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Anisotropy in the electron inelastic scattering potential for plasmon excitation in silicon
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Both theoretical and experimental evidence have been put forward that plasmons have a detectable band
structure. It would follow that the Fourier expansion of the combined plasmon and valence electron contribu-
tion to the electron inelastic scattering potential should have at least one nonzero coefficient for a reciprocal
lattice vector] G|>0. We calculate th&=2m/a(1,1,1) coefficient and demonstrate that it is indeed nonzero.
This is a violation of a long held assumption that the plasmon and valence electron contribution to the inelastic
scattering potential should be isotropi§0163-18207)00935-1

Plasmons, even in periodic structures, are often treated afns in the solid. That is, th€,, 4 are the inelastic scattering
free oscillations. However, recent theoreticdl and  potential matrix components. It is possible to explicitly sepa-
experimentdlwork on silicon shows that plasmons do in fact rate Ch g into two parts:
have a detectable band structure. Indeed, they obey, as would
be expected for a collective electron excitation, the same _
crystal symmetry as an electron. For example, the plasmon Chg= L,g+iC'h,g- 2
dispersion curve shows a splitting at the point and no
splitting at theX point}? This plasmon band gap is attribut-

able to a finite(nonzerg Fourier component of the crystal . X .
potential for higher-order coefficients. By extension thelnterpreted as scattering to an excited state followed by fur-

plasmon and valence electron contribution to the inelasti(j,:her scattering back to the ground state, the net result con-

scattering potential can be calculated. In this paper wdfibuting to the elastic wave train, while;, ; represents real
show how the potential is periodic by obtaining a finite in€lastic scattering. There are several contribution€g,
(nonzerd higher-order Fourier componentChs#0 for sych as thermal diffus@phonor) scattering(TDS), core ex-
G=2m/a(1,1,1). ' citation, and the plasmon and valence electron contribution,

The optimal interpretation of results from high—energyUp(l)Jn V_\I’h'Ch thlshpapber coEcledntLatesH | d val
electron microscopy and diffraction methdds based on | ntil now, IFb as eenh N It at ‘?plaS”f'O“ and vaience
dynamical diffraction theory. In this a multiple scattering electron contribution to the electron inelastic scattering po-

solution of a relativistic form of the Schdinger equation is tential matrix Cy, 4 was isotropi&"*!* — that all Fourier
found when the crystal potential is expanded as a FouriefoMpPonents were zero fd)ngaﬁo, as oppo;ed.to the highly
serie<® In a rigorous treatment of inelastic electron-electron!oCalized core contribution or TDS contribution. For these
scattering one obtains a complex non-Hermitian “correctioni9nly localized potentials, thé=2/a(1,1,1) contribution

matrix,” which is added to the usual elastic scattering poteniS nearly as large as th@=0 contribution, as can be seen in
tial matrix. This inelastic scattering potential matrix is F19- 2. Due to this isotropic assumption, previous calcula-
analogous to the Fourier coefficients of the complex opticafions of the effect of single particle or collectivplasmon

a13t16
potential that is often used to characterize inelastic scatteringUter-shell _valence electron excitatidis © and
phenomenologicall§:® pplication$ have concentrated only on the inelastic

While a phenomenological absorption potential was firsth€an inner potentiaCy ((plasmon) and/or the virtual mean
incorporated into electron diffraction theory by Slafeand  inner potentialCq .
Moliere!! it was first put on a substantial basis by To solve for the off-diagonal scattering potential matrix
Yoshioka’ Following Yoshioka we may write the total scat- componentsy, o, h#g is a computationally demanding cal-
tering potential in the form culation that is not yet practical. We can, however, make
some approximations in considering terms of the f@y;,
VS =V 4G D which are effectively the higher-order Fourier coefficients of
hg™ Yh—g™ “~hg» the inelastic scattering potential. Recent calculations of the
higher-order Fourier coefficients of the plasmon and valence
whereh,g are reciprocal lattice vector¥,,_, are the usual contribution to the electron virtual scattering poterftial
local crystal potential Fourier components that result in elasshow that Cy; are clearly nonzero, at least for
tic scattering. TheCy, ; are complex nonlocal “correction” G=2w/a(1,1,1) in silicon, and in fact are larger than previ-
terms representing and incorporating the effects of excitaeus calculations of the supposedly dominant core

C[Lg represents virtual inelastic scatterihtf, which may be
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contribution'® We calculate here the equivalent contribution
to real inelastic scattering from plasmons and valence elec
trons in silicon.

The valence electron excitation potential is strongly de-
pendent on the electronic band structure of the solid. It is
therefore convenient to represent the valence electron ar
plasmon excitation contributio®;s(plasmon) to the total
CiO’G, in terms of the wave-vector and frequency-dependen
dielectric matrixep, ((q,w) (see, for example, Ref. 15

\m{—angvg(q’@}

i 5> [E%%
Chc(plasmon=4me do,
0 G’

Xf dqg’ i
Bz(2m)® 2|q'+G'||q' +G+G'|
*

-1 , -1 / FIG. 1. The higher-order loss function {meqa(|q,®)} ,
X ’ ' y - ’ - . !
[26 e+o(d w) SG+G’,G’(q )] G=(2w/a)(1,1,1) for silicon as a function of wave vector and
h(q’+G’)2 frequency.

X8l w—(q'+G)V+ , (3

2m 2

4me

end )= %n~ Olgrglgrn ",

whereG’ andG are reciprocal lattice vectorE’=7# w is the
incident electron energy/ is the incident electron velocity, % fol En/(K+ )]~ fol En(k)]
andm is the electron mass. We note tha;é(q,a)) is the knn' En(K+0)—E(K)tho+iha
(0,G) element of the inverse of the entire dielectric matrix, i (GHg) T
containing all the elements;, 4(q, ). X(k+a,n’le [k,n)

For a centrosymmetric crystal structure such as silicon, X (k,n|e" "t Mk+q,n"), (5)
assuming isotropic dielectric response, and using the
approximatioh® sgé(q’+G’ w)zst_sle o(q',®), we may where() is the crystal volumef,(E) is the Fermi function,

| L] !, !+ 1 H ’ . . .

express the higher-order Fourier coefficients of the electroﬂndn'n are the band indices, labeling the Bloch stakes)

inelastic scattering potential in terms of the generalizeaOf ene_rgyEn(k) n the solid. A nonlocal empirical pseudo-
. . 1 potential calculation based on the work of Cohen and
higher-order loss function Ifa-£45(|al, )},

Chelikowsky?® is used to obtain the electronic states in Eq.
(5). A pseudopotential method has been chosen as this effi-
ciently gives a very accurate representation of the higher

‘ e2 (e am  dlq conduction bands, upon which the loss function is highly
'oez—f dwf ———Im{—&,&(|q],®)}. sensitive. Full details of the calculation of the dielectric ma-
= mV]o A0 |9+ G ’ trix can be found in Forsyth, Josefsson, and Srhith.

(4) Figure 1 shows the higher-order loss function for silicon

[based on the dielectric matrix of E(p)] up to an energy of

50 eV, for|g| between 0 and #/a, with G=2=/a(1,1,1). It
The|q| integration is over the range defined by some mini-has a similar form to that obtainable from a simple two-band
mum possible scattering anghg,i,— 0 through to¢=7, and  plasmon modet.
the w limits run over all possible energy transfers to the Figure 2 shows the magnitude of the Fourier coefficients
solid. We note that the inelastic mean inner potential is obCys(plasmon) andCq (plasmon) as functions of incident
tained by settind5=0 in Eq.(4), as first derived by Pinds  energy, based on Ed4). Also shown are the equivalent
(see also Ritchie and Howfé) We make no mention of a Fourier coefficients of the contribution to the core excitation
“cut-off wave vector” (the wave vector, above which col-  potential from K-shell ionizatiod®?® and thermal diffuse
lective excitations cease to ejish this formalism as the scattering® (TDS) at 100 K. We note that for the plasmon,
collective excitations are correctly attenuated in the dielectri€ore, and TDS potentialS; s, G=27/a(1,1,1) has the op-
loss function. This calculation sums over all possible singleposite sign toCy ,. This is a geometrical effect, and is ex-
particle excitations, which collectively add to produce a plasfected for a crystal with zinc-blende symmetry, as the struc-
monlike resonance in the loss function. We shall refer to thigure factor forG=2w/a(1,1,1) is of opposite sign to the
resonance as a plasmon throughout this work. structure factor forG=0. The Cy (K-shel) coefficients

In this work we consider the random-phase-approximawere calculated based on a screened hydrogenic model for

tion dielectric matrix obtained by AdI&tand Wiser?* the tightly bound core state, integrating over all orthogonal
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o highly delocalized inelastic scattering potential with
3 'O'G(plasmon)@ C'O’O(plasmon). Indeed, the inelastic scatter-
ing potential due to plasmon excitation is delocalized, as the
ratio of Cy g(plasmon) toCy ((plasmon) is of the order of
10~2. However, the present results clearly indicate that the
plasmon and valence electron excitation contribution to the
higher-order Fourier coefficients of the inelastic scattering
potential are not negligible, at least fG=2=/a(1,1,1). At
energies up to 100 keV, the higher-order plasmon contribu-
3 tion to the scattering potential is larger than eshell con-
=== G=2m/a(0,0,0) ] tribution, and within an order of magnitude of the TDS con-
107 F | — G=2n/a(1,1,1)| -2277777=---3 tribution.
5 ] The assumption that the inelastic scattering potential due
to plasmon excitation is isotropic leads to plasmons that are

[SICY

1077 b
K-shell completely delocalized. The localization of a potential can be
sl considered as the weighting of the Fourier components of the
10 el potential in reciprocal space. With only one nonzero coeffi-
107 10° 10* 10° cient for|G|>0 we cannot discuss the localization with any
Incident Energy (eV) certainty, but our results indicate that the potential is not

completely delocalized. This is consistent with recent

theoretical®> 3 and experimental evidence of plasmon

FIG. 2. Variation of|Cyg(plasmon) with incident electron en- 36,37

ergy forG=(2n/a)(1,1,1) andG=(2#/a)(0,0,0) as determined Ioclahzatlor' . hi K . lculati f
by Eq. (4). Note thatC{m is the mean inner potential ¢Ref. 15. n conclusion, this work presents a rigorous calculation o

For comparison|Cl (K shell) (Refs. 26—28 and|Ci0'G (TDS)| the G=2=/a(1,1,1) Fourier coefficient of the contribution

(Ref. 29 have been included. For the plasmon, TDS, #&ndhell [0 the electron inelastic scattering potential due to plasmon
potentialsC) ¢ , G=2/a(1,1,1) has the opposite sign@},. The ~ and valence electron excitations in silicon. This is based on a

TDS potential is calculated at 100 K. nonlocal electronic band-structure-dependent dielectric ma-
trix calculation. Previous wof3>1®has concentrated on

. ) . . . the inelastic mean inner potenti@lbo(plasmon), in the be-
continuum final states. The details of this calculation havel-ief that the higher-order Eourier cc’)eﬁicierﬁ% (plasmon)
been discussed in detail elsewh&te®The TDS potential is 9 P

calculated via the Einstein independent oscillators model, a‘é’OUId be negllglblg. Howe\i/er, the results presented here
described in Allen and RossolfvCore electron excitations ShOW_ that the contnb_utlon (ﬁo’G_(plr_;lsmon) tothe total elec-
(as with phonon excitationsare generally associated with tron melastu; sc;attgrmg potermal is greater than that due to
large momentum transfers and highly localized inelastic scalI-he K-shell ‘ionization potential forG=2w/a(1,1,1), and

tering potentials in real space. The magnitude of the corre¥ithin an order of magnitude of the contribution to the po-

sponding higher-order Fourier coefficien@, o(core) of tential from TDS at 100 K. This result is consistent with the

these potentials are therefore relatively large in comparisoﬁec.ent expenmen_tal evidente” that plasmons are more lo-
with  the contribution of the mean-inner-potential calized than previously expected.

Co (core) 13 The importance of this for analytic electron dif- The authors would like to thank Dr. L.J. Allen and Dr. C.
fraction and microscopy has been discussed at length. Rossouw for use of computer code to calculate K-shell
elsewheré’3°-32The higher-order coefficients play a large ionization potentials and TDS potentials. A.J.F. acknowl-
part in determining such quantities as image contrast. Aedges financial support from the Australian Federal Govern-
collective electronic or plasmon excitations are associatethent Department of Employment, Education and Youth Af-
with a relatively small momentum transfer and states that aréairs (DEETYA) T.W.J. was supported by the Australian
poorly localized in real space, they are expected to result in esearch CouncilARC).
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