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Critical comparison of classical field theory and microscopic wave functions for skyrmions
in quantum Hall ferromagnets
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We report on a study of the classical field theory description of charged skyrmions in quantum Hall
ferromagnets. The appropriate field theory is a nonlinears model generalized to include Coulomb and Zeeman
interaction terms. We have tested the range of validity of the classical field theory by comparing with micro-
scopic descriptions of the single-skyrmion state based on the Hartree-Fock approximation, exact diagonaliza-
tion calculations, and many-body trial wave functions. We find that the field theory description is accurate for
skyrmions with moderate spin quantum numbers (*10) although, as expected, it fails qualitatively for small
spin quantum numbers.@S0163-1829~97!02935-4#
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I. INTRODUCTION

The quantum Hall effect1–4 occurs in a two-dimensiona
electron system~2DES! in a strong perpendicular magnet
field (B) and is associated with the existence of incompre
ible ground states at certain values of the Landau level fill
factor n. (n[N/Nf where Nf is the Landau level degen
eracy andN is the number of electrons in the system.! Some
incompressible ground states are strong ferromagnets,
they are total spin eigenstates withS5N/2 so that an infini-
tesimal Zeeman coupling of the magnetic field to the s
degree of freedom is sufficient to produce complete s
alignment. Because of the small ratio of the Zeeman splitt
to other relevant energy scales in typical 2DES’s, it is th
useful to regard the system as a ferromagnet in a weak s
metry breaking magnetic field, even though the 2DES is
ten in the strong field quantum limit as far as orbital degr
of freedom are concerned. Quantum Hall ferromagn
~QHF’s! have a number of unusual properties that spr
from the disparity between the magnetic field coupli
strengths for orbital and spin degrees of freedom.

Because of the gap for charged excitations in incompre
ible states, the only low-lying excitations in these quant
Hall ferromagnets are those associated with slow variati
in the unit vector field which describes the local orientati
of the spin magnetic moment. In addition to the spin wa
modes, there exist higher-energy topologically nontriv
skyrmion5,6 textures in the spin field. The importance
these topologically nontrivial excitations is magnified by t
fact that they carry an electrical charge.6,7 As the lowest-
energy charge carriers they control the thermally activa
dissipation on then51 quantum Hall plateau and, awa
560163-1829/97/56~11!/6795~10!/$10.00
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from filling factor n51, they are present in the groun
state.8–10 In the latter case the ground state is no longer fu
spin polarized. For weak Zeeman coupling skyrmions
large and each charge introduced into the system flips ov
large number of spins. Thus the spin magnetization is
pected to show a sharp cusp at filling factorn51.

The presence of these objects has recently been dete
directly in NMR measurements of the electron spin mag
tization which is proportional to the Knight shift,11 in ther-
mal transport measurements,12 and in optical absorption.13

They may also be responsible for the recently observe14

enormous enhancement of the apparent specific heat bec
of their equilibrating effect on the nuclear spins. There h
recently been considerable interest in the physics of th
exotic electronic quasiparticles.5–10,15–25

Charged spin texture excitations in QHF’s are the sub
of this paper. A realistic theory of these excitations requi
at a minimum that Coulomb energy and Zeeman ene
terms be added to the nonlinear sigma~NLs) model classi-
cal field theory. In Sec. II we briefly review the resultin
classical field theory of spin textures in QHF’s and report
numerical solutions for the lowest-energy topologically no
trivial textures. With typical parameters, the size of t
lowest-energy textures need not be large compared to mi
scopic lengths so that both higher-order gradient correcti
and quantum fluctuations not included in the model may
come important. In Sec. III we present an overview of t
various microscopic approaches which have been use
study skyrmion states in quantum Hall ferromagnets. In
Hartree-Fock approximation, the gradient expansion of
field theory is effectively summed to infinite order. Howeve
it becomes difficult to solve these equations accurately
6795 © 1997 The American Physical Society
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6796 56M. ABOLFATH et al.
very large skyrmions. Many-particle variational wave fun
tion and exact diagonalization approaches also incorpor
in addition, quantum fluctuation effects, but are even m
limited in the size of quasiparticles for which accurate c
culations are possible. Numerical comparisons of ener
and spin densities obtained using these different approxi
tion strategies are compared in Sec. IV. One conclusion f
this work is that the most important corrections to the mi
mal generalized NLs model are the higher-order gradie
corrections already captured in the Hartree-Fock approxi
tion. The quantum fluctuations added using trial wave fu
tion or exact diagonalization are responsible only for min
further modifications. We summarize our conclusions in S
V.

II. CLASSICAL FIELD THEORY

A. General considerations

Here we briefly review the classical field theory f
charged spin texture excitations or skyrmions in quant
Hall ferromagnets.6,7 Following Sondhiet al.,6 we start from
a modified version of the NLs model classical field theory
which has been exploited to describe the low-energy pro
ties of two-dimensional Heisenberg ferromagnets a
antiferromagnets.26–29The order parameter in this theory is
unit vector field,m(r ), that describes the local orientation
the spin or pseudospin7 magnetic order. For quantum Ha
ferromagnets the energy functional of the minimal theory

E@m#5E0@m#1Ez@m#1Ec@m#, ~1!

whereE0@m# is the leading-order term in a gradient expa
sion of the energy functional andEz@m# is the Zeeman en
ergy functional:

E0@m#5
rs

2 E d2r ~¹m!2, ~2a!

Ez@m#5
t

2pl 0
2E d2r @12mz~r !#. ~2b!

Here rs5e2/(16A2pel 0) is the spin stiffness@assuming
zero layer thickness for the two-dimensional electron
~2DEG!# which can be calculated analytically for this ca
and represents a loss of Coulomb exchange ene
t5(g* mBB)/2 represents the Zeeman coupling strength,e is
the dielectric constant of the host semiconductor, andl 0 is
the magnetic length.

When only these first two terms are present, the spa
extent of structure in skyrmion extrema of the energy fu
tional shrinks to a point and the gradient expansion fails.
obtain a consistent theory of skyrmion excitations when
Zeeman coupling is nonzero it is necessary to go bey
leading order in the gradient expansion. For QHF’s it tu
out6 that, because skyrmions are charged, the next to lea
term in the gradient expansion is the nonlocal Coulomb
teraction energy functional

Ec@m#5
e2

2eE d2r E d2r 8
r~r !r~r 8!

ur2r 8u
, ~2c!
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where the charge density is given by6,7

r~r !5
2n

8p
eabm„r )•@]am„r !`]bm„r )]. ~3!

The charge density is the product of the Landau level filli
factor of the ground staten and theO(3) topological density
of the spin texture. The nonlocality of this functional com
plicates the calculations we present below. The total sk
mion charge is thereforen times an integer-valued topolog
cal invariant. If we compact the 2D plane to a sphereS2, then
m(r ) defines a mapping ofS2 onto the order paramete
sphereS2 and hence can be classified by the homotopy gro
p2(S2). The topological charge simply counts the wrappi
of the order parameter sphere by the coordinate sphere.30,31

Extrema of the energy functional of this model,m̃, satisfy
a nonlinear differential equation which can be obtained
minimizing Eq.~1! with respect tom, using a Lagrange mul-
tiplier to enforce the constraintm„r …–m„r )51. After elimi-
nating the Lagrange multiplier we find that

rs~2¹21m̃•¹2m̃!m̃m2
t

2pl 0
~dzm2m̃zm̃m!

2
n

4p
eab$]aV~r !%~m̃`]bm̃!m50, ~4!

whereV(r ) is Hartree potential

V~r !5
e2

e0
E dr 8

r̃ ~r 8!

ur2r 8u
, ~5!

and r̃ is the skyrmion charge density corresponding to
minimum energy solution,m̃(r ). The solutions of Eq.~4! can
be classified by the skyrmion chargeQ5*drr(r ). In the
absence of Zeeman and Coulomb energies the energy f
tional is scale invariant and Eq.~4! has a family of known
analytic scale invariant solutions.31–33 The solutions may be
represented by analytic complex-valued polynomials:

m̃~z!5S 4w1

uwu214
,

4w2

uwu214
,
uwu224

uwu214
D , ~6!

wherew5w11 iw2 is a polynomial in the complex variabl
z5(x1 iy)/l with arbitrary scalel. The degree of the poly-
nomial w determines the skyrmion charge. These analy
solutions are not valid if the Zeeman and Coulomb terms
included. In the following subsection we briefly explain th
numerical methods we use to solve the generalized diffe
tial equation for the case of unit charge spin texture.

B. Single skyrmion

In this subsection we concentrate our attention on a
skyrmions ~skyrmions! with unit topological charge,
Q51(21). We find a numerical solution to Eq.~4! for an
infinite system with the boundary condition that the spin
down at the skyrmion center and up at infinity. It is conv
nient to choose the origin of coordinates at the center of
skyrmion to take advantage of the circular symmetry of
charge distribution of a single skyrmion. We parametrize
order parameterm(r ) by spherical angles so that
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56 6797CRITICAL COMPARISON OF CLASSICAL FIELD . . .
m~r !5„sinu~r !cosf~r !,sinu~r !sinf~r !,cosu~r !…, ~7!

whereu(r ) and f(r ) are new field variables. We take ad
vantage of the circular symmetry for the single-skyrmi
problem by choosingu(r ,w)[u(r ) and f(r ,w)[6w1w0
where w is the azimuthal angle andw0 is a constant. The
energy of the skyrmion is independent ofw0 because of the
invariance of the energy functional under global rotation
all spins in the plane about thez axis. Positive and negativ
signs forw yield antiskyrmion and skyrmion solutions, re
spectively. One may show explicitly that the above ans
and boundary conditions yield unit winding numbe
Q561, since the charge density in the circularly symmet
case is given byr(r )57(1/4pr )@d/drcosu(r)#. It follows
that skyrmion and antiskyrmion solutions have the same
ergy, allowing us to consider skyrmion spin textures only34

In this case, Eq.~4! reduces to a nonlinear integro
differential equation foru(r ):

rs

1

r

d

drS r
du~r !

dr D2rs

1

2r 2
sin@2u~r !#2

t

2pl 0
2
sinu~r !

1
e2

16p2

sinu~r !

r E dr8
dU~r ,r 8!

dr
sinu~r 8!

du~r 8!

dr8
50.

~8!

Here

U~r ,r 8![
4

ur 2r 8u
KS ~24rr 8!

~r 2r 8!2 D , ~9!

whereK(x) is the complete elliptic integral of the first kin
continued appropriately to negative values ofx. We have
solved Eq.~8! for u(r ) using an iterative approach. At eac
step in the calculation the integral overr 8 was evaluated a
eachr using an approximation foru(r ). When this integral is
fixed, we are left with a two-point boundary value proble
@u(r 50)5p and u(r→`)50# which can be solved by
standard methods. The resulting value ofu(r ) is used to
evaluate the integral overr 8 for the next iteration. We found
that this iterative procedure converged rapidly when the
eration was started from one of the analytic solutions
tained neglecting Coulomb and Zeeman energies.

Figure 1 illustrates some of the results obtained fr
these numerical calculations. We plot the size of the sk
mion (l), defined byu(l)5p/2, and the number of re
versed spins (K), defined by

K[
1

4pl 0
2E dr @12mz~r !#2

1

2
, ~10!

as a function oft. We find thatl;t21/3 andK;t22/3. The
logarithmic corrections to these power laws predicted on
basis of a variational solution of the field theory6 are not yet
apparent at the smallest values oft we have considered.

Figure 2 presents our numerical results for the dep
dence of skyrmion energy on Zeeman coupling strength
the minimal field theoretical description. The Belavim
Polyakov solutions of Eq.~6! have the minimum possible
gradient energy, which has the value 4prs . When the Zee-
f

tz

c
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-
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e
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man and the Coulomb terms are added the skyrmion tex
is reshaped and the optimal solutions are no longer ana
in z. In particular,6 the component of the magnetization pe
pendicular to the Zeeman field has an exponential rather
a logarithmic fall off at large distances. These nonanaly
solutions must have a gradient energy larger than 4prs ,
with the deviation from this value decreasing as the Zeem
energy decreases, or, equivalently, as the size of the s
mion increases. We thus expect that for the gradient ene
E0(l)54prs1 f (l) where f (l) is a monotonically de-
creasing function of the skyrmion’s size~see Fig. 2!. The
nonanalytical solutions become asymptotically close to

FIG. 1. Skyrmion size~circles! and spin~black dots! obtained
from the classical field theory as a function of the Zeeman coup
constantt. The skyrmion sizel is defined as the radius at which th
spin lies in thexy plane, i.e., cos@u(l)#50. These results are con
sistent with the power law}t21/3 behavior expected at smallt. The
number of reversed spins in a skyrmion is proportional tol2

}t22/3. Its deviation from these power laws at larget is an indica-
tion of the necessity for including microscopic physics not captu
by the minimal field theory.

FIG. 2. Skyrmion energies:Ec ~crosses!, Ez ~stars!, excess gra-
dient energyE024p ~circles!, and total excess energy~black dots!
as a function of log10@gln(g)# @g is the Zeeman spin splitting in
units ofe2/(el 0)#. The power law for the dependence of the exce
skyrmion energy, which we extract from a linear fit to these plots
close to 1/3.
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6798 56M. ABOLFATH et al.
Belavim-Polyakov solutions at small Zeeman splitting~large
l). Dimensional analysis shows that, up to possible logar
mic factors, the Coulomb and the Zeeman energies m
vary at largel as C/l and Dl2, respectively, whereC
}e2/e andD}t/l 0

2 are constants. Assuming thatf (l) van-
ishes faster than 1/l, optimizing the total energy
@4prs1 f (l)1C/l1Dl2# with respect tol leads to the
predictionEz5Ec/2}(e2/el 0)2/3t1/3 asl→`. These power
laws were originally suggested6 by Sondhiet al.Our numeri-
cal results confirm these predictions, which hold with s
prising accuracy out to fairly large values oft: in fact Ez /Ec

is within 1% of its asymptotic value in the whole range
values ofl we have studied. The fact thatf (l) vanishes
faster thanl21 is expected on the basis of perturbative tre
ments of the Coulomb and Zeeman terms and confirmed
the numerical results shown in Fig. 2. The total energy of
skyrmion is closely given byE/rs54p1A@gu ln(g)u#1/3,
where g52t/(e2/el 0) and, from Fig. 2, we estimate th
dimensionless constantA'30. ~Unlike the results forl and
K, the logarithmic factor in the energy is apparent in o
numerical results at small Zeeman coupling strengths.! This
numerical estimate ofA compares reasonably well with pre
vious estimates6,35 in which the resultA'25 is obtained. The
consistency of these numerical results affords confidenc
their accuracy.

III. MICROSCOPIC DESCRIPTIONS
OF SINGLE-SKYRMION STATES

A. Exact diagonalizations

The microscopic physics of skyrmions can be approac
directly by numerically diagonalizing the finite-size Ham
tonian matrix forN two-dimensional spin-1/2 electrons i
Nf lowest Landau level orbitals.6,36,37The Hamiltonian com-
mutes with the total spin operator,Ŝ2, and, when the Zeema
term is neglected, also with its projection,Ŝj , on any direc-
tion j. When the Zeeman coupling is present the directioj
must correspond with the direction of the field. All the eige
states of the system can be labeled by the quantum num
S and Sj . As mentioned in the Introduction, the particul
caseN5Nf corresponds ton51 and, although there is n
rigorous proof, numerical evidence clearly indicates that
ground state has the maximum possible total spinS5N/2
and, in the absence of a Zeeman field, a degeneracy 2S11.
As pointed out by Jain and Wu,39 this is one of the few case
where the first Hund rule applies in the fractional Hall r
gime. When the Zeeman field is in theẑ direction, the ground
state hasSz5N/2 and the electronic system is complete
spin polarized in the direction of the field at zero tempe
ture.

Since skyrmions are charged quasiparticles, they ap
in exact diagonalization calculations performed w
N5Nf61. ~Particle-hole symmetry permits examination
one sign of charge only.! In order to obtain the energy spe
trum in the spherical geometry6,36,37 we need all interaction
matrix elements in the lowest shell of monopole harmonic38

which comprise the lowest Landau level basis. These
given by
-
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^m1m2uV~VW 2VW 8!um3m4&5
e2

el 0
~21!m1m11m2

3 (
l 5umu

2NS S NS l NS

2m1 2m m4
D

3S NS l NS

2m2 m m3
DVl

NS , ~11!

wherem5m42m15m22m3 and themi are the azimuthal
angular momentum quantum numbers which label the sin
particle orbitals, V(VW 2VW 8) is the interaction potentia
where VW denotes the electronic spherical coordinate, a
NS5(Nf21)/2. The coefficients in this expansion are pro
ucts of Wigner’s 3-j symbols and theVl

NS parameters are the
interaction-dependent pseudopotentials introduced
Haldane. Since the Hamiltonian also commutes with the to
orbital angular momentumL̂ the diagonalization is carried
out in subspaces of fixedSz andM[Lz . It is instructive to
consider first the hard-core model for the electron-elect
interactions. In this case the pseudopotentialsVl

NS are given
by

Vl
NS5

~2NS11!2~2l 11!

ANS
S NS l NS

2NS 0 NS
D 2

. ~12!

For this model, as illustrated in Fig. 3~a! and discussed pre
viously by Jain and Wu39 and MacDonald, Fertig, and Brey,9

multiplets of zero-energy eigenstates occur with all poss
values of the total spin quantum numberS. In a quantum

FIG. 3. Energy spectrum obtained from an exact diagonaliza
of the Hamiltonian in the spherical geometry withN58 and
Nf59 for ~a! hard-core and~b! long-range~Coulomb! interactions
~no Zeeman coupling included!. Different symbols have been use
for different values ofuSzu. For the case of the hard-core model
degenerate band corresponding to the Landau level degenerac
curs once for each member of eachS5N/22K multiplet present at
this system size. For the case of long-range interactions the de
eracy is removed and the energy decreases asK(S) increases~de-
creases!. Rotational symmetry is always present in the spheri
geometry and the Landau level degeneracy of the charged quas
ticles is preserved for each value ofK.
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56 6799CRITICAL COMPARISON OF CLASSICAL FIELD . . .
description, the number of reversed spins in a skyrmion s
texture is quantized and conjugate9 to its global orientation.
The zero-energy spin multiplets withS5N/22K have been
shown9 to be the quantum states which correspond to a c
sical skyrmion texture withK reversed spins. The resul
shown in Fig. 3~b! are for the case of Coulomb interaction
between the spins, for which the pseudopotentials are

Vl
NS5

~2NS11!2

ANS
S NS l NS

2NS 0 NS
D 2

. ~13!

In this case skyrmion states with more reversed spins h
lower energy, at least when the Zeeman energy is neglec
When the Zeeman energy is included, the energy will
general be minimized at an intermediate value ofK. This is
the result obtained by Rezayi,36 which provided evidence fo
the existence of charged excitations with large spin quan
numbers in quantum Hall ferromagnets. The appearanc
degenerate states with different total angular momenta
flects the extensive Landau level degeneracy of sin
skyrmion states with all values ofK.

We have also performed the same calculation (N58,
Nf59) in the disk geometry. Figure 4~a! shows the low-
energy spectrum for the hard-core model where one can
the same degenerate band at zero energy as in the sph
geometry case. For the zero-energy states of the hard-
model the Landau level degeneracy is preserved. For
Coulomb interaction, on the other hand, Landau level deg
eracy is broken by strong edge effects@see Fig. 4~b!# and the
nonlocal nature of the interaction. For a given value ofM ,
the minimum interaction energy state is always found at
maximum allowed value ofK.

FIG. 4. Energy spectrum obtained from an exact diagonaliza
of the Hamiltonian for a disk geometry withN58 andNf59, for
~a! hard-core and~b! long-range~Coulomb! interactions~no Zee-
man coupling included!. Different symbols have been used for di
ferent values ofuSzu. As in Fig. 3 for the case of the hard-cor
model, a degenerate band at zero energy is observable whe
possible values ofK are present. Unlike in the spherical geome
for the case of long-range interactions the translational symmet
broken due to strong edge effects.
in
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B. Hartree-Fock

A simpler and perhaps physically more transparent mic
scopic approach for computing skyrmion properties is
unrestricted Hartree-Fock approximation approach. This p
cedure finds the lowest-energy Slater determinant wave fu
tion which supports a spin texture of the form found in sky
mion solutions of the NLs model. Such wave functions
generically have the form8 ~for quasihole skyrmions!

uCHF&5 )
m50

`

~umcm↓
† 1vmcm11↑

† !u0&, ~14!

wherecms
† creates a lowest Landau level electron in angu

momentum statem with spin s, and theum ,vm’s are varia-
tional parameters obeying the constraintuumu21uvmu251.
The precise way in which the energy of the stateuCHF& may
be minimized with respect to theum ,vm’s has been dis-
cussed elsewhere.8

In practical calculations, the Hartree-Fock approa
bridges the gap between skyrmion sizes which can
reached with exact diagonalization approaches and sys
sizes where the field theoretic approach becomes accu
Typically one is limited to system sizes withNf'10 in
finite-size diagonalization studies, since the matrix dime
sions grow rapidly with system size. On the other ha
Hartree-Fock calculations are possible for spin textures
volving up to several thousand electrons. As in exact dia
nalization studies one works with the exact many-bo
Hamiltonian in Hartree-Fock studies so that the quantitat
errors introduced in the gradient expansion of the ene
functional used to generate the NLs model for the quantum
Hall ferromagnet5–7 are not present. The Hartree-Fock a
proach also captures some of the quantum mechanics o
problem, though clearly not all. In particular,uCHF& has
M2Sz , the difference of the orbital and thez component of
the spin angular momenta, as a good quantum number. H
ever,M and Sz are not separately quantized as they shou
be, nor isuCHF& an eigenfunction ofŜ2. These failures could
easily have some quantitative importance forK;3, the
quantum number of the lowest-energy skyrmion in typic
experiments. From a field theoretic point of view, one m
regard the Hartree-Fock approximation as a mean fi
theory which retains the higher-order gradient terms abs
in the simpler field theory studied in the preceding secti
The resulting effective action would contain most inform
tion, but, in principle, one should include quantum fluctu
tions around this stationary phase approximation in orde
properly account for the quantization of orbital and spin a
gular momentum. As shall be seen below, for the purpose
computing energies and sizes of the skyrmions, the Hart
Fock approach appears to be remarkably accurate, sugge
that such quantum fluctuations are quantitatively unimp
tant. However, for probes sensitive to the quantum numb
of the skyrmions—tunneling spectroscopy, for example
wave functions with the correct quantum numbers
needed to obtain qualitatively correct results.40

C. Variational wave functions

An alternate quantum description of single-skyrmi
states can be obtained by using variational many-body w

n

all

is
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6800 56M. ABOLFATH et al.
functions. These can be refined by comparing with num
cally exact solutions for smallK and can provide a conve
nient, if somewhat indirect, route to calculate properties
physical interestNf→` limit. The variational wave func-
tions we employ are motivated by the disk-geometry wa
functions introduced by MacDonald, Fertig, and Bre9

which, in the thermodynamic limit, become exact for ha
core-interaction single-skyrmion states. The second qu
tized form of these wave functions clearly exhibits the m
croscopic nature of the skyrmion:

uCK
0 &5

1

AC~K !
(

mK.•••.m151

Nf 1

Am1•••mK

3cmK21↓
† cmK↑•••cm121↓

† cm1↑c0↑uC&. ~15!

In the above expressionuC& denotes the ferromagneticn51
state andC(K) are the normalization constants

C~K !5 (
mK.•••.m151

Nf 1

m1•••mK
. ~16!

This wave function corresponds to a skyrmion with quant
number K located at the origin of the plane wit
Mmax5Mhole2K „Mhole corresponds to the total angular m
mentum with a bare quasihole located at the origin@see Fig.
4~a!#…. All other single-skyrmion states with different orbita
angular momentaM within a particular zero-energyK band
can be obtained by lowering the center-of-mass angular
mentumn5Mmax2M times:

uCK
n &}S (

m50

Nf

Am11~cm↑
† cm11↑1cm↓

† cm11↓!D n

uCK
0 &.

~17!

In a large system where edges may be neglected, all s
states are degenerate. Here we focus only on the state
highest orbital angular momentum, which are centered at
origin.

It is interesting to note that these wave functions are id
tical to hard-core model Hartree-Fock wave functions@Eq.
~14!# projected onto a state of definiteSz .20 @For the hard-
core model, the coefficientsum ,vm in Eq. ~14! may be de-
termined analytically.9# Thus they presumably improve o
the Hartree-Fock wave function in that they include t
quantum fluctuations necessary to obtain the quantizatio
spin. It should also be noted that Eq.~15! is not precisely an
eigenstate ofŜ2, as may be verified by acting on it with th
total spin raising operatorS†. This operator should but fails
to annihilate the state for any finite-size system. Howeve
is easily seen thatS†uCK

n &}C(K)21/2, which vanishes in the
thermodynamic limit. Thus the relative weight of this wa
function outside its appropriate spin multiplet vanishes w
increasing system size.16

We use these variational wave functions to estimate
energies of single-skyrmion states for the case of Coulo
electron-electron interactions. Because of numerical diffic
ties created by the long range of this interaction it is con
nient to introduce the neutral excitation energy defined
follows:
i-

f
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-
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it
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e~K !5e1~0!1e2~K !, ~18!

where e1(0) is the energy to make aK50 antiskyrmion
~bare spin-reversed electron!,

e1~0!5E~K50,N5Nf11!2E~N5Nf!, ~19!

and e2(K) is the energy to make a skyrmion withK re-
versed spins,

e2~K !5E~K,N5Nf21!2E~N5Nf!. ~20!

The quantity of physical relevance is the differen
e(K)2e(0), theinteraction energy gain resulting from a te
ture with K reversed spins. The calculation of the neut
excitation energies has been done for up toNf532 and the
results for this energy gain are shown in Fig. 5 as a funct
of 1/Nf . The edge effects, which bear primary responsibil
for the finite-size dependence seen in Fig. 4, are minimi
by increasing the angular momentum of the minority-sp
electron in theK50, N5Nf11 state in step withK. This
allows us to extract reliable results from calculations at fai
small values ofNf .41 In order to make an accurate extrap
lation of these results to the thermodynamic limit we use
Wynn e algorithm to generate Pade´ approximants.42 The re-
sults of this extrapolation are shown in Fig. 6, where t
same method has been used to extrapolate the exact re
obtained in spherical geometry calculations~see Sec. III A!
with Nf as large as 11.

The substantial differences between exact diagonaliza
and variational wave function results is indicative with de
ciencies in these wave functions. The source of the difficu
is that these wave functions do not represent a finite-s
object asNf→`. @This can be easily seen from the fact th
the normalization constantsC(K) diverge in the thermody-
namic limit.# From coefficients in the expression~15! one
can see that the tail in the spin density distribution falls off
1/r 2, which coincides with the long-distance behavior of t
classical soliton solution in the conventional NLs model for
ferromagnets. However, as stated in Sec. II, the long-dista
behavior departs from this form when Coulomb and Zeem
terms are present. In the classical solution the 1/r 2 behavior

FIG. 5. Energy gain of the skyrmion as a function of 1/Nf for
different values ofK. These results were obtained using unmodifi
hard-core model wave functions in the disk geometry~see text!.



Th
ia

u
e
n

in

ly
in
a

en
ed
y
n

e
ite
ng
re

r t
ive
s

e

the
uld
to
r-

n-
m
d in
de-
ons
of

ked
ns

-
ng-

mit
ob-

ed
n,
e-
for

ck
e
-

, t
om

e ng

s
of

56 6801CRITICAL COMPARISON OF CLASSICAL FIELD . . .
is replaced by an exponential decay at large distances.
observation motivates the following refinement in our var
tional wave functions:

uCK
0 ~a!&5

1

AA~K !
(

mK.•••.m151

Nf e2a~m11•••1mK!

Am1•••mK

3cmK21↓
† cmK↑•••cm121↓

† cm1↑c0↑uC&, ~21!

where theA(K) are the new normalization constants

(
mK.•••.m151

Nf e22a~m11•••1mK!

m1•••mK
.

The parametera offers the possibility of optimizing the
shape of the skyrmion for each value ofK.

It is, perhaps, surprising that the introduction of a Co
lomb repulsion leads to a more rapid fall off in the revers
spin density at large distances from the skyrmion center. O
way of understanding this difference comes from examin
the wave functions in Eqs.~15! and~21!. For K51 these are
sums of products of a quasihole in them50 orbital and a
particle-hole pair with the minority-spin electron precise
one unit of angular momentum lower than majority-sp
hole. Since such particle-hole pairs are precisely what
needed to construct spin waves atn51,43 it is convenient to
think of the state as a spin wave with orbital angular mom
tum m521 moving in the presence of a spin-polariz
quasihole. For the case of hard-core interactions, it is eas
see that the spin-wave disturbance and the quasihole do
interact. The spin wave is therefore unbound and the lin
scale over which the spin disturbance is present is lim
only by the system size. For Coulomb interactions, the lo
range nature of the interaction leads to quite a different
sult. Because the spin-minority electron is always close
the origin than the spin-majority hole, there is an effect
attractive interaction between the spin wave and the qua
hole at the origin. The skyrmion thus represents a stat

FIG. 6. Energy gain of the skyrmion as a function ofK. The plot
shows energies obtained using the hard-core wave functions
optimized variational wave functions, and energies obtained fr
exact diagonalization in the spherical geometry. We were abl
reliably extrapolate the exact diagonalization results only forK up
to 3.
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which the spin wave is bound to the quasihole so that
spin disturbance is localized near the origin. Thus one sho
expect the weight for large momentum particle-hole pairs
fall off more quickly than for the case of the hard-core inte
action. Introduction of the parametera provides the varia-
tional freedom necessary for this to occur.

A deficiency of the states in Eq.~21! is that they arenot

eigenfunctions ofŜ2 ~although they are, of course, eige
states ofSz). They can be modified to have correct quantu
numbers at a considerable cost in complexity as discusse
Ref. 40; interested readers are referred to that work for
tails. The results we obtain using the present wave functi
extrapolating to the thermodynamic limit and the values
a that optimize the energies are shown in Fig. 6; the mar
improvement over the hard-core interaction wave functio
~15! is apparent. As the value ofK is increased, the expo
nential factor becomes irrelevant and one recovers the lo
distance behavior expected for classical solitons. This li
has been studied in Ref. 16 and Ref. 15 and the result
tained for the energy of the classical skyrmion6 is reproduced
by the hard-core wave functions.

IV. COMPARISON

This section is devoted to comparison of results obtain
from the classical field theory, Hartree-Fock approximatio
and variational wave function for Coulomb interactions b
tween electrons. In Fig. 7 we plot results obtained
D(K)5e(K)2e(K11) calculated with all four ap-
proaches.@For the classical field theory and the Hartree-Fo
approximation calculations,K is not quantized and we defin
D(K)[de/dK.# D(K) is the value of the Zeeman spin
splitting (2t in the notation of this paper! energy at which the
single-skyrmion states withK and K21 reversed spins are
equal in energy. For GaAs systemsD(K)/(e2/el )

he

to

FIG. 7. Skyrmion energy differencesD(K) obtained from exact
diagonalization~circles!, variational wave functions~black dots!,
the Hartree-Fock approximation~dashed line!, and the field theory
~solid line!. One can see the relative importance of includi
higher-order gradient contributions~Hartree-Fock! and quantum
fluctuations~variational wave functions and exact diagonalization!.
D(K) is the Zeeman spin-splitting value at which the number
reversed spins in the lowest-energy skyrmion changes fromK to
K11.
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'0.006AB@T#, depending somewhat on the details of t
semiconductor quantum well so thatK is typically ;3 for
experiments performed at fields;10 T. It is clear from this
plot that the corrections to the minimal field theory captur
by the Hartree-Fock approximation are sufficient to yie
accurate results. The use of leading gradient terms in
minimal field theory is seriously in error for the smallK
states of practical interest. The additional quantum fluct
tion effects included in the variational wave function a
exact diagonalization calculations are never of overrid
importance.

Figure 8 compares the spin textures by plottingmz(r ) for
classical field theory, Hartree-Fock, and variational wa
function approaches at small integer values ofK. For the
classical field theory and Hartree-Fock approximations
plot the solution of Eq.~8!, which gives integer values fo
the number of reversed spinsK as defined in Eq.~10!. In the
quantum calculations

mz~r !52pl 0
2(

m
(

s561
snm

s ucm~r !u2, ~22!

where nms5^CK
0 (a)ucms

† cmsuCK
0 (a)& are single-particle

occupation numbers, andcm(r ) are the angular momentum
states of the lowest Landau level in the symmetric gau
Note that for theK50 skyrmion state, the variational wav
function and the Hartree-Fock calculations are identical.
fact this state is a simple spin-polarized quasihole s
which is known to be given exactly by a single Slater det
minant. Apparently the fact that the Hartree-Fock appro
mation becomes exact both forK50 and K→` leads to
good accuracy at all values ofK. As expected, the field
theory results approach those obtained with the variatio
wave functions and Hartree-Fock approximations for la
enough skyrmions while for small skyrmions there are s

FIG. 8. Radial distribution ofmz in three approximations: clas
sical field theory~solid lines!, variational wave functions~dotted
lines!, and Hartree-Fock~dashed lines!. The four smallest spin tex
tures have been considered:K50 ~a!, K51 ~b!, K52 ~c!, and
K53 ~d!. For K50 the results of the variational wave function
and the Hartree-Fock approximation lead to the same solution
as expected, both schemes converge to the classical field theo
increasing skyrmion size.
d

e

-

g

e

e

e.

n
te
-
i-

al
e
-

nificant differences. The discrepancy is largest forK50
where the classical field theory calculation indicates that
spin is reversed at the origin. In fact this property was one
the boundary conditions used to solve the Euler differen
equation of the classical field theory. On the other hand,
quantum calculations show that thez component of the spin
is zero at the origin; in fact the total spin density is zero
this point because the total charge density is zero. Th
changes in the local properties are outside the scope of
generalized NLs model energy functional. These errors a
important for the smallest skyrmions but become less sign
cant with increasing skyrmion size.

On the other hand, the quantum exact diagonalizat
variational wave function, and even Hartree-Fock calcu
tions cannot be carried out for very large skyrmions. T
limit for the many-body calculations isK;4 which is ad-
equate for comparing with existing experiments but not
addressing asymptotic values of various quantities for
very large skyrmions which would be obtained if the Zeem
coupling could be adjusted experimentally to small valu
Finite-size effects in these quantum calculations are exa
bated by the long almost algebraic tails of largeK skyrmion
states. For example, Hartree-Fock calculations w
Nf.1000 are necessary8 to obtain accurate values o
D(K) near K550. Similarly it has not proven possible t
directly demonstrate the asymptotic behavior,E→4prs , as
t→0 using Hartree-Fock calculations.~However, the
asymptotic value may be demonstrated by subtracting
Hartree contribution to the Hartree-Fock energy and not
that this should vanish as the skyrmion size diverges.! For
the large skyrmion states, which hopefully will be studied
future experiments, the classical field theoretic approac
accurate and convenient.

The discrepancy between the results of the classical fi
theory and the microscopic calculations could be reduced
including quantum fluctuations around the classical solut
of the minimal field theory. A uniform ferromagnet does n
have quantum fluctuations around its fully spin-aligned cl
sical ground state and this is also the exact quantum gro
state. However, near a skyrmion center, the spin direc
changes with position and quantum fluctuations will occ
As the size of the skyrmion is reduced, these fluctuations
become more important. It is clear that the sign of the eff
will be to reduce the spin polarization near the origin a
bring the field theory results into closer agreement with
microscopic results. Such calculations have been done
the simple NLs model.29 However, computation of thes
fluctuations is numerically difficult,44 even at the Gaussia
level, in the present model due to the nonlocality of the Co
lomb interaction.

V. CONCLUSIONS

We have presented a study of single-skyrmion states
quantum Hall ferromagnets using and comparing a variety
techniques. We have obtained the classical saddle poin
lution of the appropriate nonlinears model modified to in-
clude the long-range Coulomb interactions and Zeeman c
pling. This minimal classical field theory model includes t
leading order gradients necessary to obtain stable skyrm
in the presence of Zeeman coupling. We have developed

d,
for



it
e
la
w
r

r

e
lie
ll
e
io
v

io
no
y
m

ca
n

ap-
me
can

of
ell,
tum
ory
tum
peri-

hir
the
ci-
No.
ial
th-
ort

56 6803CRITICAL COMPARISON OF CLASSICAL FIELD . . .
evaluated variational wave functions describing states w
the appropriate quantum numbers. Finally, we have p
formed microscopic numerical exact diagonalization calcu
tions on finite-size systems. These results are compared
results obtained using a Hartree-Fock approximation and
ported in earlier work.

Our classical field theory results confirm that the sky
mion size scales as the inverse cube root of the Zeem
energy as expected from the competition between the Z
man energy and the Coulomb energy and predicted ear6

by Sondhiet al. We find that, for skyrmion states with sma
numbers of reversed spins, the Hartree-Fock results ar
excellent agreement with many-body exact diagonalizat
calculations and with calculations based on variational wa
functions motivated by exact zero-energy eigenstates
hard-core model systems. Comparison of these calculat
suggests that the minimal classical field theory model is
quantitatively adequate for the size of skyrmion which pla
an important role in typical experiments in GaAs quantu
well systems. On the other hand, quantum Hartree-Fock
culations are shown to be in excellent agreement with ma
i

.
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body exact diagonalization and variational wave function
proaches. Large skyrmion systems may beco
experimentally available if the Zeeman coupling strength
be tuned to smaller values, for example, by application
uniaxial stress to semiconductor host of the quantum w
and disorder effects can be controlled. In this case quan
calculations become impractical and the classical field the
approach, possibly supplemented by field theory quan
fluctuation calculations, may be necessary to describe ex
ments.
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