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Local vibrational modes in GaAs under hydrostatic pressure
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Using infrared spectroscopy, we have observed local vibrational m@déd’'s) in GaAs at hydrostatic
pressures as high as 7 GPa at liquid-helium temperatures. The shift of the infraredsaeiibrational mode
of CO, impurities in the N pressure medium was used asimsitu pressure calibration. We find that LVM’s
arising from 12C,¢ and 13C, substitutional impurities vary linearly with pressure. The shifts of t@,-H
and °C,-H stretch modes have positive curvatures, while the pressure-dependent shift of the S-H stretch
mode has a negative curvatuf80163-182@07)01236-9

Local vibrational mode(LVM) spectroscopy is a useful peak of thev; vibrational mode of C@impurities in the N
technique for determining the microscopic structure of impumatrix. Thev; mode varies linearly with pressdfeand pro-
rities and defects in semiconductdrslt has been widely vides a precisén situ calibration of the pressure.
used to investigate hydrogen-related complexes with excel- Mid-infrared-absorption spectra were obtained with a
lent sensitivity? since the hydrogen LVM frequencies lie Digilab FTS-80E vacuum Fourier-transform spectrometer
well above the phonon frequency range. Hydrogen relatediith a KBr beamsplitter and a spectral range of 450—-3400
LVM’s can be unambiguously identified through the substi-cm™®. The samples were kept at a temperatuf® & in a
tution of deuterium, which reduces the LVM frequency by aJanis liquid-helium cryostat with KBr windows. The instru-
factor of ~+/2. After the discoveries that hydrogen passi-mental resolution was varied from 0.5 to 1 ¢ such that
vates donofsand acceptorsin GaAs, numerous hydrogen- all the peaks were fully resolved. A light concentrating cone
related complexes have been observed in compound senfiocused the light through the diamonds, the sample, and onto
conductors. In this paper, we report measurements of thea Ge:Cu photoconductor mounted directly behind the
dependence of hydrogen LVM’s in GaAs upon large hydro-sample.
static pressures. GaAs:C epilayers were grown by metalorganic molecular-

The application of hydrostatic pressure is an excellent toobeam epitaxy o100 semi-insulating GaAs substrates. Af-
for probing the electronic and vibrational properties of de-ter the growth of a 200 A-thick buffer layer, they were
fects in semiconductofs. Variable-pressure infrared- carbon-doped from a beam &fCBr, or *3CBr,. The thick-
absorption spectroscopy has been used to s¥uthand do- nesses of the GaA¥C and GaAs-C epilayers were 4 and 3
nors in GaAs. The pressure-induced transformation of the Sium, respectively, and the free carrier concentrations were
donor in GaAs from a hydrogenic to RX state was ob- ~10' cm 3. Additional details of the growth are given in
served directly by measuring the shift in the Si LWh this ~ Ref. 13. The samples were exposed to monatomic hydrogen
study, we measured the shifts of the LVM frequencies ofin a remote plasma systethiThe hydrogenation temperature
2c, B3¢, 2C-H, '3C-H, S-H, and S-D in GaAs as a func- was 350 °C and the duration of the exposure was 1 h.
tion of hydrostatic pressure. GaAs:S epilayers were grown by metalorganic chemical va-

To generate pressures up to 7 GPa, we used a modifigabr deposition> The thickness was 4m and the carrier
Merill-Bassett diamond-anvil ceftl® Samples were cut into concentration was 2 10'® cm™3. The samples were exposed
disks 300um in diameter and polished to a thickness of 50to a remote hydrogen or deuterium dc plasma for 50 h at a
pm. Nitrogen was used as a pressure medium and wagmperature of 180 °C.
loaded into the cell, along with the sample, using the liquid- In the GaAs:C, H complex, the hydrogen attaches directly
immersion techniqu&® To determine the pressure at liquid- to the carbon acceptor, in[A11] bond-centered orientation,
helium temperatures, we measured the infrared-absorptioadjacent to a host gallium atom. At atmospheric pressure and
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FIG. 1. Infrared-absorption peaks dfC mode and*’C-H P (GPa)

stretch mode in GaAs for different hydrostatic pressures at a tem-

perature of 9 K.

FIG. 3. Plot of C and C-H LVM's in GaAs as a function of
hydrostatic pressure. The solid lines are fits to the ¢sea text

liquid-helium temperatures, thé?C-H and *°C-H stretch

modes have frequencies of 2635.2 and 2628.5crespec-
tively. In our diamond-anvil cell samples, the weaker, lower-
frequencyE modes were not detected. In addition, the dia-
monds have intrinsic absorption bands from 1900 to 220
1 precluding the measurement ¢fC-D and '3C-D

cm-
stretch modes.

The infrared-absorption spectra of th&-H stretch mode
and 1%C mode are shown in Fig. 1 for three different pres-

v(13C,) =561.5+9.08P, )

wherev(lchs) and v(*3C,o) are the LVM frequencies in
cm* and P is in GPa. The plots of the hydrogen stretch
Mhodes as a function of pressure are nonlinear, with a positive
curvature. Least-square quadratic fits yield

v(2CpH) = 2635.2+6.0P+ 1.1P?, 3

sures. The'3C-H stretch mode and®C mode are shown in

Fig. 2. The peak positions are plotted as a function of pres-
sure in Fig. 3. The substitutional carbon LVM's vary linearly

with pressure, with least-square fits given by

v(*2Cpg) =582.7+9.31P,
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Infrared-absorption peaks dfC mode and**C-H

v(Y¥Cp-H) =2628.5+ 6.0P + 1.1P?, (4)

where the shifts of the two carbon isotopes are constrained to
be equal. Since thé*C,-H and °C,s-H stretch mode fre-
quencies only differ by 0.3%, the difference in pressure de-
pendence cannot be resolved experimentally.

In group-VI donor-hydrogen complexes, the hydrogen is
believed to bond with a host gallium in[a11] antibonding
orientation. Since the hydrogen is isolated from the donor, its
LVM frequency is very insensitive to the donor species, only
varying ~10 cm ! from S to Te. We measured the pressure
dependence of the S-H stretch and wag modes and the S-D
wag mode. The S-D stretch mode was too weak to be de-
tected in the diamond anvil cell sample. The infrared-
absorption spectra of S-H stretch and wag modes are shown
in Fig. 4 and the peak positions are plotted in Fig. 5. The S-H
and S-D modes vary linearly with pressure, with least-square
fits given by

D

v(S-H wag =781.0+ 7.7P, (5)

v(S-D wag =556.6+5.3P. (6)

The plot of the hydrogen stretch mode as a function of pres-
sure is nonlinear, with a negative curvature. A least-square
quadratic fit yields

stretch mode in GaAs for different hydrostatic pressures at a tem-

perature of 9 K.

v(S-H stretch=1512.3+ 11.6° — 0.52P2, (7)
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TABLE |. Mode Grineisen parameters for LVM’s in GaAs and
AlSb.

Mode y
GaAs
l2gja 1.29
2c 1.20
15c 1.21
12C-H stretch 0.17
13C-H stretch 0.17
S-H wag 0.74
S-D wag 0.71
S-H stretch 0.58
AlISb
12¢h 1.28
Se-H wag 0.53
Se-H stretch 0.026

®Reference 8.

FIG. 4. Infrared-absorption peaks of hydrogen stretch and WagReference 12

modes in GaAs:S,H for different hydrostatic pressures at a tempera-

ture of 9 K.

To compare these results, we use the mods&gsen param-
eter, defined as
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Reference 19.

In summary, we have measured the pressure dependence
of several LVM frequencies in GaAs. As in the case of
AISb:2C (Ref. 12 and GaAs*®Si,2 we find that the’?C and
13C LVM frequencies vary linearly with pressure. The
pressure-dependent shifts of tHéC-H and *C-H stretch
modes have positive curvatures, while the shift of the S-H
stretch mode has a negative curvature. This may be related to

wherew; is the mode frequencyB is the bulk modulus, and ~the fact that in the bond-centered C-H complex, the hydro-

the derivative is calculated at zero pressure. For G

a‘Asgen is compressed between the carbon acceptor and one gal-

_ 6 o o .
B=75 GPa.® The Grineisen parameters for several LVM'S jiym host atom, whereas in the S-H complex, the hydrogen

in GaAs and AISb are listed in Table I. It is interesting to gccupies an interstitial position and is not crowded by neigh-
note that the AlSb:Se,H and GaAs:S,H stretch modes havgoring atoms.

much different Graeisen parameters, even though both cen- 1o explain the pressure dependence of the C-H stretch
ters are believed to have the hydrogen located in antibondingyode frequency, we approximate the potential of the hydro-

configurations.
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FIG. 5. Plot of S-H and S-D LVM’s in GaAs as a function of
hydrostatic pressure. The solid lines are fits to the ¢sea text

gen atom by

V(X)=kx22+ AS(X—Xga), 9
wherek is the spring constant of the C-H bondlis the Dirac
delta function A is the strength of the perturbation, arg,
is the position of the host gallium atom. Tidgfunction per-
turbation shifts the LVM frequency by an amount

A
Aw=—— (25 a2~ 1)e A%,

fiJar

where a=(#%//mK)*2. For the C-H complexxg:>a and
Eqg. (10) has a positive curvature with respectdg,. There-
fore, as the application of pressure linearly shortens
hydrogen-gallium distanceg,, the LVM frequency in-
creases nonlinearly with positive curvature.

In the future, it would be of interest to explain the sublin-
ear pressure dependence of the S-H stretch mode as well as
the linear pressure dependence of the substitutional impuri-
ties. Althoughab initio calculations have been performed for
the structures of the C-KRef. 17 and S-H(Ref. 1§ com-

(10

the
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plexes, the pressure dependence of LVM's awaits a detailed This work was supported by in part by USNSF Grant No.
theoretical treatment. If the trends found in this study areDMR-94 17763 and in part by the Director, Office of Energy
general, then variable pressure LVM spectroscopy may b&esearch, Office of Basic Energy Sciences, Materials Sci-
used to determine whether other hydrogen-related complexesice Division of the U.S. Department of Energy under Con-
assume bond-centered or antibonding configurations. tract No. DE-AC03-76SF00098.
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