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Anisotropy in the electron inelastic scattering potential for plasmon excitation in silicon
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Both theoretical and experimental evidence have been put forward that plasmons have a detectable band
structure. It would follow that the Fourier expansion of the combined plasmon and valence electron contribu-
tion to the electron inelastic scattering potential should have at least one nonzero coefficient for a reciprocal
lattice vectoruGu.0. We calculate theG52p/a(1,1,1) coefficient and demonstrate that it is indeed nonzero.
This is a violation of a long held assumption that the plasmon and valence electron contribution to the inelastic
scattering potential should be isotropic.@S0163-1829~97!00935-1#
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Plasmons, even in periodic structures, are often treate
free oscillations. However, recent theoretical1–3 and
experimental4 work on silicon shows that plasmons do in fa
have a detectable band structure. Indeed, they obey, as w
be expected for a collective electron excitation, the sa
crystal symmetry as an electron. For example, the plasm
dispersion curve shows a splitting at theL point and no
splitting at theX point.1,2 This plasmon band gap is attribu
able to a finite~nonzero! Fourier component of the crysta
potential for higher-order coefficients. By extension t
plasmon and valence electron contribution to the inela
scattering potential can be calculated. In this paper
show how the potential is periodic by obtaining a fin
~nonzero! higher-order Fourier component,C0,G

i Þ0 for
G52p/a(1,1,1).

The optimal interpretation of results from high-ener
electron microscopy and diffraction methods5 is based on
dynamical diffraction theory. In this a multiple scatterin
solution of a relativistic form of the Schro¨dinger equation is
found when the crystal potential is expanded as a Fou
series.6 In a rigorous treatment of inelastic electron-electr
scattering one obtains a complex non-Hermitian ‘‘correct
matrix,’’ which is added to the usual elastic scattering pot
tial matrix.7 This inelastic scattering potential matrix
analogous to the Fourier coefficients of the complex opt
potential that is often used to characterize inelastic scatte
phenomenologically.8,9

While a phenomenological absorption potential was fi
incorporated into electron diffraction theory by Slater10 and
Moliere,11 it was first put on a substantial basis b
Yoshioka.7 Following Yoshioka we may write the total sca
tering potential in the form

Vh,g
S 5Vh2g1Ch,g , ~1!

whereh,g are reciprocal lattice vectors.Vh2g are the usual
local crystal potential Fourier components that result in e
tic scattering. TheCh,g are complex nonlocal ‘‘correction’’
terms representing and incorporating the effects of exc
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tions in the solid. That is, theCh,g are the inelastic scatterin
potential matrix components. It is possible to explicitly sep
rateCh,g into two parts:

Ch,g5Ch,g
r 1 iCh,g

i . ~2!

Ch,g
r represents virtual inelastic scattering,7,12 which may be

interpreted as scattering to an excited state followed by
ther scattering back to the ground state, the net result c
tributing to the elastic wave train, whileCh,g

i represents rea
inelastic scattering. There are several contributions toCh,g ,
such as thermal diffuse~phonon! scattering~TDS!, core ex-
citation, and the plasmon and valence electron contribut
upon which this paper concentrates.

Until now, it has been held that the plasmon and valen
electron contribution to the electron inelastic scattering
tential matrix Ch,g was isotropic9,13,14 — that all Fourier
components were zero forh,gÞ0, as opposed to the highl
localized core contribution or TDS contribution. For the
highly localized potentials, theG52p/a(1,1,1) contribution
is nearly as large as theG50 contribution, as can be seen
Fig. 2. Due to this isotropic assumption, previous calcu
tions of the effect of single particle or collective~plasmon!
outer-shell valence electron excitations9,13–16 and
applications17–19 have concentrated only on the inelas
mean inner potentialC0,0

i (plasmon) and/or the virtual mea
inner potentialC0,0

r .
To solve for the off-diagonal scattering potential matr

componentsCh,g
i , hÞg is a computationally demanding ca

culation that is not yet practical. We can, however, ma
some approximations in considering terms of the formC0,G

i ,
which are effectively the higher-order Fourier coefficients
the inelastic scattering potential. Recent calculations of
higher-order Fourier coefficients of the plasmon and vale
contribution to the electron virtual scattering potentia20

show that C0,G
r are clearly nonzero, at least fo

G52p/a(1,1,1) in silicon, and in fact are larger than prev
ous calculations of the supposedly dominant co
6400 © 1997 The American Physical Society
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56 6401BRIEF REPORTS
contribution.13 We calculate here the equivalent contributi
to real inelastic scattering from plasmons and valence e
trons in silicon.

The valence electron excitation potential is strongly d
pendent on the electronic band structure of the solid. I
therefore convenient to represent the valence electron
plasmon excitation contributionC0,G

i (plasmon) to the tota
C0,G

i , in terms of the wave-vector and frequency-depend
dielectric matrix«h,g(q,v) ~see, for example, Ref. 15!,

C0,G
i ~plasmon!54pe2E

0

E0/\
dv(

G8

3E
BZ

dq8

~2p!3

i

2uq81G8zzq81G1G8u

3@«G8,G1G8
21

~q8,v!2«
G1G8,G8

*21
~q8,v!#

3dS v2~q81G8!V1
\~q81G8!2

2m D , ~3!

whereG8 andG are reciprocal lattice vectors,E05\v is the
incident electron energy,V is the incident electron velocity
and m is the electron mass. We note that«0,G

21(q,v) is the
(0,G) element of the inverse of the entire dielectric matr
containing all the elements«h,g(q,v).

For a centrosymmetric crystal structure such as silic
assuming isotropic dielectric response, and using
approximation15 «0,G

21(q81G8,v)5«G8,G81G
21 (q8,v), we may

express the higher-order Fourier coefficients of the elec
inelastic scattering potential in terms of the generaliz
higher-order loss function Im$2«0,G

21(uqu,v)%,

C0,G
i 5

e2

pVE0

E0/\
dvE

q~umin!

q~p! duqu
uq1Gu

Im$2«0,G
21~ uqu,v!%.

~4!

The uqu integration is over the range defined by some mi
mum possible scattering angleumin→0 through tou5p, and
the v limits run over all possible energy transfers to t
solid. We note that the inelastic mean inner potential is
tained by settingG50 in Eq. ~4!, as first derived by Pines21

~see also Ritchie and Howie.22! We make no mention of a
‘‘cut-off wave vector’’ ~the wave vectorqc above which col-
lective excitations cease to exist! in this formalism as the
collective excitations are correctly attenuated in the dielec
loss function. This calculation sums over all possible sing
particle excitations, which collectively add to produce a pl
monlike resonance in the loss function. We shall refer to t
resonance as a plasmon throughout this work.

In this work we consider the random-phase-approxim
tion dielectric matrix obtained by Adler23 and Wiser:24
c-
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-

«h,g~q,v!5dg,h2
4pe2

Vuq1guuq1hu
lim

a→01

3 (
k,n,n8

f 0@En8~k1q!#2 f 0@En~k!#

En8~k1q!2En~k!1\v1 i\a

3^k1q,n8uei ~q1g!•ruk,n&

3^k,nue2 i ~q1h!•ruk1q,n8&, ~5!

whereV is the crystal volume,f 0(E) is the Fermi function,
andn,n8 are the band indices, labeling the Bloch statesuk,n&
of energyEn(k) in the solid. A nonlocal empirical pseudo-
potential calculation based on the work of Cohen and
Chelikowsky25 is used to obtain the electronic states in Eq.
~5!. A pseudopotential method has been chosen as this effi
ciently gives a very accurate representation of the higher
conduction bands, upon which the loss function is highly
sensitive. Full details of the calculation of the dielectric ma-
trix can be found in Forsyth, Josefsson, and Smith.1

Figure 1 shows the higher-order loss function for silicon
@based on the dielectric matrix of Eq.~5!# up to an energy of
50 eV, foruqu between 0 and 4p/a, with G52p/a(1,1,1). It
has a similar form to that obtainable from a simple two-band
plasmon model.4

Figure 2 shows the magnitude of the Fourier coefficients
C0,G

i (plasmon) andC0,0
i (plasmon) as functions of incident

energy, based on Eq.~4!. Also shown are the equivalent
Fourier coefficients of the contribution to the core excitation
potential from K-shell ionization26–28 and thermal diffuse
scattering29 ~TDS! at 100 K. We note that for the plasmon,
core, and TDS potentialsC0,G

i , G52p/a(1,1,1) has the op-
posite sign toC0,0

i . This is a geometrical effect, and is ex-
pected for a crystal with zinc-blende symmetry, as the struc-
ture factor forG52p/a(1,1,1) is of opposite sign to the
structure factor forG50. The C0,G

i (K-shell! coefficients
were calculated based on a screened hydrogenic model fo
the tightly bound core state, integrating over all orthogonal

FIG. 1. The higher-order loss function Im$2«0,G
21(uqu,v)% ,

G5(2p/a)(1,1,1) for silicon as a function of wave vector and
frequency.
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continuum final states. The details of this calculation ha
been discussed in detail elsewhere.26–28The TDS potential is
calculated via the Einstein independent oscillators mode
described in Allen and Rossouw.29 Core electron excitations
~as with phonon excitations! are generally associated wit
large momentum transfers and highly localized inelastic s
tering potentials in real space. The magnitude of the co
sponding higher-order Fourier coefficientsC0,G

i (core) of
these potentials are therefore relatively large in compari
with the contribution of the mean-inner-potenti
C0,0

i (core).13 The importance of this for analytic electron di
fraction and microscopy has been discussed at len
elsewhere.27,30–32The higher-order coefficients play a larg
part in determining such quantities as image contrast.
collective electronic or plasmon excitations are associa
with a relatively small momentum transfer and states that
poorly localized in real space, they are expected to result

FIG. 2. Variation ofuC0,G
i (plasmon)u with incident electron en-

ergy for G5(2p/a)(1,1,1) andG5(2p/a)(0,0,0) as determined
by Eq. ~4!. Note thatC0,0

i is the mean inner potential of~Ref. 15!.
For comparison,uC0,G

i (K shell)u ~Refs. 26–28!, and uC0,G
i ~TDS!u

~Ref. 29! have been included. For the plasmon, TDS, andK shell
potentialsC0,G

i , G52p/a(1,1,1) has the opposite sign toC0,0
i . The

TDS potential is calculated at 100 K.
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highly delocalized inelastic scattering potential wi
C0,G

i (plasmon)!C0,0
i (plasmon). Indeed, the inelastic scatte

ing potential due to plasmon excitation is delocalized, as
ratio of C0,G

i (plasmon) toC0,0
i (plasmon) is of the order o

1022. However, the present results clearly indicate that
plasmon and valence electron excitation contribution to
higher-order Fourier coefficients of the inelastic scatter
potential are not negligible, at least forG52p/a(1,1,1). At
energies up to 100 keV, the higher-order plasmon contri
tion to the scattering potential is larger than theK-shell con-
tribution, and within an order of magnitude of the TDS co
tribution.

The assumption that the inelastic scattering potential
to plasmon excitation is isotropic leads to plasmons that
completely delocalized. The localization of a potential can
considered as the weighting of the Fourier components of
potential in reciprocal space. With only one nonzero coe
cient for uGu.0 we cannot discuss the localization with an
certainty, but our results indicate that the potential is n
completely delocalized. This is consistent with rece
theoretical33–35 and experimental evidence of plasmo
localization.36,37

In conclusion, this work presents a rigorous calculation
the G52p/a(1,1,1) Fourier coefficient of the contributio
to the electron inelastic scattering potential due to plasm
and valence electron excitations in silicon. This is based o
nonlocal electronic band-structure-dependent dielectric
trix calculation. Previous work9,13,15,16has concentrated on
the inelastic mean inner potentialC0,0

i (plasmon), in the be-
lief that the higher-order Fourier coefficientsC0,G

i (plasmon)
would be negligible. However, the results presented h
show that the contribution ofC0,G

i (plasmon) to the total elec
tron inelastic scattering potential is greater than that due
the K-shell ionization potential forG52p/a(1,1,1), and
within an order of magnitude of the contribution to the p
tential from TDS at 100 K. This result is consistent with th
recent experimental evidence36,37 that plasmons are more lo
calized than previously expected.
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