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Quantum transfer-matrix approach to S=1 antiferromagnetic chains at finite temperatures
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The quantum transfer-matrix meth¢@TM) has been applied to study the finite-temperature static proper-
ties of the spinS=1 antiferromagnetic Heisenberg chains in a wide range of the single-ion anisotropy and
temperatures. The high-resolution QTM simulation data are obtained for the zero-field susceptibility, specific
heat, as well as for the field-dependent magnetization. The microscopic parameters of a number of real
guasi-one-dimensional compounds are found from fitting procedures, some theoretical approaches are numeri-
cally verified and low-temperature extensions of high-temperature series are given in terms of Chebyshev
polynomials.[S0163-1827)02325-4

I. INTRODUCTION The aim of this paper is to verify some theoretical results
and the values of the microscopic parameters, earlier selected
Haldane conjecture showing the difference between th&om different fitting procedures, using reliable numerical
ground state of integer and half-integer spins has stimulategimulations based on the unique quantum transfer-matrix
a lot of theoretical and experimental interest in antiferromagtechnique(QTM).
netic quantum spins chains. The ground state of integer spin In the presence of the external field, the 1D HAF chains
chains was predicted disordered with a gap in the excitatioare described by th8=1 Hamiltonian
spectrum and the spin-correlation function decaying expo-
nentially. The existence of the gap has been well established N-1 N N
by various numerical techniques and field-theoretical argu- H=JD, S-S, ,+D>, (Siz)z_gwu'BBE SO
ments. The first experimental evidence for the gap in the =1 i=1 =1
excitation spectrum were results of the neutron scatttong
CsNiCl; although the compound is only moderately one di-whereJ (>0) denotes the antiferromagnetic interaction con-
mensional. A representative physical realization of onestant,D stands for the anisotropy parametgiis the external
dimensional Heisenberg antiferromagnegiB-HAF's) is an-  magnetic field which can be applied along the chain
other Ni* (S=1) compound Ni(GHgN,),NO,CIO,, (@=2) or in the perpendicular directiomm&x), andg, is
abbreviated as NENPdisplaying no magnetic long-range the corresponding gyromagnetic ratio.
order down to very low temperatures. Over the years, A number of simulation techniquEs'’~?>has been ap-
other real spin chains with varying anisotropies haveplied to 1D HAF chains. Herein, the variant of the QTM
been synthetizéd® [e.g., (CH),NNi(NO,);-TMNIN,  approach proposed by Delie al'® has been adapted. Our
Y,BaNiOs;-YBANO, AgVP,S;, Ni(C,HgN,),Ni(CN),-  simulations are performed for a classical counterpart of the
NENC] and measurements of susceptibility, field-dependenmodel (1) defined on the square lattice consisting of
magnetization, ESR and NMR have been performed. QuarNX2m Ising spins, wheren is an integer referred to as the
titative interpretation of the experimental results is based offrotter number. The following features of the present
different approximate theoriéso that it is subject to some transfer-matrix technique are worth noticing: no statistical
ambiguities. Moreover, the experimental data sometimes arerrors, the real-space decomposition scheme, reduction of the
not unique, as can be seen in the case of susceptibility meamount of independent configurations t™and a collapse
sured for NENF:’ TMNIN, > or YBANO.#10:11 of all the states under the trace operation onto a single one.
The nature of the Haldane phase still needs somd&his enables the computer runs for chains as long as neces-
clarification!? The peculiar property of the disordered sary to establish the leading eigenvectors of the transfer ma-
ground state is an antiferromagnetic hidden order describetlix with an accuracy to 10° andm=8.
by a nonlocal string order parameter. The integer spin chains The remainder of this paper is organized as follows. In the
with weak anisotropy can be mapped onto the quantum nomext section we describe briefly our methods of simulation
linear o modeld® with the bare coupling constan=2/S.  and analysis, we demonstrate the variation of our finite-size
Particularly forS=1 chains, the nonlinear model is only data and explain the extrapolation procedure. Our main re-
valid in a narrow range of temperatures. Apart from the nonsults are presented in Sec. Ill and compared to the experi-
linear o model, other theories have been developed for thenental data on the real 1D HAF compounds and some the-
low-temperature static and dynamic properties which includeretical predictions. The paper is concluded with some
boson or fermion modef¥, self-consistent mean-fieflor  discussion of the results and indications for further applica-
strong-coupling® approaches. tions of our technique.
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Il. THE QUANTUM TRANSFER-MATRIX TECHNIQUE > 2 1

° ° Hii41=35§ 1+ 5DLSH?+(S,1)7]
We calculate both the canonical partition functi@n
which for the spin system described abdtgcan be defined

1
as ~59a#B(S"+ S ).

By using the general Suzuki-Trotter form##?* we intro-

= —BH
Z=Tre™ ", duce the operator
and the thermodynamical mean value of a quantity described N~ 1
_adioi ich is qi R(B):H e AMii+1,
by the self-adjoint operatad which is given by Ll
1 so that the partition functio@ can be evaluated from the
(A= ZTrAe*ﬁH. equation
Z=lim Z,= lim Tr [R(B/m)]™, ()
The values of matrix elements & 4’ cannot be found m— m—e

exactly for largeN because of noncommuting operators in -
H. Thus, to eliminate this restriction we look for the system-  TABLE I. The Chebyshev coefficients of the low-temperatures
atic approximants to functiori and(.A) part of the susceptibility and the specific hedt.

For long chains, we rewrite the Hamiltonidh) in terms
of two-site operators

a; b; i a,; b;

—0.0020003 —0.0510788 10 —0.0011700
—0.0029195 0.0352618

0 0.0798994 0.2504432 6—0.0049973 —0.0149541
N_1 1 —-0.0712023 —0.2276052 7 —0.0033515 0.0051486
2= 2 " 2 2 0.0261014 0.0092536 8—0.0039109 0.0017821
= hi+1s 3 —0.0012213 0.0418732 9-0.0018993
4
5

where
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wherem is the natural numbefthe Trotter numbegrand the
right side presents theth approximan,, to Z in the real-
space decompositiGhdefined by Eq(2). Z,, can be calcu-
lated numerically without any restrictions on the value of
N by the quantum transfer-matrix meth&tHowever, be-
cause of computer memory limitations, calculationZgf is
possible to relatively small values ofn (in our case
m=8). It was shown elsewetethat the leading errors in
taking a finitem approximants are of the order ofri?.

The mean value of a quantity represented by operdtor
can be approximated by

1
<A>m=Z—mTrA[R(,3/ m)]™ 4

The magnetization per site in the direction is calculated
putting in Eqg.(4) the « component of the central spin of the

chain. The susceptibility can be then calculated by numerical

differentiation of magnetization. The specific heat can be ob
tained as a first derivative of the two-spin correlation func-
tion (S;S; ;) and the averagé(S?)?) which are directly re-
lated to internal energy.

The numerical implementation of Eq8) and(4) is based
on a global transfer operatdrW acting in theH>™ space
wich is a direct product of & single-spin spaces:

2m
Hsz Hi .
i=1

In the cited paper it is shown that, putting

m
|a>Ei1:[l 5‘72i—1x‘72i'

m
|b>Ei1:[1 5"2i 1921’
the mth approximant to the canonical partition function can
be written

Zn=(b|WN"1a), 5

whereN is the chain length, and the mean value of the cen
tral site spin in thex direction is

L N—n n—1
=5 (bW TS, W),

(Sam (6)

whereS, is the single-site spin operator ang-N/2.
In this paper the QTM technique outlined in our previous
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We performed a comprehensive test of the convergence
properties of the QTM approximants to the thermodynamic
quantities in our previous wofk on the ferromagnetic
CsNiF;. We have verified that a similar convergence in
terms of 1m? occurs for the antiferromagnetic moddl).
Typical variations of the zero-field susceptibility and specific
heat results for various temperatures are presented in Figs. 1
and 2, respectively. In the region of higher temperatures, our
estimates show the linear behaviour with respect ta?1/
whereas for lower temperatures some nonlinearities emerge
and impose uncertanties on our extrapolationsnfies . In
our QTM computations we tune the temperature region so
that the uncertainties do not exceed 10%.

Ill. RESULTS
A. Isotropic limit

High-temperatures series expansion results for suscepti-
bility and specific heat play an important role in interpreta-
tion of experimental results on 1D HAF systems. They are
even resorted to in the presence of anisottd@§?’down to
kgT/J~1. Unfortunately, in the region of their applicability,
the estimates of thermodynamic quantities are rather insen-
sitive to the changes of the microscopic parameters. Thus we
have extended QTM numerical calculations down to
kgT/J~0.1 and we have found the coefficients of the Cheby-
shev polynomials in term of=J/kgT both for the reduced
susceptibility

xJ/Ngzﬂf;:iZO aT(x) @)

and the per site specific heat

n

C/Nkg= 2, biTi(X), ®)

i<
whereT,(x) denotes thenth order polynomial. The coeffi-
cientsa; andb; have been evaluated from the best fit of our
numerical data in the region Gsk<7 (i.e., for y andC
below maximum and are given in Table |. For temperatures
above a maximum ofy and C, our results coincide with
those established from high-temperature sétié&and the
latter can be resorted to. Our isotropic QTM data foand
C are given in Figs. 3 and 4 by diamonds and are accompa-
nied by error bargif they are large enough to be seen in the
scalg. In Fig. 3, the low-temperature continuation of the
Weng expression foy drawn by the continuous line clearly
deviates from our curve. By open circles we have marked the

work® has been developed. We have noticed that repeatagumerical dats extrapolated from finite-chain diagonaliza-

application of thew operator to the vectda) (|b)), for N

big enough, produces an eigenvectorVéf The limit of an
infinite chain is specified by the matrix element of the spin
operator between the left and right eigenvectors. So the cr
terion for theN value is to iterate th&V operator application
until a stable eigenvectofwithin a preset precisignis
reached. We found that thl value strongly depends on
temperature. ForkgT comparable with the coupling,
N=20-30 is sufficient; forkgT/J=0.1-0.2 (the smallest
value for which we can confidently extrapolatens-«) it

is necessary to takid=300-500.

tion techinque with periodic boundary conditions imposed in
Eqg. (1). The experimental susceptibility measurements on
TMNIN (Ref. 3 and AgVPR,S; (Ref. 5 are also shown in
IFig. 3 by filled circles and asterisks, respectively. These two
compounds are found isotropic realizations of 1D HAF
chains. We demonstrate in Fig. 3 that in low temperatures
the experimental results slighty deviate from the pure isotro-
pic behaviour following from our computations.

As to the specific heat shown in Fig. 4, we find a consis-
tency both with the numerical results previously repaiied
(the squaresand those for TMNIN(the crossés
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FIG. 4. The isotropic specific heat per spin. The continuous
curve fits the numerical QTM data. The remaining symbols repre-
sent the experimental and other theoretical data, as described in the

the inverse temperature. The continuous curve fits the numericabgend.

QTM results. The remaining symbols represent the experimental
and other theoretical data, as labeled.

Our calculations of the zero-field susceptibility and spe-
cific heat for TMNIN have been performed with=0,
g=2.25, andJ/kg=12 K, as found in literaturd.Using the
same values of the interactions parameters, we have carried
out simulations in the presence of an external field which
yielded the magnetization profiles at constant temperatures
(T=1.9 KandT=15 K) drawn in Fig. 5. For the isotherm at
the 1.9 K, the accuracy for our estimates is of the order of
10% and for that aT =15 K—about 1%. The experimental
findings for TMNIN (Ref. 3 are plotted both by the ling$o
guide eyesand by the symbols described by the labels. Our
QTM data agree with experiment, although in higher fields
display a tendency to go upwards.

In addition, the gapd\/J=0.38+0.04 has been extracted
from our low-temperatureT=1.9 K) magnetization curve
and agrees within the error bars with the known value 0.41
for the isotropic Hamiltonian. We have followed the idea
described by Gadett al3

B. Moderate anisotropy

We have performed extensive simulations of the model
(1) for the parameters spread over the interval previously
found for NENP. In particular, we have confirmed the excel-

0.25

0.2

T T T T

O QTM (T=1.9[K])

+ QTM (T=15K))

O Gadet et al. (T=1.9[K])

X Gadet et al. (T=15[K])

then pronounced systematic deviations for the magnetizatiofy™pols are defined in the legend.

FIG. 5. The field-dependent magnetization data per site and
lent fit of the susceptibility data of Renawet al? for the s for TMNIN. The QTM estimates are shown by the symbols
parameters selected by Delieaal.’® but we have revealed ©nly. The experimental results are given by symbols and lines. The
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FIG. 6. The magnetization profiles per site ang for NENP FIG. 7. The Iarge-fic_ald dependence of the longitudinal magneti-
against the external field. The QTM data fatkgz=48 K and  Zation M data (per site andug) for NENP [J/kg=48 (K);
Jlky=44 K are illustrated by the corresponding symbols and the! —4-2 (K)]. Numerical data are shown by the symbols and the
experimental data are drawn by the continuous lines. experimental results by the linéajiro et al.).

profiles as shown in Fig. 6 by filled circles. As to NENP, we those of Renaret al but some reduction is expected from

have concluded that the best overall fit can be achieved fdgpther measurementsas shown in Fig. 9.
the set As to CsNiCl, the estimates of the microscopic param-

eters deduced from the neutron scattering experiments
(J/kg=33.2 K) have been challenged on the basis of the
static measurements®! leading, unfortunately, to inconsis-
Jikg=48 K, D/kg=7.8 K, g,=2.25, gj=2.20 tent predictions for the parameters in Ed). Selecting the
(99 values of parameters{kg= 27 K) estimated from the finite-
chain datd® we have revealed again an agreement between
the susceptibility and specific heat results and the corre-
which is consistent with other estimates existing insponding measurements on CsNjCivhereas our new re-
literature18:30 sults coincide with the previous ortésvithin the error bars.
The results for NENP are illustrated in five figures. In Fig. The zero-field single-crystal susceptibility data and those for
6 we display the low-field powder magnetization data boththe specific heat are given in Figs. 10 and 11, respectively.
calculated here for the parametef®) and measured Choosingd/kg=30 K, the susceptibility curvérig. 11 de-
experimentally> The QTM results are given by the symbols viates from the experiment on CsNiCand the discrepancy
and the experiental findings are drawn by the continuousvould increase fod/kg=33.2 K. However, we cannot dis-
lines. Extending our computations up to 40 T, also the high€riminate between competing sets of parameters which origi-
field single-crystal magnetization measurem&htan be re- nate from the static measurements as the magnetization
produced within the error bars. The magnetization isothermsxperiment' has been performed in temperatures inacces-
at T=4.2 K are shown in Figs. 7 and 8 for the field applied sible for our simulations.
along the chain and in the perpendicular direction, respec- YBANO is an important compound for investigation of
tively. The symbols with the error bars represent our QTMthe effects of paramagnetic impurities and spin-1/2 degrees
estimates, whereas the continuous lines follow from theof freedom?? Although insulating in the absence of impuri-
high-field experimentd® As shown in Fig. 9, the single- ties, after acceptor doping it belongs to a small group of
crystal zero-field susceptibilities, evaluated for the same paeffective 1D conductor®: It is also interesting that some
rameters, remain consistent with the experimental findings\MR measurement$ performed on YBANO have revealed
Our results near the maximum are systematically lower thadiscrepancies with the existing thedtyf the spin suscepti-
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FIG. 9. The temperature behavior of the single-crystal molar
usceptibility for NENP inlm emu/mo). The experimental results
are guided by the dotted lines.

FIG. 8. The large-field dependence of the perpendicular magnes
tization M, data (per site andug) for NENP [J/kg=48 (K);
T=4.2 (K)]. Numerical data are shown by the symbols and the
experimental results by the lin€ajiro et al.). predictions are plotted by continuous and dotted lines for the

boson and fermion models, respectively, whereas the corre-
bility in the Haldane-gap antiferromagnets. In Fig. 12 wesponding QTM numerical estimates are drawn by the sym-
have presented the experimental values of the zero-field subols. The bold line and the tight dotted curve in Fig. 13 refer
ceptibility as found by different techniqut¥"*and we have to the calculations carried out in the hard direction parallel to
fitted these data within the modél). We have extended the the chain. The remaining continuous and dotted lines refer to
fit down to T=40 K which was not accessible befdr&or  the theoretical estimates in the perpendicular direction. The
lower temperatures we have considered the classical systerfiécles in Fig. 13 represent results of some quantum Monte
up tom=8 and receiving the curve drawn by the continuousCarlo calculapon%; which agree within the error bars with
line in Fig. 12. Our final outcome is consistent with the ex-OUr QTM estimates fokgT/J<0.2. The temperature depen-
perimental data. However, it was rather difficult to reachdence of the specific heat per spin is illustrated in Fig. 14.
agreement in the low-temperature part of the susceptibilityThe theoretical results are drawn by continuous lines and the

From our simulations we have established the following seff€@sured values in the region of very low temperatures are
of the microscopic parameters: shown by crosses. Our QTM estimates follow a curve lying

between that of the fermion and the boson model.

Jlkg=275K, DI/kg=60K, g¢g=2.33. (10 _ N

C. Strong anisotropy limit
Numerical simulations are valuable tools for testing ap- e consider here the strong anisotrdpjd= 7.5, to test a

proximate analytical approaches. As to the anisotropic 1lperturbational theoretical approach applied to obtain the pa-
HAF systems, theoretical boson and fermion models havgameters for NENC® Our results for the zero-field single-
been adoptetf. The appropriate predictions have been foundcrystal susceptibility and specific heat are consistent with
in the region accessible for reliable numerical computationsthose coming from the analytical calculations. This is dem-

assuming the following parameters: onstrated in Figs. 15 and 16, where our estimates given by
the symbols are compared with the corresponding theoretical
J/kg=46 K, D/J=0.16, prediction® drawn by the continuous lines. We detect only

close to those for NENP. In our simulations, we have pulm'nor deviations in the low-temperature behaviongf.

g, =2.22 (or 2.20), gj=2.15 (which are not specified by
Regnaultet al) and we have revealed pronounced discrep-
ancies in the behavior of both susceptibility and specific
heat. In Fig. 13 the single-crystal susceptibility data are il- We have carried out large-scale computations obtaining
lustrated in the reduced unitdNG?r?/J). The theoretical high resolution data for th&=1 antiferromagnetic chains

IV. CONCLUSIONS
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FIG. 12. Temperature dependence of the susceptibylitfor
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et al; (@) Shimizuet al.

down to low temperatures. The paramet@sand(10) have

been established as the best sets describing static measure-
ments for NENP and YBANO. In the case of TMNIN and
AgVP,Sg, slight deviations from the purely isotropic behav-

ior of magnetization and susceptibility have been noted. We
have calculated low-temperature extensions of the known
high-temperature serié$’ suitable for the interpretation of

the isotropic susceptibility and the specific heat data. Finally,
some numerical tests of the recently developed theories have

FIG. 10. The temperature dependence of the molar susceptibility|sg been carried out.

for CsNiCl; in (m emu/ma). The numerical and experimental data

are illustrated by the symbols as labeled.
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As to the reliability of our QTM technique, it is applicable
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FIG. 13. A comparison between numerical and theoretical pre-
dictions for the temperature dependence of the anisotropic suscep-

FIG. 11. The temperature dependence of the specific heat péiPility per spin. The boson and fermion approximations yield con-
spin for CsNiCk calculated numerically and found experimentally. tinuous lines and dotted lines, respectively. The symbols represent

the numerical QTM and QMC estimates and are self-defined.
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FIG. 14. A comparison between the QTM numerical estimates - )
and those found theoretically and experimentally on NENP for the ~FIG. 16. The temperature dependence of the specific heat in the

temperature dependence of the specific heat per spin. limit of the strong anisotropp/J=7.5. The symbols illustrate our
results and the continuous curves the corresponding theoretical
T T T T T T T T T flndlngs

in the whole region of the microscopic parameters and for-
temperatures down tkgT/J=0.1. Our simulation data are
provided with the error bar estimates if they exceed the size
of the symbols, and the convergence of the numerical re-
sultsin terms of Ih? is carefully checked. Typical variation
of the data(Figs. 1 and 2is similar to that reported for the
ferromagnetic chain® For the lower temperatures uncer-
tainties of our extrapolation ? are of the order of 10% and
are significantly diminished for higher temperatures.

Our simulations demonstrate that the QTM approach is a
valuable tool for calculations of the finite-temperature prop-
erties of the Haldane-gap systems. This approach is also ex-
pected to be effective for some metallo-organic and meso-
scopic one-dimensional compounds.
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