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Quantum transfer-matrix approach to S51 antiferromagnetic chains at finite temperatures
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The quantum transfer-matrix method~QTM! has been applied to study the finite-temperature static proper-
ties of the spinS51 antiferromagnetic Heisenberg chains in a wide range of the single-ion anisotropy and
temperatures. The high-resolution QTM simulation data are obtained for the zero-field susceptibility, specific
heat, as well as for the field-dependent magnetization. The microscopic parameters of a number of real
quasi-one-dimensional compounds are found from fitting procedures, some theoretical approaches are numeri-
cally verified and low-temperature extensions of high-temperature series are given in terms of Chebyshev
polynomials.@S0163-1829~97!02325-4#
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I. INTRODUCTION

Haldane conjecture showing the difference between
ground state of integer and half-integer spins has stimula
a lot of theoretical and experimental interest in antiferrom
netic quantum spins chains. The ground state of integer
chains was predicted disordered with a gap in the excita
spectrum and the spin-correlation function decaying ex
nentially. The existence of the gap has been well establis
by various numerical techniques and field-theoretical ar
ments. The first experimental evidence for the gap in
excitation spectrum were results of the neutron scattering1 on
CsNiCl3 although the compound is only moderately one
mensional. A representative physical realization of o
dimensional Heisenberg antiferromagnets~1D-HAF’s! is an-
other Ni21 (S51) compound Ni(C2H8N2)2NO2ClO4,
abbreviated as NENP,2 displaying no magnetic long-rang
order down to very low temperatures. Over the yea
other real spin chains with varying anisotropies ha
been synthetized3–6 @e.g., (CH3)4NNi(NO2)3-TMNIN,
Y2BaNiO5-YBANO, AgVP2S6, Ni(C2H8N2)2Ni(CN)4-
NENC# and measurements of susceptibility, field-depend
magnetization, ESR and NMR have been performed. Qu
titative interpretation of the experimental results is based
different approximate theories4 so that it is subject to som
ambiguities. Moreover, the experimental data sometimes
not unique, as can be seen in the case of susceptibility m
sured for NENP,2,7 TMNIN,3,8,9 or YBANO.4,10,11

The nature of the Haldane phase still needs so
clarification.12 The peculiar property of the disordere
ground state is an antiferromagnetic hidden order descr
by a nonlocal string order parameter. The integer spin ch
with weak anisotropy can be mapped onto the quantum n
linear s models13 with the bare coupling constantg052/S.
Particularly forS51 chains, the nonlinears model is only
valid in a narrow range of temperatures. Apart from the n
linear s model, other theories have been developed for
low-temperature static and dynamic properties which inclu
boson or fermion models,14 self-consistent mean-field15 or
strong-coupling16 approaches.
560163-1829/97/56~2!/645~9!/$10.00
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The aim of this paper is to verify some theoretical resu
and the values of the microscopic parameters, earlier sele
from different fitting procedures, using reliable numeric
simulations based on the unique quantum transfer-ma
technique~QTM!.

In the presence of the external field, the 1D HAF cha
are described by theS51 Hamiltonian

H5J(
i51

N21

Si•Si111D(
i51

N

~Si
z!22gamBB(

i51

N

Si
a , ~1!

whereJ (.0) denotes the antiferromagnetic interaction co
stant,D stands for the anisotropy parameter,B is the external
magnetic field which can be applied along the cha
(a5z) or in the perpendicular direction (a5x), andga is
the corresponding gyromagnetic ratio.

A number of simulation techniques13,17–22 has been ap-
plied to 1D HAF chains. Herein, the variant of the QT
approach proposed by Delicaet al.18 has been adapted. Ou
simulations are performed for a classical counterpart of
model ~1! defined on the square lattice consisting
N32m Ising spins, wherem is an integer referred to as th
Trotter number. The following features of the prese
transfer-matrix technique are worth noticing: no statisti
errors, the real-space decomposition scheme, reduction o
amount of independent configurations to 3Nm and a collapse
of all the states under the trace operation onto a single o
This enables the computer runs for chains as long as ne
sary to establish the leading eigenvectors of the transfer
trix with an accuracy to 1028 andm58.

The remainder of this paper is organized as follows. In
next section we describe briefly our methods of simulat
and analysis, we demonstrate the variation of our finite-s
data and explain the extrapolation procedure. Our main
sults are presented in Sec. III and compared to the exp
mental data on the real 1D HAF compounds and some
oretical predictions. The paper is concluded with so
discussion of the results and indications for further appli
tions of our technique.
645 © 1997 The American Physical Society
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II. THE QUANTUM TRANSFER-MATRIX TECHNIQUE

We calculate both the canonical partition functionZ,
which for the spin system described above~1! can be defined
as

Z5Tre2bH,

and the thermodynamical mean value of a quantity descr
by the self-adjoint operatorA which is given by

^A&5
1

Z
TrAe2bH.

The values of matrix elements ofe2bH cannot be found
exactly for largeN because of noncommuting operators
H. Thus, to eliminate this restriction we look for the syste
atic approximants to functionsZ and ^A&.

For long chains, we rewrite the Hamiltonian~1! in terms
of two-site operators

H5 (
i51

N21

Hi ,i11 , ~2!

where

FIG. 1. Variation of the molar susceptibilityx in ~m emu/mol!
against 1/m2 ~the transfer-matrix data, 3<m<7).
d

-

Hi ,i115JSW i•SW i111
1

2
D@~Si

z!21~Si11
z !2#

2
1

2
gamB~Si

a1Si11
a !.

By using the general Suzuki-Trotter formula,23,24 we intro-
duce the operator

R~b!5 )
i51

N21

e2bHi ,i11,

so that the partition functionZ can be evaluated from th
equation

Z5 lim
m→`

Zm5 lim
m→`

Tr @R~b/m!#m, ~3!

TABLE I. The Chebyshev coefficients of the low-temperatur
part of the susceptibilityx and the specific heatC.

i ai bi i ai bi

0 0.0798994 0.2504432 620.0049973 20.0149541
1 20.0712023 20.2276052 7 20.0033515 0.0051486
2 0.0261014 0.0092536 820.0039109 0.0017821
3 20.0012213 0.0418732 920.0018993
4 20.0020003 20.0510788 10 20.0011700
5 20.0029195 0.0352618

FIG. 2. Variation of the specific heatC per spin against 1/m2

~the transfer-matrix data, 3<m<7).
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56 647QUANTUM TRANSFER-MATRIX APPROACH TOS51 . . .
wherem is the natural number~the Trotter number! and the
right side presents themth approximantZm to Z in the real-
space decomposition23 defined by Eq.~2!. Zm can be calcu-
lated numerically without any restrictions on the value
N by the quantum transfer-matrix method.23 However, be-
cause of computer memory limitations, calculation ofZm is
possible to relatively small values ofm ~in our case
m<8). It was shown elsewere24 that the leading errors in
taking a finitem approximants are of the order of 1/m2.

The mean value of a quantity represented by operatoA
can be approximated by

^A&m5
1

Zm
TrA@R~b/m!#m. ~4!

The magnetization per site in thea direction is calculated
putting in Eq.~4! thea component of the central spin of th
chain. The susceptibility can be then calculated by numer
differentiation of magnetization. The specific heat can be
tained as a first derivative of the two-spin correlation fun
tion ^SiSi11& and the averagê(Si

z)2& which are directly re-
lated to internal energy.

The numerical implementation of Eqs.~3! and~4! is based
on a global transfer operator23 W acting in theH2m space
wich is a direct product of 2m single-spin spaces:

H2m[ ^

i51

2m

Hi .

In the cited paper it is shown that, putting

ua&[)
i51

m

ds2i21 ,s2i
,

ub&[)
i51

m

ds2i ,s2i
,

themth approximant to the canonical partition function c
be written

Zm5^buWN21ua&, ~5!

whereN is the chain length, and the mean value of the c
tral site spin in thea direction is

^Sa&m5
1

Zm
^buWN2nSaW

n21ua&, ~6!

whereSa is the single-site spin operator andn5N/2.
In this paper the QTM technique outlined in our previo

work25 has been developed. We have noticed that repe
application of theW operator to the vectorua& (ub&), for N
big enough, produces an eigenvector ofW. The limit of an
infinite chain is specified by the matrix element of the sp
operator between the left and right eigenvectors. So the
terion for theN value is to iterate theW operator application
until a stable eigenvector~within a preset precision! is
reached. We found that theN value strongly depends o
temperature. ForkBT comparable with the couplingJ,
N.20–30 is sufficient; forkBT/J.0.1–0.2 ~the smallest
value for which we can confidently extrapolate tom→`) it
is necessary to takeN.300–500.
f
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We performed a comprehensive test of the converge
properties of the QTM approximants to the thermodynam
quantities in our previous work25 on the ferromagnetic
CsNiF3. We have verified that a similar convergence
terms of 1/m2 occurs for the antiferromagnetic model~1!.
Typical variations of the zero-field susceptibility and speci
heat results for various temperatures are presented in Fig
and 2, respectively. In the region of higher temperatures,
estimates show the linear behaviour with respect to 1/m2,
whereas for lower temperatures some nonlinearities em
and impose uncertanties on our extrapolations form→`. In
our QTM computations we tune the temperature region
that the uncertainties do not exceed 10%.

III. RESULTS

A. Isotropic limit

High-temperatures series expansion results for susce
bility and specific heat play an important role in interpre
tion of experimental results on 1D HAF systems. They a
even resorted to in the presence of anisotropy3,4,26,27down to
kBT/J'1. Unfortunately, in the region of their applicability
the estimates of thermodynamic quantities are rather ins
sitive to the changes of the microscopic parameters. Thus
have extended QTM numerical calculations down
kBT/J'0.1 and we have found the coefficients of the Cheb
shev polynomials in term ofx5J/kBT both for the reduced
susceptibility

xJ/Ng2mb
25(

i50

n

aiTi~x! ~7!

and the per site specific heat

C/NkB5(
i50

n

biTi~x!, ~8!

whereTn(x) denotes thenth order polynomial. The coeffi-
cientsai andbi have been evaluated from the best fit of o
numerical data in the region 0.7<x<7 ~i.e., for x andC
below maximum! and are given in Table I. For temperatur
above a maximum ofx and C, our results coincide with
those established from high-temperature series26–28 and the
latter can be resorted to. Our isotropic QTM data forx and
C are given in Figs. 3 and 4 by diamonds and are accom
nied by error bars~if they are large enough to be seen in t
scale!. In Fig. 3, the low-temperature continuation of th
Weng expression forx drawn by the continuous line clearl
deviates from our curve. By open circles we have marked
numerical data13 extrapolated from finite-chain diagonaliza
tion techinque with periodic boundary conditions imposed
Eq. ~1!. The experimental susceptibility measurements
TMNIN ~Ref. 3! and AgVP2S6 ~Ref. 5! are also shown in
Fig. 3 by filled circles and asterisks, respectively. These t
compounds are found isotropic realizations of 1D HA
chains. We demonstrate in Fig. 3 that in low temperatu
the experimental results slighty deviate from the pure iso
pic behaviour following from our computations.

As to the specific heat shown in Fig. 4, we find a cons
tency both with the numerical results previously reporte29

~the squares! and those for TMNIN~the crosses!.
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648 56G. KAMIENIARZ et al.
Our calculations of the zero-field susceptibility and sp
cific heat for TMNIN have been performed withD50,
g52.25, andJ/kB512 K, as found in literature.3 Using the
same values of the interactions parameters, we have ca
out simulations in the presence of an external field wh
yielded the magnetization profiles at constant temperatu
(T51.9 K andT515 K! drawn in Fig. 5. For the isotherm a
the 1.9 K, the accuracy for our estimates is of the order
10% and for that atT515 K—about 1%. The experimenta
findings for TMNIN ~Ref. 3! are plotted both by the lines~to
guide eyes! and by the symbols described by the labels. O
QTM data agree with experiment, although in higher fie
display a tendency to go upwards.

In addition, the gapD/J50.3860.04 has been extracte
from our low-temperature (T51.9 K! magnetization curve
and agrees within the error bars with the known value 0
for the isotropic Hamiltonian. We have followed the ide
described by Gadetet al.3

B. Moderate anisotropy

We have performed extensive simulations of the mo
~1! for the parameters spread over the interval previou
found for NENP. In particular, we have confirmed the exc
lent fit of the susceptibility data of Renardet al.2 for the
parameters selected by Delicaet al.,18 but we have revealed
then pronounced systematic deviations for the magnetiza

FIG. 3. The isotropic susceptibility in reduced unitsNg2m2/J vs
the inverse temperature. The continuous curve fits the nume
QTM results. The remaining symbols represent the experime
and other theoretical data, as labeled.
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FIG. 4. The isotropic specific heat per spin. The continuo
curve fits the numerical QTM data. The remaining symbols rep
sent the experimental and other theoretical data, as described i
legend.

FIG. 5. The field-dependent magnetization data per site
mB for TMNIN. The QTM estimates are shown by the symbo
only. The experimental results are given by symbols and lines.
symbols are defined in the legend.
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56 649QUANTUM TRANSFER-MATRIX APPROACH TOS51 . . .
profiles as shown in Fig. 6 by filled circles. As to NENP, w
have concluded that the best overall fit can be achieved
the set

J/kB548 K, D/kB57.8 K, g'52.25, gi52.20
~9!

which is consistent with other estimates existing
literature.2,7,18,30

The results for NENP are illustrated in five figures. In F
6 we display the low-field powder magnetization data b
calculated here for the parameters~9! and measured
experimentally.2 The QTM results are given by the symbo
and the experiental findings are drawn by the continu
lines. Extending our computations up to 40 T, also the hi
field single-crystal magnetization measurements30 can be re-
produced within the error bars. The magnetization isothe
at T54.2 K are shown in Figs. 7 and 8 for the field appli
along the chain and in the perpendicular direction, resp
tively. The symbols with the error bars represent our QT
estimates, whereas the continuous lines follow from
high-field experiments.30 As shown in Fig. 9, the single
crystal zero-field susceptibilities, evaluated for the same
rameters, remain consistent with the experimental findin
Our results near the maximum are systematically lower t

FIG. 6. The magnetization profiles per site andmB for NENP
against the external field. The QTM data forJ/kB548 K and
J/kB544 K are illustrated by the corresponding symbols and
experimental data are drawn by the continuous lines.
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those of Renardet al.2 but some reduction is expected fro
other measurements,7 as shown in Fig. 9.

As to CsNiCl3, the estimates of the microscopic param
eters deduced from the neutron scattering experime1

(J/kB533.2 K! have been challenged on the basis of t
static measurements19,31 leading, unfortunately, to inconsis
tent predictions for the parameters in Eq.~1!. Selecting the
values of parameters (J/kB527 K! estimated from the finite-
chain data,19 we have revealed again an agreement betw
the susceptibility and specific heat results and the co
sponding measurements on CsNiCl3, whereas our new re
sults coincide with the previous ones19 within the error bars.
The zero-field single-crystal susceptibility data and those
the specific heat are given in Figs. 10 and 11, respectiv
ChoosingJ/kB530 K, the susceptibility curve~Fig. 11! de-
viates from the experiment on CsNiCl3 and the discrepancy
would increase forJ/kB533.2 K. However, we cannot dis
criminate between competing sets of parameters which o
nate from the static measurements as the magnetiza
experiment31 has been performed in temperatures inacc
sible for our simulations.

YBANO is an important compound for investigation o
the effects of paramagnetic impurities and spin-1/2 degr
of freedom.32 Although insulating in the absence of impur
ties, after acceptor doping it belongs to a small group
effective 1D conductors.33 It is also interesting that som
NMR measurements11 performed on YBANO have reveale
discrepancies with the existing theory34 of the spin suscepti-

e

FIG. 7. The large-field dependence of the longitudinal magn
zation M i data ~per site andmB) for NENP @J/kB548 ~K!;
T54.2 ~K!#. Numerical data are shown by the symbols and
experimental results by the lines~Ajiro et al.).
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650 56G. KAMIENIARZ et al.
bility in the Haldane-gap antiferromagnets. In Fig. 12 w
have presented the experimental values of the zero-field
ceptibility as found by different techniques4,10,11and we have
fitted these data within the model~1!. We have extended th
fit down to T540 K which was not accessible before.4 For
lower temperatures we have considered the classical sys
up tom58 and receiving the curve drawn by the continuo
line in Fig. 12. Our final outcome is consistent with the e
perimental data. However, it was rather difficult to rea
agreement in the low-temperature part of the susceptibi
From our simulations we have established the following
of the microscopic parameters:

J/kB5275 K, D/kB560 K, g52.33. ~10!

Numerical simulations are valuable tools for testing a
proximate analytical approaches. As to the anisotropic
HAF systems, theoretical boson and fermion models h
been adopted.14 The appropriate predictions have been fou
in the region accessible for reliable numerical computatio
assuming the following parameters:

J/kB546 K, D/J50.16,

close to those for NENP. In our simulations, we have
g'52.22 ~or 2.20), gi52.15 ~which are not specified by
Regnaultet al.! and we have revealed pronounced discr
ancies in the behavior of both susceptibility and spec
heat. In Fig. 13 the single-crystal susceptibility data are
lustrated in the reduced units (Ng2m2/J). The theoretical

FIG. 8. The large-field dependence of the perpendicular mag
tization M' data ~per site andmB) for NENP @J/kB548 ~K!;
T54.2 ~K!#. Numerical data are shown by the symbols and
experimental results by the lines~Ajiro et al.).
s-
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predictions are plotted by continuous and dotted lines for
boson and fermion models, respectively, whereas the co
sponding QTM numerical estimates are drawn by the sy
bols. The bold line and the tight dotted curve in Fig. 13 re
to the calculations carried out in the hard direction paralle
the chain. The remaining continuous and dotted lines refe
the theoretical estimates in the perpendicular direction. T
circles in Fig. 13 represent results of some quantum Mo
Carlo calculations,14,22which agree within the error bars wit
our QTM estimates forkBT/J<0.2. The temperature depen
dence of the specific heat per spin is illustrated in Fig.
The theoretical results are drawn by continuous lines and
measured values in the region of very low temperatures
shown by crosses. Our QTM estimates follow a curve lyi
between that of the fermion and the boson model.

C. Strong anisotropy limit

We consider here the strong anisotropyD/J57.5, to test a
perturbational theoretical approach applied to obtain the
rameters for NENC.16 Our results for the zero-field single
crystal susceptibility and specific heat are consistent w
those coming from the analytical calculations. This is de
onstrated in Figs. 15 and 16, where our estimates given
the symbols are compared with the corresponding theore
predictions16 drawn by the continuous lines. We detect on
minor deviations in the low-temperature behavior ofx' .

IV. CONCLUSIONS

We have carried out large-scale computations obtain
high resolution data for theS51 antiferromagnetic chains

e-

e

FIG. 9. The temperature behavior of the single-crystal mo
susceptibility for NENP in~m emu/mol!. The experimental results
are guided by the dotted lines.
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FIG. 10. The temperature dependence of the molar susceptib
for CsNiCl3 in ~m emu/mol!. The numerical and experimental da
are illustrated by the symbols as labeled.

FIG. 11. The temperature dependence of the specific hea
spin for CsNiCl3 calculated numerically and found experimental
down to low temperatures. The parameters~9! and~10! have
been established as the best sets describing static mea
ments for NENP and YBANO. In the case of TMNIN an
AgVP2S6, slight deviations from the purely isotropic beha
ior of magnetization and susceptibility have been noted.
have calculated low-temperature extensions of the kno
high-temperature series4,27 suitable for the interpretation o
the isotropic susceptibility and the specific heat data. Fina
some numerical tests of the recently developed theories h
also been carried out.

As to the reliability of our QTM technique, it is applicabl

ity

er

FIG. 12. Temperature dependence of the susceptibilityx for
YBANO. The full line illustrates the QTM estimates. The expe
mental data are given as follows: (L) Darriet et al.; (s) Batlogg
et al.; (d) Shimizuet al.

FIG. 13. A comparison between numerical and theoretical p
dictions for the temperature dependence of the anisotropic sus
tibility per spin. The boson and fermion approximations yield co
tinuous lines and dotted lines, respectively. The symbols repre
the numerical QTM and QMC estimates and are self-defined.
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652 56G. KAMIENIARZ et al.
FIG. 14. A comparison between the QTM numerical estima
and those found theoretically and experimentally on NENP for
temperature dependence of the specific heat per spin.

FIG. 15. The temperature dependence of the susceptibility in
limit of the strong anisotropyD/J57.5. The symbols illustrate ou
results and the continuous curves the corresponding theore
findings in unitsNg2mB

2/D.
in the whole region of the microscopic parameters and f
temperatures down tokBT/J.0.1. Our simulation data are
provided with the error bar estimates if they exceed the s
of the symbols, and the convergence of the numerical
sultsin terms of 1/m2 is carefully checked. Typical variation
of the data~Figs. 1 and 2! is similar to that reported for the
ferromagnetic chains.25 For the lower temperatures unce
tainties of our extrapolation 1/m2 are of the order of 10% and
are significantly diminished for higher temperatures.

Our simulations demonstrate that the QTM approach
valuable tool for calculations of the finite-temperature pro
erties of the Haldane-gap systems. This approach is also
pected to be effective for some metallo-organic and me
scopic one-dimensional compounds.
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FIG. 16. The temperature dependence of the specific heat in
limit of the strong anisotropyD/J57.5. The symbols illustrate ou
results and the continuous curves the corresponding theore
findings.
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