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We report on a study of the classical field theory description of charged skyrmions in quantum Hall
ferromagnets. The appropriate field theory is a nonlimearodel generalized to include Coulomb and Zeeman
interaction terms. We have tested the range of validity of the classical field theory by comparing with micro-
scopic descriptions of the single-skyrmion state based on the Hartree-Fock approximation, exact diagonaliza-
tion calculations, and many-body trial wave functions. We find that the field theory description is accurate for
skyrmions with moderate spin quantum numbezslQ) although, as expected, it fails qualitatively for small
spin quantum number§S0163-18207)02935-4

I. INTRODUCTION from filling factor »=1, they are present in the ground
state®1%In the latter case the ground state is no longer fully
The quantum Hall effe¢t* occurs in a two-dimensional spin polarized. For weak Zeeman coupling skyrmions are
electron systeni2DES in a strong perpendicular magnetic large and each charge introduced into the system flips over a
field (B) and is associated with the existence of incompresskarge number of spins. Thus the spin magnetization is ex-
ible ground states at certain values of the Landau level fillingpected to show a sharp cusp at filling facicr 1.
factor v. (v=N/N, whereN, is the Landau level degen- The presence of these objects has recently been detected
eracy and\ is the number of electrons in the syst¢i@ome  directly in NMR measurements of the electron spin magne-
incompressible ground states are strong ferromagnets, i.dization which is proportional to the Knight shift,in ther-
they are total spin eigenstates wikN/2 so that an infini- mal transport measuremeritsand in optical absorptiot®
tesimal Zeeman coupling of the magnetic field to the spinThey may also be responsible for the recently obséfved
degree of freedom is sufficient to produce complete spirenormous enhancement of the apparent specific heat because
alignment. Because of the small ratio of the Zeeman splittingf their equilibrating effect on the nuclear spins. There has
to other relevant energy scales in typical 2DES’s, it is therrecently been considerable interest in the physics of these
useful to regard the system as a ferromagnet in a weak synexotic electronic quasiparticlés®*>-
metry breaking magnetic field, even though the 2DES is of- Charged spin texture excitations in QHF’s are the subject
ten in the strong field quantum limit as far as orbital degree®f this paper. A realistic theory of these excitations requires
of freedom are concerned. Quantum Hall ferromagnetsit a minimum that Coulomb energy and Zeeman energy
(QHF’s) have a number of unusual properties that springerms be added to the nonlinear sigfiNL o) model classi-
from the disparity between the magnetic field couplingcal field theory. In Sec. 1l we briefly review the resulting
strengths for orbital and spin degrees of freedom. classical field theory of spin textures in QHF’s and report on
Because of the gap for charged excitations in incompressiumerical solutions for the lowest-energy topologically non-
ible states, the only low-lying excitations in these quantumtrivial textures. With typical parameters, the size of the
Hall ferromagnets are those associated with slow variationkbwest-energy textures need not be large compared to micro-
in the unit vector field which describes the local orientationscopic lengths so that both higher-order gradient corrections
of the spin magnetic moment. In addition to the spin waveand quantum fluctuations not included in the model may be-
modes, there exist higher-energy topologically nontrivialcome important. In Sec. Il we present an overview of the
skyrmior™® textures in the spin field. The importance of various microscopic approaches which have been used to
these topologically nontrivial excitations is magnified by thestudy skyrmion states in quantum Hall ferromagnets. In the
fact that they carry an electrical chaf§eAs the lowest- Hartree-Fock approximation, the gradient expansion of the
energy charge carriers they control the thermally activatedield theory is effectively summed to infinite order. However,
dissipation on thev=1 quantum Hall plateau and, away it becomes difficult to solve these equations accurately for
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very large skyrmions. Many-particle variational wave func-where the charge density is given®dy
tion and exact diagonalization approaches also incorporate,
in addition, quantum fluctuation effects, but are even more v 3)

limited in the size of quasiparticles for which accurate cal- P(1)= g €am(r) - [am(r)Adpm(r)].

culations are possible. Numerical comparisons of eneTgleIhe charge density is the product of the Landau level filling

and spin densities obtained using these different approxima- . .
tion strategies are compared in Sec. IV. One conclusion froriac’tor of t_he ground state and theQ(3) topologlca_l density
of the spin texture. The nonlocality of this functional com-

this work is that the most important corrections to the mini- ~. .

mal generalized N& model are the higher-order gradient pl[cates the qalculatlons we presgnt below. The total skyr—
corrections already captured in the Hartree-Fock approximam'lo_n chgrgte :? therefore t';ntﬁs ggmltege;-valuecriﬁt?:)pﬁlogh
tion. The quantum fluctuations added using trial wave func<@ mv:rlfqn - [T W€ compac SS tp ?Re 0 3 Sprstet er;
tion or exact diagonalization are responsible only for minorm(r:) eSez me; ha mappm% 0 | O_r]l_od betr?r ﬁr patrame er
further modifications. We summarize our conclusions in Sec>P eg and hence can be classified by the homotopy group
V. 7,(S). The topological charge simply counts the wrapping

of the order parameter sphere by the coordinate spfiéte.

Extrema of the energy functional of this model, satisfy
a nonlinear differential equation which can be obtained by
A. General considerations minimizing Eq.(1) with respect tan, using a Lagrange mul-

Here we briefly review the classical field theory for tiPli€r to enforce the constraim(r)-m(r)=1. After elimi-

charged spin texture excitations or skyrmions in quantunf@ing the Lagrange multiplier we find that
Hall ferromagnet§:’ Following Sondhiet al.® we start from

a modified version of the Nie model classical field theory ps(—V?+m-VZm)m,—
which has been exploited to describe the low-energy proper-

ties of two-dimensional Heisenberg ferromagnets and " _ _
antiferromagnet&2°The order parameter in this theory is a - 4—eab{(?aV(r)}(m/\(?bm)#= 0, (4
unit vector fieldm(r), that describes the local orientation of .

the spin or pseudospimagnetic order. For quantum Hall whereV(r) is Hartree potential

ferromagnets the energy functional of the minimal theory is

Il. CLASSICAL FIELD THEORY

m( Oz, —M;m,,)

p(r)
Ir—r'|

2
E[m]=Eq[m]+E,[m]+EJm], (1) V(r)=i—0f dr’ , )

whereEg[ m] is the leading-order term in a gradient expan- ~ . . .
sion of the energy functional arf,[m] is the Zeeman en- and p is the skyrmion charge density corresponding to the

ergy functional: minimum energy solutiorm(r). The solutions of Eq4) can
be classified by the skyrmion chardg= [drp(r). In the
Ps absence of Zeeman and Coulomb energies the energy func-
Eolm]= ?f d’r(Vm)?, (28  tional is scale invariant and E@4) has a family of known
analytic scale invariant solutiod$->3 The solutions may be

represented by analytic complex-valued polynomials:
t

277/3

Efm]= fdzr[l—mz(r)]. (2b) 3 4w, 4w, |w|*-4
m(z)= y ) '
(2) |w|2+4 " |w]?+4 |w|?+4

(6)

Here p,=e?/(16\2me/,) is the spin stiffnes§assuming

zero layer thickness for the two-dimensional electron gasvherew=w,+iw, is a polynomial in the complex variable

(2DEGQ)] which can be calculated analytically for this casez=(x+iy)/\ with arbitrary scale\.. The degree of the poly-

and represents a loss of Coulomb exchange energyiomial w determines the skyrmion charge. These analytic

t=(g* ugB)/2 represents the Zeeman coupling strengtis,  solutions are not valid if the Zeeman and Coulomb terms are

the dielectric constant of the host semiconductor, dgds  included. In the following subsection we briefly explain the

the magnetic length. numerical methods we use to solve the generalized differen-
When only these first two terms are present, the spatidial equation for the case of unit charge spin texture.

extent of structure in skyrmion extrema of the energy func-

tional shrinks to a point and the gradient expansion fails. To B. Single skyrmion

obtain a consistent theory of skyrmion excitations when the . . . .

Zeeman coupling is nonzero it is necessary to go beyond In this subsection we concentrate our attention on anti-

: : : ; e kyrmions (skyrmiong with unit topological charge,
lead der in the gradient . For QHF's it turns> . . .
eading order in the gradient expansion. For QHF's it turns =1(—1). We find a numerical solution to E¢4) for an

ouf that, because skyrmions are charged, the next to leadiny_. - . ” L
Y 9 Infinite system with the boundary condition that the spin is

term in the gradient expansion is the nonlocal Coulomb in- . L .
: ; down at the skyrmion center and up at infinity. It is conve-
teraction energy functional ) o X
nient to choose the origin of coordinates at the center of the
2 , skyrmion to take advantage of the circular symmetry of the
EJm]= e_f der d?r’ p(Np(r’) (20) charge distribution of a single skyrmion. We parametrize the
2e [r—r’] order parametem(r) by spherical angles so that
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m(r)=(sind(r)cosp(r),sind(r)sing(r),coH(r)), (7) 1000.0 .

where 6(r) and ¢(r) are new field variables. We take ad-

vantage of the circular symmetry for the single-skyrmion 100.0 - ok
. - C—oOM

problem by choosing(r,¢)=06(r) and ¢(r,¢)==* o+ ¢q o

where ¢ is the azimuthal angle and, is a constant. The

energy of the skyrmion is independent g because of the

invariance of the energy functional under global rotation of

all spins in the plane about tteaxis. Positive and negative

signs for ¢ yield antiskyrmion and skyrmion solutions, re-

spectively. One may show explicitly that the above ansatz

and boundary conditions yield unit winding number,

Q= =1, since the charge density in the circularly symmetric

case is given by (r)=F (1/4mr)[d/drcosy(r)]. It follows 00010 00100  ©0.4000 10000  10.0000

that skyrmion and antiskyrmion solutions have the same en- tp,

ergy, allowing us to consider skyrmion spin textures ofily.

In this case, Eq.(4) reduces to a nonlinear integro- FIG. 1. Skyrmion sizg(circles and spin(black dot$ obtained

differential equation ford(r): from the classical field theory as a function of the Zeeman coupling

constant. The skyrmion siza is defined as the radius at which the

t spin lies in thexy plane, i.e., cd®(\)]=0. These results are con-

5Sine(r) sistent with the power lawt =Y behavior expected at smallThe

27/ number of reversed spins in a skyrmion is proportionalifo

by ) ) ot 23 Its deviation from these power laws at largis an indica-

€ sm&(r)f dr’ du(r,r’) i B(r’)de(r ) —0 tion of the necessity for including microscopic physics not captured

1672 dr dr’ by the minimal field theory.

1.0 |

0.1

1d/ dor) 1
Psra(r ar )—PSPSW[ZG(U]—

(®) man and the Coulomb terms are added the skyrmion texture

Here is reshaped and the optimal solutions are no longer analytic
in z. In particular® the component of the magnetization per-

4 (—4rr') pendicular to the Zeeman field has an exponential rather than
U(r,r')= ] K —r) , 9 a logarithmic fall off at large distances. These nonanalytic

solutions must have a gradient energy larger tharp4
whereK (x) is the complete elliptic integral of the first kind with the deviation from this value decreasing as the Zeeman
continued appropriately to negative valuesxfWe have

energy decreases, or, equivalently, as the size of the skyr-
solved Eq.(8) for 6(r) using an iterative approach. At each mion increases. We thus expect that for the gradient energy
step in the calculation the integral over was evaluated at

Eo(N)=4mps+f(N) where f(\) is a monotonically de-
eachr using an approximation fof(r). When this integral is

creasing function of the skyrmion’s siZeee Fig. 2 The
fixed, we are left with a two-point boundary value problem nonanalytical solutions become asymptotically close to the
[0(r=0)== and 6(r—»)=0] which can be solved by

standard methods. The resulting value aff) is used to

evaluate the integral over for the next iteration. We found =0 ' ' ' '
that this iterative procedure converged rapidly when the it- G*;k@g{ggj“"l

eration was started from one of the analytic solutions ob- 1oL xloglE/p]

tained neglecting Coulomb and Zeeman energies. &—®log(Ep,-4n]

Figure 1 illustrates some of the results obtained from
these numerical calculations. We plot the size of the skyr-

mion (\), defined by8(\)=/2, and the number of re- 0o
versed spinsK), defined by
k= [ arf1-myn1-, 10 l
= rf1—my(r)]—=,
477/% ‘ 2
as a function ot. We find that\~t~ 3 andK~t~23. The %0 a0 w0 20 0 00
logarithmic corrections to these power laws predicted on the _ loglglin(e)!
basis of a variational solution of the field thebgre not yet
apparent at the smallest valuestofre have considered. FIG. 2. Skyrmion energiesE, (crossef E, (stars, excess gra-

Figure 2 presents our numerical results for the depengient energyE,— 4 (circles, and total excess energylack dots
dence of skyrmion energy on Zeeman coupling strength is a function of log{gin(g)] [g is the Zeeman spin splitting in
the minimal field theoretical description. The Belavim- units ofe?/(e/,)]. The power law for the dependence of the excess
Polyakov solutions of Eq(6) have the minimum possible skyrmion energy, which we extract from a linear fit to these plots, is
gradient energy, which has the valued;. When the Zee- close to 1/3.
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Belavim-Polyakov solutions at small Zeeman splittifeyge

\). Dimensional analysis shows that, up to possible logarith- 200 % g g ! ' ! ! ! ! *ox gg
mic factors, the Coulomb and the Zeeman energies must = g S S % g S 8

vary at largex as C/A and DA?, respectively, whereC e 100 E i L
«e?/e andDxt//3 are constants. Assuming thit\) van- g ;:2::3

ishes faster than A4/ optimizing the total energy G 00DS 2@ @ 8 8 B3 RK28K=1K0]
[47ps+ f(N)+C/N+D)?] with respect tox leads to the +18,}=0 @
predictionE,= E /20 (€%/ e/ ;) %' as\ — . These power B I A TR ’
laws were originally suggesttty Sondhiet al. Our numeri- © 88 % g g g g 889
cal results confirm these predictions, which hold with sur- ol : '
prising accuracy out to fairly large valuestofin factE,/E. N*“i oisya® * ° ; ; ; ; ;K_ 1'K=°
is within 1% of its asymptotic value in the whole range of g 109 g:g::g sy § a2
values of A we have studied. The fact th&{\) vanishes x 18,11 . iaragions ]

faster thark ! is expected on the basis of perturbative treat- o7 +i8}=0  [Long-Rengelmteractions ]
ments of the Coulomb and Zeeman terms and confirmed by A
the numerical results shown in Fig. 2. The total energy of the

skyrmion is closely given byE/ps=4m+A[g|In(g)]* FIG. 3. Energy spectrum obtained from an exact diagonalization

where g=2t/(e’/e/ ) and, from Fig. 2, we estimate the of the Hamiltonian in the spherical geometry witd=8 and
dimensionless constait~30. (Unlike the results foh and ~ N,=9 for (a) hard-core andb) long-range(Coulomb interactions

K, the logarithmic factor in the energy is apparent in our(no Zeeman coupling includgdDifferent symbols have been used
numerical results at small Zeeman coupling strengtRsis  for different values ofS,|. For the case of the hard-core model a
numerical estimate ok compares reasonably well with pre- degenerate band corresponding to the Landau level degeneracy oc-
vious estimatée®in which the resul~ 25 is obtained. The Ccurs once for each member of eagh N/2—K multiplet present at

consistency of these numerical results affords confidence ifis system size. For the case of long-range Interactions the degen-
. eracy is removed and the energy decreasas(& increasegde-
their accuracy.

creases Rotational symmetry is always present in the spherical
geometry and the Landau level degeneracy of the charged quasipar-
ticles is preserved for each value I§f

Ill. MICROSCOPIC DESCRIPTIONS

OF SINGLE-SKYRMION STATES e?

3 oY _ m+mq+m
A. Exact diagonalizations (mymy V(2 -0 )|m3m4>_r/0(_1) s
The microscopic physics of skyrmions can be approached 2Ng Ng | Ng
directly by numerically diagonalizing the finite-size Hamil- X ; (_ B )
tonian matrix forN two-dimensional spin-1/2 electrons in =Iml il m M
N, lowest Landau level orbitafs*®3"The Hamiltonian com- Ne | Ng
mutes with the total spin operat&?, and, when the Zeeman ( “m, m l”fb) Vi's, (1)

term is neglected, also with its projectitfag, on any direc- _
tion £. When the Zeeman coupling is present the direcon wherem=m,—m;=m,—m; and them; are the azimuthal
must correspond with the direction of the field. All the eigen-angular momentum guantum numbers which label the single-

states of the system can be labeled by the quantum numbeparticle orbitals, V(21— ') is the interaction potential
S andS;. As mentioned in the Introduction, the particular yyhere (3 denotes the electronic spherical coordinate, and
caseN=N,, corresponds to'=1 and, although there is no N —(N,—1)/2. The coefficients in this expansion are prod-

rigorous proof, numerical evidence clearly indicates that th%cts of Wigner's 3} symbols and thayNs parameters are the
A ! . |
ground state has the maximum possible total spinN/2 interaction-dependent  pseudopotentials introduced by

and, in the absence of a Zeeman field, a degener&eyl12 ; o X
As pointed out by Jain and WiSthis is one of the few cases HaI.dane. Since the Ham|lt9n|an aI.so com.mut'es V.Vlth thg total
where the first Hund rule applies in the fractional Hall re- Orbital angular momenturh the diagonalization is carried

gime. When the Zeeman field is in thelirection, the ground out in subspaces of fixe8, andM=L,. It is instructive to

state hasS,=N/2 and the electronic system is completely _conS|der first the hard-core model for the electron-electron

spin polarized in the direction of the field at zero temperalnteractions. In this case the pseudopotentigl§ are given

ture. by

Since skyrmions are charged quasiparticles, they appear 5 5
in exact diagonalization calculations performed with Ns— (2Ns+1)*21+1)[ Ns | Ns 12
N=N,4=* 1. (Particle-hole symmetry permits examination of ' \/N—s \ —Ng 0 Ng

one sign of charge onlyln order to obtain the energy spec-

trum in the spherical geomefty®3"we need all interaction For this model, as illustrated in Fig(8 and discussed pre-
matrix elements in the lowest shell of monopole harmdfiics viously by Jain and W& and MacDonald, Fertig, and Bréy,
which comprise the lowest Landau level basis. These argultiplets of zero-energy eigenstates occur with all possible
given by values of the total spin quantum numb®rIn a quantum
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B. Hartree-Fock

A simpler and perhaps physically more transparent micro-
3 scopic approach for computing skyrmion properties is the
Yo unrestricted Hartree-Fock approximation approach. This pro-
? cedure finds the lowest-energy Slater determinant wave func-
& tion which supports a spin texture of the form found in skyr-
X 1S l=1 . . .
1810 mion solutions of the Nk model. Such wave functions
-08 " VR @ B . generically have the forfn(for quasihole skyrmions
8.20 K=1 § e 7 o
>3 K=2
e O:gz|l=; K§3 |‘I'HF>:HHO (umCL1+varJrTl+1T)|0>' (14)
= OIS )= =
2780 OIsle2 k=4 § & .
& ::2::1) : § g wherec!  creates a lowest Landau level electron in angular
*""  [Long-Range Interactions | LY momentum staten with spin o, and theu,,,v,’s are varia-
L L . : . . . . ) Lo H : 2 2_
740 e a9 30 31 32 33 84 35 96 37 tional parameters obe_ylng the constrajot,|*+ v |*=1.
M The precise way in which the energy of the stabg,-) may

be minimized with respect to tha,,,v,'s has been dis-
FIG. 4. Energy spectrum obtained from an exact diagonalizatioffussed '3|Se_Whef3€- )

of the Hamiltonian for a disk geometry witi=8 andN,=9, for In practical calculations, the Hartree-Fock approach
(@) hard-core andb) long-range(Coulomb interactions(no Zee-  bridges the gap between skyrmion sizes which can be
man coupling included Different symbols have been used for dif- reached with exact diagonalization approaches and system
ferent values offS,|. As in Fig. 3 for the case of the hard-core sizes where the field theoretic approach becomes accurate.
model, a degenerate band at zero energy is observable where dlypically one is limited to system sizes witN,~10 in
possible values oK are present. Unlike in the spherical geometry finite-size diagonalization studies, since the matrix dimen-
for the case of long-range interactions the translational symmetry isions grow rapidly with system size. On the other hand,
broken due to strong edge effects. Hartree-Fock calculations are possible for spin textures in-

volving up to several thousand electrons. As in exact diago-
description, the number of reversed spins in a skyrmion spimalization studies one works with the exact many-body
texture is quantized and Conjuggdte its global orientation. Hamiltonian in Hartree-Fock studies so that the quantitative
The zero-energy spin multiplets with=N/2— K have been errors introduced in the gradient expansion of the energy
showrY to be the quantum states which correspond to a clagunctional used to generate the dlmodel for the quantum
sical skyrmion texture withk reversed spins. The results Hall ferromagnet” are not present. The Hartree-Fock ap-
shown in Fig. 8b) are for the case of Coulomb interactions proach also captures some of the quantum mechanics of the
between the spins, for which the pseudopotentials are problem, though clearly not all. In particulaf¥ ) has
M —S,, the difference of the orbital and tlzecomponent of
the spin angular momenta, as a good quantum number. How-

VNS (2Ng+1)2( Ns | Ng|? 1y oven M andS, are not separately quantized as they should
' JNg |—Ns 0 Nsg be, nor is| ¥ ¢) an eigenfunction of?. These failures could

easily have some quantitative importance #r-3, the

uantum number of the lowest-energy skyrmion in typical

lln this case skyrlmlon Stﬁtes r‘]’V't; more reversed_ splnsl ha"%periments. From a field theoretic point of view, one may
ower energy, at least when the Zeeman energy Is neglecteg, .y the Hartree-Fock approximation as a mean field

When the Zeeman energy is included, the energy will ing,oq \yhich retains the higher-order gradient terms absent

gheneral Ibe gnir_lim(ijzgd at an intir_mhediate_dva:jlux%ﬁhis ifs in the simpler field theory studied in the preceding section.
the result obtained by Reza§fiwhich provided evidence for The resulting effective action would contain most informa-

the existence of charged excitations with large spin quanturﬂon’ but, in principle, one should include quantum fluctua-

numbers in quantum Hall ferromagnets. The appearance ¢joq around this stationary phase approximation in order to
degenerate states with different total angular momenta r

f h X Land level d ¢ s Ieﬁroperly account for the quantization of orbital and spin an-

ECtS the extenswre]: ”an lau evel degeneracy ob SiNgi€q jar momentum. As shall be seen below, for the purposes of

skyrmion states with all values ¢t. , computing energies and sizes of the skyrmions, the Hartree-
We have also performed the same calculatidh=@8,

) ) : Fock approach appears to be remarkably accurate, suggesting
N,=9) in the disk geometry. Figure(@ shows the low- 5t such quantum fluctuations are quantitatively unimpor-

energy spectrum for the hard-core model where one can sggnt However, for probes sensitive to the quantum numbers
the same degenerate band at zero energy as in the spherigglpq skyrmions—tunneling spectroscopy, for example—

geometry case. For the zero-energy states of the hard-Cofg,ve functions with the correct quantum numbers are

model thg Landa_au level degeneracy is preserved. For thg.aded to obtain qualitatively correct resdfs.
Coulomb interaction, on the other hand, Landau level degen-

eracy is broken by strong edge effefdse Fig. 4b)] and the
nonlocal nature of the interaction. For a given valueMbf
the minimum interaction energy state is always found at the An alternate quantum description of single-skyrmion

maximum allowed value oK. states can be obtained by using variational many-body wave

C. Variational wave functions
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functions. These can be refined by comparing with numeri-

cally exact solutions for smakK and can provide a conve-
nient, if somewhat indirect, route to calculate properties of 000 [ CENNNN0000 00000 -0 -9
physical interesN,—c limit. The variational wave func- K=
tions we employ are motivated by the disk-geometry wave - -o0s | eseess e e o oo .o
functions introduced by MacDonald, Fertig, and Btey 5 —eee, K=1'®
which, in the thermodynamic limit, become exact for hard- £ —ow0f §::..' b S .
core-interaction single-skyrmion states. The second quan- g ‘o..__""-».,___ Kkz®
tized form of these wave functions clearly exhibits the mi- & -os| "-u.,__ .o
croscopic nature of the skyrmion: "'--»,.‘ K=3'®
-020 [ .,
wy- ¥ - e
< VC(K)mg>-=->my=1 \/my- - -my 0% 0.02 004 0.06 0.08 0.10

1/N,
T t ’
XCm~1Cmg1"* *Cm,—1/Cm,1Cot| V). (19)

FIG. 5. Energy gain of the skyrmion as a function o }/for
different values oK. These results were obtained using unmodified
hard-core model wave functions in the disk geomésse text

In the above expressidi¥’) denotes the ferromagnetic= 1
state andC(K) are the normalization constants

N
1
CK= 2 (16) e(K)=€.(0)+e_(K), (18)
mK>..4>m1=]_ ml' A mK
where €,(0) is the energy to make K=0 antiskyrmion

This wave function corresponds to a skyrmion with quantum(bare spin-reversed electipn
number K located at the origin of the plane with
M max=Mpoie— K (M e COrresponds to the total angular mo- €. (0)=E(K=0N=N4+1)—E(N=N,), (19
mentum with a bare quasihole located at the or[giee Fig. i . )
4(a)]). All other single-skyrmion states with different orbital @nd €(K) is the energy to make a skyrmion wit re-
angular momenta within a particular zero-energl¢ band ~ Versed spins,
can be obtained by lowering the center-of-mass angular mo-
mentumn=M ,,,—M times: € (K)=E(K,N=Ng=1)—E(N=Ny). (20)
Ny N The quantity of physical relevance is the difference
n =, 1 + 0 e(K) —€(0), theinteraction energy gain resulting from a tex-
Wi mZ’o M+ 1(CoiCme a1+ CmiCnea)) | [Wic)- ture with K reversed spins. The calculation of the neutral
(170  excitation energies has been done for uiNip=32 and the
results for this energy gain are shown in Fig. 5 as a function
In a large system where edges may be neglected, all sugl 1/N,,. The edge effects, which bear primary responsibility
states are degenerate. Here we focus only on the states g the finite-size dependence seen in Fig. 4, are minimized
highest orbital angular momentum, which are centered at thgy increasing the angular momentum of the minority-spin
ongm. _ ) . electron in theK=0, N=N,+1 state in step witiK. This
~ Itis interesting to note that these wave functions are idena|iows us to extract reliable results from calculations at fairly
tical to hard-core model Hartree-Fock wave functidBs|.  small values oN,,.*! In order to make an accurate extrapo-
(14)] projected onto a state of definig .’ [For the hard-  |ation of these results to the thermodynamic limit we use a
core model, the coefficients,,,vr, in Eq. (14) may be de-  \wynn ¢ algorithm to generate Padgproximanté? The re-
termined analytically] Thus they presumably improve on suits of this extrapolation are shown in Fig. 6, where the
the Hartree-Fock wave function in that they include thesame method has been used to extrapolate the exact results
quantum fluctuations necessary to obtain the quantization &ptained in spherical geometry calculatioisse Sec. Il A
spin. It should also be noted that H&5) is not precisely an  jith N, as large as 11.
eigenstate of?, as may be verified by acting on it with the ~ The substantial differences between exact diagonalization
total spin raising operatd®’. This operator should but fails and variational wave function results is indicative with defi-
to annihilate the state for any finite-size system. However, itiencies in these wave functions. The source of the difficulty
is easily seen tha®'| ¥} )= C(K) 2 which vanishes in the is that these wave functions do not represent a finite-size
thermodynamic limit. Thus the relative weight of this wave object asN ,— . [This can be easily seen from the fact that
function outside its appropriate spin multiplet vanishes withthe normalization constantS(K) diverge in the thermody-
increasing system siZ&. namic limit] From coefficients in the expressidt5) one
We use these variational wave functions to estimate thean see that the tail in the spin density distribution falls off as
energies of single-skyrmion states for the case of Coulomi/r?, which coincides with the long-distance behavior of the
electron-electron interactions. Because of numerical difficulclassical soliton solution in the conventional dlmodel for
ties created by the long range of this interaction it is conveferromagnets. However, as stated in Sec. Il, the long-distance
nient to introduce the neutral excitation energy defined abehavior departs from this form when Coulomb and Zeeman
follows: terms are present. In the classical solution thé behavior
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FIG. 6. Energy gain of the skyrmion as a functiorkafThe plot FIG. 7. Skyrmion energy differences(K) obtained from exact

shows energies obtained using the hard-core wave functions, tHffiagonalization(circles, variational wave functiongblack dots,
optimized variational wave functions, and energies obtained fronthe Hartree-Fock approximaticidashed ling and the field theory
exact diagonalization in the spherical geometry. We were able tésolid line). One can see the relative importance of including

reliably extrapolate the exact diagonalization results onlyfasp ~ higher-order gradient contribution@Hartree-Fock and quantum
to 3. fluctuations(variational wave functions and exact diagonalizatjons

A(K) is the Zeeman spin-splitting value at which the number of

is replaced by an exponential decay at large distances. Thf§versed spins in the lowest-energy skyrmion changes #ot
observation motivates the following refinement in our varia-K +1-
tional wave functions:

which the spin wave is bound to the quasihole so that the

Ng e a(mp+ - +my) spin disturbance is localized near the origin. Thus one should
|\Ifﬂ(a)>: \/_ % expect the weight for large momentum particle-hole pairs to
A(K)my>--->my =1 my- - - My fall off more quickly than for the case of the hard-core inter-

action. Introduction of the parameter provides the varia-
tional freedom necessary for this to occur.
A deficiency of the states in E@21) is that they arenot

eigenfunctions ofs? (although they are, of course, eigen-
Ng e 2a(mg+t---+my) states ofS,). They can be modified to have correct quantum
E _— numbers at a considerable cost in complexity as discussed in
> =m=1 o My Mg Ref. 40; interested readers are referred to that work for de-
The parameterr offers the possibility of optimizing the tails. The results we obtain using t_he .pr.esent wave functions
shape of the skyrmion for each value I6f extrapolat_mg to the thermodynamlc I|m|_t aqd the values of
It is, perhaps, surprising that the introduction of a Cou-¢ that optimize the energies are shown in Fig. 6; the marked
lomb repulsion leads to a more rapid fall off in the reversedMProvement over the hard-core interaction wave functions
spin density at large distances from the skyrmion center. On€LY is apparent. As the value d¢f is increased, the expo-
way of understanding this difference comes from examining'€ntial factor becomes irrelevant and one recovers the long-
the wave functions in Eq€15) and(21). ForK =1 these are distance behaylor _expected for classical solitons. This limit
sums of products of a quasihole in the=0 orbital and a ha}s been studied in Ref. 16 anq Ref. 15 a}nd the result ob-
particle-hole pair with the minority-spin electron precisely {@ineéd for the energy of the classical skyrnfigsreproduced
one unit of angular momentum lower than majority-spinPY the hard-core wave functions.
hole. Since such particle-hole pairs are precisely what are
ne;eded to construct spin wavesiat 1% it_is convenient to IV. COMPARISON
think of the state as a spin wave with orbital angular momen-
tum m=—1 moving in the presence of a spin-polarized This section is devoted to comparison of results obtained
quasihole. For the case of hard-core interactions, it is easy tom the classical field theory, Hartree-Fock approximation,
see that the spin-wave disturbance and the quasihole do nand variational wave function for Coulomb interactions be-
interact. The spin wave is therefore unbound and the lineaiween electrons. In Fig. 7 we plot results obtained for
scale over which the spin disturbance is present is limited\(K)=¢€(K)—e(K+1) calculated with all four ap-
only by the system size. For Coulomb interactions, the longproaches[For the classical field theory and the Hartree-Fock
range nature of the interaction leads to quite a different reapproximation calculations is not quantized and we define
sult. Because the spin-minority electron is always closer ta)(K)=de/dK.] A(K) is the value of the Zeeman spin-
the origin than the spin-majority hole, there is an effectivesplitting (2t in the notation of this papgenergy at which the
attractive interaction between the spin wave and the quasisingle-skyrmion states witKk andK—1 reversed spins are
hole at the origin. The skyrmion thus represents a state iequal in energy. For GaAs systema(K)/(e%/e/)

T T
X CmK—llchT o 'le—licmlTC0T|\P>’ (21)

where theA(K) are the new normalization constants
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10 , ' 10 ; - nificant differences. The discrepancy is largest For0
os | 1 sl ] wherg the classical field 'th'eory calculation indicates that the
K=0 ’ @ spin is reversed at the origin. In fact this property was one of
& 00 & 00t 4 4 the boundary conditions used to solve the Euler differential
_ . L/ equation of the classical field theory. On the other hand, the
OO ==ty ) 08T 1 guantum calculations show that taecomponent of the spin
o T ‘o e is zero at the origin; in fact the total spin density is zero at
BB Gy B0 B0 00 B0 ED s 8o this point because the total charge density is zero. These
10 . : 10 . ; changes in the local properties are outside the scope of the
sl 1 usl ] _generalized Nir model energy fgnctional. These errors are
' ) 3 important for the smallest skyrmions but become less signifi-
 00f 1 oot ] cant with increasing skyrmion size.
On the other hand, the quantum exact diagonalization,
Rl 1 L | variational wave function, and even Hartree-Fock calcula-
10 . . . 10 . . . tions cannot be carried out for very large skyrmions. The
00 20 4D 60 80 00 20 40 60 BO limit for the many-body calculations iK~4 which is ad-

i, i, . . L .
equate for comparing with existing experiments but not for

FIG. 8. Radial distribution ofn, in three approximations: clas- addressing asymptotic values of various quantities for the
sical field theory(solid lines, variational wave functiongdotted ~ Very large skyrmions which would be obtained if the Zeeman
lines), and Hartree-Fockdashed lines The four smallest spin tex- coupling could be adjusted experimentally to small values.
tures have been considered=0 (@), K=1 (b), K=2 (c), and Finite-size effects in these quantum calculations are exacer-
K=3 (d). For K=0 the results of the variational wave functions bated by the long almost algebraic tails of lakjeskyrmion
and the Hartree-Fock approximation lead to the same solution andtates. For example, Hartree-Fock calculations with
as expected, both schemes converge to the classical field theory fN¢> 1000 are necesséryto obtain accurate values of
increasing skyrmion size. A(K) nearK=50. Similarly it has not proven possible to

directly demonstrate the asymptotic behavier:>4mpg, as
~0.006/B[T], depending somewhat on the details of thet—0 using Hartree-Fock calculations(However, the
semiconductor quantum well so thitis typically ~3 for  asymptotic value may be demonstrated by subtracting the
experiments performed at fields10 T. It is clear from this Hartree contribution to the Hartree-Fock energy and noting
plot that the corrections to the minimal field theory capturedthat this should vanish as the skyrmion size divergEsr
by the Hartree-Fock approximation are sufficient to yieldthe large skyrmion states, which hopefully will be studied in
accurate results. The use of leading gradient terms in thiture experiments, the classical field theoretic approach is
minimal field theory is seriously in error for the smadl  accurate and convenient.
states of practical interest. The additional quantum fluctua- The discrepancy between the results of the classical field
tion effects included in the variational wave function andtheory and the microscopic calculations could be reduced by
exact diagonalization calculations are never of overridingncluding quantum fluctuations around the classical solution
importance. of the minimal field theory. A uniform ferromagnet does not

Figure 8 compares the spin textures by plottingr) for  have quantum fluctuations around its fully spin-aligned clas-
classical field theory, Hartree-Fock, and variational wavesical ground state and this is also the exact quantum ground
function approaches at small integer valueskof For the  state. However, near a skyrmion center, the spin direction
classical field theory and Hartree-Fock approximations wechanges with position and quantum fluctuations will occur.
plot the solution of Eq(8), which gives integer values for As the size of the skyrmion is reduced, these fluctuations will
the number of reversed spiKsas defined in Eq(10). Inthe  become more important. It is clear that the sign of the effect
guantum calculations will be to reduce the spin polarization near the origin and

bring the field theory results into closer agreement with the

B L s ) microscopic results. Such calculations have been done for
mz(r)_ZT’/o% s=2+1 S| Ym(1)]7, (220 the simple Nlo model?® However, computation of these
a fluctuations is numerically difficult! even at the Gaussian

where nm0:<q’2(a)|c:ngcma-|\l’&(a)> are single-particle level, in the present model due to the nonlocality of the Cou-

occupation numbers, angl,(r) are the angular momentum lomb interaction.

states of the lowest Landau level in the symmetric gauge.

Note.that for theK =0 skyrmion state, the varlatlpnal wave V. CONCLUSIONS

function and the Hartree-Fock calculations are identical. In

fact this state is a simple spin-polarized quasihole state We have presented a study of single-skyrmion states of
which is known to be given exactly by a single Slater deter-quantum Hall ferromagnets using and comparing a variety of
minant. Apparently the fact that the Hartree-Fock approxi-techniques. We have obtained the classical saddle point so-
mation becomes exact both fé&t(=0 andK—x leads to lution of the appropriate nonlinear model modified to in-
good accuracy at all values &f. As expected, the field clude the long-range Coulomb interactions and Zeeman cou-
theory results approach those obtained with the variationgbling. This minimal classical field theory model includes the
wave functions and Hartree-Fock approximations for largdeading order gradients necessary to obtain stable skyrmions
enough skyrmions while for small skyrmions there are sig-in the presence of Zeeman coupling. We have developed and
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evaluated variational wave functions describing states witlbody exact diagonalization and variational wave function ap-
the appropriate quantum numbers. Finally, we have perproaches. Large skyrmion systems may become
formed microscopic humerical exact diagonalization calculaexperimentally available if the Zeeman coupling strength can
tions on finite-size systems. These results are compared withe tuned to smaller values, for example, by application of
results obtained using a Hartree-Fock approximation and rasniaxial stress to semiconductor host of the quantum well,
ported in earlier work. and disorder effects can be controlled. In this case quantum

Our classical field theory results confirm that the skyr-calculations become impractical and the classical field theory
mion size scales as the inverse cube root of the Zeemaapproach, possibly supplemented by field theory quantum
energy as expected from the competition between the Zedlctuation calculations, may be necessary to describe experi-
man energy and the Coulomb energy and predicted arliements.
by Sondhiet al. We find that, for skyrmion states with small
numbers of reversed spins, the Hartree-Fock results are in
excellent agreement with many-body exact diagonalization
calculations and with calculations based on variational wave The authors are grateful to D. Pfannkuche and L. Belkhir
functions motivated by exact zero-energy eigenstates dbr useful discussions. Work at Indiana University and the
hard-core model systems. Comparison of these calculatiorigniversity of Kentucky was supported by the National Sci-
suggests that the minimal classical field theory model is noence Foundation under Grants No. DMR-9416906 and No.
guantitatively adequate for the size of skyrmion which playsDMR 95-03814, respectively. M.A. acknowledges financial
an important role in typical experiments in GaAs quantumsupport from The Center for Theoretical Physics and Math-
well systems. On the other hand, quantum Hartree-Fock cabmatics, Tehran. H.A.F. acknowledges financial support
culations are shown to be in excellent agreement with manyfrom the Research Corporation.
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