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Electronic structures in circular, elliptic, and triangular quantum dots
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~Received 6 May 1997!

Electronic structures in circular, elliptic, and triangular shaped quantum dots containing single or a few
electrons are calculated by numerically diagonalizing theN-electron Hamiltonian~for N up to 12). In a circular
quantum dot, the addition energy shows a clear structure as a function ofN due to the shell filling and the
spin-polarized half filling. In an elliptic quantum dot, however, the structure is found to be diminished, which
is attributed to the splitting of the degenerated single-particle states due to the asymmetric confining potential.
The states withN53, 6, and 9 electrons in a triangular quantum dot are found to be slightly stable compared
to a circular quantum dot, which is interpreted in terms of a geometrical effect.@S0163-1829~97!03835-6#
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I. INTRODUCTION

Recent progress in microfabrication technology has
abled us to investigate quantum mechanics in semicondu
microstructures such as quantum wells, quantum wires,
quantum dots in which the motion of electrons is restricted
two, one, and zero dimension. Although electrons involv
in a quantum well and a quantum wire are numerous, we
able to restrict the number of electrons to several in a qu
tum dot~QD! where electrons are confined three dimensi
ally by artificially created potential. TheN-electron ground
state energy in a QD was probed by the transp
spectroscopy1 and by the single-electron capacitan
spectroscopy.2,3 The energy levels in a QD which contains
few electrons (N&10) are modified by the electron-electro
interaction, even in the zero magnetic field.3

Recently Taruchaet al.4 reported an experimental resu
on the tunneling of electrons through a QD, and showed
the addition energy of an electron in a QD with a few ele
trons reveals an existence of a clear shell structure. T
showed that the electron number ofN52, 6, and 12 is the
‘‘magic number’’ reflecting the shell structure. In additio
they observed a maximum of the addition energy forN54,
which is explained in terms of the Hund’s rule.4 The theo-
retical calculations of the chemical potential difference~ad-
dition energy! and the capacitive energy in an isolated Q
~Refs. 6 and 7! and in a QD coupled to leads8 were per-
formed by using the self-consistent technique, which sh
the several structures with respect to the shell filling featu

In the present work we evaluate the exact eigenstate
vertical QD’s,4,5 which contain many interacting electron
by diagonalizing the completeN-electron Hamiltonian with
the Coulombic interaction. We especially focus on the
fects of the symmetry of confining potential on the electro
states, since the observed shell structure is expected t
reduced for systems with stronger asymmetry. In this pa
we proceed as follows. A model for QD’s is given in Sec.
together with an analytical form of lateral confining potent
used in the present work. A calculation method for obtain
many electrons states in QD’s is then shown in Sec.
Numerical results of electron number dependence of addi
energy for circular, elliptic, and triangular shaped QD’s a
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presented in Sec. IV. A summary and discussion are give
Sec. V.

II. MODEL

A schematic illustration of the model for a QD formed
a vertical AlxGa12xAs/In0.05Ga0.95As/Al xGa12xAs double
heterostructure4,5 is shown in Fig. 1, where thex-y plane and
the z direction are taken to be parallel and perpendicular
the heterointerfaces, respectively. The confining potential
the vertical (z) direction and in the plane parallel to th
heterointerfaces (x-y plane! are assumed to be separable, a
for confining potential in thez direction„H(z)…, we assume
an infinite square potential well of widthW for simplicity. In
order to analyze effects of symmetry of the lateral confin
potential„V(x,y)… on the electronic states, we modelV(x,y)
by the following equation:

V~x,y!5
1

2
m* ~vx

2x21vy
2y2!H 11a

2

7
cos3fJ , ~1!

wherevx andvy are the confining energies along thex and
y directions, respectively,a (50 or 1) is a parameter to
specify the shape of the lateral confining potential, andf is
the angle with respect to a specific axis in thex-y plane.
Whena50, the contour line of the lateral confining pote
tial becomes an ellipse~for vxÞvy) or a circle ~for

FIG. 1. Schematic illustration of a vertical quantum dot fab
cated in semiconductor heterointerfaces. Electrons are confine
the InxGa12xAs layer. As shown in the figure, thex-y plane and the
z direction are taken to be parallel and perpendicular to the het
interfaces, respectively.
6428 © 1997 The American Physical Society
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56 6429BRIEF REPORTS
vx5vy). The three-dimensional view and contour lines
an elliptic confining potential is shown in Fig. 2~a! as an
example. Figure 2~b! also shows a triangular shaped confi
ing potential and its contour line, which is obtained by s
ting 1 for the parametera and puttingvx5vy .

III. METHOD

For the QD modeled in the previous section, t
N-electron Hamiltonian can be written as follows:

H5(
i 51

N

H01(
i , j

e2

4peur i2r j u
, ~2!

where H05(p1eA)2/2m* 1V(x,y)1H(z) is the single-
electron Hamiltonian withA being the vector potential. Th
second term in Eq.~2! represents the Coulomb interactio
energy. In the present paper we will be concerned only w
the case without applied magnetic field, and the electro
states of QD’s under magnetic field will be dealt with in t
separate paper. We therefore putA50 in the present analy
sis. The material parameters for In0.05Ga0.95As are computed
by the linear interpolation of the parameters between In
and GaAs, which gives the effective mass of electrons
m* 50.065m0 and the static dielectric constant o
e512.9e0.

The N-electron Hamiltonian of Eq.~2! is numerically
diagonalized by using Slater determinants forN51 –12 elec-
trons system. The method has been employed to obtain
electronic states in QD’s with electrons up toN54.9–16 We
constructed theN-particle Slater determinants from a singl
particle eigenfunction, or the solutions of single-partic
HamiltonianH0, as a basis set. In our system the confin
potential is separated in thex-y plane andz direction, and
thus we can divide the single-particle Hamiltonian into t

FIG. 2. Three-dimensional view and contour lines of elliptic~a!
and triangular~b! shaped confining potentials in quantum dots mo
eled by Eq.~1!.
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x-y plane and thez direction. We use the lowest 26 single
particle eigenstates associated with the quantum confinem
in the x-y plane parallel to the heterointerfaces. Since
confinement along thez direction is strong in a real QD
~Refs. 4,5! compared to the confinement in thex-y plane,
many eigenstates fall in the lowest subband formed by
z direction confinement. It is therefore a good approximat
in the calculation to take into account the lowest subba
associated with the quantizedz motion, as shown below
Consider an example of the confining energ
vx5vy53 meV and the well widthW512 nm, which are
the typical value in the calculation, the energy separat
between the lowest 26 single-electron states in thex-y plane
is 12 meV, whereas the energy separation between
ground and the first exited states along thez directions is
121 meV. Therefore the first exited single-particle sta
alongz direction can be safely ignored.

IV. RESULT AND DISCUSSION

In this section we will present calculated results for se
eral QD’s with different lateral confining potentials. Figure
shows the chemical potential differenceDm(N)
[m(N11)2m(N) in two different elliptic QD’s with the
average confining energy of (vx1vy)/253 meV as a func-
tion of electron numberN51;11. The chemical potential is
defined bym(N)[E(N)2E(N21) with E(N) being the
ground state energy forN electrons. The open squares are f
the QD with confining energies ofvx52.5 meV and
vy53.5 meV, and the open triangles are for a QD w
vx52.0 meV andvy54.0 meV. The results for a circula
QD with confining energy ofvx5vy53.0 meV are also
plotted in Fig. 3 by solid circles for comparison. The chem
cal potential differenceDm(N) in a QD corresponds to an
energy required to add one more electron into the QD wh
initially contains N electrons. From this definition, th
chemical potential differenceDm(N) is referred to as ‘‘ad-
dition energy’’ of a QD withN electrons. It is evident from

-

FIG. 3. Chemical potential differences~addition energy! in el-
liptic quantum dots as a function of the number of electrons. So
circles are results for a circular quantum dot with confining ene
vx5vy53.0 meV. The open squares are for the QD with confin
energies ofvx52.5 meV andvy53.5 meV, and the open triangle
for a QD with vx52.0 meV andvy54.0 meV.
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this definition that an eigenstate with large addition energ
energetically stable.

We find in Fig. 3 that the addition energy has peaks
N52 and 6 in the circular QD~solid circles!. In a circular
QD, a complete shell filling structure takes place f
2,6,12,••• electrons, resulting in maxima of the addition e
ergy Dm(N). In addition we find a weak structure atN54
and 9. Such a feature is not expected from the calculat
based on a simple single-particle picture. From the pres
results obtained by the exact diagonalization method, i
found that spin triplet states with total spinS51 (Sz521,
0, and 1! give rise to the ground state in a circular QD wi
four electrons. In spin triplet states, two electrons with s
antiparallel occupy the first orbit, and another two electro
with spin parallel occupy the second orbit in the QD. T
electrons in the second orbit will stay apart from each ot
due to the Pauli’s exclusion principle, resulting in diminis
ing Coulomb interaction energy between the electrons in
second orbit and forming a relatively stable state. The w
structure of the addition energy atN54 and 9 may, there-
fore, be interpreted in terms of the spin polarized half filli
shell structure.4,8 In elliptic QD’s ~open squares and ope
triangles in Fig. 3!, on the other hand,Dm(N) no longer has
clear structures except the peak atN56. This is because the
asymmetry of these systems results in the splitting of
degenerated single-particle eigenstates and in the mixin
many eigenstates with various angular momenta.

Figure 4 shows the results of a triangular QD, where
result of the circular QD are again plotted by solid circles
comparison. In Fig. 4 the addition energies of the circu
~solid circles! and the triangular~open triangles! QD’s are
found to exhibit almost the same characteristics. The a
tion energyDm(N) of the triangular QD containing electron
N53, 6, and 9, however, is found to be slightly larger th
that of a circular QD. This feature may be explained as f
lows. The density of electrons in QD’s containing three el
trons is shown in Fig. 5~a! for the circular QD and Fig. 5~b!
for the triangular QD. As seen in Fig. 5~a! electrons in the

FIG. 4. Chemical potential differences~addition energy! in a
circular quantum dot~solid circles! and a triangular quantum do
~open triangles! as a function of the number of electrons. The co
fining energiesvx andvy in both circular and triangular quantum
dots are 3 meV.
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circularly shaped lateral potential form a rotationally sym
metric distribution, and the electron density becomes sm
in the center of the QD due to the electron-electron inter
tion. On the other hand, in the triangular QD each elect
moves toward each corner of the triangle and forms a m
stable state as shown in Fig. 4~b!, giving rise to a slightly
larger addition energy. For the same reason electronic st
for N56 and 9 in the triangular QD become slightly stab
compared to the case of the circular QD.

V. CONCLUSION

We calculatedN electron eigenstates in QD’s with vert
cal confinement of heterointerfaces and with lateral confi
ment of circular, elliptic, and triangular potentials. Th
eigenstates are obtained by diagonalizingN-particle Hamil-
tonian utilizing Slater determinants composed from t
single-particle eigenstates. Due to the rotational symmetr
a circular QD, electrons form the complete shell filling stru
tures for N52 and 6, and the spin-polarized half fillin
structures forN54 and 9. These structures give rise to re
tively large addition energies, which are observed in
single-electron tunneling spectroscopy reported by Taru
et al.4 From the present analysis we find that the Hund’s r
is valid in two-dimensional artificial atoms. In elliptic QD’
addition energy no longer exhibits clear structure in the p
of addition energy vs the number of electronsN, except for
N56. This feature is explained in terms of the asymmetry
these systems which leads to the splitting of the degener
single-particle eigenstates and the mixing of many eig
states with various angular momenta. In a triangular QD,
the other hand, slightly stable states due to the localizatio
the electrons at the corners are realized for electron num
N53, 6, and 9, which may be interpreted in terms of
geometrical effect.

-
FIG. 5. Density distribution of electrons in QD’s containin

three electrons with a circular~a! and a triangular~b! shaped con-
fining potential in plane parallel to the heterointerface.l 0 is
20 nm.
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