PHYSICAL REVIEW B VOLUME 56, NUMBER 11 15 SEPTEMBER 1997-I

Electronic structures in circular, elliptic, and triangular quantum dots
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Electronic structures in circular, elliptic, and triangular shaped quantum dots containing single or a few
electrons are calculated by numerically diagonalizingNkelectron Hamiltoniarifor N up to 12). In a circular
guantum dot, the addition energy shows a clear structure as a functidndag to the shell filling and the
spin-polarized half filling. In an elliptic quantum dot, however, the structure is found to be diminished, which
is attributed to the splitting of the degenerated single-particle states due to the asymmetric confining potential.
The states witiN= 3, 6, and 9 electrons in a triangular quantum dot are found to be slightly stable compared
to a circular quantum dot, which is interpreted in terms of a geometrical eff8@1.63-182@7)03835-6

I. INTRODUCTION presented in Sec. IV. A summary and discussion are given in
Sec. V.
Recent progress in microfabrication technology has en-
abled us to investigate quantum mechanics in semiconductor Il. MODEL

microstructures such as quantum wells, quantum wires, and o ) )
quantum dots in which the motion of electrons is restricted in A schematic illustration of the model for a QD formed in
two, one, and zero dimension. Although electrons involved® Vertical ALGa; _,As/Ing osGag osAS/AlGay As double
in a quantum well and a quantum wire are numerous, we arBeterostructuf®’is shown in Fig. 1, where they plane and

able to restrict the number of electrons to several in a quaril®Z direction are taken to be parallel and perpendicular to
tum dot(QD) where electrons are confined three dimension-the heterointerfaces, respectively. The confining potentials in

ally by artificially created potential. ThN-electron ground thet ve_rt|tca][ 0 dlrect||oneand in the zletmt; parallel [;? the d
state energy in a QD was probed by the transpor{1e erointer acesgy plang are assumed to be separable, an

. . or confining potential in the direction(H(z)), we assume
spectroscopy and by the single-electron capacitance

spectroscopds The energy levels in a QD which contains a an infinite square potential well of widi for simplicity. In
P by: gy leve order to analyze effects of symmetry of the lateral confining
few electrons N=10) are modified by the electron-electron

. ) ; S otential(V(x,y)) on the electronic states, we mod4x,
interaction, even in the zero magnetic fiéld. i (V(x.y) Aex.y)

4 ) by the following equation:
Recently Taruchat al.” reported an experimental result
on the tunneling of electrons through a QD, and showed that 1
the addition energy of an electron in a QD with a few elec- V(X,y)= Em*(w§x2+ wf,yz)
trons reveals an existence of a clear shell structure. They

showed that the electron number Mf=2, 6, and 12 is the wherew, andw, are the confining energies along thand
“magic number” reflecting the shell structure. In addition y directions, respectivelyy (=0 or 1) is a parameter to
they observed a maximum of the addition energyNor4,  specify the shape of the lateral confining potential, anis
which is explained in terms of the Hund’s rdfiehe theo- the ang|e with respect to a Speciﬁc axis in m p|ane_
retical calculations of the chemical potential differeried-  When a=0, the contour line of the lateral confining poten-
dition energy and the capacitive energy in an isolated QDtial becomes an ellipsdfor w,# wy) or a circle (for
(Refs. 6 and Yand in a QD coupled to leatisvere per-
formed by using the self-consistent technique, which show
the several structures with respect to the shell filling feature.
In the present work we evaluate the exact eigenstates in
vertical QD’s*® which contain many interacting electrons,
by diagonalizing the completd-electron Hamiltonian with
the Coulombic interaction. We especially focus on the ef- TRTEERS |Barrier Y
fects of the symmetry of confining potential on the electronic
states, since the observed shell structure is expected to be
reduced for systems with stronger asymmetry. In this paper
we proceed as follows. A model for QD’s is given in Sec. Il
together with an analytical form of lateral confining potential  F|G. 1. Schematic illustration of a vertical qguantum dot fabri-
used in the present work. A calculation method for obtainingcated in semiconductor heterointerfaces. Electrons are confined in
many electrons states in QD’s is then shown in Sec. lllthe In,Ga,_,As layer. As shown in the figure, they plane and the
Numerical results of electron number dependence of addition direction are taken to be parallel and perpendicular to the hetero-
energy for circular, elliptic, and triangular shaped QD’s areinterfaces, respectively.
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FIG. 3. Chemical potential differencéaddition energyin el-

2 liptic quantum dots as a function of the number of electrons. Solid
circles are results for a circular quantum dot with confining energy
o,=w,=3.0 meV. The open squares are for the QD with confining
energies ofw,=2.5 meV andw,=3.5 meV, and the open triangles
for a QD with w,=2.0 meV andw,=4.0 meV.

FIG. 2. Three-dimensional view and contour lines of elligag

and triangulafb) shaped confining potentials in quantum dots mod-X-y plane and the direction. We use the lowest 26 single-

eled by Eq.(1). particle eigenstates associated with the quantum confinement
in the x-y plane parallel to the heterointerfaces. Since the

wy=wy). The three-dimensional view and contour lines of confinement along the direction is strong in a real QD

an elliptic confining potential is shown in Fig(& as an (Refs. 4,5 compared to the confinement in they plane,

example. Figure ) also shows a triangular shaped confin- many eigenstates fall in the lowest subband formed by the

ing potential and its contour line, which is obtained by set-z direction confinement. It is therefore a good approximation

ting 1 for the parametes and puttingw,= w, . in the calculation to take into account the lowest subband
associated with the quantized motion, as shown below.
Il. METHOD Consider an example of the confining energies

) ) ) oy=wy=3meV and the well widthW=12 nm, which are
For the QD modeled in the previous section, thethe typical value in the calculation, the energy separation
N-electron Hamiltonian can be written as follows: between the lowest 26 Sing|e-e|ectron states inx‘Hyep|ane
N is 12 meV, whereas the energy separation between the
sz by +E € @ ground and the first exited states along théirections is
= Amelri—r|’ 121 meV. Therefore the first exited single-particle state
alongz direction can be safely ignored.

2

where Hy=(p+eA)?/2m* +V(x,y) +H(z) is the single-
electron Hami_ltonian withA being the vector pote_ntial. The IV. RESULT AND DISCUSSION
second term in Eq(2) represents the Coulomb interaction
energy. In the present paper we will be concerned only with In this section we will present calculated results for sev-
the case without applied magnetic field, and the electronieral QD’s with different lateral confining potentials. Figure 3
states of QD’s under magnetic field will be dealt with in theshows the chemical potential differenceA w(N)
separate paper. We therefore put0 in the present analy- =u(N+1)—u(N) in two different elliptic QD’s with the
sis. The material parameters forlgGa, osAS are computed average confining energy otw(+ w,)/2=3 meV as a func-
by the linear interpolation of the parameters between InAgion of electron numbeN=1~11. The chemical potential is
and GaAs, which gives the effective mass of electrons oflefined by w(N)=E(N)—E(N—1) with E(N) being the
m*=0.065n, and the static dielectric constant of ground state energy fdf electrons. The open squares are for
€=12.%,. the QD with confining energies ofw,=2.5meV and
The N-electron Hamiltonian of Eq(2) is numerically ,=3.5meV, and the open triangles are for a QD with
diagonalized by using Slater determinants¥o+ 1-12 elec- w,=2.0 meV andw,=4.0 meV. The results for a circular
trons system. The method has been employed to obtain tH@D with confining energy ofw,=w,=3.0 meV are also
electronic states in QD’s with electrons upNe=4.2%We  plotted in Fig. 3 by solid circles for comparison. The chemi-
constructed thél-particle Slater determinants from a single- cal potential differencé\ x(N) in a QD corresponds to an
particle eigenfunction, or the solutions of single-particleenergy required to add one more electron into the QD which
Hamiltonian,,, as a basis set. In our system the confininginitially contains N electrons. From this definition, the
potential is separated in they plane andz direction, and chemical potential differencA w(N) is referred to as “ad-
thus we can divide the single-particle Hamiltonian into thedition energy” of a QD withN electrons. It is evident from
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FIG. 4. Chemical potential differencdaddition energy in a
circular quantum dotsolid circles and a triangular quantum dot ©®)
(open trianglesas a function of the number of electrons. The con-
fining energiesw, and w, in both circular and triangular quantum ~ FIG. 5. Density distribution of electrons in QD's containing

dots are 3 meV. three electrons with a circuldg) and a triangulafb) shaped con-
fining potential in plane parallel to the heterointerfadg. is
20 nm.

this definition that an eigenstate with large addition energy is
energetically stable.

We find in Fig. 3 that the addition energy has peaks at . , )
N=2 and 6 in the circular QOsolid circles. In a circular cwcu_larly sr_]ap(_ed lateral potential form a.rotatlonally sym-
QD, a complete shell filling structure takes place formetrlc distribution, and the electron density become's small
2,6,12; - - electrons, resulting in maxima of the addition en- N the center of the QD d_ue to th_e electron-electron interac-
ergy A x(N). In addition we find a weak structure hit=4 tion. On the other hand, in the tnangular QD each electron
and 9. Such a feature is not expected from the calculation§©Ves toward each corer of the triangle and forms a more

based on a simple single-particle picture. From the prese able state as shown in Fig(b}, giving rise to a slightly
results obtained by the exact diagonalization method, it i<a"9€r addition energy. For the same reason electronic states

found that spin triplet states with total spB+1 (S,=—1, or N=6 and 9 in the triangula}r QD become slightly stable
0, and 1 give rise to the ground state in a circular QD with cOMPared to the case of the circular QD.
four electrons. In spin triplet states, two electrons with spin
antiparallel occupy the first orbit, and another two electrons
with spin parallel occupy the second orbit in the QD. The
electrons in the second orbit will stay apart from each other We calculated\ electron eigenstates in QD’s with verti-
due to the Pauli’s exclusion principle, resulting in diminish- cal confinement of heterointerfaces and with lateral confine-
ing Coulomb interaction energy between the electrons in thenent of circular, elliptic, and triangular potentials. The
second orbit and forming a relatively stable state. The weakigenstates are obtained by diagonalizigarticle Hamil-
structure of the addition energy Bt=4 and 9 may, there- tonian utilizing Slater determinants composed from the
fore, be interpreted in terms of the spin polarized half filling single-particle eigenstates. Due to the rotational symmetry in
shell structuré:® In elliptic QD’s (open squares and open a circular QD, electrons form the complete shell filling struc-
triangles in Fig. 3, on the other hand) «(N) no longer has tures forN=2 and 6, and the spin-polarized half filling
clear structures except the peak\at 6. This is because the structures foN=4 and 9. These structures give rise to rela-
asymmetry of these systems results in the splitting of thdively large addition energies, which are observed in the
degenerated single-particle eigenstates and in the mixing aingle-electron tunneling spectroscopy reported by Tarucha
many eigenstates with various angular momenta. et al* From the present analysis we find that the Hund’s rule
Figure 4 shows the results of a triangular QD, where thds valid in two-dimensional artificial atoms. In elliptic QD’s
result of the circular QD are again plotted by solid circles foraddition energy no longer exhibits clear structure in the plot
comparison. In Fig. 4 the addition energies of the circularof addition energy vs the number of electradsexcept for
(solid circles and the triangulafopen triangles QD’s are  N=6. This feature is explained in terms of the asymmetry of
found to exhibit almost the same characteristics. The addithese systems which leads to the splitting of the degenerated
tion energyA w(N) of the triangular QD containing electrons single-particle eigenstates and the mixing of many eigen-
N=3, 6, and 9, however, is found to be slightly larger thanstates with various angular momenta. In a triangular QD, on
that of a circular QD. This feature may be explained as fol-the other hand, slightly stable states due to the localization of
lows. The density of electrons in QD’s containing three electhe electrons at the corners are realized for electron number
trons is shown in Fig. &) for the circular QD and Fig. ®) N=3, 6, and 9, which may be interpreted in terms of a
for the triangular QD. As seen in Fig(&® electrons in the geometrical effect.

V. CONCLUSION
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