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Core polarization in solids: Formulation and application to semiconductors
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Accurate treatment of exchange and correlation effects involving core and valence electrons can be surpris-
ingly important in solid-state calculations, especially for solids having elements with shallow core electrons,
such as Ga and Ge. A local-density-approximation treatment of core-valence interactions leads to errors of
~0.4 eV for key features in the band structures of Ge and GaAs, even when valence-valence interactions are
treated in a first-principles, quasiparticle approach. We apply a core-polarization-potential treatment of core-
valence interactions within the framework of such quasiparticle calculations. Final results have errors of
~0.1 eV in band-energy differencd$0163-182807)07035-3

I. INTRODUCTION function quantum simulations of the structural properties of
diamond, graphite, and silicon justifies using LDA-derived
Determining a material's quasiparticilband energies is pseudopotentiala posteriori References 11-13 also address
often done in three steps. First, one solves the atomic strusuch issues.
ture of the constituent elements, thereby determining effec- A different method for core-valence partitioning includes
tive interactions between core and valence electrons. Theddartree-Fock treatment of core-valence exchange, but treats
interactions can be incorporated into pseudopotenttals. core-valence correlation using the core-polarization-potential
Second, one solves the solid’s electronic structure self€CPP approach?~18The main motivation for that approach
consistently. This is often done within the local-density ap-is the fact that valence electrons induce core polarization and
proximation(LDA),® which gives an accurate charge densityfeel the induced potential. A valence electron feels dipoles
and approximate band energies and one-electron wave funiduced by itself and other valence electrons, and so the CPP
tions. Third, quasiparticle energies are obtained by evaluaintroduces one- and two-electron terms in the valence Hamil-
ing many-body corrections to LDA band energies, i.e., selftonian. Therefore, the CPP approach considers correlation
energy effect§~® One replacesa LDA treatment of such between cores and one valence electron and correlation in-
effects with a proper, many-body treatment. So quasiparticleolving cores and several valence electrons. At long range,
energies in solids reflect effects arising from atomic physicspne-electron terms have the forma/(2r*) as required by
band-structure effects, and exchange and dynamical electrdhe Born-Heisenberdresult, wherex is the core polarizabil-
correlation. ity. At short range, these terms are truncated in a param-
Tremendous simplification is achieved by treating coreetrized way to give correct binding energies for a sirglp,
electrons differently from valence electrons. By “partition- or d electron bound to the core in vapor phase. Effects be-
ing” electrons in this way, however, core-valence interac-yond electron-core dipole interactions are approximately in-
tions are often treated at LDA or Hartree-Fock levels, evercluded by enforcing correct binding energies. Truncation re-
in quasiparticle treatments® hampering ultimate accuracies flects the finite core extent and eliminates divergences at the
attainable. This can be good enough, because core-valenoegin. Two-electron terms have an analogous form: they
many-body effects are so small, except in elements wittadhere to the classical result at long range, but are similarly
shallow cores, including post-transition elemef#sy.,, Ga truncated at short range.
and Ge, alkalis, and alkaline earths. Effects of core-valence correlation on valence states may
Hybertsen and Loureattributed underestimation of the be inferred from first-principles, many-body atomic calcula-
zone-center, direct gap in Ge to relative overbinding sf 4 tions or from atomic spectra. Successful application of semi-
states with respect topdstates, because of the LDA treat- empirical CPP’s is presented in Ref. 14, which also reviews
ment of core-valence interactions. Godby, Stdluand prior work. Reference 16 applies a first-principles CPP treat-
Shanf noted that results for the GaAs band gap were accument of core-valence correlation to atoms and,.N&efer-
rate partly because of cancellation of two errors: analogousnce 17 continues the same work, presents parameters suffi-
overbinding effects in Ga and As, and neglect of relaxatiorcient to construct CPP’s for most elements wati 40, and
of Ga(3d) core states(The choice of pseudopotentialm cites further work.
Ref. 6 may also have played a role: Quasiparticle calcula- This work, which was briefly reported previougR/finds
tions in Ref. 7, using different pseudopotentials, led to amguasiparticle energies in Si, Ge, GaAs, and AlAs, by com-
underestimation of the gap. Fahy, Wang, and Lout8 ar-  bining the CPP approach and the Hybertsen-Louie approach
gued that a successful prediction by correlated-waveto compute self-energies for band statékhis involves al-
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gorithmic changes in the treatment of atomic many-body ef-
fects and quasiparticle self-energies. In the solid, CPP two- 1=0l | >L >|< >|<HF
electron terms modify dynamical screening by including core 1= ]
polarization, and by coupling valence- and core-polarization X
effects, these terms change tféective interactiorbetween
valence electrons. Consequently, both the dielectric screen-
ing and electron self-energy are affected.

Core-valence interactions are one of several effects influ-
encing quasiparticle energies. Valid assessment of the CPP’s
efficacy requires accurate treatment of all others effects,
which are therefore discussed, below. The CPP approach and
its incorporation into quasiparticle calculations are described
next. Relevant computational details are provided, and we
present results found using the CPP approach to obtain qua-
siparticle energies. The CPP’s role in a more unified picture
of electron correlation is also discussed, facilitating a heuris-
tic model for core-polarization effects on electron self-
energies. A summary follows, and we also provide three
technical appendices. 1= —

X X
Il. RELATED EFFECTS 0 —é—a—é—g—e‘

A. Quasiparticle vs density-functional calculations
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Quasiparticle excitations, which involve electron addi- | | | | |
tions and removals, are described by the one-electron Al Si Ga Ge As
Green’s functiofy

v W (! FIG. 1. Errors in energies of one valence electron in the lowest,

G(r,r'; k(D Wr(r’) s andd states bound to an atomic core, as given by several
ME)=2 = @ S P .,as given by

nk E—(EX=xin) approximations: Hartree-FodidF), LDA (Ref. 9, and the gener-

. . alized GW approximation GW) (Ref. 17. Errors denote differ-
written above for zero temperature. Indiaeandk denote  gnces from experimental numbers, given in Ref. 23. Al calculations

the band index and crystal momentum of a quasiparticlegre semirelativistic, and experimental data are properly spin-orbit
spin indices are suppressdgf}; denotegminus the energy averaged. The energy is minus the removal energy. For instance,
to remove an electron from a filled, valence band EgJff  the Hartree-Fock treatment does not bind electrons sufficiently
<Eg (Fermi energy or the energy to add an electron to an strongly.

empty, conduction band fd}>E . A positive or negative

imaginary infinitesimal is added t&7, in the respective of band overlaps. Quantifying this problem requires accurate
casesW . (r) is a quasiparticle orbital. Quasiparticle excita- band-structure calculations, which need sufficient basis sets,

tions may be found by Dyson’s equation relativistic effects(including spin-orbit splittings and core
relaxation[e.g., Ga (8l) states in GaAs “relax,” affecting
[ 3VZ+H V(D) + V(D)W (1) the band gap by about 0.25eV (Ref. 22]. Replacing

V,(r) with ¥ yields much more accurate band structures,
+ 1 dr'S(rrE®)W (r')=E®W¥ _ (r). (2 and band gaps, for insulating materials. To evaluatea
f ( k) k(1) =Enic¥ (). (2) common approact? (also taken hepeis to first perform a

Terms on the left include the kinetic energy, nuclear poten—LDA or Hartree-Fock self-consistent-field calculation, from
tial Vy, Hartree potentialV,, and nonlocal, energy- which an approximat& andW are obtained. From thesE,

dependent self-energy operatédescribing exchange and IS computed, while updatinG and/orW as needed.
correlation). A successful approximation for self-energies in

semiconductors is theGW approximation” B. Core-valence interactions in Al, Si, Ga, Ge, and As
do For free atoms, Shirley and Marlihcompare errors in
E(r,r’;E)%wLif pym et G(rr" E+ w)W(r,r'; — o). predicted binding energies of valensep, or d electrons to

3) closed-shell, atomic corgsf. Fig. 1), using LDA, Hartree-
Fock, and a “generalize& W’ approximation. Errors in Al

W is the dynamically screened Coulomb interactiéh[Us-  and Si are small and are comparable feréhd 3 electrons

ing pseudopotentials implies an approximate, yet adequatégr all approximations mentioned, and so quasiparticle re-

description of some one-electron terms in E2).] sults should not be biased when using any of the above treat-
If the local-density approximatioflDA) is used, the self- ments of core-valence interactions. For post-transition ele-

energy is replaced by the Kohn-Sham exchange-correlatioments, however, gland 4p states are strongly overbound in

potential V,.(r). In semiconductors and insulators, LDA- the LDA, with 4s electrons the most overbound. This leads

derived band gaps are either are too small or closed becautea negative bias for band energies, depending on the states’
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TABLE I. Reference configurations and parameters for pseudopotential generation, and core-polarization-
potential parameters. The length unit is the bohr radius, and the polarizability is in units &f dyohr
equivalently, botrhartree*

Element Ref. config. s,p,d r¢ o A"'s for 1=0,1,2

Al stp®°d®s 1.3,13,1.3 0.2675 0.7129, 0.6969, 0.7207
Si slpod0® 1.4,1.4,13 0.1650 0.6509, 0.6214, 0.6387
Ga stp®3d®’ 1.5, 1.5, 1.45 1.3147 0.9996, 1.0008, 1.1552
Ge stpl®d®s 1.4,1.4,13 0.7772 0.8633, 0.8552, 0.8248
As stp25d°s 1.3,1.3,1.3 0.4833 0.7475, 0.7301, 0.6786

degree of 4 character. States with strong 4haracter can pseudopotential error@ising numbers in Table )l Quasi-
also be highly localized on atomic sites in semiconductors, particle results for these materials are also found in Refs. 6,
enhancing such a bias. Hybertsen and Ldmieted this ef- 33, and 34. All energies are referenced to valence-band
fect on results for Ge when using LDA-derived pseudopo-maxima, where spin-orbit splitting effects have been in-
tentials. Godby, Schter, and Shathreported the same ef- cluded.Numerical precisiorof LDA calculations is percents
fect on results for GaAs. of 1 eV, whereas numerical precision-s0.1 eV in quasi-
Treating post-transition elements in Hartree-Fock andparticle work. The LDA systematically underestimates band
generalizeds W yields errors in binding energies opposite in gaps by 0.5-2.0 eV, and this discrepancy is reduced in qua-
sign to errors found in a LDA treatment. GeneraliZB8V  siparticle resultsThe most important many-body effects are,
errors are much smaller than those of LDA or Hartree-Focky far, those involving valence-valence interactions
treatments, but can still be 0.3 eV, which is unacceptably Nonetheless, discrepancies between experiment and qua-
large for semiconductor applications. Post-transition elesiparticle results are largest for Ge and GaAs, particularly
ments are difficult to treat because of their shallow cores. Fowith core-relaxation effects included. These discrepancies re-
high accuracy, one must either perform a more completsult from LDA treatment of core-valence interactions. Agree-
description of core-valence interactions or resort to some enment with experiment is very good for Si. Agreement is
piricism. With accurate experimental binding energiesnearly as good for AlAs, bulf'g,—I'¢. is underestimated.
known for elements considerédisome empiricism is both (We use the same notation as Ref.)24Apparently, the As
efficacious and adequately reliable, permitting predictive cacore leads to important core-valence exchange and correla-
pacity in solid-state work(Analogous spectral data are not tion effects, but not core-relaxation effects. In GaAs and Ge,
sufficiently accurate and complete for other post-transitiorbesides there being core-relaxation effetlg,—I"¢. transi-
elements, such as In, Sn, and JSbWe therefore treat core- tions are too small, giving a small gap in GaAs and an in-
valence interactions using experimental atomic spectra ancbrrect prediction of a direct gap in Ge. However, indirect
relativistic Hartree-Fock calculations, allowing separategaps in Ge are predicted accurately. The conduction-band,
evaluations of core-valence exchange and correlation effectXg.— Lg. intervalley splitting in GaAs is too large, and the
The CPP approach also requires linear, static dipole cor¥s.— X5 splitting is too small.
polarizabilities, which are taken from Ref. 17 and found in  All of the above difficulties are explained by the LDA’s
Table I. overbinding effects in Ga, Ge, and As. The promotions
I'g,—T'g: in AlAs and GaAs ol'g,— 17, in Ge are essen-
C. Band structures of Si, Ge, GaAs, and AlAs tially from 3p or 4p to.33 or 4s states, and band structqres
are correspondingly biased. Atand X, one has states with
shgll structures, and core-valence and vale_nce-valenc_e int&iigher angular momenta emphasized mor¥ #tan atL. In
actions. Key band structure features are highly material deGaAs, the lowest conduction-band statexastate is chiefly
pendent: the type&direct vs indireckt and sizes of funda- Ga(4p) and As(4%), whereas the second lowest is chiefly

mental band gaps, orderings and splittings of conductionGa(4S) and As($). (There is a symmetry reason for such
band valleys, or symmetries of atomic orbitals dominatingsompinations o andp states.

various electron states. Consequently, an accurate descrip-
tion of core-valence interactions can help predict potential
technological applications. Practical properties of semicon-
ductors strongly affected by band structure include lifetimes Core-relaxation effects are demonstrated in Table II.
and transport properties of hot carriers, and energies an@here are two types of effects, and both have been demon-
strengths of optical absorption and emission features. strated in GaAs® changes in core orbitals, affecting the
For band structures studies, Table Il presents low<crystal potential, and hybridization of core and valence
temperature experimental d&ta?’ LDA pseudopotential re- atomic orbitals[e.g., Ga(4p,) with Ga (3d,,)]. Pseudopo-
sults (found with LDA-derived pseudopotentias full- tential calculations neglect core-relaxation effects by
potential all-electron LDA result® 32 differences between definition® while other pseudopotential errors are found to
the above two types of LDA resulfsnostly core-relaxation be small, based on results for Si and AlAs, where frozen-core
effect9, pseudopotential-based quasiparticle results fronerrors are minimal. The GaAs band gap is reduced by
Refs. 5 and 7, and the quasiparticle results corrected for-0.25 eV because of core relaxation, as shown in Tables Il

D. Core relaxation
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TABLE Il. Band-energy differences in Si, Ge, GaAs, and AlAs, given in eV. Results from experiment,
LDA pseudopotentia(PP and full-potential(FP) calculations, estimates of core-relaxation effects based on
LDA calculations Q,), and quasiparticle resul{QP) without and with core-relaxatiofcr) effects. Funda-
mental gaps are underlined and/or labeligd

Quantity Expt® LDA LDA Ag QP QP

PP FP no LDA

Ccr Cr

Si
Tg,—ec 3.45 2.59 255 -0.04 3.35 3.31
Tg,— Xse 1.32 0.65 0.65 0.00 1.44 1.44
Ig,— Lgc 2.1%2.4015)¢ 1.47 1.43 -0.04 2.27 2.23
Lgc— Xse —0.78~1.08(15) -0.82 -0.78 0.04 -0.83 -0.79
Eq 1.17 0.55 0.52 -0.03 1.29 1.26
Ge - - - - -
Ig,—T7c 0.89 -0.09 -0.26 -0.18 0.71 0.53
g, — Xsc 110 0.50 0.55 0.05 123 T1.28
I'g,— Lec 0.744 0.01 -0.05 -0.05 0.75 0.70
Lee— Xsc 0.36 0.49 0.60 0.11 0.48 0.58
GaAs
Tg,—Tec 1.52 0.40 0.13 -0.27 1.29 1.02
Ig,— Xec 2.01 1.18 121 0.02 205 T 2.07
Ig,— Legc 1.84 0.83 0.70 -0.13 1.69 1.56
Lgc— Xoc 0.17 0.35 0.51 0.15 0.37 0.52
Xge— X7e 0.40 0.24 0.21 -0.03 0.29 0.26
AlAs
I'g,—Tec 3.13 1.77 1.76 -0.01 2.75 2.74
Tg,— Xec 2.24 1.20 1.22 0.01 2.08 2.09
Tg,—Lec - 1.89 191 0.01 279 280
Lgc— Xec —0.69 -0.69 0.00 -0.71 -0.71
Xee— X7¢ 0.86 0.87 0.01
8Unless noted, Ref. 24.
bRef. 25.
‘Ref. 26.
‘Ref. 27.

and lll. The LDA band gap for Ge is nearly zero in a semi-(Whereas Ge cores are deeper than Ga cores, there are two
relativistic pseudopotential calculation, if core-valence inter-Ge cores per unit cell. So core-relaxation effects are about
actions are treated in the LDA, while an analogous full-one-third as large for the Ge core as for Ga, and should be

potential LDA result yields a 0.17-eV band overlap. negligible for As)

TABLE Ill. Band gap in GaAs, in eV, as found in pseudopo-
tential and full-potential LDA results. Pseudopotential results in-

clude the nonlinear core correction.

Method Result
FLAPW 2P no 3d-4p hybridization 0.20
FLAPW P with 3d-4p hybridization 0.12
FLAPWS® 0.16
FLAPW! 0.13
Pseudopotentiglthis work) 0.40
LMTO®f 0.25

3ull potential linearized augmented plane wave.
PRef. 28.

‘Ref. 29.

Ref. 31.

€Linear muffin-tin orbital.

'Ref. 22.

[ll. CORE-POLARIZATION-POTENTIAL FORMULATION

A. Atomic theory

CPP treatments can be used within frozen-core all-
electron or pseudopotential work, but this work is only the
latter. For further details regarding the generation of norm-
conserving(or shape-consistenpseudopotentials, we refer
to the standard referenck$36-3°The present CPP formula-
tion is described in more detail in Ref. 17. Formally, the CPP
only describes correlation. Exchange is treated exactly
within the Hartree-Fock treatment. So the CPP modifies a
Hartree-Fock treatment of core-valence interactions, and our
CPP approach represents modification of Hartree-Fock
pseudopotentials.

Core-valence correlation effects are expressed via one-
and two-electron terms in th@zalence Hamiltonian. These
operators act only on valence electrons. For an ion of type
located at the origin, there is a one-electron term which is a
nonlocal potential:
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a S(r—r’) Because only valence electrons feel the CPP, core and
Ve(r,r')=— %72 r’ valence orbitals will not automatically be orthogonal in all-
electron calculations which use a CPP. However, we gener-
r . . ate pseudopotentials within a Hartree-Fock context, even
XIE f(w)f<W)Y|m(r)YTm(r’>- (4 during the unscreening step. Only after unscreening are
" ! ! terms associated witlf, added to the pseudopotential, im-
This has the same form as semilocal pseudopotentials. Thaying that one should fiv\,(')’s within a pseudopotential
a; denotes a core polarizability, and we have u$¢x) framework. Because pseudopotentials are generated in near-
=[1—exp(x?)T% We havef(x)=1 at long range, yielding neutral configurations, rather than with only one valence
the Born-Heisenberg result, but we haffx)=0 at short electron present, we obta("’s as follows. We generate
range, making/, behave well everywhere. For low angular pseudopotentials in the same way as those used in the qua-
momentuml, the A\{""'s are specified as follows:\{" is  siparticle work, except with no valence electrons. Then, the
varied to achieve the correct removal energy for one valencﬁf"’s are adjusted to give these bare-core pseudopotentials
electron with each bound to a core. Fdr=3, we use\l(z). (plus V,) correct binding energies for one electron with
There is some arbitrariness regarding the forni fifnctions.  <2. The CPP therefore includes some vapor-phase, core-
In Appendix A, where aspects of thie functions are dis- relaxation effects, in addition to correlation effects, which is
cussed further, we argue why such arbitrariness is not protdesirable.
lematic here.
BesidesV., the CPP has an analogous, two-electron term. B. Coordinating core and valence screening effects
For an ion of typd located at the origin, one has the follow-
ing interaction between two electrons at poinendr’. This
interaction is aocal potential, but depends on more than
-r':

!

It is straightforward to incorporate a CPP with the above
form into quasiparticle calculations, via extension of the
Hybertsen-Louie approachs depends orG and W, and
both G and W are affected by the CPP. Many effects are

ror implicit, being caused by.. However, theform of W is
ve_e(r,r’)z—al(w)f(r//\l)f(r'ml)_ (5 also modified. Without a CPP, the stali¢ is computed in
rer the random-phase approximatigRPA) using the Adler-
Wiser method'! To obtain self-energied)V is extended to
finite frequency using a generalized plasmon-pole model.
Within the RPA, the microscopic dielectric matrix is given

Because/, andV,.. describe electrons inducing and feeling
the same core dipoles, it is reasonable to trundatendV,. .
similarly at short range. Indeed, all"’’s are similar forl

=0, 1, and 2. It is not obvious how to specify . We follow as
Ref. 17, which uses e=1—v(x2+x9). @
A=2NO D), (6)  We shall often write matrix equations, such as the above one,

with matrix indices suppressed. Hekeis the dielectric ma-
Effects of V. include cores’ screenind=1 valence- trix  is the bare Coulomb interaction, and and xJ are
valence exchange, and were included in results presented fgpntributions of core and valence electrons to the irreducible
eleven major-group elements in Ref. 17. When dbeinitio polarizability, respectively. Normallyy2 is neglected, but

A{"'s gave accurate binding energies, such as in B, Al, anghe CPP introduces it approximately. From Eg)., we find
Si, effects ofV,_, were usually accurate to within 20% of the

total effects. Results would have improved by enhancing the . 1 1 0 1
effects in some cases and reducing them in other cases. Suché€ =( ) +( ) VXv( 1—, o)
accuracy persists also for the present, semiempirical CPP’s. Xc
Based on solid-state test &f, .'s effects on quasiparticle ( 1 ) 0 ( 1 ) 0 ( 1 >+
self-energies, which we discuss later, we attribut®&/{q a — 0| VXv| 7 0|YXv|7 0
0.05-eV component of the uncertainffo be added in 1=vxe 1=vxe 1=vxe
quadrature with other components our theoretical values (8
for interband transitions presented in Table Il and emphabr
sized throughout this work.

The nonlocalV, is not part of the local “Kohn-Sham” 1 1 1

(s

1—1/)(% 1—VXOC

potential discussed in “exact” density-functional thedfy,
which is valid only for the system of all electrons. However,
addition of one valence electron to a core may be exactly
described within the Green’s function approach, which in-
volves a nonlocal self-energy operator. Aldg, ., does not 851:(1_ VX%)—I (10)
depend only on thalifferencebetween two valence elec-

trons’ coordinates, because the CPP describes creation déscribes cores’ screening of the effective interaction be-
core excitations because of fluctuating valence charge dendiween valence electrons. Core polarizabilities used include
ties, and such excitations can have nonzero momentum. Theertex corrections, and so are not evaluated strictly within
total crystal momentum, of valence electrons plus core excithe RPA regardingntracore interactions. This is not prob-
tations, is still conserved. lematic, even though the evaluation\&fis based otherwise

)- €)

1—vx2 —vx2 —vx2

The expression
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on a RPA treatment of screening. Vertex corrections can bg;(7) has contributions from the external perturbation and

important when obtaining accurate core polarizabilities, havfrom other core dipoles. The sum of these contributions may
ing effects as large as 30%whereas, regarding interband pe written as follows:

transitions in the solids studie@ W typically has 0.1-0.2

eV agreement with experiment, provided that issues of core- B OEi(7) OEi(7y)
valence interactions and core relaxation are resol¢edli- Ei(T')_E Shex G+Q) ¢6X1(G+Q)+sz 5Py Pj-
ance on experimental data for energies binding valence elec- (17)

trons to atomic cores is also outside of a RPA _ ) o

treatment. For a monatomic system, the CPP modifies theBased on Fourier analysis b.., the contribution from the
effective, fundamental valence-valence interaction only®* d Fourier component of the external potential is
through the operatov,... More work is needed to evaluate SE,(7)

851 for a polyatomic system because of intercore dipolar _—= —iQiggl’zjl(Q)exp(iQ- 7). (18
interactions. Theyy in Eq. (9) is like the full, RPA valence Sdex(G+0)

density-response function, except that it is evaluated with thgye yse the abbreviatio®=G+q, the unit-cell volume is
electron-electron interaction being Qc, and we have introduced|(Q),

WCZSElV- (11)

sin(Qr) 4 r
— f(A|> (19

J|(Q)=f0 dr “or

J,(Q) approaches one &3 approaches zero. A given dipole
_ N . affects the total potential felt by the valence electrons as
C. Evaluation of static ¢~ and £~ described through the relation

The matrix 851 describes screening by thgystem of

W, is instantaneous and similar 19 and Ref. 17 addresses
such an adiabatic approximation.

atomic coref anexternal perturbationHereexternal per- w: —iQi(ﬁTz)le’z‘],(Q)exp(—iQo ).
turbations are longitudinal electric fields associated with opii Q
valence-electron density fluctuation§his matrix differs (20
from Let us make the abbreviation,
1+ vx2 (12) 47 (Q ,
_ 0:(Q=\g | o Q@em—iQ-). (2D
because atomic cores feel thetal effects of an external c\Q

perturbation, including the potential because of induced coreqgarding the contributions of core dipoles, one knows
polarization. We first evaluate all effects of a core on itself

(the results of which are contained V¥..) and then couple SEi(7)

cores to each other. Defining the density response to a per- 5Py, ZER (1- 5R,o5u)( T
turbing potential for cord as y,, the total response of a ) '
system of cores to aexternal perturbation, referred to as ><( d

XC» IS

explig-R). (22

This omits intracore interactions, which are incorporated into
XC:Z XI’LZ Xi VJ; Xote 13 the a,’s. The above sum can be found using Ewald-Kornfeld
technique$? as described in Appendix B.
When coupling different cores,is well described in a point- The infinite summation in Eq(15) may now be carried
dipole picture, even though coupling core dipoles to valenceut through a matrix inversion, by first defining
electrons is influenced by the form ®f,_..

Let us denote, byy;, theith Cartesian coordinate of the . SEi(m)
core dipole on aton in the unit-cell associated with lattice 1. J] opy;
vectorR. At most 3N independenp;;’s are required to de-
scribe the cores’ response to a perturbation with crystal mo- Kii.gi= e “8ii 3= Myi 5, (24)
mentumgq, where there aré&l atoms per unit cell. We may ¢ :

. -1 . ; . 0 obtain
derivee(q) by considering such a perturbation. Define

: (23

- - Q’
pi=pp ° (14 (Scl)G,G'(CI):a 5G,G’_; JEJ 0,i(Q)
and note the relation
. X(K™Yi 5i0051(Q")]1* |. 25
pﬁ:elqﬂp”. (15) ( )Il,J][ JJ(Q )] ( )
A core dipole is given by the local electric field which the Except within the space spanned by tevectors, theHer-
core feels: mitean matrix in brackets is the identity matrix. Thus the

matrix in brackets is trivially diagonalized and inverted,
pi=aEi(m). (16)  which is useful. The only difficulties with such transforma-
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tions are that the difference betweeg® and the identity
matrix fluctuates wildly in the neighborhood of=0, be-
cause of the long-ranged Coulomb potential, and khaan
be poorly conditioned for numerical inversion. Manipulation
of the formulas fore ! yields

(26)

— 0
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quired because of the CPP are straightforward, except for
samplingW(q,w) nearq=_0, which is discussed in Appen-
dix C.

IV. RESULTS

A. Numerical details

Whether in the LDA or Hartree-Fock treatment, we gen-
erated Hamann-Schier-Chiand pseudopotentials  with
Vanderbilt's cutoff functiong. The radially nonlocal Fock
exchange is not amenable to this procedure, and was re-
placed by an equivalent, orbital-dependent radially local po-

Ve.e also changes forms of the Kramers-Kronig relationstential. This accomplishes exact Hartree-Fock results and
and the generalized, longitudinBisum rule. Both sum rules preserves benefits of norm conservation. Table | provides
are used in the generalized plasmon-pole model to extengseudopotential and CPP parameters. Several tests have
&~ ! to finite frequency. Whereas changes follow because oproved band-energy differences to be insensitive to details of
the replacementy— W, the two-electron operator describ- pseudopotential generation, so that core-relaxation effects
ing W¢ is frequency-independent and commutes with theare the chief difficulty with using pseudopotentials in this
electron-density operator, and so analogs of the sum rules favork. We worked within a semirelativisti¢i.e., properly
xv are unaffected, yielding j-weighted, spin-orbit-averagedramework, and spin-orbit
splittings were included posterioriin the band structure.
We used semilocal pseudopotentials, udisg? channels as
local.

In the solid state, we used 16- and 64-Ry cutoffs for wave
functions and crystal potentials, respectively. Band-energy
differences were converged te 0.01 eV. Self-consistent
LDA calculations used 10 special poifitsind the Ceperley-
Alder functional***® Quasiparticle results used 22 special
points (or 28 special points when computing the Lindhard
polarizability). Calculations were also done using a 10-
special-point mesh to test convergence with respect to
Brillouin-zone sampling. Band-energy differences changed
by <0.1 eV, indicating convergence at a much better level.
1 We estimatenumerical precisiorof the results, withall as-
X[Wev e (9)- (28) pects of the calculation considered, to b®.1 eV.

This manner of writing the sum rules is helpful when iden- The &~ ! matrix was expanded forlG+q| up to
tifying algorithmic changes, because of core polarization3.1 bohi*. The Ewald-Kornfeld sum used in the evaluation
necessary for computing self-energies. In real spzapéand of agl was done usindR;,,=20 bohrs for the real-space
e, are the real and imaginary parts ef *, while their ~ sum, 300 reciprocal-lattice vectors for the reciprocal-space
Fourier transforms are generally complex. We refer to Ref. Zum, andn=0.2. These cutoff parameters greatly exceeded
for further details on the generalized plasmon-pole model. the necessary values to realize the Clausius-Mossotti relation
(see Appendix Bto about ten figures.

GW calculations were iterated to achieve self-consistency
_ _ of quasiparticle energies, but LDA orbitals were retained,

X can be separated into an exchange tely) (dynami-  haying proved adequate in previous wérk(Effects of the
cal exchange termXg,), and Coulomb-hole term3co),  replacementy—Wc, on'S are no larger than differences
with 2,+2%4 often called the screened-exchange termheqyeeny,, and3 and have even smaller effects on band-
(Zsed- We now have energy differences. We implemented only rigid-shift cor-
rections to energy spectra for valence and conduction bands.
Remaining self-consistency effects would be small. Core-
relaxation effects were includedposteriorj being estimated
as the differences between full-potential and pseudopotential
LDA results in Table Il. LDA pseudopotentials were gen-
erated as specified in Table I, but with a LDA treatment of

—1 ,., . B - . .
Xy k-ql@ITE T ). core-valence interactions, including the nonlinear core
correction®+4¢

Expressions for 4 and X, are the same as in Ref. 7,
which describes them further, but sum rules for the general-
ized plasmon-pole model differ as discussed above. We fol-
low the conventionv(Q)=47/(QQ?), where( is crystal
volume, but the unit-cell volume i€)-. Modifications re-

so thate ande ~! may otherwise be constructed in the usual
manner, with care taken negr=0.

D. Modified plasmon-pole model

* dw

fo — s;’é’G,(q,w)= +

-1
w E[Sle’G,(q,wZO)

—[Wer ee(@],  (27)

o _ T
fo dw wsz,é,e'(q'w): ) w;E

K,K'
p(K=K") (K+q)-(K'+Qq)
p(0) [K+ql?
X[chil]G,K(q)

E. Evaluation of self-energies

occ

(Gl Sl tmd=—2 2 [Wer Yo (q)r(q+G’)

N1 q,G,G’

X<¢nk|ej(q+e)-r|(//nl,k—q>

(29

B. Quasiparticle energies

Table IV includes CPP-based quasiparticle results for Si,
Ge, GaAs, and AlAs, experimental band energies, LDA re-
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TABLE IV. Band-energy differences in Si, Ge, GaAs, and AlAs, in eV. Results for experiment, LDA
full-potential (FP) calculations, and quasiparticle results with a LDA treatment of core-valence interactions
and the present results. All results include core-relaxation effects. Fundamental gaps are underlined.

Quasiparticle,
core-valence

interactions Quasiparticle,
Quantity Expt LDA treated in LDA this work
Si
Ig,—Tec 3.45 2.55 3.31 3.28
Tg,— Xsc 1.32 0.65 1.44 1.31
Ig,— Lgc 2.1%2.4015)¢ 1.43 2.23 2.11
Lc— Xse —0.78-1.08(15) -0.78 -0.79 -0.80
Eq 1.17 0.52 1.26 1.13
Ge _ T _ _
Ig,—T7¢ 0.89 -0.26 0.53 0.85
[g,— Xse 1.10 0.55 128 1.09
Ig,—Lec 0.744 -0.05 0.70 0.73
Lc— Xse 0.36 0.60 0.58 ~0.36
GaAs
Ig,—Tec 1.52 0.13 1.02 1.42
Tg,— Xoc 2.01 121 2.07 T1.95
Ig,—Lec 1.84 0.70 1.56 1.75
L sc— Xec 0.17 0.51 0.52 0.20
Xee— X7c 0.40 0.21 0.26 0.33
AlAs
Ig,—Tge 3.13 1.76 2.74 2.93
[g,— Xec 2.24 1.22 2.09 2.03
Tg,— Lec _ 191 2.80 201
Lec— Xoc -0.69 -0.71 -0.88
Xec— X7c 0.87 1.07
8Unless noted, Ref. 24.
bRef. 25.
°Ref. 26.
‘Ref. 27.

sults, and quasiparticle results reflecting a LDA treatment ol g, — X5, the experimental value cited in Ref(5.3 eV) is
core-valence interactions. All theoretical results includederived from direct and inverse photoelectron spectroscopy.
core-relaxation effects. Excepting minor revisions, resultsA more reliable value fol'g,— X5, may be inferred from
were briefly reported previousR. Present results include the behavior of the\-line minimum in Si-Ge alloy$® This
small corrections for AlAs, because of a previous error inminimum, known for up to 85% Ge, may be extrapolated to
constructing the Al CPP. Core-relaxation effects are now inpure Ge. Then, one must extrapolatextogiving an energy
cluded for Si. Core-relaxation effects have changed by per0.15 eV higher than thA minimum, with an uncertainty of
cents of 1 eV because of choices of full-potential work cited,percents of 1 eV. This final number agrees very well with
and some notational errors are corrected. Below, we empha&mpirical pseudopotential resuftswhich generally are very
size effects of treatment.DA or CPP of core-valence in- reliable.
teractions. In GaAs, the present approach improve€sg,—1Ig.,

There are minor effects in Si, and both treatments yieldXs.— X, andLg.— Xg. transitions considerably, while re-
accurate quasiparticle results. Note that, when computing thenaining numbers are comparable in accuracy to those found
s?p?(®P)—sp*(°S) promotion in atomic Si using CPP- using a LDA treatment of core-valence interactions. We dis-
enhanced, valence-only configuration-interactdg, facili- cussed earlier the atomic origin of the difficulties with the
tates effective screening by the core of valence-valence exabove three transitions. TH&,—T';.,I g transition is also
change, improving agreement with experiment byaffected by core-relaxation effects, though not as by much as
~0.2 eV Thus this work tests some but not all importantis theI'g,— I, transition.
aspects of core-valence interactions. In AlAs, I'g,—T'g. is improved, with other transitions

In Ge, the present results substantially improyge—1Ig, being nearly as accurate. A dependence of quasiparticle re-
and I'g,—Xs.. Only CPP-based results predict a sults for AlAs on the treatment of core-valence interactions
conduction-band minimum dt, giving the correct ordering occurs for analogous reasons as in GaAs, but on a smaller
for closely spaced conduction-band valleys. Regardingcale. We discount the experimental value for the
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conduction-band valley dt, as it was only obtained from Term 1 is included in a Hartree-Fock treatment of core-

extrapolations based on data for, &l _,As alloys*® valence interactions. Term 2 is included as part of the effects
of V.. Term 3 is included as part &, . If there were only
V. DISCUSSION one valence electron in a system, term 4 would constitute the

remainder of the effects of .. For more than one valence

when core-polarization effects are incorporated into quasigemonstrated by the approximate relation

particle codes. About 75% of the computational resources
are devoted to evaluating the valence, Lindhard polarizabil-G'(r,r’;E)~G'(r,r
ity. There is about a 50% enhancement of computation time
for the rest of the calculations. Calculations in this work ; *
required about 150 h total on an IBM RS 6000/38Mut +2mv=va|§ce states\I,V(r)\PV(r JO(E=ev).
results for the coarse Brillouin-zone meshes required only (35
about 24 h total. So quasiparticle calculations are very prac-
tical for semiconductors and can be done with reasonabl€omparing this result witi,_.'s effects on3,, we see that
computational resources. Since completion of these resultshe remainder of term 4 is included correctly through.
we have optimized the codes substantially by acceleratinghcluding term 5 corresponds directly to includiig, and
convolutions using fast-Fourier-transform techniques. 3 con- Term 6 is not included. It describes valence electrons’
The CPP scheme has so far been motivated primarily igcreening of core-valence exchange, in analogy to screening
terms of many-body core-valence interactions in isolated ateffects occurring inS.,. Term 6 was absent in CPP-
oms. Here, we also consider aspects of the CPP scheme iredhanced, valence-only configuration-interaction calcula-
solid-state context, and we present a model to estimate thgons for atomic Al, and errors in results were much smaller
CPP’s effects on the self-energy, which we test in GaAs. than the total effects o¥...: typically ~0.02 eV in inter-
As a crude approximation, the matri¥c»~*—1) acts  level spacings, suggesting similar band-energy-difference er-

!.
uE)no valence states occupied

like a scalar, rors. Furthermore, term 6 should provide similar contribu-
tions to conduction- and valence-band energies. Phiflips
_ =_4_7T noted that term 6 may be large in systems with shallow
X= > ay, (30)
Qe T cores, e.g., noble metals.

The largest effects of the CPP on band energies are be-
cause ofV/, and must not be confused with comparable ef-
fects of how one treats core-valence exchaiigbA vs

whereJ runs over atoms in a unit cell. The “expansion co-
efficient” for effects at higher order in the polarizabilities is

roughly Hartree-Fock Approximately,V,.. leads to scaling ok,
4o 3 ax» and o, each by a factor of T x. [Still, the sum ofall
Y=20 > a;. (31)  effects of the CPRincluding V,) lowers total energies of
c J

physical system$Because we have

Division by ¢ in y occurs because intercore, dipole-dipole We~[1—x]v (36)
interactions are screened, an effect obfuscated by first con- ¢ '
structinge ¢ and then incorporating it inte. Respective val-  scaling ofX, is most clear, wherea® 4, and 3., are af-
ues ofx andy are about 0.07 and 0.007 in GaAs, the mate-fected by the replacement
rial with the greatest core polarizability in this work, and so
effects beyond first order in’s are small.

Consider now the self-energy operator for a valence elec-
tron, approximated by

1

0
—F We.
Xv 1z e c (37)

14 V—)WC

o_ -
M 1-Wery

Important parts of the denominators are their second terms,
S=+iGW. (320  becauses g, and 3., weight the low-frequency 1, for
which the second terms are large, most heavily, suggesting
that %4, and X, would scale as the factor (1x). More
explicitly, 3 4, and S ., emphasize the ! moment of the
G=Get Gyt G =G.+G’, imaginary part of expressidi37), while the_w moment of the
crEviEUT e imaginary part of the bracketed quantity is unaffected by
W=We+ WevoWez= 2+ W' +Wer W . 33 such a replacement. The pole frequency for a single-pole
¢ Hexvile=v cxvie 33 model is multiplied by a factor of (2 x)%?, a well-known
Gc, Gy, and Gy sum over core, occupied valence, andresult. Hence the associated pole strength changes by a factor

In this terse notation, and neglecting effects beyG\W, we
have

empty states, respectively, giving of (1-x) "2, and so thew ! moment of expressiofB37)
o o changes by a factor of (x)2(1—x) *=(1-x). To dem-
GW=Gcr+GcW' +G v+ G'"W'+G"WexyWe onstrate this scaling, in Table V we present effects of includ-
+ GWey We. (34 ngor omittingVe e 0N 3y, 24y, and3 ., in GaAs.

If GW were adequate to treat systems with highly local-
Denoting the six terms on the right-hand side as “term 1”ized atomic states, less empiricism should have been re-
through “term 6,” one may consider how well each term is quired when treating core-valence interactions. However,
included in the CPP approach. this may not apply in other circumstances, because we have
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TABLE V. Change in(parts oj self-energy, in eV, for band states in GaAs becaus¥f, including
changes ir®,, g4, andX o, and3 =3, +3 4+ taken from calculations and from the simple estimate
discussed in the text. The latter case is in parentheses. States are specified by crystal momentum and band
index, written in small Roman numerals.

State Change X, Change in2 4, Change in .4, Change in3,
T 1.49(1.29 —1.26 (—0.96) 0.66(0.52 0.88(0.85
Iy---T, 1.00(0.95 —0.92 (- 0.66) 0.81(0.59 0.90(0.89
r, 0.32(0.49 —0.37 (—0.34) 0.99(0.62 0.94(0.73
Ly Ty 0.43(0.36 —0.36 (—0.26) 0.69(0.56 0.76(0.67)
L; 1.45(1.28 —1.23 (—0.94) 0.69(0.55 0.92(0.89
L; 1.07(1.02 —-0.93 (-0.72) 0.64(0.50 0.78(0.80
Lii--Liv 1.00(0.95 —0.82 (- 0.66) 0.69(0.57) 0.87(0.86
L, 0.34(0.4) —-0.42 (-0.29) 0.87(0.57) 0.79(0.68
Ly -Lyii 0.35(0.33 —0.27 (- 0.25) 0.59(0.57) 0.68(0.65
L yii 0.13(0.17 —-0.27 (-0.12) 0.67(0.5)) 0.54(0.55
X 1.43(1.28 —1.19 (-0.93) 0.70(0.56 0.94(0.92
Xii 1.14(1.04 —~0.97 (-0.73) 0.68(0.51) 0.84(0.81)
Xii- - Xiy 0.98(0.95 —0.80 (—0.66) 0.63(0.54 0.81(0.83
Xy 0.31(0.32 —0.30 (—0.22) 0.59(0.50 0.60(0.60
Xyi 0.30(0.36 —0.33 (- 0.25) 0.67(0.53 0.64(0.64
Xuii* * * Xyiii 0.35(0.28 —0.31 (-0.25) 0.82(0.69 0.86(0.72

sought accuracies in band-energy differences which weréerability or predictive capacity of the approach when treat-
percents of the self-energies. The minimal empiricism useéhg solids.
here facilitated a high degree of control in the description of |t is straightforward to include core-polarization effects
core-valence interactions, potentially improving predictivewithin a quasiparticle code. Additional required computa-
capacity for other solid-state applications. tional resources are minimal. Core-valence many-body ef-
fects are appreciable in many materials, particularly ones
containing elements with shallow cores, e.g., post-transition
elements. Beyond dispute, however, the most important
We present a core-polarization-potent{@PP approach many-body effects in solids still result from interactions
to treat core-valence interactions in solids. The approach difwithin the system of valence electrons.
fers from mean-field treatments of core-valence interactions, Analyzing the problem of electron correlations in the total
because it deals more explicitly with dynamical effects in-system of core and valence electrons shows that most,
volving fluctuating core dipoles interacting with the electric though not all, many-body interactions involving core and
fields of fluctuating valence charge densities. By employingvalence electrons are incorporated in the present approach.
data from vapor-phase atomic spectra, we have obtained/hereas it has worked well in systems studied, applicability
greater control when describing core-valence interactionshould break down in systems with even shallower “core”
than is afforded by the local-density approximatia®A) or  states, e.g., Il-VI compounds. Zakhareval>! found that
Hartree-Fock treatment. This improved results for theoreticapseudopotential-base@W calculations for these systems
quasiparticle band energies, achieving agreement with exgave good results, also using noble-metal-cation cores. How-
periment of~0.1 eV in Si, Ge, GaAs, and AlAs. This accu- ever, Ref. 51 omitted core-relaxation effects and treated
racy is not found if core-valence interactions are treated ircore-valence interactions at a LDA level, thereby exploiting
the LDA, and use of atomic spectra does not hamper transa cancellation of errors in these two effects. Rohlfngl >3

VI. SUMMARY

TABLE VI. Errors, in hartrees, in excited-state energies for one valence electron bound to an otherwise
bare core. A positive error indicates underestimation of the binding energy. Errors are given for Hartree-Fock
(HF) results, all-electror{ae), core-polarization-potential results using two forms for th&unctions, and
pseudopotentialpp), core-polarization-potential results using the same two forms. Further details are pro-
vided in Appendix A.

A (ae, A (ae, A/ (pp), A/ (pp),
State HF error MFM JMD MFM JMD
Ga(5s) 0.0099 0.0006 —0.0005 —0.0007 —0.0030
Ga() 0.0078 0.0003 —0.0004 —0.0001 —0.0010
Ge(5s) 0.0115 0.0010 —0.0001 —0.0009 —0.0038

Ge(5) 0.0094 0.0006 —0.0001 —0.0001 —0.0013
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have treated such systems by using a much deeper corences consistent to withir 0.01 eV, but the form in Jeung
valence partition. Their results were also of good quality. Itet al. yields quite different results, the greatest discrepancy
is not yet fully established, however, how t8V approxi-  being a zone-center gap smaller by 0.08 eV.
mation may break down for systems with more localized and Above results might typify the worst-case scenario for
strongly correlated atomiclike electron states. uncertainty because of the choice fofunctions. However,
uncertainty can be reduced by considering the quantity
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A I/ = < ¢( v+ 1)l |Ve| ¢( v+1)l > | pseudopotential

APPENDIX A In .Table VI, results are-given fdr=0 andl_=1 states in
atomic Ga and Ge. Less importand States lie above core
There is an infinite variety of choices for tfiefunctions  shake-up thresholds, and so describing them is more compli-
in Eq. (4), and we have chosen only one. M, Flesch, and cated. Our choice of function is labeled “MFM,” and that
Meyer** discuss four possible choices, one of which requirefrom Jeunget al, “IJMD.” Salient results are in the last two
other core polarizabilities besides linear, static dipole. Jeungsolumns and justify our choice of functions because of
Malrieu, and Daudé}? also discuss a particular shape for the smallA/’s for states{| é(,+1y)}. Remaining arbitrariness in
f functions,r?/(r?+d?), whered is an adjustable parameter. f functions should affect the band-energy differences by a
We have chosen the sanfifunction as Muler et al, who  percent of 1 eV, and correcting such arbitrariness would
made their choice in part because of the accuracy of highelikely increasezone-center gaps in Ge and GaAs.
lying states in the elements studied. For elemesrhd angu-
lar momentun, thef function depends on the ratiéx (" or APPENDIX B
r/d. A parameteir") or d is set so that this relation holds:
Our Ewald-Kornfeld sums, unconventional because of
(d,|Velb) +e|urt R =0. (A1)  crystal momentumg, also include both direct- and
reciprocal-space sum$. Having q modifies direct-space
sums by introducing phase factors, and reciprocal-space
sums involve different discrete vectog®s instead ofG’s,
the former being the latter plug We have

Here|¢,,) denotes the lowest valence state with a given
when there is one electron bound to a cdreis the experi-
mental electron removal energy for std,;). Equation
(A1) only considers first-order effects &, which consti-
tute about 97% of its effect.

Because of freedom in choice éffunctions, Eq.(Al) f d3r e”1QrY) eiq'RF(r—R)zf d3r >, e iRU-R)
does not uniquely specify the description of core-valence R ¢ R
correlation, implying uncertainty in results obtained. This

motivates further justification of choice of ttigfunction and XF(r—R)
estimation of uncertainties because of the arbitrariness in that

choice. The four cited functions depending only oa pro- — [ ¢ e-i@7F(r)
duce appreciably different results in tests for Ge: The three '

forms suggested by Mier et al. yield band-energy differ- (B1)
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The first two integrations run over a unit cell, and the last 41 [ n\%? a A1
integral runs over all spac€. decays rapidly at long range. (Mah); =+ ERT q - a 2 0. %
The R’s are real-space lattice vectors, and we exploited c
equality ofe'd R ande'Q'R. Using Ewald-Kornfeld sums, we q A .
find g 2 2 gg ae i,
q Q#q 37 C
i3 {2 - 7 (B9)
= (1— g 0d))e' 4R
I R ROT INTAY This may be written equivalently as
><erfC( J7lA]) . A7) 5 ( 7})3/2 (Mah) 2 q 4 . 4m ( 77)3’2 q;
_— —_— | — o L= — = — — _— — oy —
|A| A=R+7y—7 3 m ! 3 q -3 QC J 3 ! q
47 [QQ; Qi Am ~Q%4n—iQ (13- 7))
_2 _( Izl)eQ2/4niQ'(TJT|) ) (B2) _EZ 2 STCYJE 7 I,
o Qc! Q Q 3 c
(B10)

Everything above is independent of crystal symmetry, bufrhe second and third terms cancel, anchsis an eigenvec-
when atoms have tetrahedral or cubic site symmetry, theyr of M« with eigenvalue

Clausius-Mossotti formula result holds for—0, which is

shown as follows. We may write the above result in short- 2 47
hand as “30. 2 aj. (B11)
c J
K=a 1-M=(1-Ma)a? (B3)  Applying this result to Eq(B6) yields the Clausius-Mossotti
result.
or
K l=a(l-Ma) L. (B4) APPENDIX C
We also have _ For evaluating®, zone integration near the zone center is
discussed for cases without CPP’s in Refs. 5 and 6. Here
1 47 ad; . _, changes are needed, becaWediffers fromv. For %, , one
com 1T 004 JE] ra Kii 3 (BS)  needs Wer Y6, for g—0. Becausek and the® func-

where the scalagc), is the macroscopic, longitudinal .
Let us think of (1I-Ma) ! as a NX3N matrix, for N
atoms per unit cell, acting on a vecthy whereh;;=q;/q.
This gives

i:1_4—w > hi[a(1-Ma) th]; .

B6
€cm Qc T (B6)

The real-space sum M vanishes as; grows large, andv
does not depend of, and so choosing very large yields

49 5 9
a'q;q

A 7 3/2
(Mah)i=+—= (;

47 Q;Q; .
XE 2 Q__TI ] aJe_QZM"?_'Q‘(TJ_TI)_
Q J c Q

(B7)

For appropriate symmetry, sums ov@rand J simplify at
small g. The phased Gaussian factor, summed aWerfor

tions depend on they's direction, angular averaging is
needed, and 18 spherical integration points suffd@enot-
ing the angular average of quantify by (A)q, for g—0,
G#0,G’#0, we have

G’
<(WCV_1)G,G’>Q:5G,G'_E ; JE] 0,(G)

X(Kii 52®3(G"), (D
whereas, fog—0, G=0, G'=0, we have
_ 4w [QiQj
(Wer Y ea=1-2 > Q_<_|2_JKH,1J]> -
li Jj C q Q
(C2

Symmetry ensures self-cancellation for other matrix ele-
ments of Wer Yger -

Regardings 4, and 3., we have only evaluated the an-
gular averages of the ! and @ moments of the matrix
elements Ofsz_l, neglecting further, complicated effects of
covariance of the moments. This approximation is validated

each site type, is a Fourier component of a sum of Gaussiari®y convergence of results with respect to zone sampling.
at such sites. Such components have at least tetrahedral syfduations (C1) and (C2) describe frequency-independent

metry in reciprocal space, rendering the sum unaffected bparts ofe~

this substitution before summation:

Qe 1
Q7 '3

For @l q, replace
dij - (B8)

We may therefore write

1 which are subtracted fromma™* to obtain the
1

o~ ~ moment, and so angular averaging ggl facilitates
averaging of this momen{As in Ref. 5, the totalt ! is
explicitly angle averaged.

For thew moment Ofsz_l, one needs to average changes
because of core polarization, i.e., modifications of the effec-
tive Q2 matrix,
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(Wer 1=1)Q%2+ Q% (Wer 1-1)
+(Wer 1=1)Q2(Wer 1-1), (C3
written in shorthand. Th€2 matrix is from Ref. 5,
Q-Q" p(Q-Q") ,
GG’( )_ QZ (O) wpa (C4)
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o, being the classical valence plasma frequency. Even for

N=2 atoms per unit cell, evaluating the third term is diffi-
cult, and so we neglect it, yielding only-a2-meV error in
band-energy differences for our coarse meshes, and a smal
error for our fine meshes.

The first two terms are related by symmetry, and so we

give angle-averaged results for

> (Wer ' =1)ekQf o (C5)
= ,

Deriving these only requires applying knowledge ab@glf

for g— 0 from any direction. One needs results only for ma-
trix elements ofe ~! with G=0, G’ =0, when one has
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4m v Qidx
_ ST K K-
K#0 i 32, Ek (QC) J( )} <qT li JJ>Q
p(K) 2 41 a4 )
P B Do 3\ i o (9
or with G#0, G’ #0, when one has
G *
ler g ; ; JE] 0,,(G)0%(K)
K-G'\ p(K-G') ,
><<K|I JJ>Q KG/) p(o) (J)p
GI
-2 2 2 0,(G)
G T 9%
4w\ Bladc, | Gip(=G)
X(Q_c) <?K"J‘> G p0 @ ©D
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