG. (1.11

Here we assume th&>1, i.e., that
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Precisely at zero temperature one will observe the QHE
peaks. Between the pea#s, will be exactly zero because of
the quantum localization. At finite temperatufe-0 inelas-
tic processes appear, which break the quantum coherence on
length scales exceeding some temperature-dependent length
L4(T). Thus, if §6>L 4(T), then the quantum localization is
not important and the QHE features disappear. It is believed
that the dependence bf, on T is some power law® There-
fore, if & is exponentially large, then the inequality
£0>L4(T) is met already at exponentially small tempera-
tures.

There is yet another way to see why the observability of FIG. 2. The guiding center and cyclotron motion coordinates.
the QHE requires small when¢, is large. It is known from

experiment(see the bibliography of Ref. 1hat the low- In order to verify our predictions concernirg(B) ex-
temperature magnetotransport data at¢@eminima is con-  perimentally, one has to measusg, at very low tempera-
sistent with the law tures and fit the data to the for(i.13. From such a fit one
can deducel,, which is directly related t&, by virtue of
oxce VT, (113  Eq.(1.14.

The paper is organized as follows. In Sec. Il we discuss
which can be interpretédl in terms of the variable-range the classical dynamics in stron§#% B,) magnetic fields and
hopping in the presence of the Coulomb g&pn this theory  demonstrate that the diffusion coefficient is exponentially
Ty is directly related tofy, small. In Sec. Ill we analyze the same problem from the
quantum-mechanical point of view. Section IV is devoted to
T = const—— (1.14 the derivation of Eqg(1.16) and(1.17). Finally, in Sec. V we

0 ' summarize our findings and discuss their relation to the ex-

kéo' J
periment.
where k is the dielectric constant of the medium. Deep

minima of o, are observable only T<T,. Thus, if &, is
exponentially large, then the QHE can be observed only at
exponentially smallT. So, we reiterate once more that in In this section we study the classical dynamics of a sys-
practical terms there exists a starting point of the QHE. Thaem with the Hamiltonian
precipitous drop ofy(B) aboveB,. leaves only a minimal
ambiguity in identifying this point witlB=B,, . e
Our calculation of the localization lengtfy at the QHE p+ EA
minima of o, is based on the followinginsatz®*° which H=————+U(r), A=(0,-Bx,0). (2.1
we discuss in more detail in Sec. IV, 2m

e2

Il. CLASSICAL DYNAMICS AT B>B,

2

22 < It corresponds to a particle with negative charge and the
fo@Xpmgo),  Go>1. (1.19 magnetic field in the negativedirection. Thus, the cyclotron

Here go= (h/e?) oy, is the dimensionless classical conduc- gyration is clockwise. By means of the canonical transforma-

tance. Substituting Eq$1.1) and(1.10 into formula(1.15,  tion with the generating function

we immediately find

_ 2
F(X,y,0,py)=Mao¢ X(y—py)+ WCOW

B4
gooceXp( GZ—Z>, B.(W/E)*3<B<B,, (1.16
B we obtain new momenta —dJF/dp,=mwcp, and
—dF/a6=I. In terms of the new variables, the Hamiltonian

oxexp(GZe ?P), B.<B<B,. (1.17  (2.1) acquires the following form:
The low-field end of the interval in E¢1.16) corresponds to 5
wc7~ 1. H=lw.,+U(p,+R cosd,p,—Rsing), R= .
As one can see from Eg&l.16 and(1.17), the localiza- o+ Ulpx Py ) Mo,
tion length indeed drops precipitously aboBe=B,. At (2.2

B=B, , which is only logarithmically larger thaB., g,
becomes of the order of unity arfg ceases to be exponen-
tially large. The dependence @f, on B in the interval
B.(W/E)*3*<B<B, is illustrated by Fig. 1. The dependence
of ¢, on B at even stronger magnetic field3>B, , will be
discussed in a forthcoming paper. At this point we can only
say that at such fields the localization length is determined 14U 19U
mainly by quantum tunneling and exhibits a power-law de- py=— —, py= —,
pendence o1B. Mo, dpy Y mo dpy

It is easy to see that the paip,(,p,) matches the earlier
definition (1.3) of the guiding center coordinates. The geo-
metrical meaning of the other variables is illustrated by Fig.

The equations of motion are

(2.3
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_ U . ouU Such a drift leads to the classical localization described in
0=wct —, I=——. (2.9 the previous section. The characteristic drift frequency is of
dl a0 ) ; ,
the order ofwy~Wy/mw d*, whereW, is the amplitude of
This system contains four dynamical variables, which make#), (see Sec.)l If the parametety= wy/ w is small, then alll
its solution difficult. We can eliminate one of the variables,the terms in the sum on the right-hand side Ej9 have
e.g.,l, using the energy conservation. To this end we need tfrequencies much larger than the. They can be consid-

solve the equation ered a high-frequency perturbation imposed on the “unper-
turbed” drift motion.
E=lw.+U(p,0,1) The presence of a small parameter calls for the perturba-
for I, or equivalently, the equation tion theory treatmentaveraging methoddeveloped in Refs.

2—4. Unfortunately, it is not possible to calculate the diffu-
2 sion coefficient perturbativelf#->*The calculation of the dif-
R2=—2[E—U(p,0,R)] fusion coefficient requires a different approach based on the
Mo consideration of the chaotic dynamics of the system within a

for R. For the potentiaU of an arbitrary strength this can be NarmoW stochastic web surrounding the percolating contour

quite cumbersome. However, at least when the amplitud8 PotentialUo(p). o ,
W of potentialU is small enough Due to an extreme difficulty of the problem, we restrict

’ our consideration by two particular examples: a chessboard
potential and a Gaussian random potential.

d
W<E R’ (2.5
o o ] ) A. Chessboard geometry
it is sufficient to use an approximate solution ) _
Consider a chessboard potential

~ = [ X
R=R mo? U(X,y)=—W( cosa+cos;—/>.
Condition(2.5) guarantees that the deviation®ffrom R, is

much smaller than the correlation lengthof potential U.
Under this condition we can also neglect the deviatior of Px Py
from w.. As a result, Eqs(2.3) and(2.4) can be treated as Uo=—WIh(R:/d) oS- +CoS /. (211

the equations of motion for the time-dependent Hamiltonian
More generally,

In this caselg is given by

H=U(py+R. cosw.t,py,—R; Sin w¢t), (2.6

with p, being the canonical coordinate antdv.p, being the jk cos% +cos%, even k
canonical momentum. It is customary to classify the systems _ Re
e > U=—-WaA| =
of this kind as systems withzldegrees of freedom. d ok o Px Py
It is useful to expand Hamiltonia2.6) in the Fourier It S'”E‘LS'”E , odd k,
series,

where J|’s are the Bessel functions.

As explained above, one can introduce the dimensionless
parametery, which governs the classical dynamics. Equation
(2.11) suggests that the appropriate definition fors

H=§ Ui(p)eked, 2.7)

with the expansion coefficients given by
W

U(p)= 35 2—iU(px+ R, COS ¢b,p, + R; Sin b)e 9, Y ald | To(Re/d)].
(2.9
. . . Note that with this definitiony vanishes wheneveR;/d
[compare with Eq(1.5]. The new equation of motion for qincides with a zero aff,. This property is a peculiarity of
Px 1S the periodic geometry. It leads to oscillations in the diffusion

1 U 1 JU coefficient with the magnetic field, which are well known to
0 Tk o -ikagt (2.9  exist both from theory and from experiméfit:* This behav-
Mw, dpy  Mockzo dpy ' ior is nonuniversal and is not of primary interest to us. In the
o . ) following we will assume that the ratiB./d is always close
and similarly forp, . If we drop the sum on the right-hand  migpoints between the successive zerogipfin this case,
side of Eq.(2.9), then the remaining term will describe the 4 dependence of on R, is given by Eqs(1.4) and (1.6).
drift of the guiding center along the contours of constantye will focus on the case<1.
Uo. The local drift velocityvy(p) is given by The “unperturbed” motion is described by the Hamil-
) tonian

(2.10

1 [ dUq dU,
vy(p)= -—

Mo, &py ,57px HOZUO(p),
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rimeter of the cell at the origin are clear from Fig. 3. The
locations of the surfaces of section in the other cells can be
obtained by periodic translations. Thus, indgin 2; refers
to the position of the corresponding link with respect to a
given cell's center. Similarly, index) in X refers to the
position of the saddle point.

Let p(t) be the exact trajectory near the separatrix.tAs
increasesp(t) crosses the surfacé, in certain order. We
denote byg, the index of2§ at nth crossing and by, the

Px value ofU at this moment. Due to the time-dependent terms
in the Hamiltonian,e,, changes witm. Let us find the dif-
ferencee,. ;—€,. The time derivative ofJ is given by

Py

=

=T

du _
=" 2, (0aVUIp(D]e e,
k#0

wherewvy is the drift velocity, see Eq.2.10. Notation p(t)
stands for the exact trajectory, which is not known. Follow-
ing Refs. 12,22,23, we perform the following approxima-

FIG. 3. A sketch iIIustrating the construction of the separatrixtions_ First we rep|ace the exact trajectory by the unperturbed
map. Two unperturbed orbitgo(t) and p(t) are shown. They gne withU,=¢,. Second, having in mind tha¢,|<W,, we
follow two constant energy contourslo=0 (the separatrixand  repjace the trajectory withl,= e, by the separatrix motion
Uy=€<0, respectively. The energy-time coordinatgsandt, are o(t—t,), wherepq(t) is given by equations similar to Eq.
defined te)y the tcrossings of the trajectories with the surfaces o 2.12 ::ndtn is the moment of time whep(t) crosses the
section2g and= (shown by bold segments surface of sectioﬁlgn. As a result, we find

which is time independent. Hendd is the integral of mo- €1 €=M (1) 2.13
tion in agreement with the statement that the drift is per- n+l Fnmniinl '
formed along the contould = const. The motion has a pe- whereM,, is given by

riodic array of hyperbolidor saddl¢ points. Some of them,

(7d,0), (0d), (—d,0), (0,—7d) are shown in Fig. 3, _

the others can be obtained by periodic translations. The hy- Ma(D)= go A, (214
perbolic points are connected by heteroclinic orbits or sepa-

ratrices. One of them, which runs fromr¢,0) to (0zd) is o , ikent!

shown in Fig. 3. It has the following time dependence: Ak(t)ELwdt (vgVUR)[po(t' —t)Je ™ e, (2.19

py=2darctare7‘°c<t‘t0), py=md—p,, (2.12 and is termed the _Melnikov func_:titfr?.lt can _be _shown that
the A; and A _; yield the dominant contribution toJ, .
wheret, is the moment of crossing the surface of sectionAfter some algebra, the sum of these two terms acquires the
> (see Fig. 3. The heteroclinic orbits passing through the form
other “time surfaces”E; (see Fig. 3 have a similar func- ,
tional form and an analogous dependence on the crossing M. (t)=2yw.W Re Jm gt tani yo(t'—1)]
timest,’s. = cosh ywg(t' —t)]

As explained in the Introduction, the unperturbed separa-
trix is dressed with a narrow stochastic layer. In the case of
the chessboard potential, this layer has a topology of a square
network. We are interested in the long-time asymptotic be-
havior of the chaotic transport along this network. An effi- (2.19
cient tool to study such a transport is the separatrix fRap. The integral can be evaluated by shifting the integration path
The separatrix map is an approximate map describing the the complex plane df ThenM(t) can be represented by
dynamics near the separatrix. The application of the separahe sum of residues at the poles of the integrand. The resi-
trix map to transport problems has been previously considelues from the poles closest to the real axis dominate the sum.

. v an
le(Rc/d)eX4 —Ia)ct’+ Z+ T _

ered in Refs. 24-28. Retaining only these terms, we arrive at
To construct the separatrix map we will consider “energy _
surfaces” 2§ in addition to the introduced above time sur- Mp(t)=A€ sin 9, (217
facesEé. To avoid confusion we will elaborate a bit on the
definition of such surface§i§’s andzg’s are introduced for Ae=4\/§wmw§d2‘71(R°/d) e 2, (.18
each chessboard cell. Indegxruns from 0 to 3. The energy Jo(R:/d)
surfaces come through the saddle points and the time sur-
faces are drawn through the links connecting the neighboring T 7y

F=wcty+ -+

275 (2.19

saddle points. The locations &fg's and Eg’s near the pe-
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Combining formulas(2.13 and (2.17), we obtain the first 1 (091

equation of the separatrix mapping K= s ﬁn( Fra ) (2.29
€ns1=€ntAesind,. (2.20 In our casekC is given by

To have the mapping in a closed form we need another equa- _ wcAe dT(en) __ f (2.2

tion relatingt,,, ; to t, ande, . Following Refs. 12,22,23, we 4 de, ven '

take

The crossover to the global stochasticity in the standard map
1 occurs af k£|=0.97 (Ref. 31, which yields the estimate
thr1=tht ZT(En+l)1 (2.2)) Mao2d2

w
A €yer=18 (R, /d) ——e~ ™27 (2.26

where T(e) is the period of the unperturbed orbit
Uo(p) = €. A straightforward computation gives for the stochastic layer's width. Note thate,o,~Ae/y is
much larger tham\ €, and so the approximation by the stan-
2 1 | 8W, dard map is justified.
J— ~ n
AWz e

T(e)
4 Ywc

Kl 1

. | el<Wy, Let us now turn to the evaluation of the diffusion coeffi-
cientD. For the chessboard geometry this problem has been
(222 considered previously by Ahn and Kiffi. Unfortunately,
they calculated the diffusion coefficient averaged only over
g . the trajectories inside the stochastic layer. We, however, are
Although it is a common practi¢&é?>=?°to make the ap- ) Y

o o . . interested in the diffusion coefficient averaged over ¢he
proximations similar to those we made above, their validity,; . phase space. Our approach to calculafings close in
is far from being obvious. The justification has come only '

. spirit to the ones used for calculation of the diffusion coef-
recently with a development by Tresch&v. P

) . g . . ficient in planar periodic vortical flows, e.g., Rayleigh-

Using his method, it is quite easy to show that the naiveggnarg cells233 The details of the calculation can be found
calculation of the Melnikov function is correct faR.<d, in Appendix A. The result is
where | 7 (R/d)| <| Jo(R/d)| for all k>0. On the other
hand, ifR.>d, then there is a large number bf k<R_./d, Ae
such thatZ(R./d) is of the same order of magnitude as D=0.45_—. (2.27
Jo(R:/d). In this case the straightforward application of ¢
Treschev’'s method is not an easy task. In this respect, olith the help of Eqs(2.18 and(2.23 this translates into
problem is much more complicated than the two model prob- ) o i
lems treated by Tresché?.However, the results obtained D=7.9(R;/d)w.de” ™. (2.28

from the model problems strongly suggest that the right-hangyne may question the usefulness of the numerical factor in
side of Eq.(2.18 may be modified by at most a numerical this formula on the grounds that functigtx) is not known

K being the complete elliptic integral of the first kind.

factor. To summarize, in Eq2.18 the replacement anyway. In regard of this we can say that first, the calculation
of this numerical factofAppendix A and the calculation of
Ji(Re/d) R /d 22 j(x) are two separate problems. Therefore, as soon as some-
jO(Rc/d)_’J( o/d) 223 Ghe findsj(x) using, say, Treschev's methdlEq. (2.29

will yield the diffusion coefficient with no extra work. Sec-

is needed. Without tedious calculations we can only say thatnd, our calculation demonstrates a close connection of the
functionj(x) tends to one in the limix— O while it remains problem at hand with problems from a different field of
of the order of one at € x<<oo. physics, the fluid dynamics.

In addition to analytical work, the validity of the separa-  If the numerical factor is not desired, th&ncan be ob-
trix map has been investigated numerically by severatained from following simple arguments. Consider an en-
author$>? and has been rated from “satisfactory” to “ex- semble of particles moving in the chessboard potential. Their
cellent.” In the rest of this subsection we will assume thatdiffusive motion can be visualized as a random walk from
this is the case and calculate two quantities relevant for thene chessboard cell to the next. The motion of each patrticle
transport, the width\ €, Of the stochastic layer around the is a combination of the drift along the cell perimeter and the
separatrix and the average diffusion coefficibnt series of random displacements in the transverse direction.

The stochastic layer width €., can be defined as the The rate of diffusion depends on the distance of a particle
largest deviation olJ, from zero found on the bundle of from the cell boundaries. The particles located within a dis-
chaotic trajectories, which surround the destroyed unpertance of one transverse step from the cell boundaries possess
turbed separatrix),=0. We estimate\ €,,¢, following Ref.  the fastest rate because they can cross to the neighboring cell
23. First, we note that the relative changeein after one  after a single passage along the cell's side. Particles further
application of the separatrix map is small providedaway from the perimeter remain trapped within the same cell
|e,|>Ae. Under this condition Eq(2.21) can be linearized for much longer time. Hence, their diffusion rate is negli-
and then the map can be cast into the form of the standarmgible. Naturally, we can consider a model with an
map?® The standard map is characterized by a dimensionless-dependent diffusion coefficient
parameter, D(e)=0(Ae—|€|)d3/T(e), where @(x) is the step func-



6830 FOGLER, DOBIN, PEREL, AND SHKLOVSKII 56

tion andd,=\27d is the length of the cell's side. The net have arbitrarily large diameters. Such large loops are found
diffusion coefficient can be obtained by averagiie) over  in the vicinity of the percolating contouThe latter one can

the phase space, i.e., over the area in coordingtesy), be considered as a loop with infinitely large diametés
the diameter of the contour increases, the rangd pfound
1 [Ae dS(e) at such contours shrinks, tending to the percolation level
D:E . deD(e€) de Uy=0.
0 Similar to the chessboard geometry case, the exact trajec-

where S(¢) is the area of the cell’'s region bounded by thetories do not simply follow the level lines dflo(p) but
contours Up=0 and Uy=e€. It is trivial to show that exhibit small transverse deviations from them. As a result, a
dS(e)/de=T(€)/mw,; therefore,D=Ae/mw., which re- finite diffusion coefficient appears. As we will see below this

produces Eq(2.27 up to a numerical factor. diffusion coefficient ismuch largerthan that for the chess-
Finally, the diffusion coefficient can be written as a func- board potential of the same amplitude and correlation length.
tion of the magnetic fields, The reason for this difference comes from an important role
of rare placeswhere drift trajectories pass nearby unusually
D B |32 large maxima olU,,.
In 5|~ (B_) : (2.29 To calculateD we will use a close analogy of the problem
wcd cb at hand with the problem of calculating the effective diffu-
where sion constant of a particle diffusing in an incompressible
flow.3* Below we essentially reproduce the basic arguments
27 mcPE[ W\ %3 of Isichenkoet al>* with slight modifications appropriate for
T " T ad E) our problem.

Borrowing the terminology of Ref. 34, we call a bundle of
[cf. Eq. (1.7)]. Formula(2.29 was derived assuming that constantU, contours with diameters betweenand 2a a
y<1, ie, thatB>B. In addition, we assumed that convection cell or ara cell (see Fig. 17 of Ref. 34 The
R¢>d, which is equivalent tB<B(E/W)?% As one can  values of U, in typical a cells belong to an interval
see, the dependence Dfon B for the chessboard geometry [ —w(a),w(a)], which narrows with increasing. Let us
is given by a squeezed exponential with the exponent 3/2. Igenote byl (a) the perimeter length of typical cells and by
the next subsection we treat a more general case of a Gausse(a) the change inU, accumulated along the trajectory
ian random potential. We will show that the squeezed expofollowing the perimeter, for which the tim&(a)~L(a)/v4

nential is replaced by a simple one as given by @) is required. The key point in estimatirigy is a ramification
between mixing [with Ae(a)>w(a)] and nonmixing
B. Gaussian random potential [Ae(a)<w(a)] cells. It takes a single periot(a) or even a
A Gaussian random potential is fully specified by its two- fraction of thereof for the particle to leave a mixing cell,
point correlatorC(r,—r»), yvhereas particles in nonmixing cells remain trappepl fo_r time
intervals much larger tham(a). The dominant contribution
C(ri—ry)=(U(r)U(ry)), C(0)=W2. to the transport comes from the mixing cells of the largest

. ) ) ~ width w(a) for which Ae(a)~w(a). We denote the diam-
In many cases, it is also convenient to deal with the Fourieger by sych cells bg,,. The particles situated in such cells
transforms ofJ, which have the following correlator: perform a random walk from one optimal cell to the next.
~ = s ~ The characteristic step of the random walkaig and the
(U(a)U(az))=(2m)°5(a1+02)C(a1) characteristic rate of the steps isT{4,,). Thus, the diffu-
(Fourier transforms are denoted by tilfle§iven the func- sion coefficient of such “active” particles is of the order of
tion C(r), we want to calculate the diffusion coefficient in a4/T(am). The net diffusion coefficient can be found by
strong magnetic fields. Similar to the case of the chessboaraultiplying this diffusion coefficient by the fraction of the
potential, let us first investigate the “unperturbed” motion, total area occupied by the optimal convection cells. Note that
the drift along the contourd o(p) =const. ClearlylJy(p) is  the width of thea,, cells in the real space is of the order of
also a Gaussian random potential with correla@grrelated  Ae(ay)d/W,. Using this, the fraction of the area can
to C by be estimated to be[As(am)d/WO]L(am)/aﬁs[Ae(am)/
_ _ mw]T(ay)/a,. Finally, we obtain
Co(q)=[Jo(aR)I*C(q).
Ae(ay,)

The unperturbed motion is determined by the properties D mo. (2.30
of the level lines olU,. It is known that all such lines except ¢
one, the percolating contour, are closed loops. The Gaussiavhich closely resembles Eq2.27 for the chesshoarth.
random potential shares this property with the chessboardowever, nowA ¢,,=Ae€(a,,) depends on the diametay, of
potential considered above. In addition, the position of thehe optimal cells, which has yet to be found. We see that the
percolation level is the same for both potentialsy=0. calculation ofD hinges upon the calculation dfe,. To
There exists, however, an important difference in the propaccomplish the latter task we can make the same kind of
erties of level lines in the two cases. The diameters of thepproximations as in deriving the separatrix mapping for the
loops in the chessboard do not exceesld2 On the other chessboard. Then we obtain the following expresdici
hand, constant energy contours of the random potential calgs.(2.14) and(2.15]:
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with Wy andd being

Aen= 20 A7, (239
n#
C
Wo=1Co(0), d= \/I-
A= §dt(vdvun>[po(t)]e*“‘*’cﬂ (2.32 O

However, it would be a mistake to think thAte,, is deter-
where the integration path is the unperturbed orbitmined by this typical value. Indeed, the deviations of 4

Ul po(t)]=const belonging to a givea,, cell. Observe that from their average value are dramatically enhanced ép,

the integrand is the product of a slowly changing functiondue to a large value of, compared towy. Therefore, we
f(t)=(v4VU,)[po(t)] and a rapidly oscillating exponen- can expect an extremely broad range of the exponential fac-
tial factore™'"“c'. It is customary to estimate such integrals tors entering the sum on the right-hand side of @€¢33. At

by shifting the integration path into the lower half plane of the same time, there is no such enhancemenRfar This
complext where the oscillating factor decays exponentially.kind of argument implies that we can estimate,, consid-

By using the method, one arrives at the following estimate:ering only the distribution of Imr,’s, i.e.,

2 2
A ~|A 2= Ek: 2miR e~ Im lwe| | (2.33 Afﬁw; ei Pk M ndo|

where 7, are the singular points of the functidn(t) in the  where 9, is the phase of the complex numkRg. We will

lower half plane plane anB, are some preexponential fac- further assume that,’s are uncorrelated, which results in
tors. For example, if (t) has a simple pole af, thenR, is

up to a phase factor the residue of such a pole. Equation 2 -2|Im 7w
(2.33 is similar to Eqgs.(2.17—(2.19 for the chessboard AEmNEk N e
potential.
We denote the coordinate along the drift trajectoryspy From this, we find that
then f,(t)=vy4(dU,/ds). The singularities off,(t) may
originate either from;_d or from (dU,/ds). Let us ir_1ve_sti- AG%NW(Z)L(am)fwd'y/P('y/)e_ZM,’ (2.35
gate the former possibility. To get the necessary insight we d Jo
will use the exactly solvable model of the chessboard poten- , . o .
tial. which we studied above. In the latter case wherey’=1/Im 7w, andP(y') is the distribution function
' of y'. The first factor on the right-hand side is written solely
\/Eywcd to provide the correct dimensionality.
coshi yo(i—tg)] (2.39 In general,P(y’) depends on the functional form of
Y@e 0 C(r). Suppose tha€(r) is isotropic, i.e., depends only on
[see Eq.(2.12] and the singularities o6 4(t) in the lower r=x?+y?. It is possible to show that foC(r) with
half plane consist of the “parent” pole &§—im/2yw;. and  “good” analytical propertiesP(y') has the Gaussian tail,
a series of “daughter” poles aty—iw(k+1/2)/yw.,

vy(t)=

k=1,2....Note that the imaginary part of the parent pole is , Ay'? ,
of the order of the characteristic time scatge() ~* of the P(y)~exq ——|. ¥'>v (2.39
drift motion. Y

In the case of the random potential, we also expect to findvhere A~1 is some number. The conditions for £§.36
a series of singularities afy(t). However, there will be not to hold are as follows. Functio@(r) must be analytic for all
a single series but a large numb¥(a,,) of them. Indeed, realr. In addition,C(r) must be analytic in some complex
v4(t) has about (a,,)/d minima on the trajectorg(t). The  neighborhood of =0. Note that such conditions can be met
points of minima divide the trajectory into(ay)/d intervals  only if €(q) decays exponentially or faster at largee.g.,
of length~d. In each intervab 4(t) first rises, then reaches
a maximum, then decreases, i.e., it exhibits the same kind of InC(r)~—(qd)?, pB=1.
behavior as in the chessboard case. Therefore, a naive esti- e . .
mate ofN(a,,) is N(a,)~L(a,)/d. Since Imr/s enter Eq. For example, a “realistic” potential defined by E@®1) be-_
(2.33 in the arguments of the exponentials, the dominanfOW corresponds tg3=1 and therefore meets the require-
contribution toA e, comes from thes&l(a,;) parent singu- ments. In fact, we found th_e value AE&5.0 fo_r potentials of
larities. Let us now discuss Im/'s. It is obvious that differ- this type. We omit the details of the calcul_atlon anql the proof
enta,, cells give rise to different Inm¥,’s, i.e., there exists a of Eq. (2'.36? (Ref. 39 for the sakg O.f keeping the size of the
certain distribution of Imr’s. What kind of distribution paper W't.h'n the manageable limits. Ingtead, we chose to
should we expect? Clearly, titgpical value of the imaginary present S|mpI§a phyS|c.aI arguments leading to €6
parts of the parent singuiar points should be of the order of L€t US again examine the chessboard model. As one can

the characteristic time scale of the drift motionyef)~ 1, ~ S€€ from Eq.(2.34, vq as a function oft exhibits a brief
wherey can be defined as follows: pronounced pulse near its maximunt att,. The duration of

the pulse is of the order ofyw,) ~ L. It is this time scale that
W, determines the imaginary part of the closest singular point.
> 5 Let us now return to the random potential case. One can

Macd speculate that singular points of(t) are always associated
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with such kind of pulses. By this argument, the singularity atdeclared previously in Sec. I. The factgt on the right-hand
the pointts=t,;—it, with 0<t,<(yw.) ! requires an un- side is dropped under the assumption that in the interval
usually short pulse of duratioAt~t,. To produce such a B.<B<B,, discussed in Sec. |, this factor does not appre-
pulsev 4(s) must have a large and sharp maximum. In otherciably deviate from unity.
words, the gradient ol must be untypically large at this Concluding this section, we would like to point out that
point. Let us estimate, e.g., the height of the maximum irthe dependence dd on the magnetic field is given by a
v4(s). The half widthAs of the maximum is of the order of simple exponential not the squeezed one as in the chessboard
As~+\/—vq/vly. On the other hand, we should have model [E_q. (2.29]. The reason for this difference comes
As~uvgt,. Thus,vgu’i~—t, 2, which shows that small val- from the important role of rare places on the traje_ctc;rles with
ues of Imt, require large values afy and its second deriva- Unusually sharp features of the averaged potebtiaf
tive, vg~d/t, andvy~1/t,d. Recall now that the distribu-
tion functions of bothvy andvy have Gaussian tails, so that Ill. INTER-LANDAU-LEVEL TRANSITION AMPLITUDES
the probability of finding an unusually largey is of the
order of expt-Aw?/Y?w?d?) and similarly forv) (A;~1 is
some number Substitutingd/t,~ y' w.d for vy, we arrive
at Eq.(2.36.

The estimation of the integral in ER.35 by the saddle-
point method results in

In the preceeding section we showed that in strong mag-
netic fields,B>B,., the guiding center of the cyclotron orbit
closely follows the level linedJ,=const of the averaged
potential Uy. A nonvanishing diffusion coefficient appears
due to small deviations from the level lines. The character-
istic value Ae,, of such a deviation was calculated purely
classically. Due to the energy conservatidrg,, also repre-

L(a 3A1/3 g . : .
Aeﬁqug (dm) exp( _ el (2.37 ?Zer;;? the change in the kinetic enetgy. of the particlg Eq.
The purpose of this section is to calculate the change in
On the other hand. (a,;) obeys the scaling law kinetic energy quantum mechanically by taking into account
the discreetness of the spectrum, i.e., the existence of the
L(am)oc|A6m|7th: (2.39 Landau leveldLL's). Note that this is not yet a consistent

guantum-mechanical treatment of the problem. For example,

where v and d,, are some exponents, which depend on thdn this section we ignore localization and/or quantum tunnel-
properties of the correlatoEy(q) (Ref. 34. Their actual ing. An attempt to touch on some of those complicated issues

values are not very important at this point. EquatiGh87) will be postponed until the next section.

and(2.38 enable one to finde,,, which can then be sub- In quantum-mechanical terms, the change in kinetic en-
stitutea into Eq.(2.30. As a rengult we find the diffusion €"9Y results from inter-LL transitions. Indeed, the change in
e ' kinetic energy due toN—N+k transition is equal to

coeflicient, kA w.. We denote the transition amplitude upon the comple-
] tion of the loopUy=const byAy v, then(A€2) is given
D~ deZyaexp< - 7/3) , 239 by
Y
wherea is some number and <A62m>:(hwc)2§k: K2 Al 3.
B 3ALS It is obvious from this formula that the inter-LL transitions
J= 1+ vd,, may be significant only within a certain band of LL’s. If

A€, is larger thanfw., then the number of LL's in that
is another number. Strictly speaking, we cannot calculate thband should be of the order dfe,,/fiw.. We denote by
correct preexponential factor in formula.39. The particu- B, the field whereAe,,=fw.. In fact, this notation has
lar choice of this factor made in ER.39 provides a match- already been used in Sec[Eq. (1.11)]. If B>B, , then
ing of this equation with Drude-Lorentz formuld.2) at Ae,<#%w. and even the transitions to the neighboring LL's
y=1 where both formulas giv®~ w.d? (up to purely nu- must be suppressed. In this case the sum kvedominated
merical factors This can be seen from Egd..2), (1.6), and by the two termsk= *+ 1; therefore,

(2.39 if one takes into account the approximate expres&ion

for the transport timer, (Ae%)
Ann=1P=r (3.2
d( E)Z 2(hw.)
olw) In deriving Egs.(3.1) and (3.2 we implicitly assumed that

the classical and the quantum calculation¢&€2) give the
In this subsection we implicitly assumed that the inequal-same result. This will be demonstrated below.
ity R;>d holds. In this casg/=B~%?[Eq. (1.6)]. Substitut- Before we do so, let us mention one interesting fact. Us-
ing this into Eq.(2.39, we obtain ing Eqg. (2.30 and the Einstein relationr,,=e?»D, where
v=m/7h? is the density of state&le Haas—van Alphen os-
Dxw.d’e ®B, B>B, cillations neglecteq one arrives at the following formula:
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e Aepn, netic lengthl. ForL <, the system belongs to the orthogonal
TR fras class, where the scaling function is given'bff
C

It can be interpreted in the following way: the transport is _ 2 |
determined by the aforementioned band of about pl@)=~ g’ Ll “.3
(Aen/hwe) LL's with energies near the Fermi energy. Each
level contributese?/h to o, (cf. Ref. 39.

The general formula foAy . derived in Appendix C
reads

2ndl . A .
ANN+K= L Ee""”exp(—Z —ne"“9>, (3.3

ForL>I the system is in the unitary class. The scaling func-
tion is given by

1

n . . .
70 N The latter result was derived both by the conventional dia-

whereA, s are given by Eq(2.32. Substituting this expres- gram techniqu&**and by an effective field theof{). Solv-

sion into formula(3.1) and taking advantage of the identity ing the scaling equatio.2) for g(L), we find thaté expe-
riences a growth from the value of

2rdf :
— > K (6)=—1"(0), ™
fo 27Tk=2—oc € (9) ( ) fwltr ex[{ﬁkFltr) 4.9

we recover the classical formu(2.31) for Aefn.

Finally, it is easy to see that E¢3.2), which we derived
without any calculations, is consistent with formula.3). E~1y eXp(szkéltzr) (4.6)
Indeed,|A,|=A€,. If Aep,<fw., then the second expo-
nential in Eq.(3.3 can be expanded in the Taylor series,at B~7#ic/el;, wherel=1,. In stronger fieldsB>%c/elf,
which trivially leads to Eq(3.2). the system belongs to the unitary class at all relevant length

scales and is given by the formul#+°

=1, exd m°go(B)?] (4.7)

In Sec. | we argued that the localization length is expo'following from Eg. (4.4). The dimensionless conductance

the magnetie fied Inreases. This tatement s an overapfo(5) deCreases Wib. For the case of  long-range random
9 ) Plhotential this follows from the results of the preceeding sec-

Cgitlgr;tlié\rl\tlgir:ejzgrcéz.t \'jglig IS,oml‘rlchf:CrtﬁaexnpeetS?%I? di- fions. Therefore, the initiafyrowth of ¢ at very weak mag-
9 B 9 netic fields is followed by the exponentidecayof ¢ asB

atB=0 to

IV. QUANTUM LOCALIZATION LENGTH

By .« — Bul# increases. This is the statement we put forward in Sec. I.
E=§, % , 4.2 Unfortunately, Eq.(4.7) cannot be entirely correct be-
— DN

cause it does not reproduce the critical divergendes.

neglected, ¢ starts decreasing only fronB~#c/el,, at Perturbative effect. His field-theoretical treatment yields an

which the magnetic length= \7/mae, becomes of the order e_xpression for thg8 function, in principle, different from the
of the transport length,=v 7. simple form (4.4). However, the deviations from Eg4.4)

Let us discuss these issues in some detail. Scaling theoRECOMe significant only when the renormalized valuegof
of localization is one possible way to approach this difficult@PProaches unity. On this basis we speculate that£a)
problem®® In scaling theory one tries to understand the lo-9ives only the lower bound for the localization lengthWe
calization by considering the behavior of the dimensionles€urther assume that this lower bound is close to the actual
conductanceg=(h/e?) o, as a function of system size. value of ¢ away from criticality. In other words, Eq4.7)

This behavior is described by the scaling function gives, in fact, not¢ itself but its noncritical prefactog,
entering Eq.(4.1).
dlng Note thaté=¢, at the midpoints between neighboring
BQ)= - (4.2 divergences of, i.e., at the QHE conductivity minima. This

is exactly the quantity discussed in Sec. | where we postu-

One starts with calculating the conductangg=g(ly) at lated theansatz(1.15 [the same as Ed4.7) but with &,
some short length scale=1,, where it is large and then instead of¢]. By virtue of thisansatz the calculation of,
finds howg is renormalized towards largér. The localiza-  boils down to the evaluation of the short length-scale con-
tion length is the length scale whegéL) becomes of the ductancey,.
order of unity.(If g, is of the order of unity or smaller, then  Previous attempt&~*3to treat the localization problem in
a different approach has to be used, see beglow. the QHE have been focused on the case of a short-range

It has been conjecturé¥that all physical systems can be random potential, i.e., the potential whose correlation length
grouped into certain universality classes with the same funds much smaller than de Broglie wavelengthr/Xr . In this
tional form of the scaling function. If we neglect the spin- casegy has to be calculated quantum mechanically, e.g.,
orbit coupling, then the appropriate universality class for oumwithin a self-consistent Born approximatiéh'* Recall that
system is determined by the relation betwéeand the mag- our theory applies to the cased=(E/W)?*>1, see Eq.
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(1.12. Therefore, there is a whole intermediate regionthat for the standard potentie/ W~ kgd and the domain of
1<kpd<(E/W)?? separating the domains of applicability of applicability of our theonfEq. (1.12] is simply ked>1. In
our and the previous theories. The calculationégfin that  modern high-mobility GaAs devices this parameter can be as
region is a separate problem and will be discussed elsewherarge as ten. It is easy to verify that the magnetic fiB|d
In the case of long-range random potential, which we conwhere the classical localization takes place corresponds to
sider heregy(B) can be calculated with the help of Einstein the LL indexN.~ (ked)®3, which can be a number between
relation, 10 and say, 50 for GaAs heterostructures. Another important
magnetic fieldB, [Eg. (1.11)] corresponds to LL index
Jo(B)=hwp(B)D(B), N, , which is only slightly smaller thai.. As explained in
Sec. I,N, is the number of the “first” QHE plateau in the
where v(B) is the density of states at the Fermi level andsense that the observability of plateaus with lafyerequire
D(B) is the classical diffusion coefficient. According to the exponentially smaltemperatures.
results of the previous sectionB,(B) is given by Drude- The pointN=N, plays another important role. It is the
Lorentz formula(1.2) at B<B. and by formula(2.39 at  |argestN where it is possible to see the activated transport
B>B.. Let us now discuss the behavior ofB). In prin- oxe Fa'T E.=fw./2 at the minima ofr,,. Indeed, it is
ciple, »(B) oscillates withB around its zero-field value known that in strong fields or for smal’s the dissipative
v(0)=m/=#? However, forB smaller or at least not to conductivity demonstrates the Arrhenius-type behavior at not
much larger thaiB. such oscillations are exponentially small too low temperatures. As the temperature decreases, the ac-
because the width of LL’s, which is of the order\f, (Ref.  tivation becomes replaced by the variable-range hopping, see
44), is much larger than the distanden. between them. Eq.(1.13.
Therefore, we can use the zero-field vai(@®). Equating the two exponentials, we find the temperature
Substituting all these results into E(L.15, we obtain T, at which the activation gives in to the hopping,
&0(B). The functional form of this dependence is given by
Egs.(1.16 and(1.17. Graphically, it is illustrated by Fig. 1. (hwe)?
Observe that the overall decay &f asB increases becomes Th~ T, (5.9
extremely sharp aB>B.. As a consequence, already at the
field B=B, , which is only logarithmically larger thaB, This formula can also be written in another form,
[see EQ.(1.7)], & ceases to be exponentially large. At
B>B, , g, becomes less than one and Ef.15 does not T, fiog &o
hold anymore. In this region the localization length is deter- . To =C°n5tﬁ’ 5.2
mined mainly by quantum tunneling rather than by the de-
structive interference of classical diffusion paths. Thus, thevherer ;= \2e?/ kfiv is the gas parameter, which is of the
calculation of &, requires a different approach. It will be order of unity in practice. Let us demonstrate that the acti-
discussed in a forthcoming paper together with the prefactoyated behavior should not be observabl@atB, . Indeed,
in formula (1.17). At this point we can only say thal; is it makes sense to talk about the activated behavior only at
expected to have a power-law dependenc&and eventu- temperatures below the activation ener@,=%w./2.
ally match the predictions of Raikh and ShahbaZyansuf-  Therefore, the activated transport can be observable only if

ficiently largeB. the right-hand side of Eq5.2) is less than unity. Thus, the
Arrhenius-type behavior ofr,, cannot be detected in mag-
V. DISCUSSION AND CONCLUSIONS netic fields much smaller thaB, whereé, is still exponen-

tially large. On the other hand, it can be shown, and it is a

In this paper we studied a two-dimensional motion of asubject of a forthcoming paper, that in the standard case the
charged particle in a weak long-range random potential and gitio £,(B.)/R; is smaller than one. Consequently, the point
perpendicular magnetic field. We showed that the phasewhere the activated transport becomes observable for the first
space averaged diffusion coefficient is given by Drudetime with an increase iB is indeed the poinB=B, .
Lorentz formula only at magnetic field® smaller than cer- The behavior of¢, in magnetic fields stronger tha,
tain value B.. At larger fields, the chaotic motion is has not been investigated in the present paper. It will be
suppressed and the diffusion coefficient becomes exponemtiscussed elsewhere. We expect that at such magnetic fields
tially small. £0(B) is a certain power law matching the results of Raikh

To make a connection with the experiment our results cagnd Shahbazy4n at sufficiently largeB. As explained in
be applied to the following model. We suppose that the ransec. |, such a dependence can be studied experimentally.
dom potential is created by randomly positioned ionized do- Finally, in this paper we have neglected the influence of
nors with two-dimensional density, set back from the two-  electron-electron interaction o&,. This complicated issue
dimensional electron gas by an undoped layer of widith warrants further study.
We will assume thah;d?>1 and also that>ag, where
ag is the effective Bohr radius. In this case the random po-
tential can be considered a Gaussian random potential whose
correlator is given in Appendix B. As a particular example, We are grateful to A. P. Dmitriev, |. V. Gornyi, V. Yu.
we consider a special case where the densityaotiomly  Kachorovskii, A. I. Larkin, and D. L. Shepelyansky for use-
positioneddonors is equal to the densif/(27) of the  ful discussions and to A. A. Koulakov for a critical reading
electrons. We call it the standard potential. It is easy to seef the manuscript. This work is supported by NSF under
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APPENDIX A: DIFFUSION COEFFICIENT IN THE Af+f3- f+ f+
CHESSBOARD MODEL l :

To calculate the numerical factor in E.27) for the

+ +

diffusion coefficient we proceed as follows. First, we will Af+fh | fo f
introduce the random-phase madeairguing as follows. The

well-known property of the standard map is a fast mixing in X n
the phase variablé). The correlations in phase decay ac- Af+f2+ fo f

cording to(e'(?n= %))~ || ""2 (Ref. 12 as a function of
the iteration numben and the map paramet&i[Eq. (2.24)];

therefore, fodI_C|>1 the phase memory is typically lost after Af+fs | A fi
a single iteration of the map. The situation with the separa-
trix map is similar, which allows a simplification of the prob-
lem. We will assume that, is still transformed according to
Eq. (2.20 as long as ey, 1| <Aeyep. If the new value of FIG. 4. The chessboard in the coordinate system rotated by
l€ns 1| is larger thanA eye,, then e,.;=e,. At the same 7/4. Pluses and minuses at the centers of the chessboard cells label

time, 9, will be a purely random variable uniformly distrib- the rn_axi_mg a_nd minima of the potential. The direction of the drift
uted in the interval (0,2). As we will see below, for trans- \S'S;i%'g’z'f '?:::;?T‘]jeb;’j:c’l‘:"i’; Eogsiﬁgmg?]t?uigig;% Srlejgrices of
E)(;rtRonfly g];g%au/%wrbﬁlcj&d?r)[/ Iayd;Ee|~(2A253|]s Inmdp(t)rztarnt sent the ndeviation of the guiding center density from the sample
fc - € S.h ’ d € ? h Seg | a. -d a t Aehe averaged value at those partsXf's, which are inside of the two
o_re,zgsuc _a random-phase mogdel 1S adequate. N aNGils on the right. Surface®; and X also penetrate the two cells
Kim~” studied this model n_umgrlcally ar,]d, found an excellemon the left. The corresponding distribution functions are related to
agreement between the diffusion coefficients found from thg= (= .o shown.
random-phase model and from the original separatrix map.2 3
(Of course, the random-phase model lacks certain features Qf,ere ® is the total flux through the side
the original separatrix mapping, e.g., a rich hierarchical iS'{0<§<do,77=O} and @, is the flux incident upon th& €
land structurs. surface n
Consider now an ensemble of particles, each having the '
same total energf but different initial conditions at=0. nd 1 (W
In the original problem with Hamiltoniai2.7), we can de- q)n:f dlvg(Df [e(D]= —f def, (e). (A2)
scribe this ensemble by a distribution functi@uiding cen- 0 MweJo
ter density f(p,t). We will calculate the diffusion coeffi- Herel is the coordinate along ¢ andv4(l) is the drift ve-
cient as the coefficient of proportionality between the|gcity.
average particle flux and the average gradient oh the To obtain the equation foff's note that within the
stationary state. It is convenient to rotate the coordinate sysandom-phase modd, . ; is quite simply related td,,. For
tem by m/4. We denote new coordinates Byand . The  example,
gradient off is in the # direction (Fig. 4). 2ndd
In fact, the description of the ensemble by functibn N . _
which is a function ofpa vector argument, is regsonable only fa(e)= fo Zfl(E_AE sin #)=S0fs(e).  (A3)
when we study the exact dynamics. After we have replaced ]
the exact dynamics with that of the separatrix map and nowimilarly (see Fig. 4
even of the random-phase model, this kind of description _ _
became too detailed. Ipnstead, it is sufficient to introducepa set ATO(=e)+f3(e)+1(€)=SO[ATO(—e)+T;(e)
of the distribution functionsf, (e) of a single argument. +fi(e)], (A4)
Each function in the set represents the deviatiofh fobm its
average value at the intersections of the contdg= e with ~ where ©(x) is the step function. Suppose that &lfs are
the surfaces of sectioB . The superscripts distinguish be- equal to zero at the center of the cell, then the chessboard
tween the positive and negativecontours(Fig. 4). Func- ~ Symmetry dictate$;=—f, andf,=—f, and also that func-
tions f! are taken to be zero foe<0 and similarly, tions f,'s are even. These_ r_elatlons can bg substltuteq into
f~(e)=0 for €>0. We also define “full” functionsf,, by Eq. (A4). Then one can eliminath, and obtain an equation
fa(e)=1, (&) +1y (o). solely forfs,

We denote the length of the chessboard cells dgy (1+10SO10S)f1(e)=(10S—1HATfO(—¢€), (A5)
(do=v2d) and the average gradief}¥ f|) by Af/d,, then ! ’

where (Of)(e)=sgn(e)f(e). Equation(A5) is an integral
equation, in principle solvable by the Winer-Hopf method.
I i However, we have not been able to find its solution analyti-
D=—= , (A1) ) ) oo i
cally. At the same time, a numerical solution is obtained

Af Af
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wheren; is the density of the donors arag is the effective
- 0.5 Bohr radius of the electron gas. Equati@B) applies pro-
vided d>ag. The random potential can be considered a
Gaussian random potentialrifd?>1.
fi ' Using Eq.(B1) for the bare potential, one can also obtain
the real-space correlat@q(p) of the averaged potential. Let
R.>d, then the following relations hold:

2
1 1 co(p):wg(l—p—), 0=p=d,
, 8d
\j \/ €
_wz 2R p=d and R.,—p=d
*pVaRZ—p?’ ¢ ’
11 8d®( 9R?2
| S~ - W2 +5 ;) p>2R.,
p
Jo
where
0.2

2d
WOZW R .
FIG. 5. The distribution function§, and f,. The density(ver- e

tical axig is in units of Af and the energyhorizontal axigin units  Ngte that the 14 decay ofCy(p) for d<p<R; is a univer-
of Ae. sal feature ofCy(p).

rather easily. The result is shown in Fig. 5. By calculating
the area bounded from above by the graph of funcfipn
from below by the graph of,, and from the left by the

vertical line e=0, we have obtained the numerical factor To derive Eq(33) we start with quantizing the classical

APPENDIX C: CALCULATION OF QUASICLASSICAL
TRANSITION AMPLITUDES

0.45 in the expressiofR.27) for the diffusion coefficient. Hamiltonian(2.2). The result is
Both fy(€) and f,(e) decay exponentially ate|>Ae.
This is in accordance with the statement above that only a . me? . L
narrow boundary layer is important for the transport. Similar H= 5 (R)2(+ Ri) +U(px+Ry,py+Ry),

to the conventional advection-diffusion problefis® the

width of this Iayer,dA E/WO, is of the order of the charac- where hats are used to denote the 0perat0rs1 ViZ.,
teristic displacement of the particle in the direction perpen-

dicular to the flow upon traveling the length of the chess- . R -
board’s cell. R.=il a_IR’y px=—Il a—py,
APPENDIX B: REALISTIC RANDOM POTENTIAL with | = JA/mw, being the magnetic length. Since the guid-

It has b ted that d del for th d ing center motion is slow and quasiclassical, we can treat
as been suggested that a good modet for the ran Oer as a classical dynamic variable with the equation of mo-
potential really existing in GaAs devices is the following

i tion (2.9) and similarly forp,, .
one: As in Sec. I, we replace the exact trajectgrft) by the
“unperturbed” one,py(t). Everything, which was said in
Sec. Il about the validity of such an approximation, applies

or equivalently, here as well. '
The Schrdinger equation

C(q)=8mW?3d2%e 299, (B1)

2

C(r)= (B2)

S — d R

(1+r24d?)3? ih (R, =HT(Ry.1), (CY)
Equations(B1) and (B2) correspond to the potential cre- \yhere from now on

ated in the plane of the two-dimensional electron gas by

randomly positioned ionized donors set back by an undoped  me? . A

layer of widthd. The amplitude of the potential has the fol- H= T“(R§+ R)+U[ pox(t) + Ry, poy () + Ry]

lowing relation to the parameters of the heterostructure:

describes the evolution of the cyclotron motion under the

, (B3) influence of time-dependent perturbatiﬁmt). The solution
8 2 of Eq. (C1) will be sought in the form

WZ:Z ni(ezaB)z



©

V(R )= 2_ em(DOY(Rye M W2ladt  (C2)

where functiond? m(Ry), given by

2
DY (R))= e‘Ry/Z'ZHM(

1 Ry)
V2MMIT () V4 L)
represents the unperturbed wave functiomdah LL (Hy is
the Hermite polynomial Using this expression, one can find
the matrix elementd)y w1 (1) =(M|O()|M+K). If M is

large andk|<M, then it is sufficient to use the quasiclassi-

cal approximatior(cf. Ref. 46, Sec. 51

U m+k(t)=Upo(t) ],
where U, is the Fourier coefficient defined by E.8).

With the help of this approximation, the equation for the

expansion coefficienty, can be written as follows:

dc
i — =

at = 2, OwekUidlpo(D]e e

It has the solution

cM=J02 " e 'M"exp(E sk<t>e-'k0),

where\y(6) depends on the initial conditions &tt, and

i [t ot
Sk(t)z——f Ug(t")e kectdt,
filt

To elucidate the structure of this solution note that for-

mula (C2) can be rewritten in the form
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W(Ry,t)=; b(1) D (R, 1)e ME,

where the relation of,(Ry ,t)’s to oYy m(Ry)’s is as follows:

=d 6§
— 0 |(n M)6
D, % CIDMJO 7€ ex;{

The new expansion coefficienlts’s are given by
b ZJZ”% o iko
n 0 2 '

(C3
where initial conditions now enter through functin(é) and
A (tg,t) denotes the following integral:

Ui(D) e ik(ogt+0) |
kh .

>

k#0

Ak(tOI

—iné
N(H)e exp{ kﬁwc

k#0

t. o
At [ Oulpot)le e at
to

Functions® (R, ,t) represent the “instantaneous” LL func-
tions at a given poinpgy(t) on the drift trajectory. They are
the eigenfunctions ofl with a “frozen” value of po- The
corresponding eigenvalu&s,, however, turn out to be time
independentE,=(n+1/2)hw.+U,. The transitions be-
tween the instantaneous stat®g not between the unper-
turbed statedboM have the direct physical meaning. It is the
former transition amplitudes we are going to calcul@iee a
similar discussion in Ref. 46, Sec. #1

After Eq. (C3) is obtained, we can choose any initial con-
ditions, for instance) (8)=e'N? such thatb,(tg) =35, . In
this caseby . (t) gives the desiretN—N+k inter-LL tran-
sition amplitude, i.e.Ay n+k [EQ. (3.3)].

*Permanent address: 194021 St.-Petersburg, Polytekhnicheskay® similar conclusion was reached previously by D. G. Polyakov

26, A. F. loffe Institute, Russian Federation.
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