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Finite-temperature spectral functions of strongly correlated one-dimensional electron systems
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~Received 28 April 1997!

The spectral functions oftJ and tJXY models in the limit ofJ/t→0 and at finite temperaturesT!t are
calculated using the spin-charge factorized wave function. We find that the Luttinger-liquid-like scaling be-
havior for a finite system withL sites is restricted below temperatures of the orderT&J/L. We also observe
a weight redistribution in the photoemission spectral function in the energy ranget, which is much larger than
the temperature.@S0163-1829~97!01335-0#
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Single-particle spectral functions are very useful to und
stand the electronic structure of solids. They are measure
photoemission @B(k,v)# and inverse photoemissio
@A(k,v)# experiments. For actual calculations, the Lehma
representation is very useful:

B~k,v!5
1

Z (
i , f ,s

z^ f uak,su i & z2d~v2Ei1Ef !e
2bEi, ~1!

where i and f denote the initial and final states withN and
N21 electrons, respectively, andak,s annihilates an electron
with momentumk and spins. Furthermore,Z5( ie

2bEi is
the partition function withb51/T being the inverse tem
perature. A similar expression holds forA(k,v), which we
will not treat in this paper.

In contrast to quasiparticles in usual three-dimensio
Fermi liquids, the collective excitations of one-dimension
interacting electrons1 give rise to anomalous scaling behavi
of the one-particle Green’s function2 with nonuniversal ex-
ponents. For example, the momentum distribution funct
nk5 1

2 *dv B(k,v) takes the form nk'nF1sgn(k
2kF)uk2kFua near the Fermi momentumkF and zero tem-
perature, where the exponenta depends on the actual mod
and coupling constants. Similarly, the local spectral funct
~single-particle density of states! B(v)5(1/L)(kB(k,v)
also scales with a power law3 B(v)}uv2«Fua. To describe
this critical behavior of one-dimensional models at low e
ergies, Haldane introduced the fruitful concept of Lutting
liquids.4 Following a different approach, conformal fiel
theory tells us that the exponents are related to the finite-
corrections of the energy.5,6

Recent experiments on quasi-one-dimensional mate
raised the question if this behavior can be observed.7,8 Fur-
thermore, in these experiments an anomalous spectral we
transfer has been observed: Changing the temperature by
K, one can observe weight redistribution on the scale o
eV, which is 100 times larger than the temperature. In t
paper we will try to explain this behavior in a simple way

We are considering the isotropic and anisotropictJ
model, defined by the Hamiltonian
560163-1829/97/56~11!/6555~4!/$10.00
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i ,s

~ ã i ,s
† ã i 11,s1H.c.!

1(
i

(
a5x,y,z

Ja~Si
aSi 11

a 2 1
4 da,znini 11!,

in the limit of small exchangeJa→0, where ã i ,s are the
usual projected operators to exclude double occupancy.
tually, the Hubbard model in the large-U limit can be
mapped onto a strong-coupling model usually identified
the tJ model plus three-site terms using a canonic
transformation,9 whereJ54t2/U is small. The spectral func-
tion of the Hubbard model has been studied using ex
diagonalization10 and quantum Monte Carlo11 techniques,
which both have well-known limitations.

An alternative, powerful but model limited approach
based on the special property of the wave functions of
Hubbard model in the limit of large Coulomb repulsion12

~also for J/t→0 in the tJ model! that the wave function
factorizes:

u i &5uc8& ^ ux8&. ~2!

This has allowed the calculation and confirmation of t
power-law behavior of the static correlation functionnk and
gave13 a51/8. uc8& describes the charge degrees of freedo
and is a wave function of free spinless fermions with m
mentakj8 , quantized asLkj852pIj81Q8, whereIj8 are dis-
tinct integers, 0<Ij8<L21, and j 51,2, . . . ,N. Twisted
boundary conditions are imposed by the momentumQ8 of
the spin wave functionux8&, which describes the spins on
squeezed lattice ofN sites and are eigenfunctions of a sp
Hamiltonian with an effective spin exchangeJ̃ that depends
on the actual charge wave functionuc8&, and, e.g., for the
ground stateJ̃a5Jan@12sin2(pn)/(pn)2#, where n5N/L.
We will take periodic boundary conditions to avoid edg
effects14 and an even number of electrons not a multiple o
~i.e., N52,6,10, . . . ) for convenience.

To calculate the thermal average, we need to know all
energies and wave functions of the spin part. Since for
Heisenberg model this is very difficult to obtain, we turn
the XY model ~i.e., Jz50). In this special case, the spi
model can be mapped onto noninteracting spinless fermi
6555 © 1997 The American Physical Society
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6556 56KARLO PENC AND MOHAMMED SERHAN
using the Wigner-Jordan transformation. Assuming that
occupied sites represent the up spins, the states are ch
terized byN↑ integer numbers 0>Jj8>N21 and the mo-
mentaqj8 of the free spinless fermions representing the sp
are quantized asLqj852pJj8 . Finally, the momentum of the
spin wave function determining the boundary condition
the charge part isQ85( j 51

N↑ qj852pJ8/N, with J8 an inte-
ger. The energy of the state is simplyEi5Ei ,c1Ei ,s , where
Ei ,c522t( j 51

N coskj8 and Ei ,s5 J̃ XY( j 51
N↑ cosqj8 , while the

momentum readsPi5( j 51
N kj8 . One should note that despit

the fact that both the charge and spin wave functions in
~2! are those of free spinless fermions, the resulting w
function describes a nontrivial and strongly correlated s
tem. As far as the exponenta ~at T50) is concerned, it
changes froma51/8 in the isotropic case toa51/4 in the
XY case.15

Similarly, the final,N21 electron wave function factor
izes as well:u f &5uc& ^ ux&. The quantum numbers for th
spinless fermions representing the charges areIj and the
corresponding momentaLkj52pIj1Q. Here Q52pJ/
(N21) is the momentum of theN21 spin wave function
(0>J>N22).

Since the charge and the spin part are coupled through
momentumQ8 of the spin wave function, the partition func
tion does not factorize16 ~i.e., the free energy is not a sum o
charge and spin contribution! and it will read
Z5(Q8Zc(Q8)Zs(Q8), where

Zc~Q8!5(
$Ij8%

e2bEi ,c, Zs~Q8!5 (
$Jj8%Q8

e2bEi ,s,

and the sum inZs is over the states with given momentu
Q8. In calculating the thermodynamic averages, one
work in principle in an ensemble fixing either the magne
zation or the magnetic field. We have used both ensemb
and although the results in the thermodynamic limit sho
be independent of the ensemble we choose, there are s
finite-size effects.

Even though we know all the excitations for thetJXY
model, we will make further restrictions that are needed
perform calculations on reasonably large system siz
Namely, we will consider temperatures much smaller th
the energy scale of the charges. In other words, for
charge part we neglect the excitations and take the gro
state given by consecutive integers$I8%5$2N/2,2N/2
11, . . . ,N/221%. Then the remaining free parameter
T/ J̃ and all the temperature dependence is now in the s
part. Furthermore, since the energy of the charge part
depends onQ8 as Ei ,c(Q8)2Ei ,c(Q85p)5(1/2pL)uc(Q8
2p)2, whereuc}t is the charge velocity, we will assum
that the momentum of the spin part in the initialN electron
state isQ85p. This restriction is actually more for conve
nience, as the result does not depend on this assumption
will comment on this later on.

Using the factorized wave function, the spectral functi
defined in Eq.~1! simplifies to17

B~k,v!5(
Q,s

Ds~Q,b!BQ~k,v!. ~3!
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HereBQ(k,v)5BQ,Q85p(k,v) depends on the spinless fe
mion wave function only:

BQ,Q8~k,v!5L(
$I %

z^cQub0ucQ8
8 & z2

3d~v2Ei ,c1Ef ,c!dk,Pi2Pf
,

whereb0 annihilates a spinless fermion at site 0. The mat
elements inBQ,Q8(k,v) read

L z^cQub0ucQ8
8 & z25L22N12sin2N22

Q82Q

2

3)
j . i

sin2
kj2ki

2 )
j . i

sin2
kj82ki8

2

3)
i , j

sin22
ki82kj

2
.

We can actually recognize Anderson’s orthogonal
catastrophe18 in these complicated matrix elements, which
a consequence of changing the boundary condition fromQ to
Q8 in the charge wave function due to momentum tra
ferred to the spins.

On the other hand, the contribution of the spin degrees
freedom19,17 Ds(Q,b)5Ds(Q,Q85p,b) is given by

Ds~Q,Q8,b!5
1

N21

1

Zs
(

m,$J8%Q8

v0→m,seim~Q82Q!e2bEi ,s,

where v0→m,s denotes the amplitude to transfer as spin
from site 0 tom:

v0→m,s5^x8uP̂m,m21••• P̂1,0dS
0
z,sux8&. ~4!

The operatorP̂j , j 1152SjSj 111 1
2 permutes the spins on site

j and j 11.
(a) Spin part. For the XY model, after introducing the

spinless fermions~with operatorsf ) in the Wigner-Jordan
transformation, the permutation operator reads

P̂j 11,j5nj 11nj1 f j 11
† f j1~12nj 11!~12nj !1 f j

†f j 11

and the spin transfer amplitude can be easily calculated f
Eq. ~4! using Wick’s theorem. We find that

v0→m,↑5U g0 g1 ••• gm

11g21 g0 ••• gm21

11g22 11g21 ••• gm22

A A A

11g2m 11g12m ••• g0

U ,

where gl5(21)l^xu f l
†f 0ux&5(1/N)( j 51

N↑ ei (p2qj8) l . In par-
ticular, g05N↑ /N and g2 j5gj* ; furthermore the relation

v0→N212m,s5eiQ8v0→m,s* holds.

For large temperaturest@T@ J̃ ~equivalent to ‘‘hot
spins’’ of Ref. 20! a high-temperature expansion is possib
if we relax the constraint that we take only states with m
mentaQ8, then it follows thatZs52N1O(bJXY) and for
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v0→m,s we have to count the number of states where the fi
m11 spins haveSz5↑, which is 2N2m21. Working in a
subspace with definite momentumQ8, each subspace will
acquire roughly 1/N of the values given above~the actual
distribution depends on how many states are in a givenQ8
subspace! and in the thermodynamic limit we get

Ds~Q,Q8,b→0!5
1

N21

3

1028cos~Q2Q8!
. ~5!

This result is valid not only for theXY model, but also for
the isotropic Heisenberg model.

We show the behavior of the spin part in Fig. 1. Apa
from the clear power-law singularity nearQ5p/2 at zero
temperature, we observe that at fixed small temperature
behavior disappears as we increase the system size. This
dicates that the singularity will vanish for any finite tempera
ture in the thermodynamic limit. Also there is a differenc
between calculatingDs(Q,b) in the two ensembles men-
tioned above; however, the finite-size effects are decreas
with increasing N. Let us also note that the sum rule
(QDs(Q,b)5Ns /N is satisfied for any temperature. Fur
thermore,Ds(Q,Q8,b)'Ds(Q2Q81p,b) in the thermo-
dynamic limit.

(b) Momentum distribution function.From Eq.~3! we get

nk5(
Q

BQ~k!Ds~Q,b!. ~6!

To calculatenk efficiently, we have to find a convenient way
to evaluateBQ(k). For that reason, let us follow Ref. 13: In
the alternative representation of the momentum distributio

nk5
1

Z(
i

(
l 50

L21

^ i ual ,s
† a0,su i &eikle2bEi

we replaceu i & by the factorized wave function Eq.~2!:

FIG. 1. Temperature dependence ofDs(Q,b) for theXY model
in zero magnetic field~solid symbols! and zero magnetization

~empty symbols! for T/ J̃50,0.5 andT@ J̃ . The solid line for

T50 shows theN5250 result and Eq.~5! is plotted forT@ J̃ .
st

t

is
in-
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ng

^ i ual ,s
† a0,su i &5 (

m50

N22

^c8ucl
†dNl2mc0uc8&v0→m,s , ~7!

whereNl5( l 850
l nl 8 counts the number of spinless fermions

between sites 0 andl andv0→m,s is calculated for the par-
ticular ux8&. Now, replacingdNl2m by its Fourier represen-
tation

dNl2m5
1

N21(Q ei ~Q2Q8!~Nl2m!

and comparing Eqs.~6! and ~7!, we get

BQ,Q8~k!5(
l

eikl K c8Ucl
† )

l 851

l 21

einl 8~Q2Q8!c0Uc8L . ~8!

This can be further simplified using the identity
einl (Q2Q8)511xnl , where we introducedx5ei (Q2Q8)21,
so that^c8ucl

†) l 851
l 21 einl 8(Q2Q8)c0uc8& in Eq. ~8! is equal to

U ^cl
†c0& ^cl

†c1& ••• ^cl
†cl 21&

x^c1
†c0& 11x^c1

†c1& ••• x^c1
†cl 21&

x^c2
†c0& x^c2

†c1& ••• x^c1
†cl 21&

A A A

x^cl 21
† c0& x^cl 21

† c1& ••• 11x^cl 21
† cl 21&

U ,

where^cl
†cl 8&5(1/L)( je

2 ik j8( l 2 l 8). Using this equation, we
are able to computeBQ(k,v) for systems with a few hun-
dred sites. It turns out thatBQ,Q8(k,v)5BQ2Q81p(k,v)
apart from some small finite-size corrections; therefore, our
assumption to fixQ85p is justified.

We show our numerical results in Fig. 2. TheT50 result
shows power-law behavior at the Fermi momentum. Increas-

FIG. 2. Momentum distribution of thetJXY model for T50

~solid line, L5500), T/ J̃50.5, andt@T@ J̃ ~solid line, L5300)
for quarter filling (L52N,kF5p/4) and zero magnetic field. There

are strong finite-size effects forT5 J̃ /2. In the inset we show the
scaling of DnF for zero magnetic field~solid symbols! and zero
magnetization~empty symbols! obtained from different system
sizes and temperatures.
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6558 56KARLO PENC AND MOHAMMED SERHAN
ing the temperature, the power law survives until so
crossover temperature (' J̃ /L), where it becomes a continu
ous function of momentum for higher temperatures. To stu
this behavior in detail, we concentrate on the jump atkF ,
defined asDnF5nk

F
22nk

F
1, wherekF

65kF6pN/L are the

momenta of the finite system closest to the Fermi point. T
jump is finite for finite-size system and scales withL2a in
the Luttinger liquid. If the singularity disappears andnk be-
comes a continuous function aroundkF , thenDnF}1/L. In
the inset of Fig. 2 we show the ‘‘size-independent’’LaDnF

vs LT/ J̃ . It is remarkable that at low temperature the poin
follow a universal curve:

DnF5L2a f ~LT/ J̃ !.

A crossover temperature, scaling withJ̃ /L, can be clearly
observed, and for larger temperaturesLaDnF→0. This be-
havior can be understood if we recall that the tempera
enters by dividing the energy}2pus /L of the low-energy
excitations.

(c) Local spectral function.The single-particle density o
states is given by

B~v!5(
Q,s

Ds~Q,b!BQ~v!, ~9!

whereBQ(v)5(1/L)(kBQ(k,v). Let us concentrate on th
isotropic tJ model ~equivalent to the large-U Hubbard
model! in the limiting T50 andt@T@ J̃ cases only. At low
temperaturesDs(Q,b) is large nearQ5p/2 and the larges
part in the convolution~9! comes fromBQ5p/2(v). For the
hot spin case,Ds(Q,b) is large nearQ5p and BQ5p(v)
gives most of the contribution toB(v), shown in Fig. 3. In
other words, increasing the temperature, we transfer less
less momentum to the spins and the role of the orthogona
catastrophe inBQ(v) decreases. Since changingQ results in
a considerable redistribution of the weight inBQ(v) ~see the
inset in Fig. 3!, the weight transfer ofB(v) at the energy
scale oft is due to the temperature dependence ofDs(Q,b)
set on a much smaller temperature scale, naively we wo
expect smearing ofB(v) near the Fermi energy within
uv2«Fu'T. We should also note that the divergence of t
.
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spectral function at the Fermi energy is purely the artifact of
the J/t→0 limit.17 For finite J, the local spectral function
has a broad peak aroundv'(p/2) J̃ due to the spinon dis-
persion and a second broad peak near the band edg
(v'2 t̃ ). The weight transfer then would be from the
‘‘spinon’’ to the ‘‘holon’’ peak. A similar weight redistribu-
tion is observed in the two-dimensionaltJ model as well.21

To conclude, we have studied the temperature evolution
of the momentum distribution function and local spectral
function. First, we give a method to calculatenk for large
system sizes for thetJXY model at zero temperature. Next,
we observed that the power-law behavior is restricted to tem
peratures inversely proportional to the system size. In the
thermodynamic limit the system is critical atT50 only. Fi-
nally, a weight redistribution in the single-particle density of
states takes place over a broad energy range, which can b
easily understood using the concept of ‘‘spin-charge’’ sepa-
ration.

We would like to thank H. Frahm, J. Jaklicˇ, H. Shiba, and
W. Stephan for stimulating discussions.

FIG. 3. Local spectral function forT50 ~solid line! and

t@T@ J̃ ~dashed line! for the quarter-filled Hubbard model
L5220. For this particular filling«F50. In the insetBQ(v) for
different values ofQ.
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