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Cluster variation approach to the Ising square lattice with two- and four-spin interactions

C. Buzano and M. Pretti
Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica della Materia Corso Duca degli Abruzzi 24,

10129 Torino, Italy
~Received 22 October 1996!

The phase diagram of the Ising square ferromagnet with nearest-neighbor, next-nearest-neighbor, and four-
spin ~plaquette! interactions is investigated using the cluster variation method in the square approximation. A
complete analysis in temperature is performed for the ferromagnetic, superantiferromagnetic, and frustrated
region of the ground state. Particular attention is devoted to the role of the four-spin interaction. The most
remarkable effect is the occurrence, in several regions of the interaction parameter space, of first-order tran-
sitions and sometimes reentrance phenomena. Critical and tricritical points are almost analytically determined.
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I. INTRODUCTION

The general properties of the Ising model on a squ
lattice with nearest-neighbor (J) and next-nearest-neighbo
(K) interactions are relatively well known. Many autho
have explored the possibility of a nonuniversal critical b
havior, with a variety of techniques like finite-size scaling1

perturbation theory,2 low-3 and high-4 temperature expan
sions, Monte Carlo simulations,5–8 and coherent-anomal
method.9 Recently, using the cluster variation method12–14

~CVM!, Moran-Lopezet al.10,11have obtained, for a range o
values ofR[K/J, a first-order transition, while, for the sam
range, other authors had reported second order with cri
exponents continuously varying withR. This interesting re-
sult has led us to consider a model with nearest-neigh
(J), next-nearest-neighbor (K), and four-spin ~plaquette!
(L) interactions, in order to carefully analyze the effect
the plaquette term on the occurrence of first-order transitio
The investigation has been carried out by means of the s
method employed by Moran-Lopezet al.We have used the
CVM in the square approximation. The same model h
been previously studied with renormalization-gro
techniques1,15–17 and by the coherent anomaly method18

never pointing out the presence of first-order transitions.
a vanishing nearest-neighbor~NN! interaction the model re
duces to the exactly solved eight-vertex Baxter model,19,20

allowing us to evaluate the errors introduced by the CV
square approximation. The paper is organized as follows
Sec. II we introduce the model Hamiltonian and briefly rec
the general steps of the CVM. The free energy in the squ
approximation and the stationarity conditions are also
rived. In Sec. III we analyze the ground state and qual
tively describe the phase diagram. In Sec. IV we determ
critical and tricritical points, making use of a Landau expa
sion. Section V is devoted to a detailed analysis of the te
perature phase diagram, and to a series of comparisons
other results. Finally in Sec. VI some concluding remarks
presented.

II. THE MODEL AND THE CVM FREE ENERGY

We consider an Ising square lattice characterized by
Hamiltonian:
560163-1829/97/56~2!/636~9!/$10.00
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H52J (
^ i , j &8

s is j2K (
^ i ,k&9

s isk2L (
^ i , j ,k,l &

s is jsks l ,

~1!

wheres i561 is the spin variable at thei th lattice site. The
symbolS^ i , j &8 (S^ i ,k&9) indicates summation over all neares
~next-nearest-! neighbors, whileS^ i , j ,k,l & indicates summa-
tion over four sites in every square~plaquette! of our lattice;
J, K, L are interaction energies. The above model reduce
the Baxter model whenJ50, and to the Ising model for
K5L50. We make the hypothesisJ.0 ~ferromagnetic
nearest-neighbor interaction! but the sign ofJ is irrelevant
towards the thermodynamic behavior. We shall analyze
phase transitions of this model in the square approxima
of the cluster variation method~CVM!.12–14

In the CVM the entropy of the system is approximated
a sum of suitably weighted cluster entropies relative to a
P8 of maximal clusters and their subclusters:13

S5 (
aPP8

aa^2kBlnra~sa!&. ~2!

In the above equationkB is the Boltzmann constant,sa is the
set of spin variables associated with the sites of the clu
a, ra(sa) is the probability of the spin configurationsa ~in
the clustera), and finallyaa is the weight factor, which can
be calculated using Moebius inversion;13 the symbol ^•&
means thermal average. We will refer to the s
$ra(sa):saPall possible spin configurations% as to the~re-
duced! density matrix of the clustera.

We suppose that the maximal clusters are all of the sa
kind ~in our case all square plaquettes! and that the global
state of the system can be obtained repeating a single
cal’’ state, defined by the density matrix of any maxim
clustera0. In this case the entropy per site becomes

s5
Na0

N (
a#a0

aaba^2kBlnra~sa!&, ~3!
636 © 1997 The American Physical Society
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56 637CLUSTER VARIATION APPROACH TO THE ISING . . .
whereNa0
is the number of maximal clusters in a lattice wi

N sites, andba is another weight factor which avoids coun
ing more than once clusters contained in more than
maximal cluster.

Moreover the internal energy~per site! can be written as
follows:

u5
Na0

N
^h~sa0

!& with H5(
a0

h~sa0
!, ~4!

H being the Hamiltonian of the system. From now on w
will omit the index a0 ~that is ra0

,sa0
become simply

r,s).
Assuming implicitly that

ra~sa!5 (
sa0\a

r~s!, ;a,a0 ~5!

~the symbolsa0\a
denoting summation over all spin var

ables ina0 except those ina), the free energy~per site!
becomes a function of the maximal cluster density matrixr
only, and so we will denote it byf r . We can write

f r5
Na0

N (
s

r~s!Fh~s!1kBTln
r~s!

mr~s!G , ~6!

where

mr~s!5 )
a,a0

ra
2aaba~sa! ~7!

andT is the absolute temperature. The summations in E
~5! and ~6!, and the following ones too, run over all th
plaquette spin configurations.

According to the CVM, the free energyf r will be mini-
mized with respect to the density matrixr, with the normal-
ization constraint:

(
s

r~s!51. ~8!

Looking for a constrained~normalized! stationary point one
obtains the equations

r~s!5eblre2bh~s!mr~s!, ~9!

one for each plaquette spin configurations. We have defined
b51/kBT and

e2blr5(
s

e2bh~s!mr~s!. ~10!

In our case a0 is a square plaquette an
s5(s1 ,s2 ,s3 ,s4). The actual expressions ofh(s) and
mr(s) are

h~s!52
J

2
~s1s21s2s31s3s41s4s1!

2K~s1s31s2s4!2Ls1s2s3s4 , ~11!
e

s.

mr~s!

5
@r12~s1 ,s2!r23~s2 ,s3!r34~s3 ,s4!r41~s4 ,s1!#

1/2

@r1~s1!r2~s2!r3~s3!r4~s4!#
1/4 .

~12!

The numbers 1,2,3,4 label the sublattices~and the sites of the
plaquette belonging to them!. 1-2, 2-3, 3-4, 4-1 are NN
sites. Sor i j is the nearest-neighbor pair density matrix, wh
r i is the single-site density matrix.

The system~9! can be numerically solved by using Kiku
chi’s natural iteration method;21 it is possible to show tha
the solutions obtained by this method are always lo
minima of f r .

21 When f r has many local minima, these ca
be determined by choosing several different guess values
r. The solution will be the one which minimizes the fre
energy. Once the system~9! is solved we know the probabil
ity of each plaquette spin configurationr(s1 ,s2 ,s3 ,s4)
and so we can easily determine the order parameters in
sublattice:

mi5^s i&5r i~11!2r i~21! ~13!

as well as the two-site NN correlations:

Ri j5^s is j&

5r i j ~11,11!2r i j ~11,21!2r i j ~21,11!

1r i j ~21,21!. ~14!

To conclude this section we would like to show an intere
ing property regarding the functionlr which will be useful
for further calculations. Looking for constrained~normal-
ized! stationary points of this function one obtains the fo
lowing equations:

(
s8

] lnmr~s8!

]r~s!
@r~s8!2eblre2bh~s8!mr~s8!#50.

~15!

If r is a solution of Eq.~9! it is also a solution of Eq.~15!
and so a stationary point off r is a stationary point forlr ,
too @let us remember that we always refer to constrain
~normalized! stationary points#. The inverse implication is
also true, provided the matrix@] lnmr(s8)/]r(s)#s,s8 is non-
singular. We must also recall21 that, if r satisfies Eq.~9! @and
hence Eq.~15!#, then

f r5
Na0

N
lr . ~16!

Equations~15! and ~16! will be useful in Sec. IV.

III. THE GROUND STATE AND QUALITATIVE RESULTS

In this section we will analyze the ground state pha
diagram. The ground state can be easily determined by lo
ing for the spin configurations of the maximal cluster whi
minimize the functionh @see Eq.~4!#, which we can call a
‘‘maximal cluster ~plaquette! Hamiltonian.’’ In our case a
configuration of the maximal cluster is specified by the v
ues of the four spin variables lying on a square, and is
noted by (s1 ,s2 ,s3 ,s4), where the indices refer to the fou
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FIG. 1. Examples of ground states.
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previously introduced sublattices. The only possible val
of the spin variables are61, which we will denote just with
6. The possible ground state configurations are the follo
ing.

~1! The ferromagnetic state (1,1,1,1) @or
(2,2,2,2) as well#, which will be denoted by F~Fig.
1~a!!. This state becomes antiferromagnetic@(1,2,1,2)
or (2,1,2,1), denoted by AF# whenJ becomes2J. The
corresponding values of the plaquette Hamiltonian
hF522J22K2L for the ferromagnetic configurations an
hAF52J22K2L for the antiferromagnetic ones.

~2! The so-called superantiferromagnetic states@Fig. 1~b!#
(1,1,2,2) and (1,2,2,1) @or (2,2,1,1) and
(2,1,1,2) as well#, which will be denoted by SAF
(hSAF52K2L).

~3! A frustrated phase, where all the configurations w
three1 spins and one2 spin ~and vice versa! are allowed,
and which we will call the S phase (hS5L).

Some more explanation is necessary about the S ph
Let us try to determine a spin configuration of the who
lattice such that all square plaquettes are in the S state@an
example can be seen in Fig. 1~c!#. On each square the fol
lowing condition must hold:

s1s2s3s4521 ~17!

~i.e., three1 spins and one2 spin or vice versa!. Consid-
ering a lattice withN rows andM columns, one can choos
freely the value (1 or 2) of all spins in a given row and a
given column, and the remaining spins are determined by
~17!. The degeneracy is then 2N1M21 and the entropy pe
site vanishes in the thermodynamic limit.
s

-

e

se.

q.

Looking for the minimum of the values of the plaquette
HamiltonianhF , hSAF, hS defined above, we can divide the
normalized interaction planeL/J,K/J in three regions, each
corresponding to a different ground state~see Fig. 2!.

Performing, by means of Eqs.~9!–~14!, a numerical tem-
perature analysis for significant values of the normalized in
teraction parameters we have recognized two ordered phas
a ferromagnetic one, characterized by order parameters:

m15m25m35m4[m ~18!

FIG. 2. Ground state phase diagram.
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56 639CLUSTER VARIATION APPROACH TO THE ISING . . .
and a superantiferromagnetic one, characterized by

m15m252m352m4[m ~19!

or

m152m252m35m4[m ~20!

as well. These phases are a temperature evolution of th
and SAF ground states, respectively: forK.21/2 we ob-
serve the symmetry property~18!, while for K,21/2 Eq.
~19! or ~20! holds. We will call ‘‘column’’ and ‘‘row’’ con-
figurations the situations described by Eqs.~19! and ~20!,
respectively, because the magnetizations of all sites lying
the same column~or row! of the lattice are equal~pairs 1-2
and 3-4 lie on columns!.

In the S-phase region, when temperature is nonzero,
always have a paramagnetic solution, except reentrance
nomena near the boundary.

IV. HELPFUL HINTS FROM LANDAU THEORY

Let us now consider the temperature phase diagram
order to obtain explicit equations for critical temperature a
tricritical points we will make use of some concepts based
Landau theory.

In Landau hypotheses the free energy is an even func
of an order parameterm, and is obviously dependent on th
temperature and on the model’s parameters, too. It is im
tant to evaluate the second- (b) and fourth- (c) order deriva-
tives of the free energy~with respect tom) in the point
m50, and to analyze their sign changes while temperatur
varying. If, decreasing temperature,b(T) becomes negative
beforec(T) does, then we have a second-order transition
the transition temperature is determined by the equa
b(T)50; if on the contraryc(T) becomes negative befor
b(T), then we have a first-order transition. Finally, ifb(T)
andc(T) become negative at the same temperature, there
have a tricritical point.

We decided to apply this theory, substituting the free
ergy f r with the functionnr[e2blr, which has the same
~normalized! stationary points and coincides wit
e2bNfr /Na0 (Na0

-th root of the partition function! if r is a
~normalized! stationary point@see Eqs.~15! and~16!#. These
properties assure that the functionnr is completely equiva-
lent to f r , as far as the determination of the equilibriu
density matrix and the critical and tricritical points is co
cerned. Usingnr considerably simplifies our calculations b
cause it depends only on the density matrices of the subc
ters of the maximal cluster. In addition, when the maxim
cluster is a square, theaa coefficients associated with three
site and NNN two-site clusters vanish and soe2blr depends
on the NN pair and single-site density matrices only. Sy
metry considerations allow one to further reduce the dim
sionality of the problem.

In particular, in a ferromagnetic phase all NN pair dens
matrices are equal and so the NN two-site correlation co
ficients @defined by Eq.~14!# are equal, too:

R125R235R345R41[R. ~21!
F

n

e
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n
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Then, satisfying the normalization constraint,nr can be re-
written as a function of the order parameterm @defined by
Eq. ~18!# and of the NN correlation coefficientR. Denoting
this function bynF , we have

nF~m,R!5e2bhF~A1
4 1A2

4 !14e2bhS~A1
2 1A2

2 !B2

14e2bhSAFA1A2B
212e2bhAFB4, ~22!

where

A65
~11R62m!1/2

@8~16m!#1/4
, B5

~12R!1/2

@8~11m!#1/8@8~12m!#1/8
.

On the contrary, in a superantiferromagnetic~SAF! phase,
the NN two-site density matrices are equal in pairs: we c
distinguish a ‘‘row’’ density matrix and a ‘‘column’’ density
matrix, and so a ‘‘row’’ and a ‘‘column’’ correlation coeffi-
cient. They are, respectively, the density matrices~correla-
tion coefficients! of a pair of nearest-neighbor spin variabl
lying on a row or on a column of the lattice. So we have

R125R34[Rc ,

R235R41[Rr . ~23!

Thennr can be rewritten as a function of the order parame
m @see Eqs.~19! and ~20!# and of the two NN correlation
coefficientsRr andRc . Denoting this function bynSAF, we
have

nSAF~m,Rc ,Rr !52e2bhFAc1Ac2Br
2

14e2bhS~Ac1Ar11Ac2Ar2!BcBr

1e2bhSAF~Ac1
2 Ar1

2 1Ac2
2 Ar2

2 12Bc
2Br

2!

12e2bhAFAr1Ar2Bc
2 , ~24!

where

Ac65
~11Rc62m!1/2

@8~16m!#1/4
, Bc5

~12Rc!
1/2

@8~11m!#1/8@8~12m!#1/8
,

Ar65
~12Rr62m!1/2

@8~16m!#1/4
, Br5

~11Rr !
1/2

@8~11m!#1/8@8~12m!#1/8
.

In both ferromagnetic and SAF cases we have a func
n(m,R), whereR is a correlation parameter, which may be
two-component array. A stationary point of the functionn is
defined by the following equations@let us remember tha
here we are interested in free~nonconstrained! stationary
points, because the parametersm andR already account for
the normalization constraint#:

]n

]m
~m,R!50,

]n

]R
~m,R!50. ~25!

The symbol]/]R is nothing but a gradient and so, ifR is a
two-component array, the second equation of Eq.~25! stands
for two scalar equations. These equations define a~two-
component! implicit function R̃(m); we can write
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640 56C. BUZANO AND M. PRETTI
R5R̃~m! ⇔ ]n

]R
~m,R!50. ~26!

So, in order to put ourselves in the Landau theory’s con
tions, we define the following function, too:

ñ ~m![n„m,R̃~m!…. ~27!

This is a function of the order parameterm only, and it is
possible to show that it is an even function. This is due to
fact thatn is even with respect tom; so ]n/]R is even with
respect tom, too, and then@definition ~26!# R̃(m) is an even
function. Besides, it is easy to see that, ifm is a stationary
point for ñ , then„m,R̃(m)… is a stationary point forn, that is
the system~25! is equivalent to the following one:

d ñ

dm
~m!50,

R5R̃~m!. ~28!

So, if we want to determine stationary points of the fr
energy, we must look for stationary points of the~even!
function ñ (m). According with Landau theory we are inte
ested in the second- and fourth-order derivatives ofñ (m)
whenm50. Observing that from definition~27! we have

d

dm
5

]

]m
1
dR̃

dm
•

]

]R
~29!

and remembering the parity considerations, we finally obt

d2 ñ

dm2 ~0!5
]2n

]m2 „0,R̃~0!…, ~30!

d4 ñ

dm4 ~0!5
]4n

]m4 „0,R̃~0!…23
]3n

]m2]R
„0,R̃~0!…

3F ]2n

]R2 „0,R̃~0!…G21 ]3n

]m2]R
„0,R̃~0!…. ~31!

The symbol]2/]R2 indicates a double gradient~Hessian ma-
trix!. Let us observe that it is not necessary to know
explicit expression ofR̃(m) because we can evaluate its d
rivatives by using a multidimensional form of the implic
function theorem. In any case it is easy to derive the exp
expression ofR̃(0) by using definition~26!. All the needed
derivatives ofn can be calculated easily enough by using
truncated McLaurin series expansion with respect tom. Fi-
nally we obtain the derivatives~30! and~31! just as functions
of temperature and the model’s parameters. Their exp
sions are given in the Appendix. The equations

d2 ñ

dm2 ~0!50,

d4 ñ

dm4 ~0!50 ~32!
i-

e

in

n

it

s-

can be numerically solved. The first equation of Eq.~32!
determines the second-order transition temperature while t
gether they give tricritical points.

V. DISCUSSION OF RESULTS AND COMPARISONS

Solving Eqs.~32! gives us a remarkable quantity of infor-
mation about the phase diagram, at least within the limits o
the square approximation. All the results are summed up
Figs. 3–5. Figure 3 displays some contour lines of transitio
temperature. These lines are composed by a second-or

FIG. 3. Temperature phase diagram in the planeL/J,K/J: con-
tour lines of transition temperature forkBTc /J52.0 ~a!, 6.0 ~b!,
10.0 ~c!, 14.0~d!, 18.0~e!, 22.0~f! ~solid line, second-order transi-
tion; dotted line, first-order transition! and projections of the tri-
critical curves~dash-dotted lines!.

FIG. 4. Transition temperature vsL/J for several fixed values of
K/J.21/2 ~solid line, second-order transition; dotted line, first-
order transition! and projections of the tricritical curves~dash-
dotted lines!.
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56 641CLUSTER VARIATION APPROACH TO THE ISING . . .
transition part~solid line!, obtained by solving the first equa-
tion of Eq. ~32!, and by a first-order transition part~dotted
line!, evaluated in a completely numerical way. These tw
parts are separated by tricritical points. Different shapes
the first-order transition regions are obtained in the ferro
magnetic and SAF cases. In the S-phase area we observe
contour line~except for the slightly reentrant lines coming
from the F and SAF regions!, that is the system is disordered
at any nonzero temperature@except in the vicinity of the
boundaries, where the behavior of magnetization is qualit
tively that displayed in Fig. 6~i!#. Figures 4 and 5 show the
transition temperature as a function of the parameterL/J for
several fixed values ofK/J. The behavior of this function is
qualitatively similar in the ferromagnetic region~Fig. 4! and
in the superantiferromagnetic one~Fig. 5!. For negative de-
creasingL, the transition temperature gets lower; the syste
begins to present a first-order transition and then a slig
reentrance phenomenon~in the S-phase region! which is en-
larged if uKu increases. For positive increasingL, the system
exhibits a first-order transition, too, but the transition tem
perature gets higher. In the ferromagnetic region first-ord
transitions occur for higher positive values ofL than in the
superantiferromagnetic one. In Fig. 5 we have reported, as
comparison, some critical points obtained in Ref. 18 fo
K/J521 ~1 point! andK/J522 ~4 points!. Figures 6 and 7
show the different behaviors of magnetization vs temper
ture. Figure 6 describes what happens when we approa
~and enter! the S region from the F region~but the behavior
is qualitatively the same if we come from the SAF region!
for constantK and negative decreasingL. Figure 7 shows
what happens for constantK and positive increasingL ~in
the SAF region!. Particular attention must be paid at Fig.
6~h!, which displays magnetization vs temperature in corre
spondence of the boundary between the F and S regio
Here the system presents a degeneracy, and we ha

FIG. 5. Transition temperature vsL/J for several fixed values of
K/J,21/2 ~solid line, second-order transition; dotted line, first-
order transition! and projections of the tricritical curves~dash-
dotted lines!. Some critical points obtained in Ref. 18 are also re
ported~symbols1! for K/J521 ~one point! andK/J522 ~four
points!.
o
of
-
no

a-

ht

-
r

a
r

-
ch

-
s.
ve

umu,1 even in the ground stateT50. The same behavio
can be observed at the boundary between SAF and S reg
while at the boundary between F and SAF regions the m
netization vanishes at any nonzero temperature.

However the most remarkable fact we learn by looking
all the figures we have discussed is that first-order transiti
occupy a very large part of the parameter space. We rec
the results obtained in Ref. 11 for the caseL50. Moreover

- FIG. 6. Magnetization vs temperature forK/J52.0 and
L/J50.0 ~a!, 21.0 ~b!, 22.0 ~c!, 22.5 ~d!, 22.7 ~e!, 22.9 ~f!,
22.97 ~g!, 23.0 ~h!, 23.03 ~i! ~ferromagnetic-paramagnetic tran
sitions!.

FIG. 7. Magnetization vs temperature forK/J523.0 and
L/J50.0 ~a!, 0.5 ~b!, 1.0 ~c!, 1.5 ~d!, 2.0 ~e! ~SAF-paramagnetic
transitions!.
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642 56C. BUZANO AND M. PRETTI
we realize that the first-order transition area observed in R
11 on the SAF side is just a subset of a larger tw
dimensional first-order transition area. On the contrary,
the ferromagnetic side a first-order transition region occ
for higher values ofL/J and so it cannot be ‘‘seen’’ a
L50.

In order to make some comparisons and consider the
J50, we analyze the phase diagram in the parameter s
K15bJ, K25bK, K45bL. These are the parameters us
in Ref. 17, where the same system as ours is studied
means of renormalization group methods, and in Ref.
where the model without plaquette interaction is studied b
Monte Carlo approach. The phase diagram is given in Fig
The transition line obtained by the Monte Carlo method5 in
the SAF region is reported~dashed line!, and must be com-
pared with ourK450 transition line. There is a discret
similarity between these two lines, even if in the best mat
ing region we have a first-order transition. We have a
displayed~symbols ‘‘1’’ ! some critical points obtained in
Ref. 17 but in this case the matching with our results is
very good.

The last step we have done is the model’s analysis w
J50, which is very helpful to understand the errors intr
duced by the square approximation, because in this cas
have in hand the exact solution~Baxter model19,20!. Equa-
tions ~32! become so easy that they can be explicitly solv
and there is a perfect symmetry between F~or AF! and SAF
phases~let us observe that, whenJ50, we havehF5hAF and
so the ordered phase may be either ferromagnetic or ant
romagnetic!. The second-order transition line@solution of the
first equation of Eq.~32!# is given by

K452
1

2
ln~e2uK2u22e22uK2u!. ~33!

FIG. 8. Phase diagram in theK1 ,K2 plane: transition lines for
several values ofK4 ~solid line, second-order transition; dotted lin
first-order transition!. The thin solid straight line (K112K250) is
the image of the lineK/J521/2, which divides the F and SAF
regions~F region in the upper part of the layer and SAF region
the lower one!, while the dashed line in the SAF region is th
K450 transition line obtained by a Monte Carlo method~Ref. 5!.
Critical points obtained in Ref. 17 are also reported~symbols1! for
K450.0 ~a! andK450.5 ~b!.
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The above formula is valid only in an interval between tw
tricritical points @solutions of the system~32!#:

1

4
lnS 252A313

2 D<uK2u<
1

4
lnS 251A313

2 D . ~34!

This critical line, together with the~numerically evaluated!
first-order transition line and Baxter’s critical line,

K452
1

2
ln sinh~2uK2u!, ~35!

are reported in Fig. 9. It is worth noting that our transitio
line asymptotically coincides with Baxter’s one in the lim
K4→` ~the matching is already good forK4.0.5), but in
that region our solution predicts first-order transitions. T
same result can be seen in Fig. 10, where the transition t
peratures predicted by Baxter’s solution and by our CV
solution are represented as a function ofL/uKu. This result is
quite disconcerting and deserves further investigations
might be interesting to employ the CVM at higher ord
approximations in order to understand whether the first-or
transition regions reduce or not.

VI. CONCLUSIONS

In this paper we have considered an Ising model on
square lattice with NN, NNN, and plaquette interactions,
pecially investigating the effects of the last one on the cr
cal behavior of the system. We have carried out our inve
gation by using the CVM in the square approximation a
characterized the phase diagram with full details, also de
oping a nearly analytical way to determine critical and tr
ritical points. This model, without plaquette interactions, w
already studied with the CVM~at several increasing approx
mation orders! by Moran-Lopezet al.,11 who obtained first-
order transitions in a region of the model parameter sp
where other authors had found a nonuniversal critical beh

FIG. 9. J50 (K150) phase diagram in theK2 ,K4 plane~solid
line, second-order transition; dotted line, first-order transitio
dashed line, Baxter exact solution!. The letterP stands for ‘‘para-
magnetic phase.’’
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ior. Our work shows how much the plaquette interacti
term enlarges the first-order transition region. We have
tained several regions of the interaction parameter plan
which the system displays first-order~ferromagnetic-
paramagnetic and SAF-paramagnetic! transitions, either for
positive or negative values of the plaquette interaction
rameter, with a slight reentrance effect in the last case.
first-order transition regions have been delimited by de
mining the tricritical lines. We have also observed that

FIG. 10. J50 phase diagram in theL/uKu,kBT/uKu plane~solid
line, second-order transition; dotted line, first-order transiti
dashed-line, Baxter exact solution!. The ordered phase is ferromag
netic ~or antiferromagnetic! whenK.0 or superantiferromagneti
whenK,0. The letterP stands for ‘‘paramagnetic phase.’’
-
in

-
e
r-
e

local order of the frustrated phase~introduced by a negative
plaquette interaction parameter! holds at zero temperatur
only: at finite temperature the system becomes paramagn
Among other comparisons, the one with the exactly solv
Baxter model~vanishing NN interaction! is mainly interest-
ing. We have pointed out some coincidence of the transit
temperature for a region of the model parameters, even
that region we find a first-order transition. The first-ord
transitions seem to be an effect of the approximation.
order to better understand the reliability of the CVM in th
analysis of bidimensional systems~see, for example, Ref
22!, we think it might be useful to employ higher order a
proximations and to investigate whether and how the fi
order transition regions are modified. We are going to ca
on our work in this direction.

APPENDIX

In this Appendix we report the explicit expressions of t
derivatives ~30! and ~31! for the ferromagnetic and SAF
cases. In the ferromagnetic case we have

d2 ñ F

dm2 ~0!5
]2n F

]m2 ~0,R0!,

d4 ñ F

dm4 ~0!5
]4n F

]m4 ~0,R0!23S ]3n F

]m2]R
~0,R0! D 2Y]2n F

]R2 ~0,R0! ,

where

R05
2e2bh F1e2bhAF

e2bh F24e2bhS22e2bhSAF1e2bh AF

and

;

]2n F

]m2 ~0,R!5
1

2
e2bh F~12R!22

1

4
e2bhS~325R!~12R!2

1

2
e2bhSAF

~31R!~12R!2

~11R!
1
1

4
e2bhAF~12R!2,

]4n F

]m4 ~0,R!56e2bh F~12R!22
3

16
e2bhS~45267R!~12R!2

3

2
e2bhSAF

~716R13R2!~31R!~12R!2

~11R!3
1
9

4
e2bhAF~12R!2,

]2n F

]R2 ~0,R!5
1

2
e2bh F22e2bhS2e2bhSAF1

1

2
e2bh AF,

]3n F

]m2]R
~0,R!52e2bh F~12R!1

1

2
e2bhS~425R!1e2bhSAF

~413R1R2!~12R!

~11R!2
2
1

2
e2bh AF~12R!.

In the SAF case it is useful to substitute the parametersRr andRc with R̄ andDR, defined as follows:

R̄5
Rc1Rr

2
,

DR5
Rc2Rr

2
. ~A1!
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In this way the Hessian matrix in Eq.~31! becomes diagonal. We have

d2 ñ SAF

dm2 ~0!5
]2nSAF
]m2 ~0,R̄0 ,DR0!,

d4 ñ SAF

dm4 ~0!5
]4nSAF
]m4 ~0,R̄0 ,DR0!23F ]3nSAF

]m2]R̄
~0,R̄0 ,DR0!G2Y]2nSAF

]R̄2
~0,R̄0 ,DR0!

23F ]3nSAF
]m2]DR

~0,R̄0 ,DR0!G2Y]2nSAF
]DR2 ~0,R̄0 ,DR0! ,

whereR̄05R0, DR050, and

]2nSAF
]m2 ~0,R̄,0!52

1

4
e2bhF~31R̄!~12R̄!2

1

4
e2bhS

3118R̄225R̄4

12R̄2
1
3

4
e2bhSAF~12R̄2!2

1

4
e2bhAF~32R̄!~11R̄!,

]4nSAF
]m4 ~0,R̄,0!52

3

4
e2bhF

~31R̄!~12R̄!~716R̄13R̄2!

~11R̄!2
2

3

16
e2bhS

4511372R̄22386R̄41316R̄6267R̄8

~12R̄2!3

1
33

4
e2bhSAF~12R̄2!2

3

4
e2bhAF

~32R̄!~11R̄!~726R̄13R̄2!

~12R̄!2
,

]2nSAF

]R̄2
~0,R̄,0!5

1

2
e2bh F22e2bhS2e2bhSAF1

1

2
e2bhAF,

]3nSAF

]m2]R̄
~0,R̄,0!5

1

2
e2bh F~11R̄!2

1

2
e2bhS

21R̄210R̄315R̄5

~12R̄2!2
2
3

2
e2bhSAFR̄2

1

2
e2bhAF~12R̄!,

]2nSAF

]DR̄2
~0,R̄,0!52

1

2
e2bh F22e2bhS

11R̄2

12R̄2
1e2bhSAF2

1

2
e2bh AF,

]3nSAF

]m2]DR̄
~0,R̄,0!52e2bh F

1

11R̄
12e2bhS

118R̄22R̄4

~12R̄2!2
2
3

2
e2bhSAF12e2bhAF

1

12R̄
.

These are the formulas we used for numeric computation of second-order transition temperatures and tricritica
following the method described in Sec. IV.
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