PHYSICAL REVIEW B VOLUME 56, NUMBER 2 1 JULY 1997-II

Cluster variation approach to the Ising square lattice with two- and four-spin interactions
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The phase diagram of the Ising square ferromagnet with nearest-neighbor, next-nearest-neighbor, and four-
spin (plaquette interactions is investigated using the cluster variation method in the square approximation. A
complete analysis in temperature is performed for the ferromagnetic, superantiferromagnetic, and frustrated
region of the ground state. Particular attention is devoted to the role of the four-spin interaction. The most
remarkable effect is the occurrence, in several regions of the interaction parameter space, of first-order tran-
sitions and sometimes reentrance phenomena. Critical and tricritical points are almost analytically determined.
[S0163-18297)03722-3

I. INTRODUCTION
H:_JE UIUJ_KZ O'iO'k_L”E O'iO'J'O'k0'|,

The general properties of the Ising model on a square (.p’ UL (Lpkl) 0
lattice with nearest-neighbord) and next-nearest-neighbor
(K) interactions are relatively well known. Many authors
have explored the possibility of a nonuniversal critical be-whereo;= =1 is the spin variable at thi¢h lattice site. The
havior, with a variety of techniques like finite-size scaling, symbolZ; jys (2 k) indicates summation over all nearest-
perturbation theory, low-> and high‘-‘ temperature expan- (next-neares}-neighbors, while3; ; \, indicates summa-
sions, Monte Carlo simulations? and coherent-anomaly tion over four sites in every squatplaguette of our lattice;
method? Recently, using the cluster variation methdd® 3 K, L are interaction energies. The above model reduces to
(CVM), Moran-Lopezet al.!>**have obtained, for a range of the Baxter model whed=0, and to the Ising model for
values ofR=K/J, a first-order transition, while, for the same K=L=0. We make the hypothesid>0 (ferromagnetic
range, other authors had reported second order with criticearest-neighbor interactiphut the sign ofJ is irrelevant
exponents continuously varying wiR. This interesting re-  towards the thermodynamic behavior. We shall analyze the
sult has led us to consider a model with nearest-neighbgshase transitions of this model in the square approximation
(J), next-nearest-neighborK(, and four-spin(plaquett¢  of the cluster variation metho@CVM).12-14
(L) interactions, in order to carefully analyze the effect of |n the CVM the entropy of the system is approximated as
the plaquette term on the occurrence of first-order transitionsa sum of suitably weighted cluster entropies relative to a set
The investigation has been carried out by means of the san®’ of maximal clusters and their subclustéts:
method employed by Moran-Lopes al. We have used the
CVM in the square approximation. The same model had
been previously studied with renormalization-group
technique5'®1" and by the coherent anomaly methdd, S= EP, 2o ~kelNpa(0a))- @
never pointing out the presence of first-order transitions. For “c
a vanishing nearest-neighb@iN) interaction the model re-
duces to the exactly solved eight-vertex Baxter md@éi, In the above equatioky is the Boltzmann constant, is the
allowing us to evaluate the errors introduced by the CVMmSet of spin variables associated with the sites of the cluster
square approximation. The paper is organized as follows. 1€, P.(0) is the probability of the spin configuratian, (in
Sec. Il we introduce the model Hamiltonian and briefly recallthe clustere), and finallya, is the weight factor, which can
the general steps of the CVM. The free energy in the squarBe calculated using Moebius inversibhthe symbol(-)
approximation and the stationarity conditions are also demeans thermal average. We will refer to the set
rived. In Sec. Il we analyze the ground state and qualitaip.(o.): o, € all possible spin configuratiohsas to the(re-
tively describe the phase diagram. In Sec. IV we determingluced density matrix of the clustes.
critical and tricritical points, making use of a Landau expan- We suppose that the maximal clusters are all of the same
sion. Section V is devoted to a detailed analysis of the temkind (in our case all square plaquettemnd that the global
perature phase diagram, and to a series of comparisons wiiiate of the system can be obtained repeating a single “lo-
other results. Finally in Sec. VI some concluding remarks ar€al” state, defined by the density matrix of any maximal

presented. clusterag. In this case the entropy per site becomes
Il. THE MODEL AND THE CVM FREE ENERGY
N
We cqnsider an Ising square lattice characterized by the s= % > a,b.(—kslnp,(a,)), (3)
Hamiltonian: aCap
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whereNao is the number of maximal clusters in a lattice with wo(o)
N sites, and,, is another weight factor which avoids count-

ing more than once clusters contained in more than one _ [p12(01,02)pod 02,03) pa 73,04) pas( 04, 1) 12
maximal cluster. [p1(01)p2(02)ps(a3)palaa)]™

Moreover the internal energyper sitg can be written as (12)
follows:

The numbers 1,2,3,4 label the sublattiasd the sites of the
N, plaguette belonging to them1-2, 2-3, 3-4, 4-1 are NN
u= —O<h(0a )y with HZE h(o, ), (4) sites. Sqj; is the nearest-neighbor pair density matrix, while
N -0 a p; is the single-site density matrix.
The systen{9) can be numerically solved by using Kiku-
chi's natural iteration methotf: it is possible to show that
the solutions obtained by this method are always local

‘H being the Hamiltonian of the system. From now on we
will omit the index «q (that is Pag Tay become simply

po). minima of f ,.?* Whenf, has many local minima, these can
Assuming implicitly that be determined by choosing several different guess values for
p. The solution will be the one which minimizes the free
p(0,)= E p(0), YaCay (5) energy. Once the syste(®) is solved we know the probabil-
T aga ity of each plaquette spin configuratignoy,05,03,04)

and so we can easily determine the order parameters in each
(the symbolgaow denoting summation over all spin vari- sublattice:

ables inay except those inx), the free energyper sitg

becomes a function of the maximal cluster density mairix mi={oi)=pi(+1)=pi(—1) (13
only, and so we will denote it by,. We can write as well as the two-site NN correlations:
N Rii=(oio;)
a p(o) ij i“]
f =" o) h(o) + kg TIn—=1, (6)
7N % plo)| (o) *ke Mp(0) =pij(+1,+1)—pjj(+1,-1)—p;j(—1,+1)
where +pij(—=1,-1). (14
To conclude this section we would like to show an interest-
pp(o)= 1T p;aaba(%) (7)  ing property regarding the functian, which will be useful
T aCag - for further calculations. Looking for constraingdormal-

ized) stationary points of this function one obtains the fol-

andT is the absolute temperature. The summations in Eqsiowing equations:

(5) and (6), and the following ones too, run over all the

plaquette spin configurations. dinp,(a") )
According to the CVM, the free enerdy, will be mini- > Toj[p(g’)—e"’"rﬂe‘ﬁh(l 'uy(a’)]=0.
mized with respect to the density matgx with the normal- <o Pl

(15

If p is a solution of Eq(9) it is also a solution of Eq(15)
and so a stationary point df, is a stationary point foh,,
; p(o)=1. ® 100 [let us remember that we always refer to constrained
- (normalized stationary points The inverse implication is
Looking for a constrainednormalized stationary point one also true, provided the matrpalnu,(o’)/dp(o)], .+ is non-
obtains the equations singular. We must also rec#ilthat, if p satisfies Eq(9) [and
hence Eq(15)], then

ization constraint:

plo)= eﬁh,,efﬁh(g)ﬂp(o.), 9)
g g N,
one for each plaquette spin configurationWe have defined fP:WO)\P' (16)
B=1kgT and
Equations(15) and (16) will be useful in Sec. IV.
—BA, = - Bh(a)
¢ ; © 'up(g)' (10 Ill. THE GROUND STATE AND QUALITATIVE RESULTS

In our case a, is a square plaquette and In this section we will analyze the ground state phase
o=(0,,0,,03,0,). The actual expressions df(¢) and diagram. The ground state can be easily determined by look-
w,(o) are ing for the spin configurations of the maximal cluster which
minimize the functiorh [see Eq.(4)], which we can call a
“maximal cluster (plaquett¢ Hamiltonian.” In our case a
h(o)=— 5(0102+ 0203+ 0304+ 04071) configuration of the maximal cluster is specified by the val-
ues of the four spin variables lying on a square, and is de-
—K(o103t 0204)—Lo10,030,, (11 noted by ¢ 1,0,,03,0,), where the indices refer to the four
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FIG. 1. Examples of ground states.
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(b) SAF phases

previously introduced sublattices. The only possible values Looking for the minimum of the values of the plaquette
of the spin variables are: 1, which we will denote just with  Hamiltonianhg, hgae, hg defined above, we can divide the
+. The possible ground state configurations are the follownormalized interaction planke/J,K/J in three regions, each

ing. corresponding to a different ground stésee Fig. 2
(1) The ferromagnetic state H,+,+,+) [or Performing, by means of Eq&9)—(14), a numerical tem-
(=,—,—,—) as well, which will be denoted by FFig. perature analysis for significant values of the normalized in-

1(a)). This state becomes antiferromagndt{c-,—,+,—) teraction parameters we have recognized two ordered phases:
or (—,+,—,+), denoted by AFwhenJ becomes-J. The a ferromagnetic one, characterized by order parameters:
corresponding values of the plaquette Hamiltonian are
hg=—2J-2K—L for the ferromagnetic configurations and
hae=2J—2K—L for the antiferromagnetic ones.

(2) The so-called superantiferromagnetic stdtég. 1(b)]
(+,+,—,-) and (+,—,—,+) [or (—,—,+,+) and
(—,+,+,—) as well, which will be denoted by SAF
(hsar=2K—L).

(3) A frustrated phase, where all the configurations with
three+ spins and one- spin (and vice verspare allowed,
and which we will call the S phasén{=L).

Some more explanation is necessary about the S phas
Let us try to determine a spin configuration of the whole K/T
lattice such that all square plaquettes are in the S f&ate
example can be seen in Fig(cl]. On each square the fol-
lowing condition must hold:

m;=my,=Mmz=m,;=m (18

0'10'20'30'4:_1 (17) SAF

(i.e., three+ spins and one- spin or vice versa Consid- L
ering a lattice with\V rows andM columns, one can choose 5l
freely the value ¢ or —) of all spins in a given row and a )
given column, and the remaining spins are determined by Ec
(17). The degeneracy is then'2'~* and the entropy per

site vanishes in the thermodynamic limit. FIG. 2. Ground state phase diagram.
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and a superantiferromagnetic one, characterized by Then, satisfying the normalization constrainf, can be re-
written as a function of the order parameter[defined by
m;=Mm,=—Mg=—m,=m (19 Eqg. (18)] and of the NN correlation coefficief. Denoting
this function byvg, we have
or
ve(mR)=e P'F(A% + A%)+4e Fs(AZ + A%)B?
My = —My= —Mz=m,=m (20 +ae s A_B?+2e MBS, (22)
as well. These phases are a temperature evolution of the \lAfhere
and SAF ground states, respectively: #r—1/2 we ob- (1+R=2m)2 (1-R)¥2
serve the symmetry propertil8), while for K<—1/2 Eq. A=—g—7F—17, B= g — 78
(19) or (20) holds. We will call “column” and “row” con- [8(1xm)] [8(1+m)]™8(1—m)]

figurations the situations described by E¢89) and (20),  On the contrary, in a superantiferromagnei®AF) phase,
respectively, because the magnetizations of all sites lying othe NN two-site density matrices are equal in pairs: we can
the same columitor row) of the lattice are equdbairs 1-2  distinguish a “row” density matrix and a “column” density
and 3-4 lie on columns matrix, and so a “row” and a “column” correlation coeffi-

In the S-phase region, when temperature is nonzero, weient. They are, respectively, the density matri¢esrrela-
always have a paramagnetic solution, except reentrance phien coefficient$ of a pair of nearest-neighbor spin variables
nomena near the boundary. lying on a row or on a column of the lattice. So we have

Ri>=Ra=R¢,
IV. HELPFUL HINTS FROM LANDAU THEORY

Let us now consider the temperature phase diagram. In Ras=Ra1=R;. (23

order to obtain explicit equations for critical temperature andrhen, can be rewritten as a function of the order parameter
tricritical points we will make use of some concepts based o [see Eqs(19) and (20)] and of the two NN correlation

Landau theory. _ ~ coefficientsR, andR,. Denoting this function bygug, we
In Landau hypotheses the free energy is an even functiofgye

of an order parametan, and is obviously dependent on the
temperature and on the model's parameters, too. It is impor-vgae(m,R;,R,) =2e #M'FA . A,_B?
tant to evaluate the seconds)(and fourth- €) order deriva-

—pBh
tives of the free energywith respect tom) in the point +4e S (Agy Ar+Ac_A:)BcB,
m= O and to analy;e their sign changes while temperat.ure is n efﬁhSAF(AngAerr +A§_Ar2_ + ZBﬁBf)
varying. If, decreasing temperatuta,T) becomes negative
beforec(T) does, then we have a second-order transition and +2e PharA A, B2, (29

the transition temperature is determined by the equation

b(T)=0; if on the contraryc(T) becomes negative before Where

b(T), then we have a first-order transition. Finally,bifT) (1+R,=2m)Y2 (1-R,)V2

andc(T) become negative at the same temperature, there we, :%4_, B.= - ¢ .

have a tricritical point. [8(1xm)] [8(1+m)]"8(1—m)]
We decided to apply this theory, substituting the free en- N o o

ergy f, with the functionv,=e #*, which has the same _(1-R=2m) B = (1+Ry)

(normalized stationary points and coincides with = [8(1xm)]¥*’ CT[8(1+m)]YH8(1—m)]7®

7ﬁNf /Na _ .. . . .
€ ’ o (N”‘O ,th root Of the partition functionif p is a In both ferromagnetic and SAF cases we have a function
(normalized stationary poinfsee Eqs(15) and(16)]. These  ,,im R), whereR is a correlation parameter, which may be a
properties assure that the functiep is completely equiva-  yyo-component array. A stationary point of the functioiis
lent to f,, as far as the determination of the equilibrium gefined by the following equationget us remember that
density matrix and the critical and tricritical points is con- here we are interested in frg@onconstrained stationary

cerned. Using/, considerably simplifies our calculations be- yoints, because the parametersandR already account for
cause it depends only on the density matrices of the subclugne normalization constraiht -

ters of the maximal cluster. In addition, when the maximal

cluster is a square, the, coefficients associated with three- v

site and NNN two-site clusters vanish andesd®» depends m(MR)=0,

on the NN pair and single-site density matrices only. Sym-

metry considerations allow one to further reduce the dimen- v

sionality of the problem. ﬁ—R(m,B)=O. (25
In particular, in a ferromagnetic phase all NN pair density —

matrices are equal and so the NN two-site correlation coefThe symbold/dR is nothing but a gradient and so,Rfis a

ficients[defined by Eq(14)] are equal, too: two-component array, the second equation of 2§) stands

for two scalar equations. These equations definéwe-

Ri5= Ro3=Rg,=R41=R. (21)  componentimplicit function R(m); we can write
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— v
R=R(m) < @(m,g):o. (26) 4
So, in order to put ourselves in the Landau theory’s condi- }
tions, we define the following function, too: )
v(m)=w(m,R(m)). (27) :
This is a function of the order parameter only, and it is 0

possible to show that it is an even function. This is due to the k73 _ |
fact thatv is even with respect tm; so dv/JR is even with
respect tan, too, and therdefinition (26)] E(m) is an even 2
function. Besides, it is easy to see thatpifis a stationary
point for v, then(m,R(m)) is a stationary point fop, that is I
the system(25) is equivalent to the following one: 4 ¥

R=R(m). (28 FIG. 3. Temperature phase diagram in the plahgK/J: con-

; . . . tour lines of transition temperature fégT./J=2.0 (a), 6.0 (b),
So, if we want to determine stationary points of the free . Bc .
' yp 10.0(c), 14.0(d), 18.0(e), 22.0(f) (solid line, second-order transi-

e”ergy' Xve must Iool-< for .statlonary points  of ﬂfﬂ’s\/?f) tion; dotted line, first-order transitiorand projections of the tri-
function »(m). According with Landau theory we are inter- (itical curves(dash-dotted lings

ested in the second- and fourth-order derivativesyoin)

whenm=0. Observing that from definitiof27) we have can be numerically solved. The first equation of E82)
determines the second-order transition temperature while to-
d g dR g gether they give tricritical points.
— == — (29
dm Jm dm JR

V. DISCUSSION OF RESULTS AND COMPARISONS

and remembering the parity considerations, we finally obtain Solving Eqs(32) gives us a remarkable quantity of infor-

o~ 5 mation about the phase diagram, at least within the limits of

d_V(o):Q(oﬁ(o)) (30) the square approximation. All the results are summed up in

dm? gm? =0 Figs. 3-5. Figure 3 displays some contour lines of transition
temperature. These lines are composed by a second-order

d*v 4 v

d ~ —
(0= 5t ORO) =322 (0F0)

X

0 0F0)| — 0RO). @1
‘7_52( R(0)) W( R(0)). (3D
The symbols?/ JR? indicates a double gradieftlessian ma-
trix). Let us observe that it is not necessary to know ar

explicit expression oE(m) because we can evaluate its de-
rivatives by using a multidimensional form of the implicit
function theorem. In any case it is easy to derive the explici

expression oR(0) by using definition(26). All the needed
derivatives ofv can be calculated easily enough by using a
truncated McLaurin series expansion with respecmntoFi-
nally we obtain the derivativeg80) and(31) just as functions

of temperature and the model's parameters. Their expre:
sions are given in the Appendix. The equations 0

-4 2 0 2 4 6 8 10 12
o L/J
d—mz(0)=0,

FIG. 4. Transition temperature ¥3J for several fixed values of
K/J>—1/2 (solid line, second-order transition; dotted line, first-
(32) order transition and projections of the tricritical curve&lash-
dotted lines.

d*v
I
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FIG. 5. Transition temperature ¥gJ for several fixed values of
K/J<—1/2 (solid line, second-order transition; dotted line, first- kgT/J
order transition and projections of the tricritical curve&ash-
dotted line$. Some critical points obtained in Ref. 18 are also re- FIG. 6. Magnetization vs temperature fd{/J=2.0 and
ported(symbols+) for K/J=—1 (one point andK/J=—2 (four L/J=0.0 (@), —1.0 (b), —2.0 (c), —2.5(d), —2.7 (), —2.9 (),
points. —2.97(g), —3.0(h), —3.03(i) (ferromagnetic-paramagnetic tran-

sitions.

transition part(solid line), obtained by solving the first equa-
tion of Eq. (32), and by a first-order transition paftiotted |m|<1 even in the ground staft=0. The same behavior
line), evaluated in a completely numerical way. These twocan be observed at the boundary between SAF and S regions,
parts are separated by tricritical points. Different shapes ofhile at the boundary between F and SAF regions the mag-
the first-order transition regions are obtained in the ferronetization vanishes at any nonzero temperature.
magnetic and SAF cases. In the S-phase area we observe noHowever the most remarkable fact we learn by looking at
contour line(except for the slightly reentrant lines coming all the figures we have discussed is that first-order transitions
from the F and SAF regionsthat is the system is disordered occupy a very large part of the parameter space. We recover
at any nonzero temperatufexcept in the vicinity of the the results obtained in Ref. 11 for the cdse 0. Moreover
boundaries, where the behavior of magnetization is qualita-
tively that displayed in Fig. ®)]. Figures 4 and 5 show the — T T " T "1
transition temperature as a function of the paramietdrfor
several fixed values df/J. The behavior of this function is
qualitatively similar in the ferromagnetic regidhig. 4) and L
in the superantiferromagnetic oii€ig. 5. For negative de-
creasingL, the transition temperature gets lower; the system 08 |-
begins to present a first-order transition and then a slight
reentrance phenomendim the S-phase regigmwhich is en-
larged if|K| increases. For positive increasihgthe system 06
exhibits a first-order transition, too, but the transition tem-
perature gets higher. In the ferromagnetic region first-order™
transitions occur for higher positive values lofthan in the
superantiferromagnetic one. In Fig. 5 we have reported, as ¢
comparison, some critical points obtained in Ref. 18 for
K/J=—1 (1 poiny andK/J=—2 (4 pointy. Figures 6 and 7
show the different behaviors of magnetization vs tempera- o2 |
ture. Figure 6 describes what happens when we approacl
(and enterthe S region from the F regiofbut the behavior
is qualitatively the same if we come from the SAF region 0o L
for constantK and negative decreasirlg Figure 7 shows "o 2
what happens for constait and positive increasing (in K T/J
the SAF region Particular attention must be paid at Fig.
6(h), which displays magnetization vs temperature in corre- FIG. 7. Magnetization vs temperature fa¢/J=—3.0 and
spondence of the boundary between the F and S regions/J=0.0 (a), 0.5 (b), 1.0 (c), 1.5 (d), 2.0 (¢) (SAF-paramagnetic
Here the system presents a degeneracy, and we haw@nsitions.

1.0
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06 . . : T T 20 T T T ) T T T

SAF

FIG. 8. Phase diagram in thé,,K, plane: transition lines for
several values df, (solid line, second-order transition; dotted line
first-order transition The thin solid straight lineK;+2K,=0) is
the image of the lin&k/J=—1/2, which divides the F and SAF
regions(F region in the upper part of the layer and SAF region in
the lower ong while the dashed line in the SAF region is the
K,=0 transition line obtained by a Monte Carlo meth@Ef. 5.
Critical points obtained in Ref. 17 are also reportegmbols+) for
K,4=0.0(a) andK,=0.5 (b).

FIG. 9. J=0 (K;=0) phase diagram in thi€,,K, plane(solid
' line, second-order transition; dotted line, first-order transition;
dashed line, Baxter exact solutiorThe letterP stands for “para-
magnetic phase.”

The above formula is valid only in an interval between two
tricritical points[solutions of the syster82)]:

1 (25-.313 1 (25+4/313
we realize that the first-order transition area observed in Ref. Z'” 2 S|K2|$ZIn -5 |
11 on the SAF side is just a subset of a larger two-
dimensional first-order transition area. On the contrary, orThis critical line, together with thénumerically evaluated
the ferromagnetic side a first-order transition region occursirst-order transition line and Baxter’s critical line,
for higher values ofL/J and so it cannot be “seen” at
L=0. 1
In order to make some comparisons and consider the case K== 5In sinh(2[Ky]), (35
J=0, we analyze the phase diagram in the parameter space
K,=8J, K,=BK, K,=BL. These are the parameters usedare reported in Fig. 9. It is worth noting that our transition
in Ref. 17, where the same system as ours is studied blne asymptotically coincides with Baxter's one in the limit
means of renormalization group methods, and in Ref. 5K,— (the matching is already good f&t,>0.5), but in
where the model without plaquette interaction is studied by dhat region our solution predicts first-order transitions. The
Monte Carlo approach. The phase diagram is given in Fig. 8same result can be seen in Fig. 10, where the transition tem-
The transition line obtained by the Monte Carlo method  peratures predicted by Baxter’'s solution and by our CVM
the SAF region is reporte@iashed ling and must be com- solution are represented as a functiorLgfK|. This result is
pared with ourK,=0 transition line. There is a discrete quite disconcerting and deserves further investigations. It
similarity between these two lines, even if in the best matchmight be interesting to employ the CVM at higher order
ing region we have a first-order transition. We have alscapproximations in order to understand whether the first-order
displayed(symbols “+"”) some critical points obtained in transition regions reduce or not.
Ref. 17 but in this case the matching with our results is not
very good. _ _ VI. CONCLUSIONS

The last step we have done is the model’'s analysis when
J=0, which is very helpful to understand the errors intro- In this paper we have considered an Ising model on the
duced by the square approximation, because in this case viguare lattice with NN, NNN, and plaquette interactions, es-
have in hand the exact solutidBaxter model®?9. Equa-  pecially investigating the effects of the last one on the criti-
tions (32) become so easy that they can be explicitly solvedcal behavior of the system. We have carried out our investi-
and there is a perfect symmetry betwee(oFAF) and SAF  gation by using the CVM in the square approximation and
phaseglet us observe that, wheh=0, we havehg=h,- and  characterized the phase diagram with full details, also devel-
so the ordered phase may be either ferromagnetic or antifepping a nearly analytical way to determine critical and tric-
romagnetig. The second-order transition lifigolution of the ritical points. This model, without plaquette interactions, was
first equation of Eq(32)] is given by already studied with the CVNat several increasing approxi-

mation ordersby Moran-Lopezet al.!! who obtained first-
order transitions in a region of the model parameter space
where other authors had found a nonuniversal critical behav-

(34)

1
Ky=— E|n(e2|'<zl— 2e2Kal), (33
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kT / K
4

FIG. 10. J=0 phase diagram in the/|K|,ksT/|K| plane(solid
line, second-order transition; dotted line, first-order transition;
dashed-line, Baxter exact solutjoMhe ordered phase is ferromag-
netic (or antiferromagneticwhen K>0 or superantiferromagnetic
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F, AF (K>0)
or SAF (K<0)

L/Kl

whenK<0. The letterP stands for “paramagnetic phase.”

ior. Our work shows how much the plaquette interaction
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local order of the frustrated phagatroduced by a negative
plaguette interaction paramekdnolds at zero temperature
only: at finite temperature the system becomes paramagnetic.
Among other comparisons, the one with the exactly solved
Baxter model(vanishing NN interactionis mainly interest-
ing. We have pointed out some coincidence of the transition
temperature for a region of the model parameters, even if in
that region we find a first-order transition. The first-order
transitions seem to be an effect of the approximation. In
order to better understand the reliability of the CVM in the
analysis of bidimensional systentsee, for example, Ref.
22), we think it might be useful to employ higher order ap-
proximations and to investigate whether and how the first-
order transition regions are modified. We are going to carry
on our work in this direction.

APPENDIX

In this Appendix we report the explicit expressions of the
derivatives (30) and (31) for the ferromagnetic and SAF

‘cases. In the ferromagnetic case we have

dz’;': 0"sz
d_mZ(o):W(O'RO)'

4~ 4 2

term enlarges the first-order transition region. We have obd

3
tained several regions of the interaction parameter plane imm? (0) om? (ORO) 3( ZaR(O 0)) /a

which the system displays first-ordefferromagnetic-
paramagnetic and SAF-paramagngeti@nsitions, either for
positive or negative values of the plaquette interaction pa-
rameter, with a slight reentrance effect in the last case. The
first-order transition regions have been delimited by deter-
mining the tricritical lines. We have also observed that theand

(921/':

1
om? (OR)=3e

v 3 3
4(OR) 6e PNF(1-R)?— T6e ~Ahs(45—-67R)(1— R)- e ~Bhsa
ﬁz

OR?

3

where

1 1
“ANE(1-R)2— Ze‘BhS(3—5R)(1—R)— e

v F
?(O,Ro) ,

— e Bhep @ Bhar

Ro= e Bhe_fe BNs _ 2o Bhsart @ BN ar

_ 2
—ﬁhSAFw l e—BhAF( 1— R)Z,

(1+R 4

(7+6R+ 3R?)(3+R)(1-R)? 9

(4+3R+R?»(1-R) 1

~Bhar(1 - R)?
(1+R)3 tze IR

(OR)—Ee Ahr—2e Ahs—e ﬁhw+ée Bhar,

;v 1
ﬁ—mzﬁ—;(O,R)= —e AMH(1-R)+ se #'s(4-5R) +e s

— e Bhar(1—
(1+R)? 7€ TR,

In the SAF case it is useful to substitute the parame®erand R, with R and AR, defined as follows:

(A1)
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In this way the Hessian matrix in E¢31) becomes diagonal. We have

d?vsar VAR
an? (0)— 2 (0,Ry,ARy),

d* VSAF v Vsar v Vsar =
gm0 =—7 (0, Ro,ARg) — 3 —QO Ro. ARO) Ro.ARp)
Prsar | — 2 [Pvsar
—3{m(O,RO,ARO) —apz (0 Ro.ARy)
whereRO—Ro,ARO 0, and
2year  — 1 g = = 1 3+18R?-5R* 3 o N S
ame (O,R,O):_Ze F(3+R)(1—R)—Ze ST'F‘]-G SAF(1—R%)— e AF(3— R)(1+R)
— 3+R)(1-R)(7+6R+3R?) 3 45+ 1372R% - 386R*+ 316R°— 67R?
S:\F(O,R,O)_ o B (3+R)(1—R)( )——e phs R
2° (1+R)? 16 (1-R%)®
D) DY 7 _feDLAAP2
+3_3e P RZ)—Se oy (3 R)(1+R)(i 6R+3R),
4 (1-R)?
2
J VSAF(ORO) Ee ﬁhF_Ze ﬂhs_ BhSAF+ Ee_ﬂhAF,
IR? 2
Prgar  — 1 1 21R—10R3+5R° 3 1 _
—_a Bhg _ _aBhs — @ Bhsarr— Za—Bhar(1 —
(9m2(9§(0’R0) 2e (1+R) 2e (1_?)2 2e R 2e (1-R),
72 VSAF(ORO) _Ee*ﬁhF_ze*Bhs _2+e*ﬁhSAF_£e*ﬁhAF
IAR? 2 1-R? 2 ’
Vsar 1 1+8R%2-R* - - 1
— T (0R0)=2e ANF——+2e s~ Ahsart e Alar
ImM?9AR 1+ (1-R?»? 2 1-R

These are the formulas we used for numeric computation of second-order transition temperatures and ftricritical points,
following the method described in Sec. IV.
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