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Effective-medium method for hopping transport in a magnetic field
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An effective-medium theory for studying the influence of a magnetic field on hopping transport has been
developed. It permits both the magnetoconductivity and the Hall effect to be studied in the nearest-neighbor-
hopping~NNH! and in the variable-range-hopping~VRH! regime. The method has been applied to the dc and
ac Hall effect in three-dimensional systems. For NNH the static Hall mobility proves to be exponentially small
in the critical hopping length. This fact results in a change of the sign of the Hall mobility of intermediate
frequencies. For VRH the dc Hall mobility exhibits a powerlike dependence on temperature. Owing to this fact
the Hall mobility is nearly independent of frequency for small frequencies.@S0163-1829~97!01935-8#
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I. INTRODUCTION

During the past three decades the Hall effect in the h
ping regime has been a point of controversy. The first w
succeded in investigating the effect was Holstein.1 Stressing
the importance of the electron phonon interaction, he in
duced a three-site model. The influence of the magnetic fi
on hopping transport was properly taken into account in
phase factors of the resonance integrals. Using his mode
established a theory for the Hall effect in the high-frequen
limit. Although his theory covers both nearest-neighbori
hopping ~NNH! and variable-range hopping~VRH! he re-
stricted his calculations to the NNH regime, where he fou
the Hall mobility to be two orders of magnitude larger th
the drift mobility.

Encouraged by this unexpected result, Amitay and Poll2

tried to verify Holstein’s predictions experimentally. The
found a serious discrepancy: the measured Hall volt
proved to be orders of magnitude smaller, as estimated
Holstein.

Since then, many articles have been devoted to the th
of the dc Hall effect~e.g., Refs. 3–12! by using different
methods. While in the NNH regime the percolation theo
and the effective medium method have proved particula
useful; in the VRH regime mainly the percolation theory h
been applied. Unlike NNH, VRH is not only a problem
particle diffusion but also of energy diffusion, which mak
it more difficult to treat analytically. The standard effectiv
medium theory proves to be inapplicable to the study of
conductivity in the VRH regime.13,14 Refined effective-
medium treatments have been published in Refs. 15–
While in the effective-medium approach of Ref. 15 the d
ordered solid is modeled on a Cayley tree, the effecti
medium approaches of Refs. 16 and 17 do not rely on
introduction of a reference lattice. To overcome the dep
dence on the lattice in Ref. 16, the diagrammatic techni
by Gouchanour, Andersen, and Fayer18 for the self-
consistent calculation of the conditional probability functi
was used. In contrast to to Ref. 16, in Ref. 17 the confi
rational averaged conductivity was deduced from the lo
560163-1829/97/56~11!/6698~14!/$10.00
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distance behavior of the diffusion propagator, which co
prises both particle and energy diffusion. To this end, a s
consistent framework for the calculation of the long-distan
contribution to the diffusion propagator has been develop
However, apart from the effective-medium formalism of R
15, no generalizations of these approaches to three-site
relations have been published so far.

For the NNH regime in all articles~e.g., Refs. 3–8! an
exponential dependence of the Hall mobility on the critic
hopping length was derived. For the VRH regime, the o
tained results are controversal. The main point of cont
versy is related to the presence or absence of an expone
temperature dependence of the Hall mobility. A powerli
dependence of the Hall mobility on temperature was deri
in Refs. 3, 5, and 9. In contrast, an exponential depende
of the Hall mobility on temperature was found in Refs. 10
12. The experimental data are considered as confirmatio
an exponential temperature dependence of the Hall mob
~Refs. 19–23!. However, comparing experimental and the
retical data one should keep in mind that the former are
general obtained close to the metal-insulator transition w
the latter results were derived deep in the insulating regi

The dependence of the Hall conductivity on frequen
and on the magnetic field is still a less-investigated proble
In Ref. 24 the frequency dependence of the Hall conductiv
in the NNH regime has been studied by means of
effective-medium method of Ref. 15. According to this ca
culation the Hall conductivity in the NNH exhibits qualita
tively the same dependence on frequency as the longitud
part of the conductivity. For small frequencies the authors
Ref. 24 obtain a powerlike dependence with respect to
quency. For high frequencies their result agrees with H
stein’s result. For low and intermediate frequencies the r
part of the Hall conductivity increases monotonously w
increasing frequency. In the VRH regime a calculation of t
frequency dependence of the Hall conductivity for small a
intermediate frequencies has still been lacking. A calculat
of the magnetic-field dependence of the Hall conductiv
has not been published so far.

In this paper we present an effective-medium theory
6698 © 1997 The American Physical Society
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56 6699EFFECTIVE-MEDIUM METHOD FOR HOPPING . . .
studying the influence of the magnetic field on hoppi
transport. The method is based on the effective-med
theory of Ref. 17. Beside the investigation of the exponen
contribution to transport coefficients with respect to the cr
cal hopping length, it permits also consideration of the p
exponential factor. By means of our method we derive
plicit equations for the symmetric part and for th
antisymmetric part of the configurational averaged curr
with respect to the magnetic field. A further consideration
the symmetric part is, however, beyond the scope of
present paper. Using our theory we calculate the config
tional averaged Hall conductivity both in the NNH and in t
VRH regime. Doing so, we restrict our consideration to t
strongly localized regime. We find that in this regime t
Hall effect in the NNH regime differs from the Hall effect i
the VRH regime in that different configurations give rise
the most relevant contributions to the Hall current. This f
leads to interesting differences between the behavior of
Hall conductivity in the NNH regime and the behavior of th
Hall conductivity in the VRH regime in the presence
higher magnetic and alternating electric fields which ha
not been published in the literature so far. Our calculat
shows that, in contrast to the VRH regime, where the lin
situation with respect to the magnetic field is realized a
for higher magnetic fields, the Hall conductivity in the NN
regime exhibits quantum oscillations in dependence of
magnetic field. The period of these oscilations is given by
normal flux quantum. The fact that different configuratio
contribute to the current is manifest also in the frequen
dependence. Whereas in the NNH regime the Hall mobi
proves to be strongly dependent on frequency, the Hall m
bility in the VRH regime is independent of frequency at
for small and intermediate frequencies. The frequency
pendence of the Hall conductivity in the NNH regime o
tained by means of our method differs from that derived
Ref. 24. In contrast to Ref. 24, where the real part of the H
conductivity increases monotonously for intermediate f
quencies, our calculation predicts a change of sign of
effect. For small and high frequencies our results agree w
those found in Ref. 24 and Ref. 1.

Although our main results have been derived deep in
strongly localized regime, our method itself is not restrict
to that limit. Also, in those regimes where the most p
nounced temperature dependence of the Hall mobility in
VRH regime is not governed by the powerlike depende
on the critical hopping length our method can be used
determine exponential prefactors. Instead of performing
measurements by varying the temperature in a large ra
we suggest ac measurements with fixed temperature.

II. BASIC EQUATIONS

For the calculation of the current we use the conditio
probability function approach developed in Ref. 17. With
this approach the current is calculated from the Green’s fu
tion Pm8m according to

j ~s!5
e2s2

kTV (
m8m

~Rm82Rm!~ERm8!Cm8Pm8m~s!. ~1!
m
l
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-
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HereCm5 f m(12 f m), wheref m5 f (em) is the Fermi distri-
bution function with site energyem , Rm is the position vec-
tor of sitem, V is the volume,E is the electric-field strength
ands52 iv, wherev is the frequency of the applied elec
tric field. The Green’s functionPm8m satisfies the equation

sPm8m5dm8m1(
m9

Gm9m$Cm9
21Pm8m92Cm

21Pm8m%. ~2!

The quantitiesGm8m are related to the transition probabilitie
entering the rate equations in the absence of the ele
field.25 In the absence of a magnetic field their calculati
may be restricted to two-site processes. In this case they
symmetric with respect to their indices. The study of t
influence of a magnetic field requires us to go beyond t
approximation and to include three-site processes in our c
sideration. In that case they can be decomposed into t
two-site parts and into their three-site parts according to

Gm8m5Gm8m
~2!

1Gm8m
~3! , ~3!

where the two-site partG (2) is independent of the field. The
three-site part describes the interference of amplitudes o
ternative hopping paths via a third site. Accordingly, it c
be written in the form

Gm8m
~3!

5(
m3

Gm8m3m . ~4!

The quantitiesGm1m2m3
can be further decomposed into the

symmetric and into their antisymmetric parts with respect
the external magnetic field. These parts obey the follow
relations of symmetry:

Gm1m2m3

~s! 5Gm3m2m1

~s! , ~5!

Gm1m2m3

~a! 52Gm3m1m2

~a! 52Gm1m3m2

~a! . ~6!

In the course of these relations the quantityGm8m satisfies the
equation

Gm8m~H!5Gmm8~2H!. ~7!

Owing to the principle of detailed balance and the law
probability conservation the Green’s functionPm8m obeys
the sum rules

s(
m8

Cm8Pm8m5Cm , ~8!

s(
m

Pm8m51. ~9!

Both relations can be easily derived by means of Eq.~2!.
Note that in the presence of a magnetic field it is n

possible to rewrite Eq.~1! in such a way that it only involves
the differences of the position vectors of the sites. Nevert
less, it is independent of the choice of the coordinate syst
which is to be seen from an explicit displacement of t
coordinate system and an application of the sum rules@Eqs.
~8! and ~9!#.

To proceed further, a decomposition of all quantities in
disordered quantities and disorder-independent ones pr
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to be useful. This is achieved by changing the representa
from discrete to continous coordinates. The transition is p
formed by defining the new Green’s function,

P~r8,r!5 (
m8m

d~r82rm8!Pm8md~r2rm!, ~10!

where rm5$Rm ,em%,r5$R,e%. In the new representatio
~10! expression~1! for the current takes the form

j5
e2s2

kTV E dr8dr~R82R!~ER8!C~e8!P~r8,r!. ~11!

Moreover, the equation of motion for the Green’s functi
~2! may be cast into the form

sP~r8,r!5h~r!d~r82r!1E dr9P~r8,r9!V~r9,r!,

~12!

whereh(r)5(md(r2rm) is the structural factor. The po
tential V is given by

V~r8,r!5E dr9h~r9!C21~e8!$G~r8,r9!d~r92r!

2G~r9,r8!d~r82r!%, ~13!

whereG(r8,r)5Gm8murm85r8,rm5r . Due to the decomposi

tion ~3! the potentialV can be also decomposed into its tw
site part and into its three-site parts. Its two-site approxim
tion V(2) is determined by the structural factorh and by the
function G (2). As G (2) is independent of the disorder,V(2)

depends on disorder solely via the functionh. The three-site
part of the potentialV is determined by the the structur
factor h and the three-site contributionG (3). As the latter
contribution is not only determined by the initial and th
final site, but also by an intermediate third site, it is s
affected by disorder. In fact, it can be written in the form

G~3!~r8,r!5E dr3h~r3!G~r8,r3 ,r!, ~14!

where G(r8,r3 ,r)5Gm8m3murm85r8,rm3
5r3 ,rm5r . Conse-

quently, the the three-site partV(3) of the potentialV con-
tains two factors of the structural factorh.

Below, we focus on the calculation of the configuratio
averaged conductivity. The solution of this problem requi
the calculation of an approximate solution of Eq.~12! and
the performance of the averaging procedure. For the two-
approximation this program has been performed in Ref.
In the presence of the magnetic field the solution of the pr
lem is rendered more difficult by the fact that the poten
V is nonlinear with respect to the structural factorh. How-
ever, an important simplification can be achieved by obse
ing thatG (3)!G (2). Using the smallness ofG (3) with respect
to G (2) we linearize Eq.~12! with respect to the third site
Accordingly, we decomposeP into its two-site partP(2) and
into its three-site partP(3). We stress that this simplificatio
does not rely on the strength of the magnetic field.
on
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To calculate the three-site partP(3) we introduce the func-
tion F, which represents the two-site approximation of t
Green’s function of Eq.~12!. It is given by the solution of
the equation

sF~r8,r!5d~r82r!1E dr9F~r8,r9!V~2!~r9,r!.

~15!

Using F, the two-site part of the conditional probabilit
function P is given byP(2)(r8,r)5h(r8)F(r8,r). Conse-
quently, the three-site part ofP reads

P~3!~r8,r!5E dr1dr2h~r8!F~r8,r1!V~3!~r1 ,r2!

3F~r2 ,r!. ~16!

To proceed further it is expedient to introduce t
function F̃, which is defined by the relation
C(e8)h(r8)F(r8,r)5F̃(r8,r)h(r)C(e). According to its
definition, the functionF̃ satisfies the equation

sF̃~r8,r!5d~r82r!1E dr9F̃~r8,r9!Ṽ~2!~r9,r!,

~17!

where

Ṽ~2!~r8,r!5C21~e!E dr9h~r9!G~r9,r!

3$d~r92r!2d~r82r!%. ~18!

The advantage of the introduction of the functionF̃ lies in
the fact that it moves the structural factorh in front of Eq.
~16! from outside to inside. This fact proves to be advan
geous in the performance of the averaging procedure.
means of Eqs.~17! and ~18! the magnetic-field dependen
part of the current can be written in the form

jH52
e2s2

kTV E dr8drdr1dr2dr3R~ER8!

3F̃~r8,r1!h~r1!h~r2!h~r3!$G~r1 ,r3 ,r2!F~r2 ,r!

2G~r2 ,r3 ,r1!F~r1 ,r!%. ~19!

In order to obtain Eq.~19! we have taken advantage of th
symmetry relations~5! and ~6!.

III. CALCULATION OF THE CONFIGURATION-
AVERAGED CURRENT

For the calculation of the configuration-averaged curr
density we use the configuration-averaging technique for
structural factorh proposed in Ref. 17. The technique im
plies a diagrammatic expansion of expression~19! in powers
of the structural factorh and the subsequent application
the averaging procedure to the individual terms.

In order to expand Eq.~19! with respect toh we have to
find a series expansion of the functionsF and F̃. Such an
expansion can be obtained by reiterating Eq.~15! and Eq.
~17!, so that the series of the kernel of the current~19! can be
represented as depicted in Fig. 1. To calculate the confi
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56 6701EFFECTIVE-MEDIUM METHOD FOR HOPPING . . .
ration average we assume the sites to be statistically in
pendently and uniformly distributed in space. The distrib
tion of site energies is assumed to be given by an arbit
probability densityp($e%). In particular, the application o
the averaging procedure to the structural factorh serves as a
definition for the density of states, i.e.,^h(r)&5N(e). The
process of averaging can be illustrated in the customary
by providing all dots with impurity lines and joining lines. I
the course of this operation all diagrams can be decompo
into the irreducible part connected with the functionG and
the reducible remainder. All diagrams giving rise to the
mainder can be collected to form the averages of the fu
tions F and F̃, respectively. Consequently, the set of
diagrams contributing to the kernel of the current can
comprised into the form

E dr9dr-F̃~r8,r9!I r1r3r2
~r9,r-!F~r-,r!, ~20!

where F(r8,r)5^F(r8,r)&, F̃(r8,r)5^F̃(r8,r)&, and
I r1r3r2

(r8,r) is the irreducible part connected with the thre

site functionG. The irreducible partI contains the irreducible
partsK andK̃ originating from the first and the second ter
of the kernel. A typical diagram that contributes toK is
depicted in Fig. 2.

The function F describes the diffusion processes in
four-dimensionalR2e space.17 It is a function of the mag-

FIG. 1. Diagrams contributing to the irreducible kernalI .
Everey full dot symbolizes a potentialV(r i ,r j ): the empty dot
represents the structural factorh. A full line is associated with a
factord(r i2r j )/s. The triangle denotes the three-point functionG.
Furthermore, integrations over all intermediate arguments are
plied.

FIG. 2. A typical diagram contributing to the irreducible kern
K. Here every full dot symbolizes a potentialV(r i ,r j ). The empty
dot is associated with a structural factorh. The triangle represent
the three-point functionG, a full line the propagatorF(r i ,r j ). The
application of the averaging procedure is symbolized by das
lines. The process of correlated averaging is symbolized by join
lines. Integrations over all intermediate arguments are implied.
e-
-
ry
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nitude of the difference of the position vectors, i.e
F(r8,r)5F(uR82Ruue8,e) and satisfies the sum rule17

sE drF~r8,r!51. ~21!

The functionF̃ is related toF by F̃(r8,r)5F(r,r8). Using
representation~20! and relation~21! the current can be writ-
ten in the form

jH52
e2

kTV E dr8drdr1dr2dr3R~ER8!$Kr1r3r2
~r8,r!

2K̃r1r3r2
~r8,r!%. ~22!

It is to be mentioned, that in course of relation~6! the part
K̃, which does not change its topology by exchangingr1 and
r3 , does not contribute to the Hall current.

The main property of the diagrams contributing to t
irreducible part is the fact that pointsr1 , r2 , andr3 differ
from each other. Due to that fact, the irreducible part co
tains at least three points.

Below we restrict the calculation of the current to th
consideration of three-point diagrams. This restriction
based on a similar appoximation used in Ref. 17 for
calculation of the two-site contribution of the current. The
the calculation has been restricted to the inclusion of lad
diagrams. In the three-site description all full dots of t
irreducible blocksK and K̃ are connected with one of th
empty points, which permits a summation of all those d
grams. Within this description the irreducible blockK can be
represented in the form

Kr1r3r2
~r8,r!5$d~r82r1!1A~r1 ,r8!%

3G~r1 ,r3 ,r2!$d~r22r!1A~r2 ,r!%,

~23!

whereA(r8,r) is the contribution of the diagrams depicte
in Fig. 3. In this picture every full dot represents a contrib
tion of the form C21(e8)G(r8,r̃)$d( r̃2r)2d(r82r)%,
wherer8 (r) is the argument of the left~right! electron line
and r̃ is eitherr1 , r2 , or r3 . The full line represents the
diffusion propagatorF introduced above. The irreducibl
part K̃ exhibits a similar representation.

The summation of all contributions is rendered more d
ficult by the fact that, owing to the functionF, the arguments

-

d
g

FIG. 3. Diagrams contributing to the the functionA. Here every
full dot is associated with a factorC21(e8)G(r8,r̃)$d( r̃2r)
2d(r82r)%, wherer8(r) is the argument of the left~right! elec-
tron line andr̃ eitherr1 , r2 , or r3 . The triangle denotes the thre
point functionG and the full line the diffsuion propagatorF.
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of consecutive points differ from each other. However,
calculation can be considerably simplified by using t
effective-medium approximation proposed in Ref. 17. In t
approximation the propagatorF(r8,r) is replaced by
f C(e8)d(r82r), wheref is a constant that was determine
self-consistently in Ref. 17~see below!. In the course of this
operation every full dot is replaced byf G(r8,r̃)$d( r̃2r)
2d(r82r)% and every solid line byd(r82r).

Inserting Eq.~23! into Eq. ~22! we see that the conside
ation of the functionA(r8,r) can be restricted to the quan
tities A(r1 ,r) andA(r2 ,r). To calculate these quantities i
the effective-medium approximation we introduce the fun
tion A( i )(r8,r). The functionA( i )(r8,r) consists of the sub
set of diagrams of Fig. 3 that starts with the pointr̃5r i ( i
51,2,3). UsingA( i ) the quantityA can be written in the
form

A~r8,r!5(
i 51

3

A~ i !~r8,r!. ~24!

The functionsA( i ) satisfy the following system of equation

A~ i !~r8,r!5 f G~r8,r i !$d~r i2r!2d~r82r!%

1 f G~r8,r i !$A~r i ,r!2A~r8,r!%. ~25!

For the calculation of the current only a calculation of t
nine quantitiesA( i )(r j ,r) is needed. As these quantities a
antisymmetric with respect to exchangingi and j only three
of them are independent. Solving Eq.~25! for those we ob-
tain

DA~r1 ,r!5a123d~r2r2!1a132d~r2r3!

2~a1231a132!d~r2r1!, ~26!

a1235 f G121 f 2~G12G131G12G231G13G23!, ~27!

D5112 f ~G121G131G23!

13 f 2~G12G131G12G231G13G23!, ~28!

where G i j 5G(r i ,r j )5G j i . The quantityA(r2 ,r) can be
obtained from Eqs.~26!–~28! by exchanging 1 and 2.

Using the quantitiesA(r1 ,r) andA(r2 ,r) we obtain an
expression for the current. This expression can be fur
decomposed into its symmetric and antisymmetric parts w
respect to the external magnetic field, which describe
magnetoconductivity and the Hall effect, respectively. Us
Eq. ~5! the symmetric part can be written in the form

jH
~s!5

e2

2kTV Edr1dr2dr3N~e1!N~e2!N~e3!G~s!~r1 ,r3 ,r2!

3D22~r1 ,r2 ,r3!~R13b1232R23b213!

3$E~R13b1232R23b213!%, ~29!

where Ri j 5Ri2Rj and b1235112 f G231 f G13. The ex-
pression in Ref. 2 differs from those found in the literatu
~see e.g., Refs. 26–29! in that the statistical correlation be
tween the three sites in question has been taken into acc
In derving Eq.~29! all three sites have entered the averag
procedure on equal footing. Moreover, it contains both
e

s

-

er
h
e

g

nt.
g
e

processes of energy diffusion and the Fermi correlati
which were neglected in Refs. 27–29.

For the antisymmetric part we obtain

jH
~a!5

e2

6kTV Edr1dr2dr3N~e1!N~e2!N~e3!G~a!~r1 ,r3 ,r2!

3D22~r1 ,r2 ,r3!~R23b2132R13b123!

3$E~R13c1231R23c213!%, ~30!

wherec1235112 f G2312 f G122 f G13.

IV. HALL EFFECT

The Hall contribution to the current is given by Eq.~30!.
A further elaboration of its temperature and frequency
pendence requires, obviously, the performance of the i
grations and the usage of additional theoretical concepts
the density of states. A first step in this direction is the p
formance of the angular integrations. These integrations
be carried out exactly and yield

jH
~a!5

e3

kT\c

8p2

9
@E3H#

3E
0

`

dR1dR2

3E
uR12R2u

R11R2
dR3R1R2R3S2~Ri !g„h~Ri !…

3E
2`

`

de1de2de3N~e1!N~e2!N~e3!

3D21~Ri ,e i !D~Ri ,e i !. ~31!

Here we have introduced the function

g~h!5
3

h2 S sin~h!

h
2cos~h! D . ~32!

The parameterh equals the number of flux quanta passi
the areaS of the triangle formed by the sitesR1 , R2 , and
R3 . It is given by h5(eHS)/(\c). The functiong(h) is
introduced in such a way that it approaches 1 forh→0.
Consequently, it can be omitted in the consideration of
linear contribution to the Hall effect with respect toH. The
function D entering Eq.~31! is related to the three-poin
functionG (a). It is determined by the functionD8 defined by

G~a!~r1 ,r2 ,r3!5D8~r1 ,r2 ,r3!sin$eH@R133R23#/~2\c!%.
~33!

As D8 is solely a function of the energies and of the mag
tudes of the vectorsR13, R23, andR132R23, it has the form
D8(r1 ,r2 ,r3)5D8(R13,R23,uR132R23uue1 ,e2 ,e3). The
function D is related to D8 by D(Ri ,e i)
5D8(R1 ,R2 ,R3ue1 ,e2 ,e3). The details of the calculation
leading to Eq.~33! are presented in the Appendix.

Equation~31! describes the Hall effect in the NNH re
gime, in the VRH regime, and in the region of crossov
between them. A further investigation of the Hall contrib
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tion to the current in the region of crossover requires
usage of a concrete model for the density of states in
region and the performance of additional numerical calcu
tions. Below we restrict the consideration to the calculat
of the Hall contribution in the NNH and VRH regimes.

A. The Hall effect in the NNH regime

In the NNH regime the transitions occur on the maximu
of the density of states. Accordingly,N(e) can be approxi-
mated byN(e)5nd(e), wheren is the concentration of site
at the maximum of the density of states. In the course of
approximation the current reads

jH
~a!5

e3n3

kT\c

8p2

9
@E3H#E

0

`

dR1dR2

3E
uR12R2u

R11R2
dR3R1R2R3S2~Ri !

3g„h~Ri !…D
21~Ri !D~Ri !. ~34!

The quantity D is given by D(Ri)5n3
(a) exp$2a(R11R2

1R3)%. The two site contributions enteringD @Eq. ~28!# have
the form

G125n exp~22aR3!, ~35!

G135n exp~22aR1!, ~36!

wherea21 is the localization length of the state. The qua
tity G23 is obtained from Eq.~36! by exchanging 1 and 2
The preexponential factorsn and n3

(a) depend on the
electron-phonon coupling strength.30 For strong coupling
with phonons they are given by

n5
Ap

8\

J0
2

AEakT
cosh22S eF

2kTDexpS 2
Ea

kTD , ~37!

n3
~a!5

p

8)

J0
3

\EakT
cosh22S eF

2kTDexpS 2
4

3

Ea

kTD , ~38!

whereEa is the activation energy for a small polaron ho
andJ0 is the preexponential factor of the resonance integ
@J(R)5J0exp(2aR)#. In the weak-coupling limit the preex
ponential factors take the form

n5 1
4 nphcosh22S eF

2kTD , ~39!

n3
~a!5

3

16

\nph
2

J0
cosh22S eF

2kTD , ~40!

where nph is a constant of the order of the characteris
phonon frequency.

For NNH the parameterf has been determined in Ref. 3
It is given by

f n5exp~rc! ~41!

with rc52aRc , whereRc is the critical hopping length. In
the static case we haveRc5ln21/3. The parameterl is ap-
e
is
-

n

is

-

l

proximately 0.89. The value, which was determined
means of the effective-medium theory, is in good agreem
with the percolative results.30

In order to perform the residual integrations in Eq.~34!
approximately we change the integration variables fromRi to
xi according toxi5aRi2rc/2. Thereafter, we calculate th
integral in the asymtotic limitrc→`. The leading contribu-
tion to the current reads

jH
~a!5

e3n3

kT\c

8p2

9
kn3

~a!a210@E3H#

3exp~2 3
2 rc!Sc

2g~hc!S rc

2 D 3

. ~42!

The numerical constantk is given by

k5E
0

` dy1dy2dy3

112~y1
21y2

21y3
2!13~y1

2y2
21y1

2y3
21y2

2y3
2!

50.291p3. ~43!

The quantitySc , given by Sc5)Rc
2/4, represents the di

mensionless area of the equilateral triangle with site len
Rc , which yields the main contribution to the Hall curren
The parameter

hc5
eHSc

\ca2 ~44!

determines the corresponding number of flux quanta pas
the critical triangle. It is to be mentioned, that the validity
Eq. ~42! is restricted to magnetic fields obeyinghc!rc . Us-
ing Eq. ~42! the Hall conductivity reads

sxy5sinj
H

c

e3n3

\kT

p2

6
kn3

~a!a23Rc
7g~hc!exp~23aRc!.

~45!

Here j is the angle between the direction of the magne
field and the direction of the electric field.

The Hall mobility is determined by the relatio
uH5(csxy)/(Hsxx). The diagonal component has been c
culated in Ref. 31. It is given by

sxx5
2p

15

e2n2

kT
Rc

5n exp~22aRc!. ~46!

Accordingly, the Hall mobility takes the form

uH5
5pk

4

enRc
2

\a3

n3
~a!

n
g~hc!exp~2aRc!. ~47!

Here we have fixedj to j5p/2. It is to be mentioned tha
the fraction involving the preexponential factors depen
neither for strong coupling nor for weak coupling wit
phonons@Eq. ~47!# on the position of the Fermi level. Ac
cordingly, Eq.~47! is completely independent of the Ferm
level. The fact that the sign of the Hall effect does n
change by changingeF to 2eF ~by changing from electrons
to holes! was first observed in Ref. 32 and termed thep-n
anomaly of the hopping Hall effect.

In Ref. 3 the Hall effect in the NNH regime has bee
studied in the linear approximation with respect to the ext
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nal magnetic field by means of percolation theory. The
pressions obtained in that paper coincide with our equat
in the limit g(hc)→1 up to preexponential numerical factor
In Ref. 3 the preexponential factor ofsxy is determined by
the correlation length. Referring to this result, the effectiv
medium method is comparable to the percolation theory
that it leads, like any other self-consistent-field method, t
determination of expressions for the critical index of cor
lation length. Similar results for the Hall mobility in th
NNH regime were also obtained in Refs. 4–8.

According to Refs. 3–6 the main contributions to the c
rent in the NNH regime are governed by configurations
equilateral triangles with side length of the order of the cr
cal hopping length. In a strong magnetic field this fact lea
to oscillations of the Hall mobility that depend of the numb
of flux quanta passing the critical triangle. The disapeara
of those oscillations with increasing magnetic field, d
scribed by Eq.~32!, is related to the rotation of the triangl
through the axis of the magnic field that was performed
course of the averaging procedure. Consequently, it does
occur in two-dimensional systems.

B. The Hall effect in the VRH regime

Characteristic for the VRH regime is the fact that t
transitions happen near the Fermi surface. Accordingly
long as the density of states has no pecularities within
region it can be approximated byN(e)5NF . Introducing the
dimensionless variablesr i5aRi and zi5(e i2eF)/2kT ex-
pression~31! for the current reads

jH
~a!5

e3

\c

16p2

9
@E3H#NF

3a210~2kT!2G, ~48!

where

G5E
2`

`

dz1dz2dz3E
0

`

dr1dr2

3E
ur 12r 2u

r 11r 2
dr3b~r i !D

21~r i ,zi !D~r i ,zi !, ~49!

b~r i !5r 1r 2r 3S2~r i !g„h~r i !…. ~50!

As the functionsG i j andD(r i ,zi) differ for strong coupling
and weak coupling with phonons we treat these cases se
atly.

1. Strong coupling with phonons

In the strong-coupling limit the quantitiesG i j are given by
@compare to Eqs.~35! and ~37!#

G125n exp~22r 32uz1u2uz2u!, ~51!

G135n exp~22r 22uz3u2uz1u!, ~52!

where

n5
Ap

2\

J0
2

AEakT
expS 2

Ea

kTD . ~53!
-
ns

-
n
a
-

-
f
-
s
r
e

-

n
ot

s
is

er-

Similarly to the NNH regime the quantityG23 is obtained
from Eq. ~53! by replacing 1 by 2. The functionD has the
form @compare to Eq.~38!#

D~r i ,zi !5n3
~a! exp~2r 12r 22r 32uz1u2uz2u2uz3u

1 1
3 uz11z21z3u!, ~54!

where

n3
~a!5

p

2)

J0
3

\EakT
expS 2

4

3

Ea

kTD . ~55!

The self-consistent parameterf was determined in Ref. 17. I
is given by Eq. ~41!, with rc5(T0 /T)1/4, where
T052A(2a)3/(kNF). The numerical constantA has not
been determined so far. Its calculation requires the solu
of the diffusion equation in the presence of inelas
scattering.17

The quantityG gives rise to two kinds of contributions t
the current. The first kind of contributions is determined
configurations that have all energies on the same site of
Fermi surface, the second kind by configurations with en
gies on different sites of the Fermi surface. However, it tu
out that the second group of contributions, which origina
from jumps across the Fermi surface, is exponentially sm
as compared to the first group. Their ratio proves to be
order exp(2rc/3). Owing to that fact, we restrict our consid
eration to those configurations having eitherz1 ,z2 ,z3.0
or z1 ,z2 ,z3,0. To calculate G in this approximation
we change the variables of the energy integratio
to z185z11r 12r 21r 32rc/2, z285z22r 11r 21r 32rc/2,
z385z31r 11r 22r 32rc/2. Thereafter,G reads

G52n3
~a! exp~2rc!E

0

`

dr1dr2E
ur 12r 2u

r 11r 2
dr3b~r i !

3E
@r 12r 21r 32 ~1/2! rc#

`

dz18E
@r 22r 11r 32 ~1/2! rc#

`

dz28

3E
@r 11r 22r 32 ~1/2! rc#

`

dz38exp$2 1
3 ~r 11r 21r 3!

2 2
3 ~z181z281z38!%D21~z181z28 ,z181z38 ,z281z38!.

~56!

Here the arguments of the functionD are the arguments o
the quantitiesG i j enteringD. As the main contributions to
the integral arise from the region of smallr i the limit
rc→` can be taken easily. Replacing the lower limits of t
energy integrations by2` we obtain

G52n3
~a!k8 exp~2rc!E

0

`

dr1dr2E
ur 12r 2u

r 11r 2
dr3b~r i !

3exp$2 1
3 ~r 11r 21r 3!%, ~57!

where

k85
27

2 E
0

` dx1dx2dx3

112~x1
31x2

31x3
3!13~x1

3x2
31x1

3x3
31x2

3x3
3!

.

~58!
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While the main contributions to the spatial integrations ori
nate fromr i;1, the main contributions to the energy int
grations arise from the region 0<zi<rc/2. Therefore, the
most important contributions to the current are determin
by configurations forming equilateral triangles with si
lengths of orderRi'a21 and site energies ranging from 0
kT(T0 /T)1/4 on the same side of the Fermi surface. This f
differs drastically from the situation in the NNH regim
where the most important contributions to the current or
nate from triangles with side lengths of orderRc .

Owing to the smallness of the typical site length the
mensionless parameterhc is much smaller in the situation
under consideration than in the NNH regime. In fact, it is
orderhc'eH/(\ca2). Therefore, in contrast to the situatio
in the NNH regime, the linear approximation to current w
respect to the magnetic field is applicable even for la
magnetic fields. The oscillations of the Hall mobility are a
sent in the situation under consideration. For practical un
tainable large magnetic fields the Hall mobility approach
zero.

Below we restrict the consideration tohc!1. Doing so,
we replaceg(h) by 1. Performing the integrations we obta

G5
11

8
312n3

~a!k8exp~2rc!. ~59!

Therefore, the Hall conductivity takes the form (H'E)

sxy5
H

c
88p2k8

e3

\
n3

~a!NF
3~kT!2S 3

a D 10

expF2S T0

T D 1/4G .
~60!

The diagonal contribution to the conductivitysxx has been
investigated in Ref. 17. It is given by

sxx5
pa

1260

e2nNF
2kT

a5 S T0

T D 7/4

expF2S T0

T D 1/4G , ~61!

wherea equals 4 for strong coupling and 3/2 for weak co
pling with phonons. Using Eq.~61! and Eq.~60! the Hall
mobility is given by

uH5
1155pk8A

16

e

\a2

n3
~a!

n S 64
T

T0
D 11/4

. ~62!

2. Weak coupling with phonons

In the weak-coupling regime the quantitiesG i j are given
by

G125n exp~22r 32uz1u2uz2u2uz12z2u!,

G135n exp~22r 22uz1u2uz3u2uz12z3u!, ~63!

wheren5nph. The quantityG23 can be obtained fromG13 by
changing 1 to 2. The functionD has the form

D~r i ,zi !5n3
~a!exp~2r 12r 22r 3!$@exp~2uz1u2uz2u

2uz12z3u2uz22z3u!#1@2↔3#1@1↔3#%.

~64!

The preexponential factor is given byn3
(a)53\nph

2 /J0 . The
contribution of those configurations that have all energies
-

d

t

-

-

f

e
-
t-
s

-

n

the same side of the Fermi surface has the form~there are 12
configurations that can be obtained by exchanging the e
gieszi!

G53n3
~a!E

0

`

dr1dr2dr3E
0

`

dz3E
0

z3
dz2E

0

z2
dz1

3bS r 11r 2

2
,
r 11r 3

2
,
r 21r 3

2 Dexp~2r 12r 22r 322z3!

3@21exp~2z122z2!#

3D21~r 11r 212z2 ,r 11r 312z3 ,r 21r 312z3!. ~65!

Here the arguments of the functionD coincide with the ar-
guments of the functionsG i j enteringD. In order to obtain
Eq. ~65! we have used the relation

E
0

`

dr1dr2E
ur 12r 2u

r 11r 2
dr3F~r 1 ,r 2 ,r 3!

5
1

4 E
0

`

dr1dr2dr3FS r 11r 2

2
,

r 11r 3

2
,
r 21r 3

2 D ~66!

that applies to functions that are symmetric with respec
their arguments. In order to calculate the integrals in Eq.~65!
we change the variables fromz2 andz3 to z285z22rc/2 and
z385z32rc/2. Thereafter, we take the limitrc→`, so that
we obtain

G5
3

4
Ircexp~2rc!, ~67!

with

I 5E
0

`

dr1dr2dr3E
2`

`

dz3E
0

`

dz2bS r 11r 2

2
,
r 11r 3

2
,
r 21r 3

2 D
3exp~2r 12r 22r 32z3!

3D21~r 11r 21z32z21rc ,r 11r 31z3

1rc ,r 21r 31z31rc!. ~68!

The quantityI depends on the strength of the magnetic fie
but not on rc . For small magnetic fields it reduces to
numerical coefficient. Similarly to the strong-coupling ca
the main contributions to integral~65! originate from equi-
lateral triangles withRi;a21. The characteristic energies o
two sites are of orderkT(T0 /T)1/4; the characteristic energ
of the third site ranges from 0 tokT(T0 /T)1/4.

A further investigation of contributions originating from
configurations with site energies on different sides of
Fermi surface reveals that, amongst them, those config
tions prove to be most important that are characterized
equilateral triangles of small side length and that have t
energies of orderkT(T0 /T)1/4 on the same side of the Ferm
surface and the third energy of order 2kT on the other side.
Although these contributions are also proportional
exp(2rc) they are small with respect to the parameterrc

21 as
compared to the contributions considered above in de
Therefore, they are omitted in the following. Using Eq.~67!
the Hall conductivity takes the form



a
e
k
de
n
re
pe
he

nc
a

te

ge
tiv
a

er
th
to
lle
-

s

e
gi

re
n

ho
o
ra

of
h

lso
on-
is

al-
as
the

e

-

1

ty

es

6706 56O. BLEIBAUM, H. BÖTTGER, AND V. V. BRYKSIN
sxy5
H

c

16p2

3
I

e3

\
n3

~a!a210NF
3~kT!2S T0

T D 1/4

expF2S T0

T D 1/4G .
~69!

Consequently, the Hall mobility is given by

uH570pAI
e

\a2

n3
~a!

n S 16
T

T0
D 5/2

. ~70!

According to our results, the Hall mobility exhibits
powerlike dependence on temperature in the VRH regim
the limit of largerc both for strong coupling and for wea
coupling with phonons. In the literature the temperature
pendence of the Hall mobility in the VRH regime has bee
matter of issue so far. The main point of controversy is
lated to the presence or absence of an exponentially de
dence of the mobility. If we write this dependence in t
form

uH;expF2xS T0

T D 1/4G , ~71!

wherex is a numerical coefficient, thenx equals 0 in Ref. 3
and Ref. 5. A further result without exponential depende
is to be found in Ref. 9. On the other hand, in Ref. 10 it w
concluded thatx53/8 while in Ref. 11 x5(3/2)3/421
'0.354 was obtained. The numerical calculation presen
in Ref. 12 leads tox'0.36.

The reasons for these deviations are based on the usa
a formula for the nondiagonal component of the conduc
ity, which was suggested in Ref. 3 and in our notation h
the form

sxy; K D~R1 ,R2 ,R3 ,e1 ,e2 ,e3!

G12G131G12G231G13G23
L . ~72!

In the framework of percolation theory the averaging is p
formed over all connected triads that are smaller than
critical triad. In the NNH regime this requirement amounts
a restriction of the side lengths to lengths that are sma
than the critical hoppping lengthRc . Therefore, an exponen
tial dependence of the form exp(2aRc) has been obtained in
all papers~Refs. 3–6!, starting with Ref. 3~the small differ-
ence in Ref. 6 is not of principle character!. However, in the
VRH regime the situation changes drastically. Here the ba
requirement

2auRi j u1
1

2kT
~ ue i u1ue j u1ue i2e j u!<j ~73!

~wherej is a number! does not fix the maximal permissibl
magnitudes of the side length of the triangle and the ener
seperatly but only the sum of these quantities. As Eq.~72!
leads to an expression proportional to exp(2a^R&), where
^R& is the characteristic side length, its application requi
the usage of additional assumptions for the determinatio
the characteristic side lengtĥR& and the corresponding
characteristic site energies. The effective medium met
presented here is free of this arbitrary choice and leads t
automatical determination of the characteristical configu
tions. As shown above, in the limit of largerc these configu-
in
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rations are given by equilateral triangles with side lengths
order^R&;a21 both for strong and for weak coupling wit
phonons.

V. FREQUENCY DEPENDENCE OF THE HALL EFFECT

The effective-medium method presented so far can a
be used for studying the frequency dependence of the c
ductivity. Within the method the frequency dependence
entirely contained in the parameterf , which is reflected in a
frequency dependence of the parameterrc . The frequency
dependence of the diagonal part of the conductivity was
ready investigated in Ref. 17 and in Ref. 31. There it w
shown, that for small frequencies the conductivity obeys
equation

sxx~v!

sxx~0!
ln

sxx~v!

sxx~0!
5 i

v

v0
. ~74!

The characteristic frequencyv0 is of the order of the critical
hopping probability~Refs. 17, 31, and 33!. As sxx(v) and
sxx(0) are related to each other bysxx(v)/sxx(0)
5exp@rc(0)2rc(v)#, Eq. ~74! can be cast into the form

@rc~0!2rc~v!#exp@rc~0!2rc~v!#5 i
v

v0
. ~75!

Equation~74! and Eq.~75! are valid forv,v0 exp@rc(0)#.
Using Eqs.~45!, ~60!, and~69! the frequency dependenc

of the Hall conductivity can be written as

sxy~v!5sxy~0!S rc~v!

rc~0! D
t

exp$c@rc~0!2rc~v!#%.

~76!

For NNH the parameterst, c, and rc are given byt57,
c53/2, andrc(0)52aRc . In the VRH regime the param
etersc andrc(0) are 1 and (T0 /T)1/4, respectively. In this
case the parametert equals to 0 for strong coupling and to
for weak coupling with phonons.

For v!v0 an iteration of Eq.~75! yields

rc~v!5rc~0!2 i
v

v0
1S v

v0
D 2

1••• . ~77!

Within this region the expansion of the quanti
sxy(v)/sxy(0) with respect to the parameterv/v0 agrees
with the expansion ofsxx(v)/sxx(0).31 For v@v0 Eq. ~75!
can be solved approximately. Doing so, we obtain

rc~0!2rc~v!' ln
iv/v0

ln~ iv/v0!
. ~78!

Neglecting small contributions of the formrc
21(0)lnln(v/v0)

we obtain

sxy~v!

sxy~0!
5H 12

1

rc~0! S i
p

2
1 ln

v

v0
D J tH v/v0

p

2
2 i ln

v

v0

J c

.

~79!

Omitting small contributions of the typerc
21(0)ln(v/v0) the

real part and imaginary part of the Hall conductivity tak
the form
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Re
sxy~v!

sxy~0!
5

p

2

v/v0

ln2~v/v0!
, ~80!

Im
sxy~v!

sxy~0!
5

v/v0

ln~v/v0!
. ~81!

Equation~80! and Eq.~81! coincide with the corresponding
equations for the diagonal conductivitysxx in the region
under consideration. Consequently, in the VRH regime th
Hall mobility depends only weakly on frequency within the
considered frequency region. Its dependence is at most
orderrc

21(0)ln(v/v0).
The situation changes drastically in the NNH regime. Us

ing Eq. ~79! we obtain

Re
sxy~v!

sxy~0!
52

1

&
S v/v0

ln~v/v0! D
3/2

, ~82!

Im
sxy~v!

sxy~0!
5

1

&
S v/v0

ln~v/v0! D
3/2

. ~83!

According to Eq. ~82! the real part of the ratio
sxy(v)/sxy(0) changes sign~see Fig. 4!. This change of
sign results in a similar change of sign of the dimensionles
frequency-dependent Hall mobility,

uH~v!

uH~0!
5

Resxy~v!/sxy~0!

Resxx~v!/sxx~0!
52

&

p F v

v0
lnS v

v0
D G1/2

.

~84!

The change of sign, which is strongly related to the differ
ence between the exponents of the static quantitiessxy and
sxx , would also occur in the VRH regime if there was a
small exponentially temperature dependence of the stat
Hall mobility ~i.e., if c.1 as in Ref. 4, wherec511/8!.

In the high-frequency limit Eq.~74! and Eq.~75! are in-
applicable and the usage of the two-site model for the diag
onal component of the conductivty and the three-side mod
for the nondiagonal part is more appropriate. Within ou
effective-medium theory this limit is obtained by setting
f 5(2 iv)21. The results obtained in this region agree with
those obtained in Ref. 1 and Ref. 24. They demonstrate th

FIG. 4. The real part of the ratiosxy(v)/sxy(0) versusv/v0 .
e
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-
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for high frequencies the Hall mobility depends strongly
frequency. Up to logarithmic contributions its dependence
of the formuH(v);v1/2.

VI. RESULTS

In this paper we have developed a new effective-medi
theory for studying the influence of the magnetic field
hopping transport. The method is based on an effect
medium method that was proposed recently for the calc
tion of the conductivity in the presence of inelast
scattering.17 It implies a linearization of the transport equ
tions with respect to the third site that results in expressi
for the symmetric and for the antisymmetric part of the co
figurational averaged current with respect to the exter
magnetic field, which describe the magnetoconductivity a
the Hall effect, respectively. Beside the study of the nonl
ear situation with respect to the magnetic field, it permits
investigation of the frequency dependence of the trans
coefficients. Furthermore, its range of validity is not r
stricted to the cases of NNH and VRH but comprises also
whole range of crossover between them.

The method has been applied to the study of the H
effect both in the NNH regime and in the VRH regime in th
presence of static and slowly varying electric fields. A
though the analytical tractibility of the integrals is restrict
to the percolative limit (rc→`) the method proves to be
advantegeous. In contrast to other methods, it leads to
automatical determination of the critical configurations th
yield the most important contributions to the current. Wh
in the NNH regime the most relevant contributions to t
current originate from equilateral triangles with side leng
of the order of the critical hopping length in the VRH regim
for large rc , the most important contributions arise fro
equilateral triangles with side lengths of the order of t
localization length.

The fact that in both regimes the most important con
butions originate from different configurations leads to d
ferences between the behavior of the Hall mobility in t
NNH regime and its behavior in the VRH regime. In contra
to the NNH regime, where in accordance with Ref. 3 the H
mobility proves to be exponentially small with respect to t
critical hopping length, we obtain a powerlike dependence
the Hall mobility on the critical hopping length in the VRH
regime. A similar powerlike dependence has also been
tained in the Refs. 3, 5, and 9 by means of percolat
theory. In contrast, the Hall mobility was found to depe
exponentially on temperature in Refs. 10 and 11. To this
percolation theory was also applied.

A further consideration of the differences between t
various approaches reveals that the discrepancies are ca
by different characteristic configurations. Whereas in
present paper and in Refs. 3, 5, and 9 triangles with sm
areas yield the most important contributions to the Hall c
rent, in Refs. 10 and 11 the most important contributions
the current arise from triangles with side lengths of the or
of the critical hopping length. However, in percolatio
theory there is only one requirement that does not fix
characteristical lengths and energies separately but only
sum. Therefore, within this framework it is hard to deci
what the characteristic lengths and energies are. In cont
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our formalism leads to an automatical determination of ch
acteristic configurations.

In the experiments reported so far an exponential dep
dence has also been found~see Refs. 19–21, and 23!. How-
ever, all these experiments were performed near the me
insulator transition and within a quite small range
temperatures. In the region under consideration the par
eterrc usually ranged between 1 and 4 and the exponen
prefactor between 0.3 and 0.5. Within this range the dep
dence of the Hall mobility is not only determined by th
exponential contribution but also by the preexponential f
tor. Therefore, it is hard to discriminate between a powerl
dependence and an exponential one. The experimenta
sults, which are often represented by means of diagra
showing lns in dependence ofrc , display often a concave
curvature for the Hall conductivity and for the Hall mobilit
and a convex curvature for the conductivity. Usually th
curvature is attributed to a transition from Mott hoppin
@ ln s;2(T0 /T)1/4# to Efros-Shklovskii hopping @ ln s;
2(T0 /T)1/2#. However, such a curvature can also be e
plained by means of a preexponential powerlike factor.

Owing to the fact that Eqs.~61!, ~69!, and~70! have been
derived forrc→` we cannot expect to achieve quantitativ
agreement with experimental results, but our results are
qualitative agreement with the experimental data. In acc
dance with the experimental situation the quantities lnsxy
and lnuH possess a positive second derivative with respec
rc and the quantity lnsxx possesses a negative one. Ho
ever, for largerc (rc.25) they are in good agreement wit
the numerical results of Ref. 12~see Fig. 5!. A quantitative
comparison with the experimental data requires obviou
the performance of further numerical calculations of the
tegrals forrc within the presently experimentally accessib
region.

The fact that the characteristic configurations differ in t
NNH regime from those in the VRH regime manifest itse
also in the frequency dependence of the Hall mobility. In t
NNH regime the Hall mobility proves to be strongly depe
dent on frequency even for low frequencies. For low fr

FIG. 5. Logarithm of the Hall mobility versus the critical pa
rameterrc . The dotted line represents the result of the numeri
calculations performed in Ref. 12. The solid line displays the res
of our effective-medium theory. To achieve correspondence
logarithm of the Hall mobility was represented in the for
ln uH5A210rc , whereA is a numerical parameter that was dete
mined by means of the data of Ref. 12 for largerc . It is given by
A525.6. For largerc both curves have the same slope.
r-

n-

al-

m-
al
n-

-
e
re-
s

-

in
r-

to
-

ly
-

e

-

quencies@v,v0 , v0 charcteristical frequency for NNH
~Ref. 31!# the expansion of the Hall conductivitysxy with
respect to the parameterv/v0 parallels the expansion of th
conductivity sxx . For higher frequencies @v0,v
,v0 exp(rc)# the exponential dependence of the Hall co
ductivity results in a change of the sign of its real part. A
cordingly, the frequency-dependent dimensionless Hall m
bility Re@sxy(v)/sxy(0)#/Re@sxx(v)/sxx(0)# changes its sign
too. To our knowledge, this change of sign has not be
predicted in the literature so far. It contradicts the results
Ref. 24, where the real part of the Hall conductivity increas
monotonously with increasing frequency. For high freque
cies our results agree with those found in Ref. 1.

In contrast to the NNH regime, the Hall mobility in th
VRH regime is nearly independent of frequency for low a
intermediate frequencies. Its frequency dependence red
to small contributions of the formrc

21 ln(v/v0), wherev0 is
a characteristic frequency of the order of the critical hopp
probability.17 For high frequencies our results agree w
those found in Ref. 1. It is to be mentioned that a simi
change of sign would also occur in the VRH regime if t
static Hall mobility exhibited a small exponential temper
ture dependence, as, for instance, in Ref. 4. Thus,
method provides also a possibility to check our predictio
We emphasize that, even in those cases where the most
nounced temperature dependence is not given by a powe
dependence on the critical hopping length but the freque
dependence of the longitudinal part of the conductivity
still given by Eq.~74!, our method provides experimentalis
with a new method of measuring exponential prefactors.
stead of measuring the dc conductivity with varying te
peratures we suggest ac measurements with fixed temp
ture.

Owing to a lack of suitable experimental data it is hard
compare these results to experiments. We are only awar
one experiment where the frequency-dependent Hall effec
the NNH regime was investigated.2 There the imaginary par
of the Hall voltage was measured with fixed frequen
~v/nph;1027– 1028, nph;1011–1012 s21! on doped crystal-
line Ge and Si samples. The samples were cubes with a
length of 1 cm. The Si sample could be characterized b
wave-function radius ofa2152.231027 cm and a density
of sites ofn5531016 cm23. The wave-function radius and
the site density of the Ge sample were given bya2157.4
31027 cm andn5231015 cm23. Voltages ofU516 V and
U52.4 V were applied to the Si sample and to the G
sample, respectively. The strength of the magnetic field w
given by 23 kG. The results were compared with the cal
lation by Holstein.1 In contrast to this calculation, which pre
dicted a Hall voltage of 26mV for the Si sample and a Hal
voltage of 270mV for the Ge sample, the measured Ha
voltages proved to be smaller than the noise level of
apparatus, which was estimated to be 2.5mV for the Si
sample and 1.5mV for the Ge sample. In Ref. 24 it wa
pointed out that this discrepany is caused by the fact that
experiment was performed in a frequency region, where
two-site approximation has lost its applicability. In ou
theory the applied frequency belongs to the multiple hopp
regime @v0,v,v0exp(rc) with v0;nphexp(2rc)#, which
is characterized by a strong dependence of both the long
dinal and the transverse part of the conductivity on f
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quency. Using formulas~82! and ~83! we obtain for the
imaginary part of the Hall voltage,

ImVH5
1

&

UH

c
uH~0!S v/v0

lnv/v0
D 1/2

. ~85!

Assuming the magnitude of the resonance integral to be
the order J050.1 eV we obtain Hall voltages betwee
ImVH50.02mV and ImVH50.06mV for the Si sample and
Hall voltages between ImVH50.1 mV and ImVH50.3 mV
for the Ge sample. Thus, the predictions of our theory are
qualitative agreement with the experimental results of Ref

The dependence of the Hall effect on the strength of
magnetic field in the VRH regime has been investigated
Refs. 20–23. In these papers the magnetic field ranged
tween the low-field region and 10 T. A theoretical investig
tion of the Hall effect in the high-field region requires, b
sides consideration of the interference factor, a
consideration of the wave-function shrinkage. This effect
obviously not been taken into account in our effectiv
medium theory so far.

In our method the dependence of the Hall conductivity
the magnetic field is governed by the parameterhc , which
equals the number of flux quanta passing the area of cri
configuration. As in the VRH regime the most importa
configurations are given by configurations with small are
the parameterhc is also small. Consequently, in the VR
regime the linear situation is realized even for large fields
the NNH regime the parameterhc is much larger than in the
VRH regime. It is given byhc5eHn22/3/\c. Accordingly,
in the presence of large magnetic fields the quantum in
ferences manifest themselves in quantum oscillations of
Hall conductivity@see Eq.~45!#. The period of these oscilla
tions is given by the normal flux quantum.
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APPENDIX

Here we perform the integrations leading to Eq.~31!. The
performance of these integrations proceeds in two steps
first we analyze the structure of Eq.~30! as well as the effec
of the angular integrations on several parts of the integr
further and introduce some simplifications. Thereafter the
tegrations are carried out explicitly.

In order to simplify Eq.~30! further we mention that in a
homogeneous, isotropic space the direction of the Hall c
tribution to the current should agree with the direction of t
pointing vectorS5@E3H#. To elaborate on this dependen
we rewrite the antisymmetric part of the three-point functi
G in the form

G~a!~r1 ,r2 ,r3!5~H@R133R23# !g~r1 ,r2 ,r3!. ~A1!

The quantityg is symmetric with respect to its argument
Using Eq.~A1! expression~30! for the current reads
of

in
.
e
n
e-
-

o
s
-

n

al
t
s

n

r-
e

-
2

At

d
-

n-

jH
~a!52

e2

3kTV E dr1dr2dr3N~e1!

3N~e2!N~e3!g~r1 ,r2 ,r3!D22~r1 ,r2 ,r3!

3C~r1 ,r2 ,r3!, ~A2!

where

C~r1 ,r2 ,r3!5~H@R133R23# !~R13b123

2R23b213!c123~ER13!. ~A3!

Now we consider a rigid triangle formed by the vecto
R13 andR23. In order to investigate the effect of averagin
over all directions of the triangle with respect toS we de-
compose the vectorC into its longitudinal and vertical parts
with respect to the pointing vector:

C5
S~SC!

S2 1
S3@S3C#

S2 . ~A4!

After an integration over all directions of the vectorC only
the first term of Eq.~A4! survives. Consequently, the vecto
C in Eq. ~32! may be replaced byS(SC)/S2. Furthermore,
we elaborate on the effect of the angular integrations w
respect to the direction of the magnetic field. Decompos
the vectorsRi j , enteringC into their longitudinal and ver-
tical parts with respect to the magnetic field, we obtain

Ri j 5Ri j
i 1Ri j

'5
H~HR i j !

H2 1
H3@H3Ri j #

H2 . ~A5!

A rotation of Ri j in the vertical plane with respect toH
through p leaves the horizontal partRi j

i unchanged and
changes the sign ofRi j

' . As those parts of the integrand th
contain Ri j

i are odd with respect toRi j
' they vanish in the

course of the integration. Consequently, the current can
written in the form

jH
~a!52

e2

3kTV
@E3H#E dr1dr2dr3N~e1!N~e2!N~e3!

3g~r1 ,r2 ,r3!D22~r1 ,r2 ,r3!~@s3R13
' #@R13

' 3R23
' # !

3c123$b123~sR13
' !2b213~sR23

' !%, ~A6!

wheres is the unit vector theS direction. As the vectorss,
R13

' , andR23
' lie in the same plane perpendicular to the ma

netic field, the problem of integrating out the angular dep
dence has been considerably simplified. In fact, it has b
reduced to an integration over the angle enclosed by one
of the rigid triangle and the direction ofs and an integration
over the triangle encompassed by the sitesR13

' andR23
' .

At first we consider the integration over the angel enco
passed by the vectorR13

' and the direction of the pointing
vector. In performing this integration the angle betwe
R13

' and R23
' is kept fixed. In the course of the integration

only the term proportional tob213 survives. Its angular-
dependent part (@s3R13

' #@R13
' 3R23

' #)(sR23
' ) is replaced by

1/2@R13
' 3R23

' #2. Using the symmetry of the functionsg and
D with respect to their arguments the productc123b213 can be
replaced byD. Finally, taking into account the fact that a
functions depend solely on the differencesR13 andR23, the
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integration over the third point, being the initial point of th
coordinate system, can be performed too. In doing so,
obtain

jH
~a!5

e2

6kT
@E3H#E dr1dr2de3g~r1 ,r2 ,r3!

3D21~r1 ,r2 ,r3!N~e1!N~e2!N~e3!@R1
'3R2

'#2,

~A7!

where r35(0,e3). To perform the remaining angular inte
grations we rewriteg in the form

g~r1 ,r2 ,r3!5D8~r1 ,r2 ,r3!
sin$eH@R13R2#/~2\c!%

H@R13R2#
.

~A8!

The quantityD8(r1 ,r2 ,r3) has already been introduced
Eq. ~33!. The functionsD8 andD entering expression~A7!
depend on the energiese1 , e2 , ande3 and on the length of
the sites of the triangle uR1u, uR2u and
R35AR1

21R2
222R1R2cosc, where c is the angle encom

passed byR1 andR2 . Representing the vectorsR1 andR2 in
spherical coordinates we obtain

cosc5cos~a12a2!sinu1sinu21cosu1cosu2 , ~A9!

whereu1 ,u2 and a1 ,a2 are the polar and azimutal angle
respectively. The direction of the polar axis of the coordin
system agrees with the direction of the magnetic field. T
integration overc can be simplified by introducingR3 as an
additional integration variable. This is achieved by insert
the identity

152E
uR12R2u

R11R2
dR3R3d~R3

22R1
22R2

212R1R2cosc!.

~A10!

Thereafter expression~A7! for the current reads

jH
~a!5

e2

3kT
@E3H#E

0

`

dR1dR2E
uR12R2u

R11R2
dR3

3E
2`

`

de1de2de3N~e1!N~e2!N~e3!

3R1
2R2

2R3D21~Ri ,e i !D~Ri ,e i !I ~Ri !. ~A11!

The quantityI (Ri) contains the remaining angular integr
tions. It is given by
p.
e

e
e

g

I ~Ri !5
R1R2

H E
0

2p

da1da2E
0

p

du1du2sin2u1sin2u2

3sin~a12a2!sinH eHR1R2

2\c
sin~a12a2!

3sinu1sinu2J d~R3
22R1

22R2
212R1R2cosc!.

~A12!

Performing the integrations overa1 anda2 we obtain

I 5
2p

H E du1du2sin

3@FA~cosu1cosu2!22~y2sinu1sinu2!2#,

~A13!

where F5eHR1R2 /(2\c). The range of integration in
Eq. ~A13! is restricted to the area2p/2<u1 ,u2<,
(cosu1cosu2)

2>(y2sinu1sinu2)
2, where y5(R1

21R2
22R3

2)/
(2R1R2). The quantityy ranges between21<y<1. Intro-
ducing the new coordinatesx and f, according tox sinf
5sinu1, x cosf5sinu2, expression~A13! takes the form

I 5
2p~12y2!

H E
0

1

dxx sin~FxA12y2!

3E
0

p

dfS 1

11y sinf
1

1

12y sinf D . ~A14!

Calculating these integrals we obtain

I 5
8p2

3R1R2

eS2

\c
g~h!. ~A15!

Inserting Eq.~A15! into Eq. ~A11! we obtain Eq.~31!.
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