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Quantum magnetotransport properties of short quantum wires
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The longitudinal and transverse quantum magnetotransport coefficients of a two-dimensional electron gas in
a perpendicular magnetic field for short quantum wires are calculated in the low-magnetic-field Bgior8(
T) using the Kubo method. The quantum wire channel is simulated by controlling the steepness and strength
of the potential barrier. The calculated results have steplike features in the transverse conductivities as the
Fermi energy crosses a Landau level for weak modulation potentials and giant low-field peaks in the transverse
resistivities when the potential is strong. In addition, the Hall resistivity is quenched in the low-magnetic-field
region. An interesting feature is the negative Hall resistivity which arises from backscattering off the edges of
confinement for short quantum wird$0163-18207)03735-1

[. INTRODUCTION regime, the boundary conditions on the contacts become very
important and a system of connected wires show a nonlocal
Following the success in understanding the physics antehavior. Therefore, a current flowing between two contacts
the device applications of two-dimensioridD) heterostruc- might influence the voltage between two other contacts, even
tures, the natural trend has been to reduce their dimensiothough classically no current should flow between the two
ality by modulation techniques to one-dimensioidD) sys-  voltage probes. Accordingly, this regime strongly depends
tems called quantum wire@QW'’s) or antiwires. For ideal on the sample geometry. One of these is the well-known
QW'’s, the low-field conductance was shown to be quantizedjuenching in the Hall regime at low magnetic fields. Tradi-
with the conductance equal t®?/h times the number of tionally, this quenching has been explained by the collima-
channels occupietiHowever, in a realistic QW, there are tion of the electrons. In this case, the ratio of the longitudinal
some aspects which deviate from the ideal. One of these imomentum to the transverse momentum increases and, near
that the QW realized in a quantum point contact is not infi-zero magnetic field, these collimated electrons are preferen-
nitely long and does not have perfect translational symmetrytially transmitted straight through the junction, and the Hall
This kind of deviation gives rise to different regimes of voltage is quenched.
conductancé. The regimes depend on the length scales of Another Hall effect in the ballistic wire is the negative
the sample, i.e., the length, width W of the QW or con-  Hall resistivity. This resistivity in ballistic wire transport has
striction and the elastic mean free patiWhenL>W=>|,  been dealt with both experimentally and theoreticaf.
electrons are localized longitudinally and transversely on th@hese papers show that the negative Hall resistivity depends
length scalel. So, in this case, the wire modes no longeron the sample geometry. In narrow ballistic wires with high
have meaning. In other words, the electrons no longer see theobility, the predominant source of scattering is the reflec-
one dimensionality of the wire. Therefore, no states exist thation of the carriers off the confining potential. So, by chang-
extend from one end of the wire to the other. This regime isng the geometry of the intersection of the Hall probes, they
similar to the weakly localized 2D modulation case. How-showed quenched, enhanced, and even negative Hall resis-
ever, ifI>L andW, the situation becomes different. In this tances at low magnetic fields. Also Buttiker showed theoreti-
case, the electrons are affected by the boundaries of the willy that the negative Hall resistance was a signature of
and quantum states exist that extend from one end of thiaur-terminal resistance measuremenémother example of
wire to the other. These occupied quantum channels carrthe negative Hall resistance has been shown in the four ter-
the current along the wire. The conductance is then deteminal magnetoresistance of a multichannel electron wave-
mined by the quantum mechanical transmission probabilitguide by Timpet al® In Ref. 10, submicrometer wires were
of different states between the two ends, due to the chemicéhbricated in extremely high mobility GaAs/fba;_,As
potential difference. If the widthV of the QW is small com- heterostructures and only a few transverse, one-dimensional
pared with the Fermi wavelength or the cyclotron radiussubbands or channels carry the current because the width of
when the magnetic field is applied perpendicular to the 2lthe QW is comparable to an electron wavelength. In this
sheet, then there is quantum ballistic transport. Ballistiowire, the negative Hall resistances through the Hall probe at
transport in QW's has properties which cannot be accountedifferent locations are observed. All of these depend on the
for classically, since the electrons are wavelike in naturegeometry of the sample or measuring probe. In addition to
This means that the wires act as waveguides for the electronbis, the length and termination of a piece of wire not con-
so that the resistance of a wire loses its local meaning. In thisected to a contact will change the behavior of the rest of the
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structure! The lengthL, the widthW of the wire, and the x—Xo

height of the potential barrier are all crucial factors in ballis- xexd — (x—Xo) /25 1H, | ) 5)
tic Hall resistances. To the best of our knowledge, there has H

so far not been a detailed theoretical study of the ballistidn Egs.(4) and(5), n=0,1,2 . . . is aLandau level index and

Hall effect due to the length or termination of a piece ofH,(x) is thenth order Hermite polynomial. Alsd,,=N,a
wire. So, in this paper, we calculate theoretically the negais the sample length, in tr;edirection,xozkylf| is the guid-
tive Hall resistance due to the termination of a piece of QWing center,|,,= %/eB is the magnetic length, arkl, is a
i.e., we carry out calculations for short QW's. wave vector along the direction. The expansion coeffi-
cientsC,(j,Xp) in Eq. (4) are determined from the following

Il. THEORETICAL FORMULATION OF THE PROBLEM matrix equation:
The single-particle Hamiltonian for a 1D array of QW'’s v 1
in a two-dimensional electron ga2DEG) located in the 2 [EEO)—Ej(Xo)]fSn o+ 0 .
x-y plane with a uniform perpendicular magnetic field n T allym2 N 2" M nin’
B=Bz along thez axis is given by
XBnn(Xo) |Cn(j,X0)=0, (6)

Hozi[—iﬁVﬂLeA(r)]erUL(r), (1)
2m* as well as the orthonormality condition:

wherem* is the effective mass of an electron with charge

—e, ris a 2D vector in th-y plane, andA(r)=(0,Bx,0) is 2 Ch(j,Xo)Cn(j", X4) = 5ivi'5X0vX[)'

the vector potential in the Landau gauge. The lattice poten- n

tial U (r) in Eq. (1) represents the effect due to modulation From this calculation, we also obtain the secular equation

which we take as which determines the energy eigenvallgéX):

2mx\ |?N 2
co T ) ( )

for modulation in thex direction. When the modulation is in

they direction, we make the replacemeaty in Eq. (2) to Vo 1 -

obtain the potential. In this notation/,>0 denotes the +a2I T 2"+“’n|n'|u”*“’(X°)

height of the potential barrier, ana is the period of the H '

potential. The value oN represents the steepness of theHere, E”)=(n+ 1/2)kw, is the energy for theth Landau

slope of the potential. ABl is increased, the region between |eye| with eigenfunctiorkbgo)(r) for a homogeneous 2DEG

adjacent potential barriers gets widerV{§ is large, an elec-  and the matrix elemer,, ./ (X,) appearing in Eqs(6) and
tron may be trapped within a channel and the model repree7) is defined as follows, for the potential in E@®):
sents a parallel array of QW’s. The reason for takimg &

the power in Eq.(2) is to make sure that the potential is 8B, n,(xo)z<¢ﬁ, “ (o)(f)|UL(X)|¢ﬁx O)(r))
positive whenVy>0. ' %o Xo

U (x)=Vq

Dex{[Eg")—Ej(xo)]aﬁn,

=0. (7)

We use the Kubo formalism for the static local conduc- - _ 2 _
. >v HIE (Xx—Xo) X=Xo
tivity which is given by zf dx exg — 2 H, I
C 2 H
'hZJdEfETA—dGEAéE x—X
Tuv=1hie o(E) T Vop=g g Vopd(E—= o) XHo | = O)cos’-N(wa/a). ®)
H
~ ~ E
_VOPg(E_HO)VOP dE }’ 3 I1l. NUMERICAL RESULTS AND DISCUSSION
wherefy(E) is the Fermi-Dirac distribution functiony, is We now present numerical results for the band parts of

the velocity operator, anGZ are the retarded and advanced the longitudinal and transverse quantum magnetotransport
Green’s functions. coefficients when the 2DEG is modulated in thelirection

The single-particle eigenfunctions for the Hamiltonian in@nd compare these results with those obtained when the
Eq. (1) are given by modu!atlon is in they direction. We also vary the lengths of
the wires to study the dependence of the magnetotransport
coefficients on the wire length.
$ixo(1) = 2 Cali Xo) b (1), (4)

A. Transverse conductivity

In Figs. 1a)—1(c), we present numerical resultst 0 K

ex — i (Xo)y/12] 1 for the transverse conductivity,,, i.e., the current and the
9 (r)= oY'ul applied electric field are along the direction which is at
w4 ,2 n!

JL, right angles to the channels produced by the modulation po-
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FIG. 1. The computed conductivity,, as a function of the magnetic flux for the potential in E2). for (a) four values ofN and
Uy=1.2;(b) N=1 and five different values of the potential strengtl (c) Uy=100.0 is fixed and\ takes the values 1, 3, 5, 1@) same
as(a) except thatJ,=100.0 and the modulation is along thedirection. The electron density is given bypa?=0.5 andL,=L,=80 A

tential in Eq.(2), for several potential barrier heights and negligible changes in the results presented in Hig.. These
steepness of their slopes. The plots are presented as a furonclusions are supported by our results in Figd) And
tion of the flux through a unit celb=Ba?/ ¢, in units of  1(c). In these figures, we see how the, is modified as the
the flux quantumpo=h/e. In Fig. 1(a) where the modulation strength of the potentidl is varied. In Fig. 1d), we show

is weak withVy=0.156 meV, there are steps iny at low  how o, is affected by changing the value bf in the po-
magnetic fields. These arise when the Fermi level crossestential for modulation in they direction instead of thex
Landau level(LL). For the parameters chosen in our calcu-direction as in Fig. @a). The conductivity is larger in Fig.
lation, the Fermi level is in the=3 LL up to®=0.7, then  1(d) since the applied electric field and the current are along
itisinn=1 up to®=1.2, andn=0 up to®=3.0. This the direction of the channel.

feature in the electrical conductivity has been observed in In Fig. 1(b), we chosdJ,=1.2, 2.0, 3.0, 4.0, 10.0, which
other related calculation's.Furthermore, as Fig.(8 shows, correspond toV,=0.156, 0.253, 0.380, 0.506, and 1.265
oy IS not appreciably affected when the width of the poten-meV, respectively, foa=200 nm. The Fermi energies sat-
tial barrier is changed witiN. This is understood by noting isfy 0.190<Eg<0.443 for 0.3<®<0.7; 0.21KEg<0.322
that atT=0 K, the contribution too,, comes only from for 0.8<®<1.2; 0.116<Er<0.152 for 1.xX®<1.7;
electrons near the Fermi level. Defining the dimensionles®.161<Er<0.197 for 1.8<®<2.2; 0.206<E:<0.241 for
potential variable by Uy,=m*a?V,/\27%% we have 2.3<®<2.7, and 0.258 E-<0.268 for 0.8<P<3.0, re-
Vy=0.156 meV for Ug=1.2, a=200 nm, and spectively, where the Fermi energy is in meV. The value of
m* =0.067Mn,, where m, is the free electron mass. All V,=1.265 meV, which corresponds td,=10, is well
Fermi energies in the whole range ®fshown in the figures above the Fermi levels. The steplike features are maintained
are comparable with or lie above the top of the potential, i.e.from Uyg=1.2 up toUy=4.0 but not forUy=10. When
Er>V(,=0.156 meV. Subsequently, electrons with eigenenU,=10, the steplike features im,, are modified and there
ergies above the Fermi level are not affected by the variatiomre some peaks due to the resonant backscattering off the
of the width of the potential barrier witl, leading to the potential barrier. These peaks do not appear in Fig) 1
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FIG. 2. Plots ofp,, as a function of the magnetic flux for the potential in E2).for (a) four values oN andU,=1.2;(b) N=1 and five
different values of the potential strengthy; (c) Uy;=100.0 is fixed andN takes the values 1, 3, 5, 1) Uy=1.2,N=1 for three wire
lengthsL,=N,a anda=200 nm;(e) same agd) except that),=100.0. The electron density is given bypa?=0.5 and the sample length
in the x direction isL,=N,a, whereN,=4.

whenU,=100 which means that the effect produced whento the open orbits are generated in the low magnetic field
the Fermi level crosses a LL is reduced in the strong moduregime and there is another peak arodme 1.2. This peak
lation regime. However, as Fig(d) shows, there are peaks is due to the resonant scattering with the potential barrier
in oy, even when the modulation is strong, if the current andsince it strongly depends on the width of the potential bar-
the external electric field are along the channel, i.e., when thder. For this calculation, the cyclotron orbit for a flux of
modulation is in they direction. The large conductivities due ®i=1.2 is about the channel width. Whéhincreases, the
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FIG. 3. Plots ofp,, as a function of the magnetic flux for the potential in E2).for (a) Uy= 1.2 and four values d¥; (b) N=1 and five
different values of the potential strendth; (c) Uy=100.0 is fixed andN takes the values 1, 3, 5, 1#) U,=100.0,N=1 for three wire
lengthsL,=N,a, wherea=200 nm. The electron density is given by,a?=0.5 and the sample length in tkadirection isL,= N,a, where
N,=4.

width of the potential barrier decreases and the QW channaeietic fields the electron orbit becomes smaller than the chan-
becomes wider. So, the intensities of the peaks aroundel width but the effect of the short lengtl is given by the
®=1.2 increase abl increases from one to ten in Figldl.  slight increase irp,, as® increases. The smaller the value
of Uy, the more likely an electron will not be confined within
B. Transverse resistivity a channel as it would be for larg#, so that when the modu-
lation potential is wealp,, has peaks due to the nonuniform

modulated in the direction transverse to the direction of the poten’ual that an electron is SUbleCted_ to. In Fig)2 nu-
channels are shown in Figs(a2-2(c) for fixed Ny , i.e., wire merical _results ar'e preser)ted for various 'strengths of the
length. In Fig. 2a), the steepness of the slope of the potentiaiModulation potential for a fixed value &f=1 in the modu-

is varied by changing the power of the cosine potential for 4ation potential and length.,=80 A. As U, varies from
weak modulationU,=1.2 with L,=80 A andV,=0.156 1.2(i.e,,Vo=0.156 meV to 10.0(i.e., Vo=1.265 meV, the
meV. At low magnetic field, anomalous large peaks are oblarge peak at low magnetic field is significantly modified.
tained. These peaks are reduced whgnis increased as When Uy=10.0, this large peak due to scattering off the
shown in Fig. 2d), whereL, =160 A. These high peaks are sample boundary is altered the most. This means that when
reduced as the sample size is further increased and may evthre barrier height is much larger than the Fermi energy, the
disappear completely. Therefore, we conclude that the largmodel simulates short quantum wires for whigh has char-
peak at low magnetic field is due to the finite size of theacteristics which are different from the weak modulation re-
sample. Also, the high peak in Fig(@ at low magnetic field sults at low magnetic field when the cyclotron orbits are
is not sensitive to changes in the steepness of the potentikdrger than the width of the channels. As the magnetic field
barrier. This can be explained, as we noted in Fi@),that increases, several peaks due to scattering off the potential
the Fermi level exceeds the height of the potential barrierbarriers are obtained. To support our conclusion that the
When®=1.5, p,, is reduced because for this range of mag-large peaks ip,, at low magnetic field are due to the bound-

Our results for the resistivityp,, when the 2DEG is
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ary scattering whereas the peaks at higher fields arise fromn electron from the sample boundary when the cyclotron
the scattering off the potential barriers, we plot in Figc)2 orbit is comparable with the length of the short QW.

our results for a strong potentialy=100 (i.e., Vg=126.5

meV) for several wire widths. Clearly, the effect due to the IV. SUMMARY

potential barrier is larger than the sample boundary since the | this paper, we calculated the transverse conductivity
sample boundary effect in the low-magnetic-field region is; _  the longitudinal resistivity,,, and the Hall resistivity
reduced and several peaks appear due to confinement by tpgy for a 2DEG in a perpendicular magnetic field. The modu-
barrier potential. Figure (2) shows that the heights of the |ation potential is assumed to have a simple form whose

peaks inpyy decrease abdl increases, i.e., as the quantum syrength and steepness of slope can be varied. In the strong
wire becomes wider the effect due to scattering off the sidegnodulation limit, the model simulates a parallel array of
is reduced. Furthermore, the peak positions are slightlyyantum wires with a chosen width. We have presented nu-
changed with the QW width. We compapg, for various  merical results for short quantum wires in the low-magnetic-
wire lengthsL, in Fig. 2(e). Giant magnetoresistance in this fie|q fimit, i.e., B=0.3 T, using the Kubo method. The cal-
lateral array of wires is obtained. The peak positions depengdyated results have steplike features in the transverse
onL, and these calculations agree qualitatively with experi-conductivity as the Fermi energy crosses a Landau level for
mental resultS:*? weak modulation potentials and giant low-field peaks in the
transverse resistivities when the potential is strong. The Hall
C. Hall resistivity resistivity is quenched at very low-magnetic fields. For weak
Figure 3 shows our numerical results for the Hall resistiv-mOdUIaﬂO”' our calculations show that as the magnetic field

ity p,y for various potential barrier heights and steepness of1cr€aS€Spxy increases linearly withd like the classical
the slope for the potential in Eq2), which complement the Hall effect over a range of magnetic fields when the cyclo-
transverse resistivity in Fig. 2. In Figs(@-3(d), there is a tron orbit is comparable with or less than the width of the
quenching ofp,, at low magnetic fields. This quenching in QW so that the elegtro_n mot!on is the same as in the homo-
QW's has already been explain®# As the magnetic field 9eneous 2DEG. This linear increasegf, is changed con-
increases®=1.0), our calculations show thay, increases siderably by a strong potential barrier as shown in Fig) 3
linearly with ® and looks like the classical Hall effect. Ac- @nd may disappear completely and get replaced by an
tually, whenU,=1.2 meV, the Fermi energy is above the anomalous He_lll effe_ct_due to scattering with the wall of the
potential barrier and whed=1.0, the cyclotron orbit is QW whenUj is sufﬁc,ently S“Of‘g’ as shqwn n F|g(c3.
comparable with or less than the width of the QW. ConseFOr @ strong modulation potential, there is a negative Hall
quently, the electron motion is the same as in the homogd€Sistivity at higher magnetic fields, i.e., forkb<2. The
neous 2DEG leading to the classical behavior dgy when negative Hall resistivity s redl_Jced when the width of the
®=1. However, this linear increase @f,, in the range QW IS mcreased_l‘@_mcrease)s Figure 3d)_shows that_w_hgn .
®=1.0 is modified by a strong potential barrier as shown inthe wire length is mgreased, the negative _HaII resistivity Is
Fig. 3b). The linear classical Hall effect is modified even reduced. The negative Hall resistivity arises from back-
more whenU, is sufficiently strong, as shown in Fig(@ scattering off the edges of confinement for short quantum
and may digappear completely (,’de get replaced l:;y a}q/ires when the cyclotron orbit is comparable with the length
anomalous Hall effect due to scattering with the wall of theOf the short QW.

QW. For a strong modulation potential, there is a negative
Hall resistivity in the region of £®=<2. When the width of
the QW is increasedN is increasej] the negative Hall re- The authors acknowledges the support in part from the
sistance is reduced. Also, as seen in Figl) 3vhen the wire  National Science Foundation Grant No. INT-9402741S.-
length is increased, the negative Hall resistance is reducetl.K. Collaborative Grantand the City University of New
The negative Hall resistivity is due to the backscattering ofYork PSC-CUNY Grant No. 664279.
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