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Quantum magnetotransport properties of short quantum wires
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The longitudinal and transverse quantum magnetotransport coefficients of a two-dimensional electron gas in
a perpendicular magnetic field for short quantum wires are calculated in the low-magnetic-field region (B&0.3
T! using the Kubo method. The quantum wire channel is simulated by controlling the steepness and strength
of the potential barrier. The calculated results have steplike features in the transverse conductivities as the
Fermi energy crosses a Landau level for weak modulation potentials and giant low-field peaks in the transverse
resistivities when the potential is strong. In addition, the Hall resistivity is quenched in the low-magnetic-field
region. An interesting feature is the negative Hall resistivity which arises from backscattering off the edges of
confinement for short quantum wires.@S0163-1829~97!03735-1#
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I. INTRODUCTION

Following the success in understanding the physics
the device applications of two-dimensional~2D! heterostruc-
tures, the natural trend has been to reduce their dimens
ality by modulation techniques to one-dimensional~1D! sys-
tems called quantum wires~QW’s! or antiwires. For ideal
QW’s, the low-field conductance was shown to be quanti
with the conductance equal toe2/h times the number of
channels occupied.1 However, in a realistic QW, there ar
some aspects which deviate from the ideal. One of thes
that the QW realized in a quantum point contact is not in
nitely long and does not have perfect translational symme
This kind of deviation gives rise to different regimes
conductance.2 The regimes depend on the length scales
the sample, i.e., the lengthL, width W of the QW or con-
striction and the elastic mean free pathl . When L.W@ l ,
electrons are localized longitudinally and transversely on
length scalel . So, in this case, the wire modes no long
have meaning. In other words, the electrons no longer see
one dimensionality of the wire. Therefore, no states exist
extend from one end of the wire to the other. This regime
similar to the weakly localized 2D modulation case. Ho
ever, if l @L andW, the situation becomes different. In th
case, the electrons are affected by the boundaries of the
and quantum states exist that extend from one end of
wire to the other. These occupied quantum channels c
the current along the wire. The conductance is then de
mined by the quantum mechanical transmission probab
of different states between the two ends, due to the chem
potential difference. If the widthW of the QW is small com-
pared with the Fermi wavelength or the cyclotron rad
when the magnetic field is applied perpendicular to the
sheet, then there is quantum ballistic transport. Ballis
transport in QW’s has properties which cannot be accoun
for classically, since the electrons are wavelike in natu
This means that the wires act as waveguides for the elect
so that the resistance of a wire loses its local meaning. In
560163-1829/97/56~11!/6758~6!/$10.00
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regime, the boundary conditions on the contacts become
important and a system of connected wires show a nonlo
behavior. Therefore, a current flowing between two conta
might influence the voltage between two other contacts, e
though classically no current should flow between the t
voltage probes. Accordingly, this regime strongly depen
on the sample geometry. One of these is the well-kno
quenching in the Hall regime at low magnetic fields. Tra
tionally, this quenching has been explained by the collim
tion of the electrons. In this case, the ratio of the longitudi
momentum to the transverse momentum increases and,
zero magnetic field, these collimated electrons are prefe
tially transmitted straight through the junction, and the H
voltage is quenched.3

Another Hall effect in the ballistic wire is the negativ
Hall resistivity. This resistivity in ballistic wire transport ha
been dealt with both experimentally and theoretically.3–9

These papers show that the negative Hall resistivity depe
on the sample geometry. In narrow ballistic wires with hi
mobility, the predominant source of scattering is the refl
tion of the carriers off the confining potential. So, by chan
ing the geometry of the intersection of the Hall probes, th
showed quenched, enhanced, and even negative Hall r
tances at low magnetic fields. Also Buttiker showed theor
cally that the negative Hall resistance was a signature
four-terminal resistance measurements.7 Another example of
the negative Hall resistance has been shown in the four
minal magnetoresistance of a multichannel electron wa
guide by Timpet al.10 In Ref. 10, submicrometer wires wer
fabricated in extremely high mobility GaAs/AlxGa12xAs
heterostructures and only a few transverse, one-dimensi
subbands or channels carry the current because the wid
the QW is comparable to an electron wavelength. In t
wire, the negative Hall resistances through the Hall probe
different locations are observed. All of these depend on
geometry of the sample or measuring probe. In addition
this, the length and termination of a piece of wire not co
nected to a contact will change the behavior of the rest of
6758 © 1997 The American Physical Society
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56 6759QUANTUM MAGNETOTRANSPORT PROPERTIES OF . . .
structure.1 The lengthL, the width W of the wire, and the
height of the potential barrier are all crucial factors in ball
tic Hall resistances. To the best of our knowledge, there
so far not been a detailed theoretical study of the balli
Hall effect due to the length or termination of a piece
wire. So, in this paper, we calculate theoretically the ne
tive Hall resistance due to the termination of a piece of Q
i.e., we carry out calculations for short QW’s.

II. THEORETICAL FORMULATION OF THE PROBLEM

The single-particle Hamiltonian for a 1D array of QW
in a two-dimensional electron gas~2DEG! located in the
x-y plane with a uniform perpendicular magnetic fie
B5Bẑ along thez axis is given by

H05
1

2m*
@2 i\¹1eA~r !#21UL~r !, ~1!

wherem* is the effective mass of an electron with char
2e, r is a 2D vector in thex-y plane, andA(r )5(0,Bx,0) is
the vector potential in the Landau gauge. The lattice pot
tial UL(r ) in Eq. ~1! represents the effect due to modulati
which we take as

UL~x!5V0FcosS 2px

a D G2N

, ~2!

for modulation in thex direction. When the modulation is in
the y direction, we make the replacementx→y in Eq. ~2! to
obtain the potential. In this notation,V0.0 denotes the
height of the potential barrier, anda is the period of the
potential. The value ofN represents the steepness of t
slope of the potential. AsN is increased, the region betwee
adjacent potential barriers gets wider. IfV0 is large, an elec-
tron may be trapped within a channel and the model rep
sents a parallel array of QW’s. The reason for taking 2N as
the power in Eq.~2! is to make sure that the potential
positive whenV0.0.

We use the Kubo formalism for the static local condu
tivity which is given by

smn5 i\e2E dE f0~E! TrF v̂op

dGE
1

dE
v̂opd~E2H0!

2 v̂opd~E2H0!v̂op

dGE
2

dE G , ~3!

where f 0(E) is the Fermi-Dirac distribution function,v̂op is
the velocity operator, andGE

6 are the retarded and advanc
Green’s functions.

The single-particle eigenfunctions for the Hamiltonian
Eq. ~1! are given by

c j ,X0
~r !5(

n
Cn~ j ,X0!fn,X0

~0! ~r !, ~4!

where

fn,X0

~0! ~r !5
exp@2 i ~X0!y/ l H

2 #

ALy

A 1

p1/2l H2nn!
-
s

ic
f
-
,

n-

e-

-

3exp@2~x2X0!2/2l H
2 #HnS x2X0

l H
D . ~5!

In Eqs.~4! and~5!, n50,1,2, . . . is aLandau level index and
Hn(x) is thenth order Hermite polynomial. Also,Ly5Nya
is the sample length, in they direction,X05kyl H

2 is the guid-
ing center,l H5A\/eB is the magnetic length, andky is a
wave vector along they direction. The expansion coeffi
cientsCn( j ,X0) in Eq. ~4! are determined from the following
matrix equation:

(
n

F @En
~0!2Ej~X0!#dn,n81

V0

a2l Hp1/2
A 1

2n1n8n!n8!

3Bn,n8~X0!GCn~ j ,X0!50, ~6!

as well as the orthonormality condition:

(
n

Cn* ~ j ,X0!Cn~ j 8,X08!5d j , j 8dX0 ,X
08
.

From this calculation, we also obtain the secular equat
which determines the energy eigenvaluesEj (X0):

DetF @En
~0!2Ej~X0!#dn,n8

1
V0

a2l Hp1/2
A 1

2n1n8n!n8!
Bn,n8~X0!G50. ~7!

Here, En
(0)5(n11/2)\vc is the energy for thenth Landau

level with eigenfunctionfn
(0)(r ) for a homogeneous 2DEG

and the matrix elementBn,n8(X0) appearing in Eqs.~6! and
~7! is defined as follows, for the potential in Eq.~2!:

8Bn,n8~X0![^fn8,X0

2 ~0!~r !uUL~x!ufn,X0

2 ~0!~r !&

5E
2`

`

dx expF2
~x2X0!2

l H
2 GHnS x2X0

l H
D

3Hn8S x2X0

l H
D cos2N~2px/a!. ~8!

III. NUMERICAL RESULTS AND DISCUSSION

We now present numerical results for the band parts
the longitudinal and transverse quantum magnetotrans
coefficients when the 2DEG is modulated in thex direction
and compare these results with those obtained when
modulation is in they direction. We also vary the lengths o
the wires to study the dependence of the magnetotrans
coefficients on the wire length.

A. Transverse conductivity

In Figs. 1~a!–1~c!, we present numerical results atT50 K
for the transverse conductivitysxx , i.e., the current and the
applied electric field are along thex direction which is at
right angles to the channels produced by the modulation
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FIG. 1. The computed conductivitysxx as a function of the magnetic flux for the potential in Eq.~2! for ~a! four values ofN and
U051.2; ~b! N51 and five different values of the potential strengthU0; ~c! U05100.0 is fixed andN takes the values 1, 3, 5, 10;~d! same
as ~a! except thatU05100.0 and the modulation is along they direction. The electron density is given byn2Da250.5 andLx5Ly580 Å.
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tential in Eq. ~2!, for several potential barrier heights an
steepness of their slopes. The plots are presented as a
tion of the flux through a unit cellF5Ba2/f0, in units of
the flux quantumf05h/e. In Fig. 1~a! where the modulation
is weak withV050.156 meV, there are steps insxx at low
magnetic fields. These arise when the Fermi level cross
Landau level~LL !. For the parameters chosen in our calc
lation, the Fermi level is in then53 LL up to F50.7, then
it is in n51 up to F51.2, andn50 up to F53.0. This
feature in the electrical conductivity has been observed
other related calculations.11 Furthermore, as Fig. 1~a! shows,
sxx is not appreciably affected when the width of the pote
tial barrier is changed withN. This is understood by noting
that at T50 K, the contribution tosxx comes only from
electrons near the Fermi level. Defining the dimensionl
potential variable by U05m* a2V0 /A2p\2, we have
V050.156 meV for U051.2, a5200 nm, and
m* 50.067me , where me is the free electron mass. A
Fermi energies in the whole range ofF shown in the figures
are comparable with or lie above the top of the potential, i
EF.V050.156 meV. Subsequently, electrons with eigen
ergies above the Fermi level are not affected by the varia
of the width of the potential barrier withN, leading to the
nc-

a
-

in

-

s

.,
-
n

negligible changes in the results presented in Fig. 1~a!. These
conclusions are supported by our results in Figs. 1~b! and
1~c!. In these figures, we see how thesxx is modified as the
strength of the potentialU0 is varied. In Fig. 1~d!, we show
how sxx is affected by changing the value ofN in the po-
tential for modulation in they direction instead of thex
direction as in Fig. 1~a!. The conductivity is larger in Fig.
1~d! since the applied electric field and the current are alo
the direction of the channel.

In Fig. 1~b!, we choseU051.2, 2.0, 3.0, 4.0, 10.0, which
correspond toV050.156, 0.253, 0.380, 0.506, and 1.26
meV, respectively, fora5200 nm. The Fermi energies sa
isfy 0.190,EF,0.443 for 0.3,F,0.7; 0.217,EF,0.322
for 0.8,F,1.2; 0.116,EF,0.152 for 1.3,F,1.7;
0.161,EF,0.197 for 1.8,F,2.2; 0.206,EF,0.241 for
2.3,F,2.7, and 0.250,EF,0.268 for 0.8,F,3.0, re-
spectively, where the Fermi energy is in meV. The value
V051.265 meV, which corresponds toU0510, is well
above the Fermi levels. The steplike features are mainta
from U051.2 up to U054.0 but not for U0510. When
U0510, the steplike features insxx are modified and there
are some peaks due to the resonant backscattering of
potential barrier. These peaks do not appear in Fig. 1~c!
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FIG. 2. Plots ofrxx as a function of the magnetic flux for the potential in Eq.~2! for ~a! four values ofN andU051.2; ~b! N51 and five
different values of the potential strengthU0; ~c! U05100.0 is fixed andN takes the values 1, 3, 5, 10;~d! U051.2, N51 for three wire
lengthsLy5Nya anda5200 nm;~e! same as~d! except thatU05100.0. The electron density is given byn2Da250.5 and the sample length
in the x direction isLx5Nxa, whereNx54.
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when U05100 which means that the effect produced wh
the Fermi level crosses a LL is reduced in the strong mo
lation regime. However, as Fig. 1~d! shows, there are peak
in sxx even when the modulation is strong, if the current a
the external electric field are along the channel, i.e., when
modulation is in they direction. The large conductivities du
n
-

d
e

to the open orbits are generated in the low magnetic fi
regime and there is another peak aroundF51.2. This peak
is due to the resonant scattering with the potential bar
since it strongly depends on the width of the potential b
rier. For this calculation, the cyclotron orbit for a flux o
F i >1.2 is about the channel width. WhenN increases, the
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FIG. 3. Plots ofrxy as a function of the magnetic flux for the potential in Eq.~2! for ~a! U051.2 and four values ofN; ~b! N51 and five
different values of the potential strengthU0; ~c! U05100.0 is fixed andN takes the values 1, 3, 5, 10;~d! U05100.0,N51 for three wire
lengthsLy5Nya, wherea5200 nm. The electron density is given byn2Da250.5 and the sample length in thex direction isLx5Nxa, where
Nx54.
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width of the potential barrier decreases and the QW chan
becomes wider. So, the intensities of the peaks aro
F51.2 increase asN increases from one to ten in Fig. 1~d!.

B. Transverse resistivity

Our results for the resistivityrxx when the 2DEG is
modulated in thex direction transverse to the direction of th
channels are shown in Figs. 2~a!–2~c! for fixed Ny , i.e., wire
length. In Fig. 2~a!, the steepness of the slope of the poten
is varied by changing the power of the cosine potential fo
weak modulationU051.2 with Ly580 Å and V050.156
meV. At low magnetic field, anomalous large peaks are
tained. These peaks are reduced whenLy is increased as
shown in Fig. 2~d!, whereLy5160 Å. These high peaks ar
reduced as the sample size is further increased and may
disappear completely. Therefore, we conclude that the la
peak at low magnetic field is due to the finite size of t
sample. Also, the high peak in Fig. 2~a! at low magnetic field
is not sensitive to changes in the steepness of the pote
barrier. This can be explained, as we noted in Fig. 1~a!, that
the Fermi level exceeds the height of the potential barr
WhenF*1.5,rxx is reduced because for this range of ma
el
d

l
a

-

ven
ge

tial

r.
-

netic fields the electron orbit becomes smaller than the ch
nel width but the effect of the short lengthLy is given by the
slight increase inrxx asF increases. The smaller the valu
of U0, the more likely an electron will not be confined withi
a channel as it would be for largeU0 so that when the modu
lation potential is weakrxx has peaks due to the nonunifor
potential that an electron is subjected to. In Fig. 2~b!, nu-
merical results are presented for various strengths of
modulation potential for a fixed value ofN51 in the modu-
lation potential and lengthLy580 Å. As U0 varies from
1.2 ~i.e., V050.156 meV! to 10.0~i.e., V051.265 meV!, the
large peak at low magnetic field is significantly modifie
When U0510.0, this large peak due to scattering off t
sample boundary is altered the most. This means that w
the barrier height is much larger than the Fermi energy,
model simulates short quantum wires for whichrxx has char-
acteristics which are different from the weak modulation
sults at low magnetic field when the cyclotron orbits a
larger than the width of the channels. As the magnetic fi
increases, several peaks due to scattering off the pote
barriers are obtained. To support our conclusion that
large peaks inrxx at low magnetic field are due to the boun
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ary scattering whereas the peaks at higher fields arise f
the scattering off the potential barriers, we plot in Fig. 2~c!
our results for a strong potentialU05100 ~i.e., V05126.5
meV! for several wire widths. Clearly, the effect due to t
potential barrier is larger than the sample boundary since
sample boundary effect in the low-magnetic-field region
reduced and several peaks appear due to confinement b
barrier potential. Figure 2~c! shows that the heights of th
peaks inrxx decrease asN increases, i.e., as the quantu
wire becomes wider the effect due to scattering off the si
is reduced. Furthermore, the peak positions are slig
changed with the QW width. We comparerxx for various
wire lengthsLy in Fig. 2~e!. Giant magnetoresistance in th
lateral array of wires is obtained. The peak positions dep
on Ly and these calculations agree qualitatively with expe
mental results.8,12

C. Hall resistivity

Figure 3 shows our numerical results for the Hall resist
ity rxy for various potential barrier heights and steepness
the slope for the potential in Eq.~2!, which complement the
transverse resistivity in Fig. 2. In Figs. 3~a!–3~d!, there is a
quenching ofrxy at low magnetic fields. This quenching i
QW’s has already been explained.9,13 As the magnetic field
increases (F*1.0), our calculations show thatrxy increases
linearly with F and looks like the classical Hall effect. Ac
tually, whenU051.2 meV, the Fermi energy is above th
potential barrier and whenF*1.0, the cyclotron orbit is
comparable with or less than the width of the QW. Con
quently, the electron motion is the same as in the homo
neous 2DEG leading to the classical behavior forrxy when
F*1. However, this linear increase ofrxy in the range
F*1.0 is modified by a strong potential barrier as shown
Fig. 3~b!. The linear classical Hall effect is modified eve
more whenU0 is sufficiently strong, as shown in Fig. 3~c!,
and may disappear completely and get replaced by
anomalous Hall effect due to scattering with the wall of t
QW. For a strong modulation potential, there is a nega
Hall resistivity in the region of 1&F&2. When the width of
the QW is increased (N is increased!, the negative Hall re-
sistance is reduced. Also, as seen in Fig. 3~d!, when the wire
length is increased, the negative Hall resistance is redu
The negative Hall resistivity is due to the backscattering
m

he
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n

n

e

d.
f

an electron from the sample boundary when the cyclot
orbit is comparable with the length of the short QW.

IV. SUMMARY

In this paper, we calculated the transverse conducti
sxx , the longitudinal resistivityrxx , and the Hall resistivity
rxy for a 2DEG in a perpendicular magnetic field. The mod
lation potential is assumed to have a simple form wh
strength and steepness of slope can be varied. In the s
modulation limit, the model simulates a parallel array
quantum wires with a chosen width. We have presented
merical results for short quantum wires in the low-magne
field limit, i.e., B*0.3 T, using the Kubo method. The ca
culated results have steplike features in the transv
conductivity as the Fermi energy crosses a Landau leve
weak modulation potentials and giant low-field peaks in
transverse resistivities when the potential is strong. The H
resistivity is quenched at very low-magnetic fields. For we
modulation, our calculations show that as the magnetic fi
increases,rxy increases linearly withF like the classical
Hall effect over a range of magnetic fields when the cyc
tron orbit is comparable with or less than the width of t
QW so that the electron motion is the same as in the ho
geneous 2DEG. This linear increase ofrxy is changed con-
siderably by a strong potential barrier as shown in Fig. 3~b!
and may disappear completely and get replaced by
anomalous Hall effect due to scattering with the wall of t
QW whenU0 is sufficiently strong, as shown in Fig. 3~c!.
For a strong modulation potential, there is a negative H
resistivity at higher magnetic fields, i.e., for 1,F,2. The
negative Hall resistivity is reduced when the width of t
QW is increased (N increases!. Figure 3~d! shows that when
the wire length is increased, the negative Hall resistivity
reduced. The negative Hall resistivity arises from ba
scattering off the edges of confinement for short quan
wires when the cyclotron orbit is comparable with the len
of the short QW.
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