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Effective-medium method for hopping transport in a magnetic field
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An effective-medium theory for studying the influence of a magnetic field on hopping transport has been
developed. It permits both the magnetoconductivity and the Hall effect to be studied in the nearest-neighbor-
hopping(NNH) and in the variable-range-hoppifigRH) regime. The method has been applied to the dc and
ac Hall effect in three-dimensional systems. For NNH the static Hall mobility proves to be exponentially small
in the critical hopping length. This fact results in a change of the sign of the Hall mobility of intermediate
frequencies. For VRH the dc Hall mobility exhibits a powerlike dependence on temperature. Owing to this fact
the Hall mobility is nearly independent of frequency for small frequen¢®8163-18207)01935-9

[. INTRODUCTION distance behavior of the diffusion propagator, which com-
prises both particle and energy diffusion. To this end, a self-
During the past three decades the Hall effect in the hopeonsistent framework for the calculation of the long-distance
ping regime has been a point of controversy. The first whacontribution to the diffusion propagator has been developed.
succeded in investigating the effect was HolsfeStressing However, apart from the effective-medium formalism of Ref.
the importance of the electron phonon interaction, he introd5, no generalizations of these approaches to three-site cor-
duced a three-site model. The influence of the magnetic fieldelations have been published so far.
on hopping transport was properly taken into account in the For the NNH regime in all articlese.g., Refs. 3—Ban
phase factors of the resonance integrals. Using his model hexponential dependence of the Hall mobility on the critical
established a theory for the Hall effect in the high-frequencyhopping length was derived. For the VRH regime, the ob-
limit. Although his theory covers both nearest-neighboringtained results are controversal. The main point of contro-
hopping (NNH) and variable-range hoppin@g/RH) he re-  versy is related to the presence or absence of an exponential
stricted his calculations to the NNH regime, where he foundemperature dependence of the Hall mobility. A powerlike
the Hall mobility to be two orders of magnitude larger thandependence of the Hall mobility on temperature was derived
the drift mobility. in Refs. 3, 5, and 9. In contrast, an exponential dependence
Encouraged by this unexpected result, Amitay and Pdllakof the Hall mobility on temperature was found in Refs. 10—
tried to verify Holstein’s predictions experimentally. They 12. The experimental data are considered as confirmation of
found a serious discrepancy: the measured Hall voltagan exponential temperature dependence of the Hall mobility
proved to be orders of magnitude smaller, as estimated b§Refs. 19—23 However, comparing experimental and theo-
Holstein. retical data one should keep in mind that the former are in
Since then, many articles have been devoted to the theoyeneral obtained close to the metal-insulator transition while
of the dc Hall effect(e.g., Refs. 3—1Rby using different the latter results were derived deep in the insulating regime.
methods. While in the NNH regime the percolation theory The dependence of the Hall conductivity on frequency
and the effective medium method have proved particularlyand on the magnetic field is still a less-investigated problem.
useful; in the VRH regime mainly the percolation theory hasin Ref. 24 the frequency dependence of the Hall conductivity
been applied. Unlike NNH, VRH is not only a problem of in the NNH regime has been studied by means of the
particle diffusion but also of energy diffusion, which makes effective-medium method of Ref. 15. According to this cal-
it more difficult to treat analytically. The standard effective- culation the Hall conductivity in the NNH exhibits qualita-
medium theory proves to be inapplicable to the study of theively the same dependence on frequency as the longitudinal
conductivity in the VRH regimé>'* Refined effective- part of the conductivity. For small frequencies the authors of
medium treatments have been published in Refs. 15—1'Ref. 24 obtain a powerlike dependence with respect to fre-
While in the effective-medium approach of Ref. 15 the dis-quency. For high frequencies their result agrees with Hol-
ordered solid is modeled on a Cayley tree, the effectivestein’s result. For low and intermediate frequencies the real
medium approaches of Refs. 16 and 17 do not rely on theart of the Hall conductivity increases monotonously with
introduction of a reference lattice. To overcome the depenincreasing frequency. In the VRH regime a calculation of the
dence on the lattice in Ref. 16, the diagrammatic techniquérequency dependence of the Hall conductivity for small and
by Gouchanour, Andersen, and Fayerfor the self- intermediate frequencies has still been lacking. A calculation
consistent calculation of the conditional probability function of the magnetic-field dependence of the Hall conductivity
was used. In contrast to to Ref. 16, in Ref. 17 the configuhas not been published so far.
rational averaged conductivity was deduced from the long- In this paper we present an effective-medium theory for
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studying the influence of the magnetic field on hoppingHereC,,=f(1—f,), wheref,,=f(e,) is the Fermi distri-
transport. The method is based on the effective-mediunbution function with site energy,,, R, is the position vec-
theory of Ref. 17. Beside the investigation of the exponentiator of sitem, () is the volumeE is the electric-field strength,
contribution to transport coefficients with respect to the criti-ands= —iw, wherew is the frequency of the applied elec-
cal hopping length, it permits also consideration of the pretric field. The Green’s functio® ., Satisfies the equation
exponential factor. By means of our method we derive ex-
plicit equations for the symmetric part and for the
antisymmetric part of the configurational averaged current

with respect to the magnetic field. A further consideration of, " " -
the symmetric part is, however, beyond the scope of thd he quantitied",,,,, are related to the transition probabilities

present paper. Using our theory we calculate the configura‘?me”ng the rate equations in the.ab_sence (_Jf the ele_ctric
; i ; i field.? In the absence of a magnetic field their calculation
tional averaged Hall conductivity both in the NNH and in the : i ¢ g \

VRH regime. Doing so, we restrict our consideration to theMay be restricted to two-site processes. In this case they are
strongly localized regime. We find that in this regime theSymmetric with respect to their indices. The study of the
Hall effect in the NNH regime differs from the Hall effect in influence of a magnetic field requires us to go beyond this
the VRH regime in that different configurations give rise to @PProximation and to include three-site processes in our con-
the most relevant contributions to the Hall current. This factSideration. In that case they can be decomposed into their
leads to interesting differences between the behavior of thBV0-Site parts and into their three-site parts according to
Hall conductiyi?y in the NNH regim(_a anq the behavior of the I, —r® LG 3)

Hall conductivity in the VRH regime in the presence of mmTEm'm’ - m'm?

higher magnetic and alternating electric fields which haveyhere the two-site patf(? is independent of the field. The
not been published in the literature so far. Our calculationthree-site part describes the interference of amplitudes of al-

shows that, in contrast to the VRH regime, where the lineagernative hopping paths via a third site. Accordingly, it can
situation with respect to the magnetic field is realized alsthe written in the form

for higher magnetic fields, the Hall conductivity in the NNH

regime exhibits quantum oscillations in dependence of the (3)

magnetic field. The period of these oscilations is given by the Lim= ; Fm’msm' )
normal flux quantum. The fact that different configurations *

contribute to the current is manifest also in the frequencylhe quantitied’y, . can be further decomposed into their
dependence. Whereas in the NNH regime the Hall mobilitysymmetric and into their antisymmetric parts with respect to
proves to be strongly dependent on frequency, the Hall mothe external magnetic field. These parts obey the following
bility in the VRH regime is independent of frequency at all relations of symmetry:

for small and intermediate frequencies. The frequency de-

SPum=8mmT > TovmlCon Py — Con P} (2)
m//

pendence of the Hall conductivity in the NNH regime ob- Fﬁﬁimszr(nf;mzml, 6)
tained by means of our method differs from that derived in
Ref. 24. In contrast to Ref. 24, where the real part of the Hall rggfmzms: _Fﬁr?rjmlmz: _r%)mgmz_ (6)

conductivity increases monotonously for intermediate fre-
quencies, our calculation predicts a change of sign of thén the course of these relations the quanfity , satisfies the
effect. For small and high frequencies our results agree witiequation

those found in Ref. 24 and Ref. 1.

Although our main results have been derived deep in the Firm(H) =T (—H). )
strongly localized regime, our method itself is not restricted
to that limit. Also, in those regimes where the most pro-
nounced temperature dependence of the Hall mobility in th
VRH regime is not governed by the powerlike dependence
on the critical hopping length our method can be used to
determine exponential prefactors. Instead of performing dc $2 CovPmm=Ch, (8)
measurements by varying the temperature in a large range, m’
we suggest ac measurements with fixed temperature.

Owing to the principle of detailed balance and the law of
robability conservation the Green’s functidty,,,, obeys
he sum rules

s>, Poym=1. 9

IIl. BASIC EQUATIONS Both relations can be easily derived by means of @y.
Note that in the presence of a magnetic field it is not

For the calculation of the current we use the conditional X . . . X
probability function approach developed in Ref. 17. Within p055|_ble to rewrite Eq1) n .SUCh a way that it o_nIy involves
the differences of the position vectors of the sites. Neverthe-

this approach the current is calculated from the Green’s funcI it is ind dent of the choi t th dinat ¢
tion P, according to ess, it is independent of the choice of the coordinate system,

which is to be seen from an explicit displacement of the
coordinate system and an application of the sum riliess.

(8) and(9)].

> (Ry—Rm)(ERy)Coy Prrm(s). (D) To proceed further, a decomposition of all quantities into
m’m disordered quantities and disorder-independent ones proves

e’s?
8= 70
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to be useful. This is achieved by changing the representation To calculate the three-site pat®) we introduce the func-

from discrete to continous coordinates. The transition is pertion ®, which represents the two-site approximation of the

formed by defining the new Green'’s function, Green’s function of Eq(12). It is given by the solution of
the equation

P(p'.p)=2 8(p' = pm)Prmmd(p—pm), (10 : , vt ]
&, O 7 pm)Pmmolp P SB(p' )= 0lp’ ~p)+ [ AoV ().
where pn={Rm.em},p={R,€}. In the new representation (15
(10) expression(1) for the current takes the form Using ®, the two-site part of the conditional probability

function P is given byP®)(p’,p)=5(p")®(p’,p). Conse-
. e%s? quently, the three-site part & reads
1= Ta f dp’dp(R'=R)(ER")C(€")P(p’,p). (11)

. . _ P(S)(p’,p)=f dp1dpon(p" )P (p",p) VP (p1.p2)
Moreover, the equation of motion for the Green’s function
(2) may be cast into the form XD(py,p). (16)

To proceed further it is expedient to introduce the
SF’(p’,p)=77(p)5(p’—p)+fdp"P(p',p”)V(p”,p), function @, which_is defined by the relation
(120 C(e)n(p")P(p".p)=P(p".p) n(p)C(€). According to its

) definition, the function® satisfies the equation
where n(p) =2 ,0(p—pm) is the structural factor. The po-

tential V is given b ~ ~ ~
g y S(D(P/,P):5(P’_P)+f dp”‘b(p',p")V<2)(p",p),

1
v(p’,p)=f dp"7(p")C(e'{T'(p,p") 8(p" ~p) where ;

—T(p".p")6(p" = p)}, (13

2)( o7 —c-1 " ” "
whereF(p’,p)=Fm,m|pm,:p,,pm:p. Due to the decomposi- Vo (php)=C (E)J dp"n(p")L(p"p)
ti_on (3) the po_tenti_ar\/ can be_ also decomposeq into its two- X{8(p"—p)—68(p"—p)}. (18)
site part and into its three-site parts. Its two-site approxima- -
tion V® is determined by the structural factgrand by the The advantage of the introduction of the functidnlies in
function T@. As T'® is independent of the disordev(?) the fact that it moves the structural factgrin front of Eq.
depends on disorder solely via the functignThe three-site  (16) from outside to inside. This fact proves to be advanta-
part of the potentiaV is determined by the the structural 9eous in the performance of the averaging procedure. By
factor  and the three-site contributioii®®. As the latter ~Means of Eqs(17) and (18) the magnetic-field dependent
contribution is not only determined by the initial and the Part of the current can be written in the form
final site, but also by an intermediate third site, it is still

; . S _ e’s?
affected by disorder. In fact, it can be written in the form  ; — _ Ta f dp'dpdp,dp,dpsR(ER’)
F(3)(p’,p)=f dp3n(p3)T(p’.p3.p), (14 X®(p',p1) 7(p1) 7(p2) n(p3)AL (p1,p3.02) P (p3,p)
~L(p2.p3.p)P(p1,p)}- (19)

where I'(p’,p3,p)=T" =l = _,. Conse- .
(p"ps.p) m_m3m|pm Pl Pmy=P3 Pm=p " In order to obtain Eq(19) we have taken advantage of the
quently, the the three-site pav® of the potentialV con-  symmetry relationg5) and (6).

tains two factors of the structural facteyx

Below, we focus on the calculation of the configuration-
averaged conductivity. The solution of this problem requires
the calculation of an approximate solution of E§2) and
the performance of the averaging procedure. For the two-site For the calculation of the configuration-averaged current
approximation this program has been performed in Ref. 17density we use the configuration-averaging technique for the
In the presence of the magnetic field the solution of the probstructural factory proposed in Ref. 17. The technique im-
lem is rendered more difficult by the fact that the potentialplies a diagrammatic expansion of expresgib®) in powers
V is nonlinear with respect to the structural factprHow-  of the structural factom and the subsequent application of
ever, an important simplification can be achieved by observthe averaging procedure to the individual terms.
ing thatl' ®<T'(?). Using the smallness df(®) with respect In order to expand E¢19) with respect ton we have to
to I'® we linearize Eq(12) with respect to the third site. find a series expansion of the functioisand ®. Such an
Accordingly, we decompose into its two-site parP(®) and  expansion can be obtained by reiterating Etp) and Eq.
into its three-site par®(®). We stress that this simplification (17), so that the series of the kernel of the currei® can be
does not rely on the strength of the magnetic field. represented as depicted in Fig. 1. To calculate the configu-

[lI. CALCULATION OF THE CONFIGURATION-
AVERAGED CURRENT



56 EFFECTIVE-MEDIUM METHOD FOR HOPPIIG . . . 6701

i 1 2 3 1 1 1 2
I = —c&o— - | | i : | i :
1 1 1 [} 1
? SZ A= + e + & + &—8 + o—mO +
+ —
2 1 2 2 1 3
A L A
+ ' — I I I 1 1 i
> —e + 6—0 + 6—9
+ o FIG. 3. Diagrams contributing to the the functién Here every
. o . . full dot is associated with a facto€ (e")['(p’,p){8(p—p)
FIG. 1. Diagrams contributing to the irreducible kernal —8(p’ —p)}, wherep'(p) is the argument of the lefright) elec-

Everey full dot symbolizes a potentid(p;,p;): the empty dot tron line andp eitherp,, p», or ps. The triangle denotes the three
represents the structural factgr A full line is associated with a  point functionI” and the full line the diffsuion propagatét.

factor 6(p;—p;)/s. The triangle denotes the three-point functian

Furthermore, integrations over all intermediate arguments are imnjtude of the difference of the position vectors, i.e.,
plied. F(p',p)=F(|R'—R||€’,€) and satisfies the sum rdfe

ration average we assume the sites to be statistically inde- ,
pendently and uniformly distributed in space. The distribu- SJ dpF(p’,p)=1.
tion of site energies is assumed to be given by an arbitrary o~ - _
probability densityp({e}). In particular, the application of The functionF is related toF by F(p",p)=F(p,p"). Using
the averaging procedure to the structural facjarerves as a representatioii20) and relation(21) the current can be writ-
definition for the density of states, i.é5(p))=N(e). The  tenin the form

process of averaging can be illustrated in the customary way 5

by providing all dots with impurity lines and joining lines. In  ; _ _ f ’ ’ ’

the course of this operation all diagrams can be decomposedH kTa | 9P dpdpudpzdpsR(ER HKpspar,(P"P)
into the irreducible part connected with the functibrand ~ ,

the reducible remainder. All diagrams giving rise to the re- ~Koppgn, (PP} (22)

mainder can be collected to form the averages of the funcy is 14 pe mentioned, that in course of relatitd) the part

tlpns ® and P, ' re;pectlvely. Consequently, the set of all R, which does not change its topology by exchangingnd

dlagra_ms c_ontrlbutlng to the kernel of the current can bepg, does not contribute to the Hall current.

comprised into the form The main property of the diagrams contributing to the

irreducible part is the fact that points, p,, andp; differ

f dp"dp"’E(p',p")lplp (0" p"F(p",p),  (20) from each other. Due to that fact, the irreducible part con-
$2 tains at least three points.

(21)

, N , = =, Below we restrict the calculation of the current to the
where F,(p P)=(P(p".p)), F(p".p)=(P(p".p)), and . qijoration of three-point diagrams. This restriction is
p1pa0,(p" ) IS the irreducible part connected with the three-p o4 o0 3 similar appoximation used in Ref. 17 for the
site functionl. The irreducible part contains the irreducible  ca|culation of the two-site contribution of the current. There
partsK andK originating from the first and the second term the calculation has been restricted to the inclusion of ladder
of the kernel. A typical diagram that contributes Kois  diagrams. In the three-site description all full dots of the
depicted in Fig. 2. irreducible blocksk and K are connected with one of the
The function F describes the diffusion processes in aempty points, which permits a summation of all those dia-
four-dimensionaR— e space'’ It is a function of the mag-  grams. Within this description the irreducible blogkcan be
represented in the form

/,//;;E‘\\\‘\\\\\ Kplp?’pz(p,!p):{ﬁ(p,_pl)+A(pl!p’)}
LT A IR XT(p1.p3,p2){8(p2=p)+Alp2.p)},
‘\\’\ L Y Y /. F;' (23)
T~ | [
BT L7 whereA(p’,p) is the contribution of the diagrams depicted

in Fig. 3. In this picture every full dot represents a contribu-
tion of the form C~ (&) (p’',p){6(p—p)—6(p'—p)},
wherep’ (p) is the argument of the lefright) electron line
dot is associated with a structural factgr The triangle represents arld p1s eitherpy, po, or ps. The full line reprgsents Fhe
the three-point functiof’, a full line the propagatoF (p; ,p;). The diffusion propagator introduced above. The irreducible
application of the averaging procedure is symbolized by dashe@artK exhibits a similar representation.

lines. The process of correlated averaging is symbolized by joining The summation of all contributions is rendered more dif-
lines. Integrations over all intermediate arguments are implied.  ficult by the fact that, owing to the functids, the arguments

FIG. 2. A typical diagram contributing to the irreducible kernel
K. Here every full dot symbolizes a potentié{p; ,p;). The empty
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of consecutive points differ from each other. However, theprocesses of energy diffusion and the Fermi correlation,

calculation can be considerably simplified by using thewhich were neglected in Refs. 27-29.

effective-medium approximation proposed in Ref. 17. In this  For the antisymmetric part we obtain

approximation the propagatoF(p’,p) is replaced by

fC(e")8(p’' —p), wheref is a constant that was determined . e

self-consistently in Ref. 17see below. In the course of this Jﬁ)zm fdpldp?dpiﬂN(El)N(EZ)N(E3)F(a)(p1’p3'f’2)

operation every full dot is replaced b (p’,p){8(p—p)

—8(p'—p)} and every solid line by(p' —p). XD %(p1,p2,p3)(Ragdboiz— Rib1zd)

Inserting Eq.(23) into Eq. (22) we see that the consider-

ation of the functionA(p’,p) can be restricted to the quan- X{B(RiCazsT RosCaral (30

tities A(p1,p) andA(p,,p). To calculate these quantities in wherec,,3=1+2 fI' 3+ 2 f',— f'y5.

the effective-medium approximation we introduce the func-

tion A(')(p’ ,p). The fl_JnctionA(')(p’,p) consists of the sub- IV. HALL EFFECT

set of diagrams of Fig. 3 that starts with the pgmmt p; (i

=1,2,3). UsingA®) the quantityA can be written in the The Hall contribution to the current is given by EGO).

form A further elaboration of its temperature and frequency de-

pendence requires, obviously, the performance of the inte-

. grations and the usage of additional theoretical concepts for

A(P',P)ZZ AD(p,p). (24 the density of states. A first step in this direction is the per-

=t formance of the angular integrations. These integrations can

The functionsA®") satisfy the following system of equations: be carried out exactly and yield

2

3

AV(p'p)=FT(p",p){8(pi=p) = 8(p" = p)} oo & 8T e
+T(p" o) {A(pi p) = A(p' p)}. (25 kThe 9
For the calculation of the current only a calculation of the B
_ LAt ¢ n X | dRdR,
nine quantitiesA®(p; ,p) is needed. As these quantities are

antisymmetric with respect to exchangingndj only three

of them are independent. Solving Eg5) for those we ob- x JR1+R2 dRsR;R,R:SA(R)G(h(R)))
tain IR1— Ryl
DA(p1,p) =a1236(p—p2) +a1320(p— p3) XJ de;de,desN(e;)N(ep)N(€3)
—(apztaiz) d(p—p1), (26)
XD X R, €)A(R ). (32)

a195= fL 1o+ FA(L 1ol 13+ Tyl 93+ Tial29), (27)

D=1+2 f(F12+F13+F23)

Here we have introduced the function

n(h)

+3f2(F 1l 15+ Tyl 53+ T il 59), (28) g(h)= h2 ih)) (32

where I';;=T"(p; ,p;) =Tji . The quantityA(p,,p) can be
obtained from Eqs(26)~(28) by exchanging 1 and 2. the areaS of the triangle formed by the siteR;, R,, and
Using the quantitie\(p1,p) andA(pz,p) we obtainan ot is given by h=(eHS/(%c). The functiong(h) is
expression for the current. This expression can be f“rth%troduced in such a way that it approaches 1 lfior 0.
decomposed into its symmetric and antisymmetric parts withy 5 \saqently, it can be omitted in the consideration of the
respect to the external magnetic field, which describe th‘ﬁnear contribution to the Hall effect with respect th The
magnetoconductivity and the Hall effect, respectively. Us'ngfunction A entering Eq.(31) is related to the three-point

Eq. (5) the symmetric part can be written in the form functionT' @ It is determined by the functiod’ defined by

The parameteh equals the number of flux quanta passing

e? , .
jf_?:m fdpldpzdpa»N(el)N(62)N(63)r(s)(p1,p3,p2) T'®(p1,p2,p3)=A"(p1,p2,p3)Sin{eH[R13X Ry3]/(2%C)}.

(33
D™ %(p1.p2,p3)(R1gb123— Rogha1a) As A’ is solely a function of the energies and of the magni-
X {E(Rygb1p— Rogbo1a)} (29) tudes of the vectorR,3, Ry3, andR 53— Ry3, it has the form

A"(p1,p2,p3)=A"(R13,Rz3,|Ris— Raog| €1, €2, €3). The
where Rjj=R;—R; and bjp;=1+2fI',3+fI';3. The ex- functon A is related to A" by A(R,¢)
pression |n Ref 2 differs from those found in the literature=A’(R;,R,,R3|€1,€,,€3). The details of the calculations
(see e.g., Refs. 26—2n that the statistical correlation be- leading to Eq(33) are presented in the Appendix.
tween the three sites in question has been taken into account. Equation(31) describes the Hall effect in the NNH re-
In derving Eq.(29) all three sites have entered the averaginggime, in the VRH regime, and in the region of crossover
procedure on equal footing. Moreover, it contains both theébetween them. A further investigation of the Hall contribu-
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tion to the current in the region of crossover requires theproximately 0.89. The value, which was determined by
usage of a concrete model for the density of states in thismeans of the effective-medium theory, is in good agreement
region and the performance of additional numerical calculawith the percolative result¥.

tions. Below we restrict the consideration to the calculation In order to perform the residual integrations in Eg4)

of the Hall contribution in the NNH and VRH regimes. approximately we change the integration variables fRyrto
X; according tox;= aR;— p/2. Thereafter, we calculate the
A. The Hall effect in the NNH regime integral in the asymtotic limip,— . The leading contribu-

In the NNH regime the transitions occur on the maximumtIon to the current reads
of the density of states. AccordingliN(e) can be approxi- _ e3nd 872
mated byN(e) =nd(e€), wheren is the concentration of sites = KThe TKVga)a_lo[EX H]

at the maximum of the density of states. In the course of this

approximation the current reads s ) pe\®
Xexp(— EPC)ch(hc) 2 (42)
L €°0° 87 oo
W = The T[EXH]L dR,dR, The numerical constan is given by
Ry+Ry , _ f ” dy,dy,dy,
J o ey RS R 0 T 203 Y3 Y3+ 30AVET ViVt YA
_ — 3
X g(h(R))DH(R)A(R)). (34) =0.291r" (43

The quantity A is given by A(Ri)zvg"") expl— a(Ry+R, The quantityS., given by S;=v3RZ/4, represents the di-

+Rs)}. The two site contributions enteriri [Eq. (28)] have mensionless area of the equilateral triangle with site length
thesform R., which yields the main contribution to the Hall current.

The parameter

1= v exp(—2aRy), (35 eHS

h -
I'15=v exp(—2aR,), (36) ¢ fica?

wherea ! is the localization length of the state. The quan-determines the corresponding number of flux quanta passing
tity T',3 is obtained from Eq(36) by exchanging 1 and 2. the critical triangle. It is to be mentioned, that the validity of
The preexponential factors and »{ depend on the Eq. (42) is restricted to magnetic fields obeyihg<p.. Us-
electron-phonon coupling strength.For strong coupling N9 Ed- (42) the Hall conductivity reads

with phonons they are given by

(44)

~ Hend 72 (&) 307
5 UXYZSInfszKVS a “R¢g(hy)exp—3aR,).
\/; ‘]0 —2 €F Ea 45
V= B_h \/ﬁ_ cosh m exp — ﬁ , (37) ( )
a Here ¢ is the angle between the direction of the magnetic
33 4E field and the direction of the electric field.
@__"T _ Y0 2| SF _%Ea The Hall mobility is determined by the relation
V3 cosh ex , (38 ,
8v3 REKT 2kT 3 kT uy=(Coy,)/(Hay,). The diagonal component has been cal-

. L culated in Ref. 31. It is given by
where E, is the activation energy for a small polaron hop

andJ, is the preexponential factor of the resonance integral 21 e2n?
[J(R)=Joexp(aR)]. In the weak-coupling limit the preex- Ox=E T Rovexp —2aR,). (46)
ponential factors take the form

Accordingly, the Hall mobility takes the form

o €F
V= %VphCOSh 2(?), (39) STk en% yga)
Un=""7" 7% - 9(NJexp—aR). (47)
2
V(ga):i A Vo cosh‘z(i), (40)  Here we have fixed to = /2. It is to be mentioned that
16 Jo 2kT the fraction involving the preexponential factors depends

neither for strong coupling nor for weak coupling with
phonons[Eq. (47)] on the position of the Fermi level. Ac-
cordingly, Eq.(47) is completely independent of the Fermi
level. The fact that the sign of the Hall effect does not
change by changingg to — e (by changing from electrons
fr=exgpe) (41) to holes was first observed in Ref. 32 and termed fh&
anomaly of the hopping Hall effect.
with p.=2aR., whereR. is the critical hopping length. In In Ref. 3 the Hall effect in the NNH regime has been
the static case we haR.=An"*3, The parametek is ap-  studied in the linear approximation with respect to the exter-

where v, is a constant of the order of the characteristic
phonon frequency.

For NNH the parameter has been determined in Ref. 31.
It is given by
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nal magnetic field by means of percolation theory. The exSimilarly to the NNH regime the quantity/,; is obtained
pressions obtained in that paper coincide with our equationsom Eq. (53) by replacing 1 by 2. The functioA has the
in the limit g(h.)— 1 up to preexponential numerical factors. form [compare to Eq(38)]

In Ref. 3 the preexponential factor of;, is determined by

the correlation length. Referring to this result, the effective- ~ A(r;,z)=v§ exp(—r1—r,—r3—|z1] = 25| — |23
medium method is comparable to the percolation theory in

1
that it leads, like any other self-consistent-field method, to a 5]zt 2o+ zg), (54
determination of expressions for the critical index of corre-where
lation length. Similar results for the Hall mobility in the
NNH regime were also obtained in Refs. 4-8. @ 7 J3 4 E,

According to Refs. 3—6 the main contributions to the cur- V3 =5/ iEKTOM T3 k) (55

rent in the NNH regime are governed by configurations of

equilateral triangles with side length of the order of the criti- The self-consistent parametewas determined in Ref. 17. It
cal hopping length. In a strong magnetic field this fact leadds given by Eq. (41), with p.=(To/T)** where

to oscillations of the Hall mobility that depend of the number To=2A(2a)% (kNg). The numerical constanf has not

of flux quanta passing the critical triangle. The disapearancbeen determined so far. Its calculation requires the solution
of those oscillations with increasing magnetic field, de-of the diffusion equation in the presence of inelastic
scribed by Eq(32), is related to the rotation of the triangle scattering’

through the axis of the magnic field that was performed in The quantityG gives rise to two kinds of contributions to
course of the averaging procedure. Consequently, it does nihe current. The first kind of contributions is determined by

occur in two-dimensional systems. configurations that have all energies on the same site of the
Fermi surface, the second kind by configurations with ener-
B. The Hall effect in the VRH regime gies on different sites of the Fermi surface. However, it turns

o ] ) out that the second group of contributions, which originates
Characteristic for the VRH regime is the fact that thefrom jumps across the Fermi surface, is exponentially small
transitions happen near the Fermi surface. Accordingly, ags compared to the first group. Their ratio proves to be of
Iong as the density of 'states has no pecularities .within thig)rqer exp p/3). Owing to that fact, we restrict our consid-
region it can be approximated BY(e) =N . Introducing the  eration to those configurations having eithar,z,,z;>0
dimensionless variables=aR; and zj=(€;— €£)/2kT ex- o z,,7,,2,<0. To calculate G in this approximation

pression(31) for the current reads we change the variables of the energy integrations
3 16 > to 21=Zl+l’1—r2+r3—pcl2, Zé=22—r1+r2+l’3—pc/2,
ma):% 977 [ExH]N,ﬁa*m(ZkT)ZG, (49 z3=23+r+r,—r3—p 2. ThereafterG reads
kS ri+ry
where G=2v{ exp(—pc)f drldrzf drsB(r))
0 [ry=ral
G:f d21d22d23f drldrz Xf dzj’-f dzé
— 0 [ri—rp+rg— (1/2) pel [ro—rq+rg3— (1/2) pel
rp+ro 1 ©
XJ drgB(ri)D™(r;i,z)A(ri,z), (49 ><J dziexp{— 3 (ry+rp+rsg)
Iri=rol [ri+ro—r3— (1/2) pel
B(r)=r1r,r3S*(r))g(h(r)). (50) — 5z 2+ 2)}D Nz + 25,21+ 25,25+ 2).
As the functiond’;; and A(r;,z) differ for strong coupling (56)
and weak coupling with phonons we treat these cases sep@fere the arguments of the functi@ are the arguments of
atly. the quantitied’;; enteringD. As the main contributions to
) _ the integral arise from the region of smal] the limit
1. Strong coupling with phonons pc— can be taken easily. Replacing the lower limits of the

In the strong-coupling limit the quantitidy; are given by ~ energy integrations by-o we obtain
[compare to Eqs35) and (37)]

o ri+rs
G=2vP k' exp(— f drdrf dr3f(r;
I'o=v exp(—2r3—|z;|—|2z]), (52) v X po) o 7 Iry=rol p(r)
1
T15= v exp(—2r,— 2| = |24)), (52) xexp = 5 (it ratrs)}, (57)
where where
2 , 27 (= dx;dx,dx3
,,:E I ex;{—E>. (53) T2 )0 12083+ 3033 33 33)
20 JEakT kT (58)
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While the main contributions to the spatial integrations origi-the same side of the Fermi surface has the f@hare are 12
nate fromr;~1, the main contributions to the energy inte- configurations that can be obtained by exchanging the ener-
grations arise from the region<0z;<p./2. Therefore, the giesz)
most important contributions to the current are determined
by configurations forming equilateral triangles with side . _ @& [~ * Z3 Z
lengths of ordeR;~ ! and site energies ranging from 0 to G=3} )fo drlerdr?’fo dz3fo dzzfo dz,
kT(To/T)Y*on the same side of the Fermi surface. This fact
differs drastically from the situation in the NNH regime,
where the most important contributions to the current origi-
nate from triangles with side lengths of ordey.

Owing to the smallness of the typical site length the di-  X[2+exp(2z,—22,)]
mensionless parametéy, is much smaller in the situation -1
under considepration tharcn in the NNH regime. In fact, it is of XD APt roh 22y Tyt rat 225, 1o 11 22,). (69
orderh,~eH/(fica?). Therefore, in contrast to the situation Here the arguments of the functidh coincide with the ar-
in the NNH regime, the linear approximation to current with guments of the functionE;; enteringD. In order to obtain
respect to the magnetic field is applicable even for largeEq. (65) we have used the relation
magnetic fields. The oscillations of the Hall mobility are ab-
sent in the situation under consideration. For practical unat- * rytr
tainable large magnetic fields the Hall mobility approaches JO drlerJ’

ri+tr, ry+rs ro+ra
2 ' 2 " 2

exp—ri—ro,—rz3—22z3)

2
IdraF(rl,rzyra)
2

r{—r
zero.
Below we restrict the consideration fg<1. Doing so, 1 (- ri+ry, ri+rg rotrg
we replaceg(h) by 1. Performing the integrations we obtain T4, drydradrsF 2 ' 2 ' 2 (66)

(59) thaF applies to functions that are symme_tric with respect to
their arguments. In order to calculate the integrals in(E§).
we change the variables from andz; to z,=z,— p./2 and
z;=123— p /2. Thereafter, we take the limji.—~, so that

11
G=5 320 k' expl — pe).

Therefore, the Hall conductivity takes the forid  E)

H el 3\ To| ¥4 we obtain
— i 3 0
(Txy—z 88k %Vga)NF(kT)z E) exp{ - (?) }
(60) G=7lpcexp(—pc), (67)
The diagonal contribution to the conductivity, has been
investigated in Ref. 17. It is given by with
2. N2 7/4 14
ma € VNFkT TO TO ®© ® 0 r1+l’2 r1+l’3 I’2+r3
UXXZ%T(?> eXF{—<T , (61 I:fo drldrzdrgf_wdzsfO dzzﬁ( T

wherea equals 4 for strong coupling and 3/2 for weak cou-

>< — —_ —_ —
pling with phonons. Using Eq61) and Eq.(60) the Hall xR~ 1112~ M5~ 2)

mobility is given by XD X ry+r4 23— 25+ pe,r1+r3+23
11557«'A e v [ T\ +peiFatratzatpe). (68)
“H:TWT( T_O) ©2 the quant cf
e quantityl depends on the strength of the magnetic field
but not onp.. For small magnetic fields it reduces to a
2. Weak coupling with phonons numerical coefficient. Similarly to the strong-coupling case
In the weak-coupling regime the quantitiEg are given the main contributions toiilntegrz(aBS) originate from equi-
by lateral triangles witlR;~ «~*. The characteristic energies of
two sites are of ordekT(T,/T)Y* the characteristic energy
[o=vexp—2r3—|zi| — |z — |za—z,)), of the third site ranges from 0 toT(T,/T)Y4.
A further investigation of contributions originating from
Fia=v exp —2r,—|z1| —|z3| — |z1— z3)), (63)  configurations with site energies on different sides of the

Fermi surface reveals that, amongst them, those configura-
tions prove to be most important that are characterized by
equilateral triangles of small side length and that have two
i 1/4 i i
A1 z)= v @exp —f—To—T exol — |z = |z energies of ordekT(T,/T) " on the same side of the Fermi
(ri,z) = vexp(—ri=rp=ra){lexp~|z,|~|z| surface and the third energy of ordek 2 on the other side.
—|z3— 23| |z~ z3) ] +[ 23] +[1-3]}. Although these contributions are also proportional to
64) exp(—p.) they are small with respect to the parame,zntgiL as
compared to the contributions considered above in detalil.
The preexponential factor is given b%a)=3h vghlJo. The  Therefore, they are omitted in the following. Using E7)
contribution of those configurations that have all energies otthe Hall conductivity takes the form

wherev=v,,. The quantityl’,3 can be obtained frorfi,3 by
changing 1 to 2. The functioA has the form
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H 1672 &3 @) — 1043 o[ To va To| ¥4 rations are given by equilateral triangles with side lengths of
oxy=¢ 3 177 vs @ Ne(kT) (T) ex —(?) order(R)~a~ ! both for strong and for weak coupling with
phonons.
(69
Consequently, the Hall mobility is given by V. FREQUENCY DEPENDENCE OF THE HALL EFFECT
e Vga) T 52 The effective-medium method presented so far can also
uy="70mAl P — (16 T_> (70 be used for studying the frequency dependence of the con-
o 14 0

ductivity. Within the method the frequency dependence is
. . - entirely contained in the parametirwhich is reflected in a
According to our results, the Hall mobility exh|b|t_s a.freque)r/my dependence OF; the parameter The frequency
- ) |Eiependence of the diagonal part of the conductivity was al-
the limit of large p; both for strong coupling and for weak ready investigated in Ref. 17 and in Ref. 31. There it was

coupling with phonons. In the literature the temperature de'shown, that for small frequencies the conductivity obeys the

pendence of the Hall mobility in the VRH regime has been a, ;
: ) ) : guation
matter of issue so far. The main point of controversy is re-
lated to the presence or absence of an exponentially depen- Op(@)  on(®)
dence of the mobility. If we write this dependence in the oy T (74)
form yx(0) yx(0) o

The characteristic frequeney, is of the order of the critical
To| Y4 hopping probability(Refs. 17, 31, and 33As o,(w) and
Up~ex _X(? ’ (7D 5,.(0) are related to each other by (w)/a,(0)
=eXf p0)—p(w)], Eq. (74) can be cast into the form
wherey is a numerical coefficient, thep equals 0 in Ref. 3
and Ref. 5. A further result without exponential dependence L
is to be found in Ref. 9. On the other hand, in Ref. 10 it was [Pe(0) = pe(@)]eXH pe(0) = pe( @) =1 g (79)
concluded thaty=3/8 while in Ref. 11 y=(3/2)**-1
~0.354 was obtained. The numerical calculation presente
in Ref. 12 leads tgy=0.36.
The reasons for these deviations are based on the usage

Equation(74) and Eq.(75) are valid foro<wq exfd p.(0)].
Using Eqgs.(45), (60), and(69) the frequency dependence
othhe Hall conductivity can be written as

a formula for the nondiagonal component of the conductiv- po(@)|7
ity, which was suggested in Ref. 3 and in our notation has o, (@)= 04y(0) C—O) expc[pc(0) —pe(w)]}-
the form pe(0) 76)
A(R{,R,,R3,€1,€5,€3) For NNH the parameters, c, and p, are given byr=7,
Oxy™ Tl 15+ Tyl ogt Tyalos) (72) c=3/2, andp.(0)=2aR.. In the VRH regime the param-

etersc and p.(0) are 1 and To/T)Y4 respectively. In this
In the framework of percolation theory the averaging is per-case the parameterequals to 0 for strong coupling and to 1
formed over all connected triads that are smaller than théor weak coupling with phonons.

critical triad. In the NNH regime this requirement amountsto  For w<wg an iteration of Eq(75) yields

a restriction of the side lengths to lengths that are smaller
than the critical hoppping lengfR. . Therefore, an exponen-
tial dependence of the form exp@R;) has been obtained in
all papers(Refs. 3—6, starting with Ref. Jthe small differ-
ence in Ref. 6 is not of principle charagteidowever, in the
VRH regime the situation changes drastically. Here the basi
requirement

2

e (77)

w

. w
pe(@)=p(0)—i (U_O + w0
Within this region the expansion of the quantity
gxy(w)/axy(O) with respect to the parameter v, agrees
with the expansion ofr,.(w)/o,(0).%! For o> w, Eq. (75)
can be solved approximately. Doing so, we obtain

1 .
2a|R|+ (el +]gl+|a-gh=¢ (73 ~ p(w) =l —2e0

(where{ is a number does not fix the maximal permissible Neglecting small contributions of the forpg (0)Inin(w/w)
magnitudes of the side length of the triangle and the energigge obtain

seperatly but only the sum of these quantities. As &Q)

leads to an expression proportional to exp{R)), where Tyy( ) K w\l|” wlwg ¢
; iatin i ; Pt : ——={1- i=+In— — .
(R) is the characteristic side length, its application requires 0xy(0) pc(0) | 2 wo o ©
the usage of additional assumptions for the determination of E_i In o
the characteristic side lengtfR) and the corresponding 0 (79

characteristic site energies. The effective medium method

presented here is free of this arbitrary choice and leads to a@mitting small contributions of the type; *(0)In(w/wg) the
automatical determination of the characteristical configurareal part and imaginary part of the Hall conductivity takes
tions. As shown above, in the limit of large these configu- the form
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for high frequencies the Hall mobility depends strongly on
R O'zy(“-’)

24(0) frequency. Up to Iogalr/i;hmic contributions its dependence is
1 of the formuy(w) ~ o™~
VI. RESULTS
In this paper we have developed a new effective-medium
° 5 10 15 20 theory for studying the influence of the magnetic field on

w/wy hopping transport. The method is based on an effective-
medium method that was proposed recently for the calcula-

_ tion of the conductivity in the presence of inelastic

-1 scattering’ It implies a linearization of the transport equa-
tions with respect to the third site that results in expressions
for the symmetric and for the antisymmetric part of the con-
figurational averaged current with respect to the external
magnetic field, which describe the magnetoconductivity and
the Hall effect, respectively. Beside the study of the nonlin-

FIG. 4. The real part of the ratio,,(w)/0y,(0) versusw/wo.  ear situation with respect to the magnetic field, it permits an
investigation of the frequency dependence of the transport
effxy(w) _7 wlwg (80) coefficients. Furthermore, its range of validity is not re-
oyy(0) 2 In*(w/wg)’ stricted to the cases of NNH and VRH but comprises also the
whole range of crossover between them.
| Txy(®) wlwg 81 The method has been applied to the study of the Hall
m Tyy(0)  In(w/wg) (81 effect both in the NNH regime and in the VRH regime in the

presence of static and slowly varying electric fields. Al-
Equation(80) and Eq.(81) coincide with the corresponding though the analytical tractibility of the integrals is restricted
equations for the diagonal conductivity,, in the region to the percolative limit f.—=) the method proves to be
under consideration. Consequently, in the VRH regime thedvantegeous. In contrast to other methods, it leads to an
Hall mobility depends only weakly on frequency within the gutomatical determination of the critical configurations that
considered frequency region. Its dependence is at most gjfield the most important contributions to the current. While

Orderpg_l(O)l_n(w/wo). _ _ _ in the NNH regime the most relevant contributions to the
~ The situation changes drastically in the NNH regime. Us-current originate from equilateral triangles with side lenghts
ing Eq. (79) we obtain of the order of the critical hopping length in the VRH regime

for large p., the most important contributions arise from
equilateral triangles with side lengths of the order of the
localization length.
The fact that in both regimes the most important contri-
312 butions originate from different configurations leads to dif-
(83 ferences between the behavior of the Hall mobility in the
NNH regime and its behavior in the VRH regime. In contrast
to the NNH regime, where in accordance with Ref. 3 the Hall
mobility proves to be exponentially small with respect to the
sign results in a similar change of sign of the dimensionles ritical h°pp”.‘9 length, We.qbtain a p_owerlike dgpendence of
frequency-dependent Hall mobility, e.HaII mot.)|I|.ty on the grltlcal hopping length in the VRH
regime. A similar powerlike dependence has also been ob-
» w ) 1172 tained in the Refs. 3, 5, and 9 by means of percolation
—In(—) theory. In contrast, the Hall mobility was found to depend
@o 1®o 84) exponentially on temperature in Refs. 10 and 11. To this end
percolation theory was also applied.
The change of sign, which is strongly related to the differ- A further consideration of the differences between the
ence between the exponents of the static quantitigsand  various approaches reveals that the discrepancies are caused
oyx, Would also occur in the VRH regime if there was a by different characteristic configurations. Whereas in the
small exponentially temperature dependence of the statipresent paper and in Refs. 3, 5, and 9 triangles with small
Hall mobility (i.e., if c>1 as in Ref. 4, where=11/8). areas yield the most important contributions to the Hall cur-
In the high-frequency limit Eq(74) and Eq.(75) are in-  rent, in Refs. 10 and 11 the most important contributions to
applicable and the usage of the two-site model for the diagthe current arise from triangles with side lengths of the order
onal component of the conductivty and the three-side modedf the critical hopping length. However, in percolation
for the nondiagonal part is more appropriate. Within ourtheory there is only one requirement that does not fix the
effective-medium theory this limit is obtained by setting characteristical lengths and energies separately but only the
f=(—iw) 1. The results obtained in this region agree withsum. Therefore, within this framework it is hard to decide
those obtained in Ref. 1 and Ref. 24. They demonstrate thathat the characteristic lengths and energies are. In contrast,

Oyyl W wlw 312
xy( )_ 1( / 0 ) , (82)

3 In(w/ wg)

ny(o) o V2

oxy(w) 1 ( wlwg
Im =

T5(0) 2 |In(w/wo)

According to Eq. (82) the real part of the ratio
oyy(w)/oy,(0) changes sigrisee Fig. 4 This change of

Uy(w) Reoy(w)/oy(0) V2

UH(O) - wax(w)/o'xx(o) - ™
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. . . . . . quencies[w<wg, wq charcteristical frequency for NNH
(Ref. 31] the expansion of the Hall conductivity,, with
respect to the parameter w, parallels the expansion of the
conductivity oy,,. For higher frequencies|wo<w
<wg explpy)] the exponential dependence of the Hall con-
ductivity results in a change of the sign of its real part. Ac-
cordingly, the frequency-dependent dimensionless Hall mo-
bility Re[oyy(w)/oy(0)/RE oy (w)/o,(0)] changes its sign
too. To our knowledge, this change of sign has not been
predicted in the literature so far. It contradicts the results of
L ! ! - ! L Ref. 24, where the real part of the Hall conductivity increases
10 15 20 % o 30 3% 40 45 monotonously with increasing frequency. For high frequen-
cies our results agree with those found in Ref. 1.
In contrast to the NNH regime, the Hall mobility in the

FIG. 5. Logarithm of the Hall mobility versus the critical pa- VRH regime is nearly independent of frequency for low and
rameterp.. The dotted line represents the result of the numerical. : :
calculations performed in Ref. 12. The solid line displays the resulIntermedIate frequencies. Its frequency dependence reduces

. . -1 .
of our effective-medium theory. To achieve correspondence th(i0 small Contrl'butlons of the form, * In(w/wy), Wh?rewo IS
logarithm of the Hall mobility was represented in the form a characteristic frequency of the order of the critical hopping

In uy=A—10p., whereA is a numerical parameter that was deter- Probpability=" For high frequencies our results agree with
mined by means of the data of Ref. 12 for lagge It is given by ~ those found in Ref. 1. It is to be mentioned that a similar

A=25.6. For largep, both curves have the same slope. change of sign would also occur in the VRH regime if the
static Hall mobility exhibited a small exponential tempera-
our formalism leads to an automatical determination of charture dependence, as, for instance, in Ref. 4. Thus, our
acteristic configurations. method provides also a possibility to check our predictions.
In the experiments reported so far an exponential deperiWe emphasize that, even in those cases where the most pro-
dence has also been foufske Refs. 19-21, and R3How-  nounced temperature dependence is not given by a powerlike
ever, all these experiments were performed near the metalltependence on the critical hopping length but the frequency
insulator transition and within a quite small range of dependence of the longitudinal part of the conductivity is
temperatures. In the region under consideration the paranstill given by Eq.(74), our method provides experimentalists
eterp. usually ranged between 1 and 4 and the exponentiakith a new method of measuring exponential prefactors. In-
prefactor between 0.3 and 0.5. Within this range the deperstead of measuring the dc conductivity with varying tem-
dence of the Hall mobility is not only determined by the peratures we suggest ac measurements with fixed tempera-
exponential contribution but also by the preexponential facture.
tor. Therefore, it is hard to discriminate between a powerlike Owing to a lack of suitable experimental data it is hard to
dependence and an exponential one. The experimental reempare these results to experiments. We are only aware of
sults, which are often represented by means of diagramsne experiment where the frequency-dependent Hall effect in
showing Ino in dependence of., display often a concave the NNH regime was investigatédlhere the imaginary part
curvature for the Hall conductivity and for the Hall mobility of the Hall voltage was measured with fixed frequency
and a convex curvature for the conductivity. Usually this (w/vp,~10""—10"8, vy~10"-10"2s"%) on doped crystal-
curvature is attributed to a transition from Mott hopping line Ge and Si samples. The samples were cubes with a side
[In o~—(To/T)¥] to Efros-Shklovskii hopping[In o~ length of 1 cm. The Si sample could be characterized by a
—(To/M*?]. However, such a curvature can also be ex-wave-function radius ofr"1=2.2x10 7 cm and a density
plained by means of a preexponential powerlike factor.  of sites ofn=5x10' cm~3. The wave-function radius and
Owing to the fact that Eqg61), (69), and(70) have been the site density of the Ge sample were givendy'=7.4
derived forp.—o we cannot expect to achieve quantitative X 10~/ cm andn=2x10'® cm 3. Voltages ofU=16 V and
agreement with experimental results, but our results are iV=2.4V were applied to the Si sample and to the Ge
gualitative agreement with the experimental data. In accorsample, respectively. The strength of the magnetic field was
dance with the experimental situation the quantities,jn  given by 23 kG. The results were compared with the calcu-
and Inu, possess a positive second derivative with respect téation by Holstein® In contrast to this calculation, which pre-
p. and the quantity Iwr,, possesses a negative one. How-dicted a Hall voltage of 2.V for the Si sample and a Hall
ever, for largep. (p.>25) they are in good agreement with voltage of 270uV for the Ge sample, the measured Hall
the numerical results of Ref. 1@ee Fig. 5. A quantitative  voltages proved to be smaller than the noise level of the
comparison with the experimental data requires obvioushapparatus, which was estimated to be 2.8 for the Si
the performance of further numerical calculations of the in-sample and 1.5.V for the Ge sample. In Ref. 24 it was
tegrals forp. within the presently experimentally accessible pointed out that this discrepany is caused by the fact that the
region. experiment was performed in a frequency region, where the
The fact that the characteristic configurations differ in thetwo-site approximation has lost its applicability. In our
NNH regime from those in the VRH regime manifest itself theory the applied frequency belongs to the multiple hopping
also in the frequency dependence of the Hall mobility. In theregime [wo<w<weeXplpy) With w~ vprexp(—pd)], which
NNH regime the Hall mobility proves to be strongly depen-is characterized by a strong dependence of both the longitu-
dent on frequency even for low frequencies. For low fre-dinal and the transverse part of the conductivity on fre-

Inug
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qguency. Using formulag82) and (83) we obtain for the _ e?
imaginary part of the Hall voltage, W= f dp1dp,dpsN(e;)
3kTQ
1 UH wlwg |12 XN(€2)N(€3)¥(p1.p2,03)D ~*(p1.p2.p3)
|mVH:__UH(O) ) (85)

‘/i Cc In(,l)/(l)o X\I’(pl,pz,p3), (AZ)
Assuming the magnitude of the resonance integral to be 0\?/here
the order J;=0.1eV we obtain Hall voltages between W(py,pz.p3)=(H[R13X Rya]) (Rygb
ImV,=0.02 xV and ImV;=0.06 nV for the Si sample and vz e e
Hall voltages between IW,=0.1xV and ImMVy=0.3 uV —Ro30219C124 ER13). (A3)

for tr_]e Ge sample. Thu§, the predict_ions of our theory are i\ ow we consider a rigid triangle formed by the vectors
gualitative agreement with the experimental results of Ref. 2R13 andR,s. In order to investigate the effect of averaging
The dependence of the Hall effect on the strength of theyer 4| directions of the triangle with respect Sowe de-

magnetic field in the VRH regime has been investigated in,omnnase the vecto¥ into its longitudinal and vertical parts
Refs. 20—23. In these papers the magnetic field ranged bggii, respect to the pointing vector:

tween the low-field region and 10 T. A theoretical investiga-
tion of the Hall effect in the high-field region requires, be- S(SW¥) SX[SXW]
sides consideration of the interference factor, also w= ? + ? .
consideration of the wave-function shrinkage. This effect has
obviously not been taken into account in our effective-After an integration over all directions of the vectdronly
medium theory so far. the first term of Eq(A4) survives. Consequently, the vector
In our method the dependence of the Hall conductivity on® in Eq. (32) may be replaced b§(S¥)/S?. Furthermore,
the magnetic field is governed by the paramdtgr which  we elaborate on the effect of the angular integrations with
equals the number of flux quanta passing the area of criticalespect to the direction of the magnetic field. Decomposing
configuration. As in the VRH regime the most importantthe vectorsR;;, enteringW into their longitudinal and ver-
configurations are given by configurations with small areagical parts with respect to the magnetic field, we obtain
the parameteh, is also small. Consequently, in the VRH
regime the linear situation is realized even for large fields. In
the NNH regime the paramethg, is muZ%h larger than in the
VRH regime. It is given byh,=eHn™““/Ac. Accordingly, . : . .
in the presence of large magnetic fields the quantu?w"nyintelA rotation of Ry; in the ve_zrt|cal pIaneH with respect o
ferences manifest themselves in quantum oscillations of thErough 7 leaves the horizontal par;; unchanged and

Hall conductivity[see Eq(45)]. The period of these oscilla- changes the sign % - As those parts of the integrand that
tions is given by the normal flux quantum. contain R!‘j are odd with respect tRiij they vanish in the

course of the integration. Consequently, the current can be
written in the form

(A4)

H(HR;;) HX[HXR;;
(H2 P [ J]. (A5)

Rij=R}j+Ri= 2
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16848-a. _
X y(p1,p2,p3)D  2(p1,p2,p3)([ X Risl[ RizX Ry3])

APPENDIX X €12 D12g OR19) — b1 oR7)}, (A6)

Here we perform the integrations leading to E3fl). The where o is the unit vector thés direction. As the vectorsr,
performance of these integrations proceeds in two steps. AR1s» andRz; lie in the same plane perpendicular to the mag-
first we analyze the structure of E@O) as well as the effect hetic field, the problem of integrating out the angular depen-
of the angular integrations on several parts of the integrandence has been considerably simplified. In fact, it has been
further and introduce some simplifications. Thereafter the infeduced to an integration over the angle enclosed by one site
tegrations are carried out explicitly. of the rigid triangle and the direction @f and an integration

In order to simplify Eq.(30) further we mention that in a OVer the triangle encompassed by the sRgsand Ry;.
homogeneous, isotropic space the direction of the Hall con- At first we consider the integration over the angel encom-
tribution to the current should agree with the direction of thepassed by the vectdr;; and the direction of the pointing
pointing vectorS=[ EX H]. To elaborate on this dependence vector. In performing this integration the angle between
we rewrite the antisymmetric part of the three-point functionR;; and R34 is kept fixed. In the course of the integrations
I' in the form only the term proportional td,;53 survives. Its angular-

dependent parf X R13][RizX R3s]) (0R3y) is replaced by
T'®(py,p2.p3)=(H[R13XRas]) ¥(p1.p2.p3). (Al)  LIZRi3XR35]°. Using the symmetry of the functiongand
D with respect to their arguments the prodogid,3 can be
The quantityy is symmetric with respect to its arguments. replaced byD. Finally, taking into account the fact that all
Using Eq.(Al) expression(30) for the current reads functions depend solely on the differend®g andR,3, the
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integration over the third point, being the initial point of the R;R, (27 - . _
coordinate system, can be performed too. In doing so, we (R)=—— . daldaZJO d61d 6,sir’ 6, sir’ 6,
obtain

2

e < sin( ).[eHRle in( )
. Si — SINy ——— SlI -
J(Ha)zm[EXH] dp1dpodesy(p1,p2,p3) T 2fic T
XD X(p1.p2.p3)N(e1)N(€2)N(€3)[ Ry XR3 1%, ><sin013in02] S(R2— R2— R2+ 2R, R,COS)).
A7
(A7) (A12)

where p;=(0,e3). To perform the remaining angular inte-
grations we rewritey in the form

. Performing the integrations over; and @, we obtain
oy sinffleH[R; X R,]/(2%¢)}
'}’(P1:P2ap3)_ (PlyPZyPS) H[R]_XRz]

(A8)

The quantityA’(p4,p2,p3) has already been introduced in = 2H—7T j do,db,sin
Eq. (33). The functionsA’ andD entering expressiofA7)

depend on the energies, €, andes and on the length of X[ \[(cos;coH,)2— (y— sind;sind,)?],

the sites of the triangle |Ry, |R,] and

Rs=R{+R5—2R;R,cos/, where y is the angle encom- (A13)
passed bR, andR,. Representing the vectoRs andR, in

spherical coordinates we obtain where ®=eHR,R,/(2%0).

The range of integration in
coSp=COog a1 — a,)SiNd,SiNb,+ cosh,cod,,  (A9) Eq. (Al13) is res'Fncte.d to the area— 77/22s 021,022$,
_ (cos,cos,)?=(y—sind;sing,)?, where y=(R{+R5—R3)/
where 6,,6, and a4,a, are the polar and azimutal angles, (2R;R,). The quantityy ranges between- 1<y=<1. Intro-
respectively. The direction of the polar axis of the coordinateducmg the new coordinates and ¢, according tox sing

system agrees with the direction of the magnetic field. The_ g0 cosp=sing,, expressionA13) takes the form
integration overy can be simplified by introducinB; as an b 2

additional integration variable. This is achieved by inserting

the identity ,
2w(1—-y°) (1 )
R;+R, , o | = cmoy) f dxx sin(®xy1—y?)
1=2f IdR3R36(R3—R1—R2+2R1chos//). H 0
R;—R,
(A10) m 1 1
) X | d¢ — + - . (A14)
Thereafter expressiofA7) for the current reads 0 1+ysing 1-y sing
-(a) 2 *® R1’*'R2
IH :m[EXH]L dedszlR R ldRs Calculating these integrals we obtain
1~ R2
Xf dEldfszSN(El)N(Ez)N(Es)
—o 8w’ e% () (A15)
= — —g .
X RERGR:D (R, €)A(R; )1 (R). (A1) 3RyR, fic
The quantityl (R;) contains the remaining angular integra-
tions. It is given by Inserting Eq.(A15) into Eq. (A11) we obtain Eq.(31).
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