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Finite-temperature spectral functions of strongly correlated one-dimensional electron systems
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The spectral functions afd andtJyy models in the limit ofJ/t—0 and at finite temperaturéb<t are
calculated using the spin-charge factorized wave function. We find that the Luttinger-liquid-like scaling be-
havior for a finite system witlh sites is restricted below temperatures of the oferJ/L. We also observe
a weight redistribution in the photoemission spectral function in the energy tamggch is much larger than
the temperaturg.S0163-18207)01335-0

Single-particle spectral functions are very useful to under-

. : . - =t 3
stand the electronic structure of solids. They are measured in Hiy= —tiEU (aj ,ai+1,TH.C)
photoemission [B(k,w)] and inverse photoemission '

[A(k,w)] experiments. For actual calculations, the Lehmann o et
2 2 IS E i),

representation is very useful: a=Xy.2
in the limit of small exchanggd®—0, where?; , are the
1 usual projected operators to exclude double occupancy. Ac-
B(k,w)=zz [(flay,|i)Po(w—Ei+Epe #5, (1)  tually, the Hubbard model in the lardé-limit can be
Mo mapped onto a strong-coupling model usually identified as
the tJ model plus three-site terms using a canonical
transformatior?,whereJ=4t%/U is small. The spectral func-
tion of the Hubbard model has been studied using exact
diagonalizatio®® and quantum Monte Carld techniques,
which both have well-known limitations.
An alternative, powerful but model limited approach is

wherei andf denote the initial and final states wibh and
N—1 electrons, respectively, aiag , annihilates an electron
with momentumk and spine. FurthermoreZ=3e #Ei is
the partition function with8=1/T being the inverse tem-

pgrature. A S,im”"’,‘r expression holds fa(k, ), which we based on the special property of the wave functions of the
will not treat in this paper. Hubbard model in the limit of large Coulomb repulstdn

In contrast to quasiparticles in usual three-dimensiona{adSo for J/t—0 in thetJ mode) that the wave function
Fermi liquids, the collective excitations of one-dimensionaltzctorizes:

interacting electrorisgive rise to anomalous scaling behavior
of the one-particle Green’s functibrwith nonuniversal ex- _
ponents. For example, the momentum distribution function liy=[¢")®|x"). 2

nk=:/dw B(k,w) takes the form ne~ng+sgnk This has allowed the calculation and confirmation of the
—kg)|k—kg|* near the Fermi momentuik: and zero tem-  power-law behavior of the static correlation functiopand
perature, where the exponentdepends on the actual model gave® o=1/8.|y') describes the charge degrees of freedom
and coupling constants. Similarly, the local spectral functionand is a wave function of free spinless fermions with mo-
(single-particle density of statesB(w)=(1/L)Z,B(k,w) mentakj’ , quantized a$k,-'=27TIj'+Q’, wherte’ are dis-
also scales with a power |&VB(w)|w—eg|®. To describe tinct integers, &Z/<L-1, and j=1,2,... N. Twisted
this critical behavior of one-dimensional models at low en-boundary conditions are imposed by the moment@Qmmof
ergies, Haldane introduced the fruitful concept of Luttingerthe spin wave functiofy’), which describes the spins on a
liquids®* Following a different approach, conformal field squeezed lattice dfl sites and are eigenfunctions of a spin
theory tells us that the exponents are related to the finite-sizgamiltonian with an effective spin exchangethat depends
corrections of the energy’ on the actual charge wave functijpt’), and, e.g., for the
Recent experiments on quasi-one-dimensional materialaround stateja:J“n[l—sinz(q-rn)/(rrn)z], where n=N/L.
raised the question if this behavior can be obseWBBUI- e il take periodic boundary conditions to avoid edge
thermore, in these experiments an anomalous spectral weigbfectd# and an even number of electrons not a multiple of 4
transfer has been observed: Changing the temperature by 14Q  N=2,6,1Q. . .) for convenience.
K, one can observe weight redistribution on the scale of 1 T calculate the thermal average, we need to know all the
eV, which is 100 times larger than the temperature. In thissnergies and wave functions of the spin part. Since for the
paper we will try to explain this behavior in a simple way. Heisenberg model this is very difficult to obtain, we turn to
We are considering the isotropic and anisotropit  the XY model (i.e., J*=0). In this special case, the spin
model, defined by the Hamiltonian model can be mapped onto noninteracting spinless fermions
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using the Wigner-Jordan transformation. Assuming that thedere Bo(k,w)=Bg /= »(K,w) depends on the spinless fer-
occupied sites represent the up spins, the states are charagion wave function only:
terized byN, integer numbers @ﬂBN—l and the mo-

mentaq; of the free spinless fermions representing the spins Bo o (k,w)=L > [(o|bol i)

are quantized aksqj =277 . Finally, the momentum of the e {1} (Yelbalvrgr)

spin wave function determining the boundary condition of X 8(0—E; +Ef o) dp _p
I , PPy

the charge part iQ’zE;\':qujEij'/N, with 7' an inte-

ger. The energy of the state is simfly=E; .+ E; s, where ~ Whereb, annihilates a spinless fermion at site 0. The matrix

Eic= -2t} cok/ and Ei,szjxyE;\'ilcosqj’, while the €lements iBq o (k,w) read

momentum read§i=2N:1k-’ . One should note that despite , Q' -Q

the fact that both the charge and spin wave functions in Eq. L|<1,//Q|bo|t//Q,)IzzL’ZN*ZsinZN*ZT

(2) are those of free spinless fermions, the resulting wave

function describes a nontrivial and strongly correlated sys- k: —k: k! —k’
ST i

2 2

tem. As far as the exponent (at T=0) is concerned, it <[] sir? 11
j>i

changes fromw=1/8 in the isotropic case ta=1/4 in the 1=
XY case® K — k.
Similarly, the final,N—1 electron wave function factor- x]] sin*Z'TJ
izes as well:|f)=|#)®|x). The quantum numbers for the "
spinless fermions representing the charges BQrand the \We can actually recognize Anderson’s orthogonality
corresponding momentak;=277;+Q. Here Q=277  catastroph¥ in these complicated matrix elements, which is
(N—1) is the momentum of th&l—1 spin wave function a consequence of changing the boundary condition ffota
(0=J=N-2). Q' in the charge wave function due to momentum trans-
Since the charge and the spin part are coupled through thigrred to the spins.
momentumQ’ of the spin wave function, the partition func-  On the other hand, the contribution of the spin degrees of
tion does not factoriZ& (i.e., the free energy is not a sum of freedoni®’ D(Q,8)=D,(Q,Q'=,p) is given by
charge and spin contributipn and it will read
Z=3qZ,(Q")Zs(Q"), where DU(Q:Q'”B):ﬁZi s woémygeim(Q’—Q)e—ﬁEi's’

sm{J'hg!
"= ~BEjc "= —BEjs . ;
Z(Q )_Z e FRie, Z4Q) E e Fhis, where wg_,, , denotes the amplitude to transfersaspin
{7 e from site O tom:
and the sum irZg is over the states with given momentum —( ,||5 P S ') @
Q’. In calculating the thermodynamic averages, one can @o—me = AX 1P mm-1"""F1,008,01X /-

work in principle in an ensemble fixing either the magneti-
zation or the magnetic field. We have used both ensembleg—,
and although the results in the thermodynamic limit should Spi For the XY model. after introduci h
be independent of the ensemble we choose, there are strong,(a) pin p:?\rt or the model, after mt_ro ucing the
finite-size effects. spinless fe(m|ons{W|th opera_torsf) in the Wigner-Jordan
Even though we know all the excitations for thayy transformation, the permutation operator reads

model, we will make further restrictions that are needed to - et f(1— 1—n)+f'f
perform calculations on reasonably large system sizes: i+~ Mi+1MT Tl (1=nj ) (A=) + 1110
Namely, we will consider temperatures much smaller thamind the spin transfer amplitude can be easily calculated from

the energy scale of the charges. In other words, for théq. (4) using Wick's theorem. We find that
charge part we neglect the excitations and take the ground

he operatotf’,-ﬁl: ZS]-SJ-+1+% permutes the spins on sites
andj+1.

state given by consecutive integefg’}={—N/2,—N/2 Jo 01 “r Om
+1,... N/2—1}. Then the remaining free parameter is 1+g 9% o Gmea
T/J and all the temperature dependence is now in the spin 14 14 o

part. Furthermore, since the energy of the charge part also ®o_m 1= 9-2 9-1 Im-2| |
depends orQ’ asE; ((Q')—E; (Q'=m)=(1/27L)u(Q’ : : :

— )2, whereu.t is the charge velocity, we will assume 1+g 1+g g
that the momentum of the spin part in the initilelectron o tm 0

state isQ’ = 7. This restriction is actually more for conve- | N Ne i(r—a))l

nience, as the result does not depend on this assumption; wéere gi=(—=1)(x|f{folx)=(N)Z 1, %) In par-

will comment on this later on. ticular, go=N;/N and g,j=gj* ; furthermore the relation
Using the factorized wave function, the spectral functionwoﬁNflmeU:eiQ’wgﬂmﬂ holds.

. . . e 7 —_
defined in Eq(1) simplifies td For large temperature$>T>J (equivalent to “hot

spins” of Ref. 20 a high-temperature expansion is possible:
B(k,w)= D B)Bo(K,®). 3 if we relax the constraint that we take only states with mo-
(k@) % o(Q:A)Bolk.w) ® mentaQ’, then it follows thatZ,=2N+0O(BJyy) and for
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FIG. 1. Temperature dependencelf(Q,B) for the XY model
in zero magnetic field(solid symbol$ and zero magnetization

(empty symbols for T/J=0,0.5 andT>7J. The solid line for
T=0 shows theN= 250 result and Eq(5) is plotted forT>1J.

wo_.m » We have to count the number of states where the firs
m+1 spins haveS*=1, which is 2Y"™" 1. Working in a
subspace with definite momentu@’, each subspace will
acquire roughly ™M of the values given abovéhe actual
distribution depends on how many states are in a gigén
subspaceand in the thermodynamic limit we get

3
N—-110-8cosQ-Q’)

D,(Q.Q".8—0)= ©)

This result is valid not only for th&X'Y model, but also for
the isotropic Heisenberg model.

We show the behavior of the spin part in Fig. 1. Apart
from the clear power-law singularity ne§= m/2 at zero
temperature, we observe that at fixed small temperature th
behavior disappears as we increase the system size. This i
dicates that the singularity will vanish for any finite tempera-
ture in the thermodynamic limit. Also there is a difference
between calculatind ,(Q,8) in the two ensembles men-
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FIG. 2. Momentum distribution of théJyy model for T=0
(solid line, L=500), T/J=0.5, andt>T>J (solid line, L=2300)
for quarter filling L =2N,kg= 7/4) and zero magnetic field. There

are strong finite-size effects far="J/2. In the inset we show the

scaling of Ang for zero magnetic fieldsolid symbol$ and zero
agnetization(empty symbols obtained from different system
izes and temperatures.

N—2
<i|aﬁaao,g|i>=ngo<¢'|c.*5lemco|w'>woﬂm,g, (7

whereN; :2:/:0”“ counts the number of spinless fermions
between sites 0 andand wq ., , is calculated for the par-
ticular | x'). Now, replac;ingéNl,m by its Fourier represen-
tation

5N|—m: N

1 )
_— ((Q-Q")(Nj—m)
1% © |
and comparing Eqg6) and (7), we get

is
Q,Q’(k) — zl: eikl< l/l’

-1

C|T H einl,(QiQ,)Co
I"=1

n- B

¢'>- ®

This can be further simplified using the identity

tioned above; however, the finite-size effects are decreasing™ (@ 9)=1+xn,, where we introduced=g'(?~Q)—1,

with increasingN. Let us also note that the sum rule
2oD(Q,B)=N,/N is satisfied for any temperature. Fur-
thermore,D ,(Q,Q’,8)~D,(Q— Q'+, B) in the thermo-
dynamic limit.

(b) Momentum distribution functiofzrom Eq.(3) we get

nk=§ Bo(K)Do(Q,A). (6)

To calculaten efficiently, we have to find a convenient way
to evaluateBy (k). For that reason, let us follow Ref. 13: In
the alternative representation of the momentum distribution

L-1
1 , \ ikl = BE.
=73 2 (ilal, a0 li)eke

we replacegi) by the factorized wave function EQ):

so that(y’|c]T1}, 1, (@=Qcq| ') in Eq. (8) is equal to

<C|TCo> (CFCD <C|TC| “1)
x(cice)  1+x(cicy) x(cici—1)
X<C£CO> X<C;Cl> X<CIC| ~1) ,
x(cl_1co)  x(¢/_1C1) 1+x(c/_1¢_1)

where(c/c;/)=(1/L)2;e (=1, Using this equation, we
are able to comput8,(k,w) for systems with a few hun-
dred sites. It turns out thaBg q/(K,0)=Bg_q/+ (K, )
apart from some small finite-size corrections; therefore, our
assumption to fixQ’ = 7 is justified.

We show our numerical results in Fig. 2. The=0 result
shows power-law behavior at the Fermi momentum. Increas-
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ing the temperature, the power law survives until some
crossover temperature<J/L), where it becomes a continu- :
ous function of momentum for higher temperatures. To study 0.4t
this behavior in detail, we concentrate on the jumpkat
defined asAng=ny_—ny:, where ke =ke= 7N/L are the
momenta of the finite system closest to the Fermi point. This
jump is finite for finite-size system and scales with® in
the Luttinger liquid. If the singularity disappears angbe-
comes a continuous function aroukd, thenAngoc1/L. In
the inset of Fig. 2 we show the “size-independeht”Ang
vs LT/J. It is remarkable that at low temperature the points 901 .
follow a universal curve: : !

03}

g
@

02}

-

Ang=L"*f(LT/J). 0 . . . : 5

A crossover temperature, scaling wittiL, can be clearly
observed, and for larger temperatutesAng—0. This be-
havior can be understood if we recall that the temperature FIG. 3. Local spectral function folf=0 (solid ling) and

enters by dividing the energy2mu, /L of the low-energy t>T>J (dashed ling for the quarter-filled Hubbard model

excitations. L=220. For this particular fillingeg=0. In the insetBy(w) for
(c) Local spectral functionThe single-particle density of different values ofQ.
states is given by spectral function at the Fermi energy is purely the artifact of
the J/t—0 limit.}” For finite J, the local spectral function
B(w)=Q§;T D,(Q,B)Bg(w), (9 has a broad peak aroung~(7/2)J due to the spinon dis-

persion and a second broad peak near the band edge

whereBg(w) = (1/L)SBq(k,w). Let us concentrate on the (w~2t). The weight transfer then would be from the
isotropic tJ model (equivalent to the large} Hubbard ‘“spinon” to the “holon” peak. A similar weight redistribu-
mode) in the limiting T=0 andt>T>TJ cases only. At low tion is observed in the two-dimensiortal model as welf*
temperature® ,(Q, 8) is large neaQ = /2 and the largest To conclude, we hav_e st_udled th(_e temperature evolution
part in the convolutior(9) comes fromBg._ (). For the of the momentum distribution function and local spectral

: - _ function. First, we give a method to calculatg for large
hot spin caseP,(Q,B) is large neaQ=7 andBqo_ ,(w) . '
gives most of the contribution tB(w), shown in gig_ 3. |n System sizes for thedyy model at zero temperature. Next,

other words, increasing the temperature, we transfer less anlf otbserV(_ed that tlhe powertTIaW lb;eh?%nor IS rtestrlc_ted t(I) tetrr:]-
less momentum to the spins and the role of the orthogonalit eratures Inversely proportional o the system size. 'n the

catastrophe ifBo(w) decreases. Since changi@gresults in hermodynamic limit the system is critical &= 0 only. Fi-

a considerable redistribution of the weightBg(w) (see the gglc}(;'sat:\a,\ll((:’alghtl;iglsgcgfiogrga?ir?(lanrgIe-rgimglewdheigr?lgaﬂfbe
inset in Fig. 3, the weight transfer oB(w) at the energy P gy range,

scale oft is due to the temperature dependenc®g(Q. 3) (raa}[il)lryll understood using the concept of “spin-charge” sepa-
set on a much smaller temperature scale, naively we woulHon:

expect smearing oB(w) near the Fermi energy within We would like to thank H. Frahm, J. Jakligl. Shiba, and
|o—eg|~T. We should also note that the divergence of thew. Stephan for stimulating discussions.

“On leave from Research Institute for Solid State Physics, Budap- Y. Hatsugai, J. Phys. Soc. JpB8, 3752(1989.

est, Hungary. 12E_Woynarovich, J. Phys. @5, 85 (1982.
1J. Sdyom, Adv. Phys.28, 201(1979. 13M. Ogata and H. Shiba, Phys. Rev.48, 2326(1990.
2|, E. Dzyaloshinkii and A. I. Larkin, Zh. Esp. Teor. Fiz65, 411  4S. Eggert, H. Johannesson, and A. Mattsson, Phys. Rev.75tt.
(1973 [ Sov. Phys. JETRS8, 202 (1974]. 1505(1996; M. Fabrizio and A. O. Gogolin, Phys. Rev. &,
3J. Vait, Rep. Prog. Phy$®8, 977 (1995, and references therein. 7827(1995.
4F. D. M. Haldane, J. Phys. 4, 2585(1981). 15T, Pruschke and H. Shiba, Phys. Rev4& 205 (1991).
5H. J. Schulz, Phys. Rev. Le#4, 2831(1990. 16y, Hatsugai, M. Kohmoto, T. Koma, and Y. S. Wu, Phys. Rev. B
5H. Frahm and V. E. Korepin, Phys. Rev.4, 10 553(1990; N. 54, 5358(1996.
Kawakami and S. K. Yang, Phys. Lett. 248 359(1990. 7K. Penc, F. Mila, and H. Shiba, Phys. Rev. Létb, 894 (1995;
’B. Dardel et al, Europhys. Lett.24, 687 (1993; C. Coluzza K. Penc, K. Hallberg, F. Mila, and H. Shib&id. 77, 1390
et al, Phys. Rev. B47, 6625(1993; M. Nakamuraet al,, ibid. (1996; Phys. Rev. B55, 15 475(1997).
49, 16 191(1994; T. Takahashet al, ibid. 53, 1790(1996. 18p_ W. Anderson, Phys. Rev. Left8, 1049(1967.
8C. Kim et al, Phys. Rev. Lett77, 4054(1996. 195, sorella and A. Parola, J. Phys., Condens. MatteB589
%A. B. Harris and R. V. Lange, Phys. Rel57, 295 (1967. (1992.
10E. Dagotto, Rev. Mod. Phy$6, 763(1994). 20 Gebhardet al, Philos. Mag. B75, 13 (1997).

1R, Preust al, Phys. Rev. Lett73, 732(1994; M. Imada and  2'J. Jaklicand P. Prelowek, Phys. Rev. B55, 7307(1997.



