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Core polarization in solids: Formulation and application to semiconductors
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Accurate treatment of exchange and correlation effects involving core and valence electrons can be surpris-
ingly important in solid-state calculations, especially for solids having elements with shallow core electrons,
such as Ga and Ge. A local-density-approximation treatment of core-valence interactions leads to errors of
;0.4 eV for key features in the band structures of Ge and GaAs, even when valence-valence interactions are
treated in a first-principles, quasiparticle approach. We apply a core-polarization-potential treatment of core-
valence interactions within the framework of such quasiparticle calculations. Final results have errors of
;0.1 eV in band-energy differences.@S0163-1829~97!07035-5#
ru
fe
e

s.
e
p
ity
un
ua
elf

ic
ic
tr

r
n-
c
e
s
en
it

e
4
t-

cu
ou
io

la
a

ve

of
ed
ss

es
eats
tial
h
and
les
PP

mil-
tion

in-
ge,

am-

be-
in-
re-
the
ey
arly

ay
la-
mi-
ws
at-

suffi-

m-
ach
I. INTRODUCTION

Determining a material’s quasiparticle~band! energies is
often done in three steps. First, one solves the atomic st
ture of the constituent elements, thereby determining ef
tive interactions between core and valence electrons. Th
interactions can be incorporated into pseudopotential1,2

Second, one solves the solid’s electronic structure s
consistently. This is often done within the local-density a
proximation~LDA !,3 which gives an accurate charge dens
and approximate band energies and one-electron wave f
tions. Third, quasiparticle energies are obtained by eval
ing many-body corrections to LDA band energies, i.e., s
energy effects.4–8 One replacesa LDA treatment of such
effects with a proper, many-body treatment. So quasipart
energies in solids reflect effects arising from atomic phys
band-structure effects, and exchange and dynamical elec
correlation.

Tremendous simplification is achieved by treating co
electrons differently from valence electrons. By ‘‘partitio
ing’’ electrons in this way, however, core-valence intera
tions are often treated at LDA or Hartree-Fock levels, ev
in quasiparticle treatments,5–8 hampering ultimate accuracie
attainable. This can be good enough, because core-val
many-body effects are so small, except in elements w
shallow cores, including post-transition elements~e.g., Ga
and Ge!, alkalis, and alkaline earths.

Hybertsen and Louie5 attributed underestimation of th
zone-center, direct gap in Ge to relative overbinding ofs
states with respect to 4p states, because of the LDA trea
ment of core-valence interactions. Godby, Schlu¨ter, and
Sham6 noted that results for the GaAs band gap were ac
rate partly because of cancellation of two errors: analog
overbinding effects in Ga and As, and neglect of relaxat
of Ga(3d) core states.~The choice of pseudopotentials9 in
Ref. 6 may also have played a role: Quasiparticle calcu
tions in Ref. 7, using different pseudopotentials, led to
underestimation of the gap.! Fahy, Wang, and Louie10 ar-
gued that a successful prediction by correlated-wa
560163-1829/97/56~11!/6648~14!/$10.00
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function quantum simulations of the structural properties
diamond, graphite, and silicon justifies using LDA-deriv
pseudopotentialsa posteriori. References 11–13 also addre
such issues.

A different method for core-valence partitioning includ
Hartree-Fock treatment of core-valence exchange, but tr
core-valence correlation using the core-polarization-poten
~CPP! approach.14–18The main motivation for that approac
is the fact that valence electrons induce core polarization
feel the induced potential. A valence electron feels dipo
induced by itself and other valence electrons, and so the C
introduces one- and two-electron terms in the valence Ha
tonian. Therefore, the CPP approach considers correla
between cores and one valence electron and correlation
volving cores and several valence electrons. At long ran
one-electron terms have the form2a/(2r 4) as required by
the Born-Heisenberg19 result, wherea is the core polarizabil-
ity. At short range, these terms are truncated in a par
etrized way to give correct binding energies for a singles, p,
or d electron bound to the core in vapor phase. Effects
yond electron-core dipole interactions are approximately
cluded by enforcing correct binding energies. Truncation
flects the finite core extent and eliminates divergences at
origin. Two-electron terms have an analogous form: th
adhere to the classical result at long range, but are simil
truncated at short range.

Effects of core-valence correlation on valence states m
be inferred from first-principles, many-body atomic calcu
tions or from atomic spectra. Successful application of se
empirical CPP’s is presented in Ref. 14, which also revie
prior work. Reference 16 applies a first-principles CPP tre
ment of core-valence correlation to atoms and Na2. Refer-
ence 17 continues the same work, presents parameters
cient to construct CPP’s for most elements withZ<40, and
cites further work.

This work, which was briefly reported previously,20 finds
quasiparticle energies in Si, Ge, GaAs, and AlAs, by co
bining the CPP approach and the Hybertsen-Louie appro
to compute self-energies for band states.5 This involves al-
6648 © 1997 The American Physical Society
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56 6649CORE POLARIZATION IN SOLIDS: FORMULATION . . .
gorithmic changes in the treatment of atomic many-body
fects and quasiparticle self-energies. In the solid, CPP t
electron terms modify dynamical screening by including c
polarization, and by coupling valence- and core-polarizat
effects, these terms change theeffective interactionbetween
valence electrons. Consequently, both the dielectric scr
ing and electron self-energy are affected.

Core-valence interactions are one of several effects in
encing quasiparticle energies. Valid assessment of the C
efficacy requires accurate treatment of all others effe
which are therefore discussed, below. The CPP approach
its incorporation into quasiparticle calculations are descri
next. Relevant computational details are provided, and
present results found using the CPP approach to obtain
siparticle energies. The CPP’s role in a more unified pict
of electron correlation is also discussed, facilitating a heu
tic model for core-polarization effects on electron se
energies. A summary follows, and we also provide th
technical appendices.

II. RELATED EFFECTS

A. Quasiparticle vs density-functional calculations

Quasiparticle excitations, which involve electron ad
tions and removals, are described by the one-elec
Green’s function4

G~r ,r 8;E!5(
nk

Cnk~r !Cnk* ~r 8!

E2~Enk
qp6 ih!

, ~1!

written above for zero temperature. Indicesn and k denote
the band index and crystal momentum of a quasiparti
spin indices are suppressed.Enk

qp denotes~minus! the energy
to remove an electron from a filled, valence band forEnk

qp

,EF ~Fermi energy! or the energy to add an electron to a
empty, conduction band forEnk

qp.EF . A positive or negative
imaginary infinitesimal is added toEnk

qp in the respective
cases.Cnk(r ) is a quasiparticle orbital. Quasiparticle excit
tions may be found by Dyson’s equation

@2 1
2 ¹ r

21VN~r !1VH~r !#Cnk~r !

1E dr 8S~r ,r 8;Enk
qp!Cnk~r 8!5Enk

qpCnk~r !. ~2!

Terms on the left include the kinetic energy, nuclear pot
tial VN , Hartree potentialVH , and nonlocal, energy
dependent self-energy operator~describing exchange an
correlation!. A successful approximation for self-energies
semiconductors is the ‘‘GW approximation’’

S~r ,r 8;E!'1 i E dv

2p
e1 ihvG~r ,r 8;E1v!W~r ,r 8;2v!.

~3!

W is the dynamically screened Coulomb interaction.4,21 @Us-
ing pseudopotentials implies an approximate, yet adequ
description of some one-electron terms in Eq.~2!.#

If the local-density approximation~LDA ! is used, the self-
energy is replaced by the Kohn-Sham exchange-correla
potential Vxc(r ). In semiconductors and insulators, LDA
derived band gaps are either are too small or closed bec
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of band overlaps. Quantifying this problem requires accur
band-structure calculations, which need sufficient basis s
relativistic effects~including spin-orbit splittings!, and core
relaxation@e.g., Ga (3d) states in GaAs ‘‘relax,’’ affecting
the band gap by about20.25 eV ~Ref. 22!#. Replacing
Vxc(r ) with S yields much more accurate band structur
and band gaps, for insulating materials. To evaluateS, a
common approach5,6 ~also taken here! is to first perform a
LDA or Hartree-Fock self-consistent-field calculation, fro
which an approximateG andW are obtained. From these,S
is computed, while updatingG and/orW as needed.

B. Core-valence interactions in Al, Si, Ga, Ge, and As

For free atoms, Shirley and Martin17 compare errors in
predicted binding energies of valences, p, or d electrons to
closed-shell, atomic cores~cf. Fig. 1!, using LDA, Hartree-
Fock, and a ‘‘generalizedGW’’ approximation. Errors in Al
and Si are small and are comparable for 3s and 3p electrons
for all approximations mentioned, and so quasiparticle
sults should not be biased when using any of the above tr
ments of core-valence interactions. For post-transition e
ments, however, 4s and 4p states are strongly overbound
the LDA, with 4s electrons the most overbound. This lea
to a negative bias for band energies, depending on the st

FIG. 1. Errors in energies of one valence electron in the low
s, p, and d states bound to an atomic core, as given by seve
approximations: Hartree-Fock~HF!, LDA ~Ref. 9!, and the gener-
alized GW approximation (GW) ~Ref. 17!. Errors denote differ-
ences from experimental numbers, given in Ref. 23. All calculatio
are semirelativistic, and experimental data are properly spin-o
averaged. The energy is minus the removal energy. For insta
the Hartree-Fock treatment does not bind electrons sufficie
strongly.
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TABLE I. Reference configurations and parameters for pseudopotential generation, and core-polar
potential parameters. The length unit is the bohr radius, and the polarizability is in units of boh3 or,
equivalently, bohr2 hartree21

Element Ref. config. s,p,d rc a l I
( l )’s for l 50,1,2

Al s1p0.5d0.5 1.3, 1.3, 1.3 0.2675 0.7129, 0.6969, 0.7207
Si s1p1.5d0.5 1.4, 1.4, 1.3 0.1650 0.6509, 0.6214, 0.6387
Ga s1p0.3d0.7 1.5, 1.5, 1.45 1.3147 0.9996, 1.0008, 1.1552
Ge s1p1.5d0.5 1.4, 1.4, 1.3 0.7772 0.8633, 0.8552, 0.8248
As s1p2.5d0.5 1.3, 1.3, 1.3 0.4833 0.7475, 0.7301, 0.6786
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degree of 4s character. States with strong 4s character can
also be highly localized on atomic sites in semiconductor22

enhancing such a bias. Hybertsen and Louie5 noted this ef-
fect on results for Ge when using LDA-derived pseudop
tentials. Godby, Schlu¨ter, and Sham6 reported the same ef
fect on results for GaAs.

Treating post-transition elements in Hartree-Fock a
generalizedGW yields errors in binding energies opposite
sign to errors found in a LDA treatment. GeneralizedGW
errors are much smaller than those of LDA or Hartree-Fo
treatments, but can still be;0.3 eV, which is unacceptabl
large for semiconductor applications. Post-transition e
ments are difficult to treat because of their shallow cores.
high accuracy, one must either perform a more comp
description of core-valence interactions or resort to some
piricism. With accurate experimental binding energ
known for elements considered,23 some empiricism is both
efficacious and adequately reliable, permitting predictive
pacity in solid-state work.~Analogous spectral data are n
sufficiently accurate and complete for other post-transit
elements, such as In, Sn, and Sb.! We therefore treat core
valence interactions using experimental atomic spectra
relativistic Hartree-Fock calculations, allowing separa
evaluations of core-valence exchange and correlation effe
The CPP approach also requires linear, static dipole c
polarizabilities, which are taken from Ref. 17 and found
Table I.

C. Band structures of Si, Ge, GaAs, and AlAs

Band structures are affected by materials’ ionicity, atom
shell structures, and core-valence and valence-valence i
actions. Key band structure features are highly material
pendent: the types~direct vs indirect! and sizes of funda-
mental band gaps, orderings and splittings of conducti
band valleys, or symmetries of atomic orbitals dominat
various electron states. Consequently, an accurate des
tion of core-valence interactions can help predict poten
technological applications. Practical properties of semic
ductors strongly affected by band structure include lifetim
and transport properties of hot carriers, and energies
strengths of optical absorption and emission features.

For band structures studies, Table II presents lo
temperature experimental data,24–27LDA pseudopotential re-
sults ~found with LDA-derived pseudopotentials!, full-
potential all-electron LDA results,28–32 differences between
the above two types of LDA results~mostly core-relaxation
effects!, pseudopotential-based quasiparticle results fr
Refs. 5 and 7, and the quasiparticle results corrected
-

d

k

-
or
te

-
s

-

n

nd
e
ts.
re

c
er-
e-

-
g
ip-
l
-
s
nd

-

or

pseudopotential errors~using numbers in Table II!. Quasi-
particle results for these materials are also found in Refs
33, and 34. All energies are referenced to valence-b
maxima, where spin-orbit splitting effects have been
cluded.Numerical precisionof LDA calculations is percents
of 1 eV, whereas numerical precision is;0.1 eV in quasi-
particle work. The LDA systematically underestimates ba
gaps by 0.5–2.0 eV, and this discrepancy is reduced in q
siparticle results.The most important many-body effects a
by far, those involving valence-valence interactions.

Nonetheless, discrepancies between experiment and
siparticle results are largest for Ge and GaAs, particula
with core-relaxation effects included. These discrepancies
sult from LDA treatment of core-valence interactions. Agre
ment with experiment is very good for Si. Agreement
nearly as good for AlAs, butG8v→G6c is underestimated
~We use the same notation as Ref. 24.! Apparently, the As
core leads to important core-valence exchange and cor
tion effects, but not core-relaxation effects. In GaAs and G
besides there being core-relaxation effects,G8v→G6c transi-
tions are too small, giving a small gap in GaAs and an
correct prediction of a direct gap in Ge. However, indire
gaps in Ge are predicted accurately. The conduction-ba
X6c→L6c intervalley splitting in GaAs is too large, and th
X6c→X7c splitting is too small.

All of the above difficulties are explained by the LDA’
overbinding effects in Ga, Ge, and As. The promotio
G8v→G6c in AlAs and GaAs orG8v→G7c in Ge are essen
tially from 3p or 4p to 3s or 4s states, and band structure
are correspondingly biased. AtL andX, one has states with
mixed s and p character, as well as somed character, with
higher angular momenta emphasized more atX than atL. In
GaAs, the lowest conduction-band state atX state is chiefly
Ga(4p) and As(4s), whereas the second lowest is chiefl
Ga(4s) and As(4p). ~There is a symmetry reason for suc
combinations ofs andp states.!

D. Core relaxation

Core-relaxation effects are demonstrated in Table
There are two types of effects, and both have been dem
strated in GaAs:28 changes in core orbitals, affecting th
crystal potential, and hybridization of core and valen
atomic orbitals@e.g., Ga~4pz! with Ga ~3dxy!#. Pseudopo-
tential calculations neglect core-relaxation effects
definition,35 while other pseudopotential errors are found
be small, based on results for Si and AlAs, where frozen-c
errors are minimal. The GaAs band gap is reduced
;0.25 eV because of core relaxation, as shown in Table
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TABLE II. Band-energy differences in Si, Ge, GaAs, and AlAs, given in eV. Results from experim
LDA pseudopotential~PP! and full-potential~FP! calculations, estimates of core-relaxation effects based
LDA calculations (Dcr), and quasiparticle results~QP! without and with core-relaxation~cr! effects. Funda-
mental gaps are underlined and/or labeledEg .

Quantity Expt.a LDA
PP

LDA
FP

Dcr QP
no
cr

QP
LDA

cr

Si
G8v→G6c 3.45 2.59 2.55 20.04 3.35 3.31
G8v→X5c 1.32b 0.65 0.65 0.00 1.44 1.44
G8v→L6c 2.1,c2.40~15!d 1.47 1.43 20.04 2.27 2.23
L6c→X5c 20.78,21.08(15) 20.82 20.78 0.04 20.83 20.79
Eg 1.17 0.55 0.52 20.03 1.29 1.26
Ge
G8v→G7c 0.89 20.09 20.26 20.18 0.71 0.53
G8v→X5c 1.10b 0.50 0.55 0.05 1.23 1.28
G8v→L6c 0.744 0.01 20.05 20.05 0.75 0.70
L6c→X5c 0.36 0.49 0.60 0.11 0.48 0.58
GaAs
G8v→G6c 1.52 0.40 0.13 20.27 1.29 1.02
G8v→X6c 2.01 1.18 1.21 0.02 2.05 2.07
G8v→L6c 1.84 0.83 0.70 20.13 1.69 1.56
L6c→X6c 0.17 0.35 0.51 0.15 0.37 0.52
X6c→X7c 0.40 0.24 0.21 20.03 0.29 0.26
AlAs
G8v→G6c 3.13 1.77 1.76 20.01 2.75 2.74
G8v→X6c 2.24 1.20 1.22 0.01 2.08 2.09
G8v→L6c 1.89 1.91 0.01 2.79 2.80
L6c→X6c 20.69 20.69 0.00 20.71 20.71
X6c→X7c 0.86 0.87 0.01

aUnless noted, Ref. 24.
bRef. 25.
cRef. 26.
dRef. 27.
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and III. The LDA band gap for Ge is nearly zero in a sem
relativistic pseudopotential calculation, if core-valence int
actions are treated in the LDA, while an analogous fu
potential LDA result yields a 0.17-eV band overla

TABLE III. Band gap in GaAs, in eV, as found in pseudop
tential and full-potential LDA results. Pseudopotential results
clude the nonlinear core correction.

Method Result

FLAPW,a,b no 3d-4p hybridization 0.20
FLAPW,b with 3d-4p hybridization 0.12
FLAPWc 0.16
FLAPWd 0.13
Pseudopotential~this work! 0.40
LMTOe,f 0.25

aFull potential linearized augmented plane wave.
bRef. 28.
cRef. 29.
dRef. 31.
eLinear muffin-tin orbital.
fRef. 22.
-
-
-

~Whereas Ge cores are deeper than Ga cores, there are
Ge cores per unit cell. So core-relaxation effects are ab
one-third as large for the Ge core as for Ga, and should
negligible for As.!

III. CORE-POLARIZATION-POTENTIAL FORMULATION

A. Atomic theory

CPP treatments can be used within frozen-core
electron or pseudopotential work, but this work is only t
latter. For further details regarding the generation of nor
conserving~or shape-consistent! pseudopotentials, we refe
to the standard references.1,2,36–39The present CPP formula
tion is described in more detail in Ref. 17. Formally, the C
only describes correlation. Exchange is treated exa
within the Hartree-Fock treatment. So the CPP modifie
Hartree-Fock treatment of core-valence interactions, and
CPP approach represents modification of Hartree-F
pseudopotentials.

Core-valence correlation effects are expressed via o
and two-electron terms in the~valence! Hamiltonian. These
operators act only on valence electrons. For an ion of typI
located at the origin, there is a one-electron term which i
nonlocal potential:

-
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Ve~r ,r 8!52
a I

2r 2r 82

d~r 2r 8!

rr 8

3(
lm

f S r

l I
~ l !D f S r 8

l I
~ l !DYlm~ r̂ !Ylm* ~ r̂ 8!. ~4!

This has the same form as semilocal pseudopotentials.
a I denotes a core polarizability, and we have usedf (x)
5@12exp(2x2)#2. We havef (x)51 at long range, yielding
the Born-Heisenberg result, but we havef (x)50 at short
range, makingVe behave well everywhere. For low angul
momentuml , the l I

( l )’s are specified as follows:l I
( l ) is

varied to achieve the correct removal energy for one vale
electron with eachl bound to a core. Forl>3, we usel I

(2) .
There is some arbitrariness regarding the form off functions.
In Appendix A, where aspects of thef functions are dis-
cussed further, we argue why such arbitrariness is not p
lematic here.

BesidesVe , the CPP has an analogous, two-electron te
For an ion of typeI located at the origin, one has the follow
ing interaction between two electrons at pointsr andr 8. This
interaction is alocal potential, but depends on more thanr
2r 8:

Ve-e~r ,r 8!52a I S r•r 8
r 3r 83D f ~r /L I ! f ~r 8/L I !. ~5!

BecauseVe andVe-e describe electrons inducing and feelin
the same core dipoles, it is reasonable to truncateVe andVe-e

similarly at short range. Indeed, alll I
( l )’s are similar for l

50, 1, and 2. It is not obvious how to specifyL I . We follow
Ref. 17, which uses

L I5
1
2 ~l I

~0!1l I
~1!!. ~6!

Effects of Ve-e include cores’ screeningl 51 valence-
valence exchange, and were included in results presente
eleven major-group elements in Ref. 17. When theab initio
l I

( l )’s gave accurate binding energies, such as in B, Al, a
Si, effects ofVe-e were usually accurate to within 20% of th
total effects. Results would have improved by enhancing
effects in some cases and reducing them in other cases.
accuracy persists also for the present, semiempirical CP
Based on solid-state test ofVe-e’s effects on quasiparticle
self-energies, which we discuss later, we attribute toVe-e a
0.05-eV component of the uncertainty~to be added in
quadrature with other components! of our theoretical values
for interband transitions presented in Table II and emp
sized throughout this work.

The nonlocalVe is not part of the local ‘‘Kohn-Sham’’
potential discussed in ‘‘exact’’ density-functional theory40

which is valid only for the system of all electrons. Howeve
addition of one valence electron to a core may be exa
described within the Green’s function approach, which
volves a nonlocal self-energy operator. Also,Ve-e does not
depend only on thedifferencebetween two valence elec
trons’ coordinates, because the CPP describes creatio
core excitations because of fluctuating valence charge de
ties, and such excitations can have nonzero momentum.
total crystal momentum, of valence electrons plus core e
tations, is still conserved.
he
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Because only valence electrons feel the CPP, core
valence orbitals will not automatically be orthogonal in a
electron calculations which use a CPP. However, we ge
ate pseudopotentials within a Hartree-Fock context, e
during the unscreening step. Only after unscreening
terms associated withVe added to the pseudopotential, im
plying that one should fitl I

( l )’s within a pseudopotentia
framework. Because pseudopotentials are generated in n
neutral configurations, rather than with only one valen
electron present, we obtainl I

( l )’s as follows. We generate
pseudopotentials in the same way as those used in the
siparticle work, except with no valence electrons. Then,
l I

( l )’s are adjusted to give these bare-core pseudopoten
~plus Ve! correct binding energies for one electron withl
<2. The CPP therefore includes some vapor-phase, c
relaxation effects, in addition to correlation effects, which
desirable.

B. Coordinating core and valence screening effects

It is straightforward to incorporate a CPP with the abo
form into quasiparticle calculations, via extension of t
Hybertsen-Louie approach.5 S depends onG and W, and
both G and W are affected by the CPP. Many effects a
implicit, being caused byVe . However, theform of W is
also modified. Without a CPP, the staticW is computed in
the random-phase approximation~RPA! using the Adler-
Wiser method.41 To obtain self-energies,W is extended to
finite frequency using a generalized plasmon-pole mod5

Within the RPA, the microscopic dielectric matrix is give
as

«512n~xC
0 1xV

0 !. ~7!

We shall often write matrix equations, such as the above o
with matrix indices suppressed. Here,« is the dielectric ma-
trix, n is the bare Coulomb interaction, andxC

0 and xV
0 are

contributions of core and valence electrons to the irreduc
polarizability, respectively. Normally,xC

0 is neglected, but
the CPP introduces it approximately. From Eq.~7!, we find

«215S 1

12nxC
0 D 1S 1

12nxC
0 D nxV

0 S 1

12nxC
0 D

1S 1

12nxC
0 D nxV

0 S 1

12nxC
0 D nxV

0 S 1

12nxC
0 D 1•••

~8!

or

«215S 1

12nxC
0 D 1S 1

12nxC
0 D nxVS 1

12nxC
0 D . ~9!

The expression

«C
215~12nxC

0 !21 ~10!

describes cores’ screening of the effective interaction
tween valence electrons. Core polarizabilities used incl
vertex corrections, and so are not evaluated strictly wit
the RPA regardingintracore interactions. This is not prob
lematic, even though the evaluation ofW is based otherwise
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on a RPA treatment of screening. Vertex corrections can
important when obtaining accurate core polarizabilities, h
ing effects as large as 30%,17 whereas, regarding interban
transitions in the solids studied,GW typically has 0.1–0.2
eV agreement with experiment, provided that issues of co
valence interactions and core relaxation are resolved.~Reli-
ance on experimental data for energies binding valence e
trons to atomic cores is also outside of a RP
treatment.! For a monatomic system, the CPP modifies
effective, fundamental valence-valence interaction o
through the operatorVe-e . More work is needed to evaluat
«C

21 for a polyatomic system because of intercore dipo
interactions. ThexV in Eq. ~9! is like the full, RPA valence
density-response function, except that it is evaluated with
electron-electron interaction being

WC5«C
21n. ~11!

WC is instantaneous and similar ton, and Ref. 17 addresse
such an adiabatic approximation.

C. Evaluation of static «C
21 and «21

The matrix «C
21 describes screening by thesystem of

atomic coresof anexternal perturbation. Hereexternal per-
turbations are longitudinal electric fields associated wit
valence-electron density fluctuations. This matrix differs
from

11nxC
0 ~12!

because atomic cores feel thetotal effects of an externa
perturbation, including the potential because of induced c
polarization. We first evaluate all effects of a core on its
~the results of which are contained inVe-e! and then couple
cores to each other. Defining the density response to a
turbing potential for coreI as x I , the total response of a
system of cores to anexternal perturbation, referred to a
xC , is

xC5(
l

x I1(
I

x In(
JÞI

xJ1••• . ~13!

When coupling different cores,n is well described in a point-
dipole picture, even though coupling core dipoles to vale
electrons is influenced by the form ofVe-e .

Let us denote, bypIi
R , the i th Cartesian coordinate of th

core dipole on atomI in the unit-cell associated with lattic
vectorR. At most 3N independentpIi

R’s are required to de-
scribe the cores’ response to a perturbation with crystal
mentumq, where there areN atoms per unit cell. We may
derive«C

21(q) by considering such a perturbation. Define

pIi [pIi
R50 ~14!

and note the relation

pIi
R5eiq•RpIi . ~15!

A core dipole is given by the local electric field which th
core feels:

pIi 5a IEi~t I !. ~16!
e
-

e-
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e
y

r

e
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f
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Ei(t I) has contributions from the external perturbation a
from other core dipoles. The sum of these contributions m
be written as follows:

Ei~t I !5(
G

dEi~t I !

dfext~G1q!
fext~G1q!1(

J j

dEi~tJ!

dpJ j
pJ j .

~17!

Based on Fourier analysis ofVe-e , the contribution from the
G1q Fourier component of the external potential is

dEi~t I !

dfext~G1q!
52 iQiVC

21/2JI~Q!exp~ iQ•t I !. ~18!

We use the abbreviationQ5G1q, the unit-cell volume is
VC , and we have introducedJI(Q),

JI~Q!5E
0

`

dr
sin~Qr !

Qr

]

]r
f S r

L I
D . ~19!

JI(Q) approaches one asQ approaches zero. A given dipol
affects the total potential felt by the valence electrons
described through the relation

df ind~G1q!

dpIi
52 iQi S 4p

Q2 DVC
21/2JI~Q!exp~2 iQ•t I !.

~20!

Let us make the abbreviation,

Q I i ~Q!5A4p

VC
S Qi

Q D JI~Q!exp~2 iQ•t I !. ~21!

Regarding the contributions of core dipoles, one knows

dEi~t I !

dpJ j
5(

R
~12dR,0d IJ!S 2

]

]t I i
D

3S ]

]tJ j
D 1

uR1tJ2t I u
exp~ iq•R!. ~22!

This omits intracore interactions, which are incorporated i
thea I ’s. The above sum can be found using Ewald-Kornfe
techniques,42 as described in Appendix B.

The infinite summation in Eq.~15! may now be carried
out through a matrix inversion, by first defining

MIi ,J j5
dEi~t I !

dpJ j
, ~23!

KIi ,J j5a I
21d I i ,J j2MIi ,J j , ~24!

to obtain

~«C
21!G,G8~q!5

Q8

Q FdG,G82(
I i

(
J j

Q I i ~Q!

3~K21! I i ,J j@QJ j~Q8!#* G . ~25!

Except within the space spanned by theQ vectors, the~Her-
mitean! matrix in brackets is the identity matrix. Thus th
matrix in brackets is trivially diagonalized and inverte
which is useful. The only difficulties with such transform
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tions are that the difference between«C
21 and the identity

matrix fluctuates wildly in the neighborhood ofq50, be-
cause of the long-ranged Coulomb potential, and thatK can
be poorly conditioned for numerical inversion. Manipulatio
of the formulas for«21 yields

«5«C2nxV
0, ~26!

so that« and«21 may otherwise be constructed in the usu
manner, with care taken nearq50.

D. Modified plasmon-pole model

Ve-e also changes forms of the Kramers-Kronig relatio
and the generalized, longitudinalf -sum rule. Both sum rules
are used in the generalized plasmon-pole model to ex
«21 to finite frequency. Whereas changes follow because
the replacement,n→WC , the two-electron operator describ
ing WC is frequency-independent and commutes with
electron-density operator, and so analogs of the sum rule
xV are unaffected, yielding

E
0

` dv

v
«2,G,G8

21
~q,v!51

p

2
@«1,G,G8

21
~q,v50!

2@WCn21#G,G8~q!#, ~27!

E
0

`

dv v«2,G,G8
21

~q,v!52
p

2
vp

2 (
K,K8

3
r~K2K 8!

r~0!

~K1q!•~K 81q!

uK1qu2

3@WCn21#G,K~q!

3@WCn21#K8,G8~q!. ~28!

This manner of writing the sum rules is helpful when ide
tifying algorithmic changes, because of core polarizati
necessary for computing self-energies. In real space,«1

21 and
«2

21 are the real and imaginary parts of«21, while their
Fourier transforms are generally complex. We refer to Re
for further details on the generalized plasmon-pole mode

E. Evaluation of self-energies

S can be separated into an exchange term (Sx), dynami-
cal exchange term (Sdx), and Coulomb-hole term (Scoh),
with Sx1Sdx often called the screened-exchange te
(Ssex). We now have

^cnkuSxucnk&52(
n1

occ

(
q,G,G8

@WCn21#G,G8~q!n~q1G8!

3^cnkuej ~q1G!•rucn1 ,k2q&

3^cn1 ,k2que2 j ~q1G8!•r8ucnk&. ~29!

Expressions forSdx and Scoh are the same as in Ref. 7
which describes them further, but sum rules for the gene
ized plasmon-pole model differ as discussed above. We
low the conventionn(Q)54p/(VQ2), whereV is crystal
volume, but the unit-cell volume isVC . Modifications re-
l

s

nd
of

e
for

-
,

7

l-
l-

quired because of the CPP are straightforward, except
samplingW(q,v) nearq50, which is discussed in Appen
dix C.

IV. RESULTS

A. Numerical details

Whether in the LDA or Hartree-Fock treatment, we ge
erated Hamann-Schlu¨ter-Chiang1 pseudopotentials with
Vanderbilt’s cutoff functions.2 The radially nonlocal Fock
exchange is not amenable to this procedure, and was
placed by an equivalent, orbital-dependent radially local
tential. This accomplishes exact Hartree-Fock results
preserves benefits of norm conservation. Table I provi
pseudopotential and CPP parameters. Several tests
proved band-energy differences to be insensitive to detail
pseudopotential generation, so that core-relaxation eff
are the chief difficulty with using pseudopotentials in th
work. We worked within a semirelativistic~i.e., properly
j -weighted, spin-orbit-averaged! framework, and spin-orbit
splittings were includeda posteriori in the band structure
We used semilocal pseudopotentials, usingl 52 channels as
local.

In the solid state, we used 16- and 64-Ry cutoffs for wa
functions and crystal potentials, respectively. Band-ene
differences were converged to20.01 eV. Self-consisten
LDA calculations used 10 special points43 and the Ceperley-
Alder functional.44,45 Quasiparticle results used 22 spec
points ~or 28 special points when computing the Lindha
polarizability!. Calculations were also done using a 1
special-point mesh to test convergence with respect
Brillouin-zone sampling. Band-energy differences chang
by <0.1 eV, indicating convergence at a much better lev
We estimatenumerical precisionof the results, withall as-
pects of the calculation considered, to be;0.1 eV.

The «21 matrix was expanded foruG1qu up to
3.1 bohr21. The Ewald-Kornfeld sum used in the evaluatio
of «C

21 was done usingRmax520 bohrs for the real-spac
sum, 300 reciprocal-lattice vectors for the reciprocal-sp
sum, andh50.2. These cutoff parameters greatly exceed
the necessary values to realize the Clausius-Mossotti rela
~see Appendix B! to about ten figures.

GW calculations were iterated to achieve self-consiste
of quasiparticle energies, but LDA orbitals were retaine
having proved adequate in previous work.5,7 ~Effects of the
replacement,n→WC , on S are no larger than difference
betweenVxc and S and have even smaller effects on ban
energy differences.! We implemented only rigid-shift cor-
rections to energy spectra for valence and conduction ba
Remaining self-consistency effects would be small. Co
relaxation effects were includeda posteriori, being estimated
as the differences between full-potential and pseudopote
LDA results in Table II. LDA pseudopotentials were ge
erated as specified in Table I, but with a LDA treatment
core-valence interactions, including the nonlinear co
correction.35,46

B. Quasiparticle energies

Table IV includes CPP-based quasiparticle results for
Ge, GaAs, and AlAs, experimental band energies, LDA
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TABLE IV. Band-energy differences in Si, Ge, GaAs, and AlAs, in eV. Results for experiment, L
full-potential ~FP! calculations, and quasiparticle results with a LDA treatment of core-valence interac
and the present results. All results include core-relaxation effects. Fundamental gaps are underlined

Quantity Expt.a LDA

Quasiparticle,
core-valence
interactions

treated in LDA
Quasiparticle,

this work

Si
G8v→G6c 3.45 2.55 3.31 3.28
G8v→X5c 1.32b 0.65 1.44 1.31
G8v→L6c 2.1,c2.40~15!d 1.43 2.23 2.11
L6c→X5c 20.78,21.08(15) 20.78 20.79 20.80
Eg 1.17 0.52 1.26 1.13
Ge
G8v→G7c 0.89 20.26 0.53 0.85
G8v→X5c 1.10b 0.55 1.28 1.09
G8v→L6c 0.744 20.05 0.70 0.73
L6c→X5c 0.36 0.60 0.58 0.36
GaAs
G8v→G6c 1.52 0.13 1.02 1.42
G8v→X6c 2.01 1.21 2.07 1.95
G8v→L6c 1.84 0.70 1.56 1.75
L6c→X6c 0.17 0.51 0.52 0.20
X6c→X7c 0.40 0.21 0.26 0.33
AlAs
G8v→G6c 3.13 1.76 2.74 2.93
G8v→X6c 2.24 1.22 2.09 2.03
G8v→L6c 1.91 2.80 2.91
L6c→X6c 20.69 20.71 20.88
X6c→X7c 0.87 1.07

aUnless noted, Ref. 24.
bRef. 25.
cRef. 26.
dRef. 27.
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sults, and quasiparticle results reflecting a LDA treatmen
core-valence interactions. All theoretical results inclu
core-relaxation effects. Excepting minor revisions, resu
were briefly reported previously.20 Present results includ
small corrections for AlAs, because of a previous error
constructing the Al CPP. Core-relaxation effects are now
cluded for Si. Core-relaxation effects have changed by p
cents of 1 eV because of choices of full-potential work cite
and some notational errors are corrected. Below, we em
size effects of treatment~LDA or CPP! of core-valence in-
teractions.

There are minor effects in Si, and both treatments yi
accurate quasiparticle results. Note that, when computing
s2p2(3P)→sp3(5S) promotion in atomic Si using CPP
enhanced, valence-only configuration-interaction,Ve-e facili-
tates effective screening by the core of valence-valence
change, improving agreement with experiment
;0.2 eV.17 Thus this work tests some but not all importa
aspects of core-valence interactions.

In Ge, the present results substantially improveG8v→G6c
and G8v→X5c . Only CPP-based results predict
conduction-band minimum atL, giving the correct ordering
for closely spaced conduction-band valleys. Regard
f
e
s

-
r-
,
a-

d
he

x-

g

G8v→X5c , the experimental value cited in Ref. 5~1.3 eV! is
derived from direct and inverse photoelectron spectrosco
A more reliable value forG8v→X5c may be inferred from
the behavior of theD-line minimum in Si-Ge alloys.25 This
minimum, known for up to 85% Ge, may be extrapolated
pure Ge. Then, one must extrapolate toX, giving an energy
0.15 eV higher than theD minimum, with an uncertainty of
percents of 1 eV. This final number agrees very well w
empirical pseudopotential results,47 which generally are very
reliable.

In GaAs, the present approach improvesG8v→G6c ,
X6c→X7c , andL6c→X6c transitions considerably, while re
maining numbers are comparable in accuracy to those fo
using a LDA treatment of core-valence interactions. We d
cussed earlier the atomic origin of the difficulties with th
above three transitions. TheG8v→G7c ,G8c transition is also
affected by core-relaxation effects, though not as by much
is theG8v→G6c transition.

In AlAs, G8v→G6c is improved, with other transitions
being nearly as accurate. A dependence of quasiparticle
sults for AlAs on the treatment of core-valence interactio
occurs for analogous reasons as in GaAs, but on a sm
scale. We discount the experimental value for t
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conduction-band valley atL, as it was only obtained from
extrapolations based on data for AlxGa12xAs alloys.48

V. DISCUSSION

There is a 10% increase in computational requireme
when core-polarization effects are incorporated into qu
particle codes. About 75% of the computational resour
are devoted to evaluating the valence, Lindhard polariza
ity. There is about a 50% enhancement of computation t
for the rest of the calculations. Calculations in this wo
required about 150 h total on an IBM RS 6000/550,49 but
results for the coarse Brillouin-zone meshes required o
about 24 h total. So quasiparticle calculations are very p
tical for semiconductors and can be done with reasona
computational resources. Since completion of these res
we have optimized the codes substantially by accelera
convolutions using fast-Fourier-transform techniques.

The CPP scheme has so far been motivated primaril
terms of many-body core-valence interactions in isolated
oms. Here, we also consider aspects of the CPP scheme
solid-state context, and we present a model to estimate
CPP’s effects on the self-energy, which we test in GaAs

As a crude approximation, the matrix (WCn2121) acts
like a scalar,

2x[2
4p

VC
(

J
aJ , ~30!

whereJ runs over atoms in a unit cell. The ‘‘expansion c
efficient’’ for effects at higher order in the polarizabilities
roughly

y[
4p

«VC
(

J
aJ . ~31!

Division by « in y occurs because intercore, dipole-dipo
interactions are screened, an effect obfuscated by first
structing«C and then incorporating it into«. Respective val-
ues ofx andy are about 0.07 and 0.007 in GaAs, the ma
rial with the greatest core polarizability in this work, and
effects beyond first order ina’s are small.

Consider now the self-energy operator for a valence e
tron, approximated by

S51 iGW. ~32!

In this terse notation, and neglecting effects beyondGW, we
have

G5GC1GV1GU[GC1G8,

W5WC1WCxVWC[n1W81WCxVWC . ~33!

GC , GV , and GU sum over core, occupied valence, a
empty states, respectively, giving

GW5GCn1GCW81G8n1G8W81G8WCxVWC

1GCWCxVWC . ~34!

Denoting the six terms on the right-hand side as ‘‘term
through ‘‘term 6,’’ one may consider how well each term
included in the CPP approach.
ts
i-
s

il-
e
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ts,
g
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c-

’

Term 1 is included in a Hartree-Fock treatment of co
valence interactions. Term 2 is included as part of the effe
of Ve . Term 3 is included as part ofSx . If there were only
one valence electron in a system, term 4 would constitute
remainder of the effects ofVe . For more than one valenc
electron, some of the parts of term 4 enter only viaVe-e , as
demonstrated by the approximate relation

G8~r ,r 8;E!'G8~r ,r 8;E!no valence states occupied

12p i (
V5valence states

CV~r !CV* ~r 8!d~E2«V!.

~35!

Comparing this result withVe-e’s effects onSx , we see that
the remainder of term 4 is included correctly throughSx .
Including term 5 corresponds directly to includingSdx and
Scoh. Term 6 is not included. It describes valence electro
screening of core-valence exchange, in analogy to scree
effects occurring inSsex. Term 6 was absent in CPP
enhanced, valence-only configuration-interaction calcu
tions for atomic Al, and errors in results were much smal
than the total effects ofVe-e : typically ;0.02 eV in inter-
level spacings, suggesting similar band-energy-difference
rors. Furthermore, term 6 should provide similar contrib
tions to conduction- and valence-band energies. Phillip50

noted that term 6 may be large in systems with shall
cores, e.g., noble metals.

The largest effects of the CPP on band energies are
cause ofVe and must not be confused with comparable
fects of how one treats core-valence exchange~LDA vs
Hartree-Fock!. Approximately,Ve-e leads to scaling ofSx ,
Sdx , andScoh each by a factor of 12x. @Still, the sum ofall
effects of the CPP~including Ve! lowers total energies o
physical systems.# Because we have

WC'@12x#n, ~36!

scaling of Sx is most clear, whereasSdx and Scoh are af-
fected by the replacement

nFxV
0 1

12nxV
0 Gn→WCFxV

0 1

12WCxV
0 GWC . ~37!

Important parts of the denominators are their second ter
becauseSdx and Scoh weight the low-frequency«21, for
which the second terms are large, most heavily, sugges
that Sdx and Scoh would scale as the factor (12x). More
explicitly, Sdx and Scoh emphasize thev21 moment of the
imaginary part of expression~37!, while thev moment of the
imaginary part of the bracketed quantity is unaffected
such a replacement. The pole frequency for a single-p
model is multiplied by a factor of (12x)1/2, a well-known
result. Hence the associated pole strength changes by a f
of (12x)21/2, and so thev21 moment of expression~37!
changes by a factor of (12x)2(12x)215(12x). To dem-
onstrate this scaling, in Table V we present effects of inclu
ing or omittingVe-e on Sx , Sdx , andScoh in GaAs.

If GW were adequate to treat systems with highly loc
ized atomic states, less empiricism should have been
quired when treating core-valence interactions. Howev
this may not apply in other circumstances, because we h
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TABLE V. Change in~parts of! self-energy, in eV, for band states in GaAs because ofVe-e , including
changes inSx , Sdx , andScoh, andS5Sx1Sdx1Scoh, taken from calculations and from the simple estima
discussed in the text. The latter case is in parentheses. States are specified by crystal momentum
index, written in small Roman numerals.

State Change inSx Change inSdx Change inScoh Change inS

G i 1.49 ~1.29! 21.26 (20.96) 0.66~0.52! 0.88 ~0.85!
Gii•••Giv 1.00 ~0.95! 20.92 (20.66) 0.81~0.59! 0.90 ~0.89!
Gv 0.32 ~0.46! 20.37 (20.34) 0.99~0.62! 0.94 ~0.73!
Gvi•••Gviii 0.43 ~0.36! 20.36 (20.26) 0.69~0.56! 0.76 ~0.67!
L i 1.45 ~1.28! 21.23 (20.94) 0.69~0.55! 0.92 ~0.89!
L ii 1.07 ~1.02! 20.93 (20.72) 0.64~0.50! 0.78 ~0.80!
L iii •••L iv 1.00 ~0.95! 20.82 (20.66) 0.69~0.57! 0.87 ~0.86!
Lv 0.34 ~0.41! 20.42 (20.29) 0.87~0.57! 0.79 ~0.68!
Lvi•••Lvii 0.35 ~0.33! 20.27 (20.25) 0.59~0.57! 0.68 ~0.65!
Lviii 0.13 ~0.17! 20.27 (20.12) 0.67~0.51! 0.54 ~0.55!
Xi 1.43 ~1.28! 21.19 (20.93) 0.70~0.56! 0.94 ~0.92!
Xii 1.14 ~1.04! 20.97 (20.73) 0.68~0.51! 0.84 ~0.81!
Xiii •••Xiv 0.98 ~0.95! 20.80 (20.66) 0.63~0.54! 0.81 ~0.83!
Xv 0.31 ~0.32! 20.30 (20.22) 0.59~0.50! 0.60 ~0.60!
Xvi 0.30 ~0.36! 20.33 (20.25) 0.67~0.53! 0.64 ~0.64!
Xvii•••Xviii 0.35 ~0.28! 20.31 (20.25) 0.82~0.69! 0.86 ~0.72!
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sought accuracies in band-energy differences which w
percents of the self-energies. The minimal empiricism u
here facilitated a high degree of control in the description
core-valence interactions, potentially improving predicti
capacity for other solid-state applications.

VI. SUMMARY

We present a core-polarization-potential~CPP! approach
to treat core-valence interactions in solids. The approach
fers from mean-field treatments of core-valence interactio
because it deals more explicitly with dynamical effects
volving fluctuating core dipoles interacting with the elect
fields of fluctuating valence charge densities. By employ
data from vapor-phase atomic spectra, we have obta
greater control when describing core-valence interacti
than is afforded by the local-density approximation~LDA ! or
Hartree-Fock treatment. This improved results for theoret
quasiparticle band energies, achieving agreement with
periment of;0.1 eV in Si, Ge, GaAs, and AlAs. This accu
racy is not found if core-valence interactions are treated
the LDA, and use of atomic spectra does not hamper tra
re
d
f

if-
s,
-

g
ed
s

al
x-

in
s-

ferability or predictive capacity of the approach when tre
ing solids.

It is straightforward to include core-polarization effec
within a quasiparticle code. Additional required compu
tional resources are minimal. Core-valence many-body
fects are appreciable in many materials, particularly o
containing elements with shallow cores, e.g., post-transi
elements. Beyond dispute, however, the most import
many-body effects in solids still result from interaction
within the system of valence electrons.

Analyzing the problem of electron correlations in the to
system of core and valence electrons shows that m
though not all, many-body interactions involving core a
valence electrons are incorporated in the present appro
Whereas it has worked well in systems studied, applicabi
should break down in systems with even shallower ‘‘cor
states, e.g., II-VI compounds. Zakharovet al.51 found that
pseudopotential-basedGW calculations for these system
gave good results, also using noble-metal-cation cores. H
ever, Ref. 51 omitted core-relaxation effects and trea
core-valence interactions at a LDA level, thereby exploiti
a cancellation of errors in these two effects. Rohlfinget al.33
erwise
e-Fock

pro-
TABLE VI. Errors, in hartrees, in excited-state energies for one valence electron bound to an oth
bare core. A positive error indicates underestimation of the binding energy. Errors are given for Hartre
~HF! results, all-electron~ae!, core-polarization-potential results using two forms for thef functions, and
pseudopotential~pp!, core-polarization-potential results using the same two forms. Further details are
vided in Appendix A.

State HF error
D l ~ae!,
MFM

D l ~ae!,
JMD

D l8 ~pp!,
MFM

D l8 ~pp!,
JMD

Ga(5s) 0.0099 0.0006 20.0005 20.0007 20.0030
Ga(5p) 0.0078 0.0003 20.0004 20.0001 20.0010
Ge(5s) 0.0115 0.0010 20.0001 20.0009 20.0038
Ge(5p) 0.0094 0.0006 20.0001 20.0001 20.0013
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have treated such systems by using a much deeper c
valence partition. Their results were also of good quality
is not yet fully established, however, how theGW approxi-
mation may break down for systems with more localized a
strongly correlated atomiclike electron states.
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APPENDIX A

There is an infinite variety of choices for thef functions
in Eq. ~4!, and we have chosen only one. Mu¨ller, Flesch, and
Meyer14 discuss four possible choices, one of which requi
other core polarizabilities besides linear, static dipole. Jeu
Malrieu, and Daudey15 also discuss a particular shape for t
f functions,r 2/(r 21d2), whered is an adjustable paramete
We have chosen the samef function as Mu¨ller et al., who
made their choice in part because of the accuracy of hig
lying states in the elements studied. For elementI and angu-
lar momentuml , the f function depends on the ratior /l I

( l ) or
r /d. A parameterl I

( l ) or d is set so that this relation holds

^fn l uVeufn l&1«n l uHF1Rl50. ~A1!

Here ufn l& denotes the lowest valence state with a givenl ,
when there is one electron bound to a core.Rl is the experi-
mental electron removal energy for stateufn l&. Equation
~A1! only considers first-order effects ofVe , which consti-
tute about 97% of its effect.

Because of freedom in choice off functions, Eq.~A1!
does not uniquely specify the description of core-valen
correlation, implying uncertainty in results obtained. Th
motivates further justification of choice of thef function and
estimation of uncertainties because of the arbitrariness in
choice. The four citedf functions depending only ona pro-
duce appreciably different results in tests for Ge: The th
forms suggested by Mu¨ller et al. yield band-energy differ-
re-
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ences consistent to within;0.01 eV, but the form in Jeung
et al. yields quite different results, the greatest discrepan
being a zone-center gap smaller by 0.08 eV.

Above results might typify the worst-case scenario
uncertainty because of the choice off functions. However,
uncertainty can be reduced by considering the quantity

D l5^f~n11!l uVeuf~n11!l&1«~n11!l uHF1Sl . ~A2!

In analogy to Eq.~A1!, this applies to the second-lowe
valence state with a givenl . Sl is the corresponding re
moval energy. Generally,D l is not zero, becauseVe is fitted
by considering the stateufn l&, whereasuf (n11)l& has a dif-
ferent shape in the core region.D l can be larger in pseudo
potential work than all-electron work, because of the flexib
ity in shapes of pseudovalence wave functions, which res
from a lack of need for orthogonality to core orbitals and
motivated by Wentzel-Kramers-Brillouin52 arguments.

In pseudopotential results, one must distinguish pseu
potential errors~given by differences in values obtained fo
« (n11)l uHF in Hartree-Fock all-electron vs Hartree-Foc
pseudopotential calculations! and errors involved in model
ing core-valence correlation. The former errors involve
energy dependence of the pseudopotential scattering pro
ties; the latter involve an energy dependence of effects oVe
on scattering properties~cf. Ref. 53!. For pseudopotential-
based work, we suggest estimating errors associated witVe
alone using the mixed expression

D l85^f~n11!l uVeuf~n11!l&upseudopotential

1«~n11!l uHF, all electron1Sl . ~A3!

In Table VI, results are given forl 50 andl 51 states in
atomic Ga and Ge. Less important 5d states lie above core
shake-up thresholds, and so describing them is more com
cated. Our choice off function is labeled ‘‘MFM,’’ and that
from Jeunget al., ‘‘JMD.’’ Salient results are in the last two
columns and justify our choice off functions because o
small D l8’s for states$uf (n11)l&%. Remaining arbitrariness in
f functions should affect the band-energy differences b
percent of 1 eV, and correcting such arbitrariness wo
likely increasezone-center gaps in Ge and GaAs.

APPENDIX B

Our Ewald-Kornfeld sums, unconventional because
crystal momentum q, also include both direct- and
reciprocal-space sums.54 Having q modifies direct-space
sums by introducing phase factors, and reciprocal-sp
sums involve different discrete vectorsQ’s instead ofG’s,
the former being the latter plusq. We have

E
C
d3r e2 iQ•r(

R
eiq•RF~r2R!5E

C
d3r(

R
e2 iQ•~r2R!

3F~r2R!

5E d3r e2 iQ•rF~r !.

~B1!
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The first two integrations run over a unit cell, and the la
integral runs over all space.F decays rapidly at long range
The R’s are real-space lattice vectors, and we exploi
equality ofeiq•R andeiQ•R. Using Ewald-Kornfeld sums, we
find

KIi ,J j5
d I i ,J j

a I
2F(

R
~12dR,0d IJ!eiq•RF ]2

]D i]D j

3
erfc~AhuDu!

uDu GU
D5R1tJ2t I

1
4pd I i ,J j

3 S h

p D 3/2

2(
Q

4p

VC
S QiQj

Q2 De2Q2/4h2 iQ•~tJ2t I !G . ~B2!

Everything above is independent of crystal symmetry,
when atoms have tetrahedral or cubic site symmetry,
Clausius-Mossotti formula result holds forq→0, which is
shown as follows. We may write the above result in sho
hand as

K5a212M5~12Ma!a21 ~B3!

or

K215a~12Ma!21. ~B4!

We also have

1

«CM
512

4p

VC
(
I i

(
J j

qiqj

q2 KIi ,J j
21 . ~B5!

where the scalar«CM is the macroscopic, longitudinal«C .
Let us think of (12Ma)21 as a 3N33N matrix, for N
atoms per unit cell, acting on a vectorh, wherehIi 5qi /q.
This gives

1

«CM
512

4p

VC
(
I i

hIi* @a~12Ma!21h# I i . ~B6!

The real-space sum inM vanishes ash grows large, andM
does not depend onh, and so choosing very largeh yields

~Mah! I i 51
4p

3 S h

p D 3/2

a I

qi

q
2(

j

qj

q

3(
Q

(
J

4p

VC

QiQj

Q2 aJe
2Q2/4h2 iQ•~tJ2t I !.

~B7!

For appropriate symmetry, sums overQ and J simplify at
small q. The phased Gaussian factor, summed overJ’s for
each site type, is a Fourier component of a sum of Gauss
at such sites. Such components have at least tetrahedral
metry in reciprocal space, rendering the sum unaffected
this substitution before summation: For allQÞq, replace

QiQj

Q2 →
1

3
d i j . ~B8!

We may therefore write
t

d

t
e

-

ns
m-
y

~Mah! I i 51
4p

3 S h

p D 3/2

a I

qi

q
2

qi

q (
J

4p

VC
aJ

2
qi

q (
QÞq

(
J

4p

3VC
aJe

2Q2/4h2 iQ•~tJ2t I !.

~B9!

This may be written equivalently as

~Mah! I i 52
2

3

qi

q (
J

4p

VC
aJ1

4p

3 S h

p D 3/2

a I

qi

q

2
qi

q (
Q

(
J

4p

3VC
aJe

2Q2/4h2 iQ•~tJ2t I !.

~B10!

The second and third terms cancel, and soh is an eigenvec-
tor of Ma, with eigenvalue

2
2

3

4p

VC
(

J
aJ . ~B11!

Applying this result to Eq.~B6! yields the Clausius-Mossott
result.

APPENDIX C

For evaluatingS, zone integration near the zone center
discussed for cases without CPP’s in Refs. 5 and 6. H
changes are needed, becauseWC differs fromn. ForSx , one
needs (WCn21)G,G8 for q→0. BecauseK and theQ func-
tions depend on theq’s direction, angular averaging i
needed, and 18 spherical integration points suffice.55 Denot-
ing the angular average of quantityA by ^A&V , for q→0,
GÞ0, G8Þ0, we have

^~WCn21!G,G8&V5dG,G82
G8

G (
I i

(
J j

Q I i ~G!

3^KIi ,J j
21 &VQJ j* ~G8!, ~C1!

whereas, forq→0, G50, G850, we have

^~WCn21!G,G8&V512(
I i

(
J j

4p

VC
K qiqj

q2 KIi ,J j
21 L

V

.

~C2!

Symmetry ensures self-cancellation for other matrix e
ments of (WCn21)G,G8 .

RegardingSdx andScoh, we have only evaluated the an
gular averages of thev21 and v moments of the matrix
elements of«2

21, neglecting further, complicated effects o
covariance of the moments. This approximation is valida
by convergence of results with respect to zone sampl
Equations ~C1! and ~C2! describe frequency-independe
parts of«21, which are subtracted from«21 to obtain the
v21 moment, and so angular averaging of«C

21 facilitates
averaging of this moment.~As in Ref. 5, the total«21 is
explicitly angle averaged.!

For thev moment of«2
21, one needs to average chang

because of core polarization, i.e., modifications of the eff
tive V2 matrix,



f
fi-

a

w

a

6660 56ERIC L. SHIRLEY, XUEJUN ZHU, AND STEVEN G. LOUIE
~WCn2121!V21V2~WCn2121!

1~WCn2121!V2~WCn2121!, ~C3!

written in shorthand. TheV2 matrix is from Ref. 5,

VG,G8
2

~q!5
Q•Q8

Q2

r~Q2Q8!

r~0!
vp

2, ~C4!

vp being the classical valence plasma frequency. Even
N52 atoms per unit cell, evaluating the third term is dif
cult, and so we neglect it, yielding only a;2-meV error in
band-energy differences for our coarse meshes, and a sm
error for our fine meshes.

The first two terms are related by symmetry, and so
give angle-averaged results for

(
K

~WCn2121!G,KVK ,G8
2 . ~C5!

Deriving these only requires applying knowledge about«C
21

for q→0 from any direction. One needs results only for m
trix elements of«21 with G50, G850, when one has
.

.

y,

.

or

ller

e

-

2 (
KÞ0

(
I i

(
J j

(
k

S 4p

VC
D 1/2

QJ j* ~K !
Kk

K K qiqk

q2 KIi ,J j
21 L

V

3
r~K !

r~0!
vp

22
4p

VC
(
I i

(
J j

K qiqj

q2 KIi ,J j
21 L

V

vp
2, ~C6!

or with GÞ0, G8Þ0, when one has

2
G8

G (
KÞ0

(
I i

(
J j

Q I i ~G!QJ j* ~K !

3^KIi ,J j
21 &VS K•G8

KG8 D r~K2G8!

r~0!
vp

2

2
G8

G (
I i

(
J j

(
k

Q I i ~G!

3S 4p

VC
D 1/2K qiqk

q2 KIi ,J j
21 L

V

Gk8

G8

r~2G8!

r~0!
vp

2. ~C7!
-
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