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Instability and stratification of a two-component Bose-Einstein condensate
in a trapped ultracold gas
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The thermodynamic stability of a trapped Bose gas with a two-component condensate, e.g., a gas of atoms
in two distinct hyperfine states or a binary gaseous mixture, is considered on the basis of modified Gross-
Pitaevskii equations. Under certain conditions the system becomes unstable with respect to stratification, i.e.,
to spatial separation between the two condensates. One condensate assumes a donutlike spatial distribution,
while the other retains a centered distribution. Possible applications of the theory to recent experimental data
on two overlapping condensates §fRb are discussefS0163-1827)05630-(

The recent observation of Bose-Einstein condensatioerate Fermi gas ofHe atoms carried out by Greywall and
(BEO) and related phenomena in a system of magneticallfPaalanert® The phenomenon of spin diffusion fiHe fluids,
trapped ultracold atoms® rekindled interest in a subject which has reliably been observed and measured for more
whose basic theoretical framework was developed byhan 30 year¢see Ref. 8 and references thejein based on
BogolyuboV in the late 1940's. the fact that®He atoms with spin up and down form two

In this paper we will study quite unusual properties of adifferent and distinguishable components. The self-diffusion
two-component Bose-Einstein condensate localized in a pdsetween these two components is what one normally calls
tential trap. The behavior of a mixture of two Bose superflu-“spin diffusion” in He. If transitions between “up” and
ids does not reduce at all to a trivial doubling of equations‘down” states played a crucial role there would be no spin
for a one-component system but exhibits a number of qualidiffusion at all, by definition.
tatively new features. A general theoretical description of a Indeed, the arguments described above fully apply to a
two-component Bose quantum superfluid was given in sevsupercooled atomic vapor of alkali atoms that can certainly
eral articlegsee Refs. 5,6 and references thereindetailed  be in different hyperfine states. Despite the fact that the
theory of macroscopic properties of superfluid Was de- nuclear spin-flip transition rate in a low-density alkali metal
rived in 1989/ at time when most experimental efforts vapor is probably somewhat higher than in the case of gas-
throughout the world were aimed at achieving BEC in spin-eous atomic hydrogen, the longitudinal relaxation time re-
polarized atomic hydrogen H The description was based lated to weak processes of relativistic origin is still much
on the fact that under normal conditions gaseousi$ia longer than the BEC equilibration time determined by direct
mixture of atoms in two distinct hyperfine statéhe so- elastic collisions between the atoms. This circumstance al-
called|a) and|b) state$. Inasmuch as the process of longi- lows us to treat such a system as a two-component dilute
tudinal nuclear magnetic relaxation related to the relativisticsolution in which the number of particles in each species
dipole interaction is very slow, the system in question can be&emains unchanged for the duration of the experiment. Re-
considered as a two-component mixture of Bose particlesently the JILA group reported a successful experiment on
with different orientation of nuclear spin, in which the con- the creation of two strongly overlapping rarefied clouds of
centrations of both species are conserved over a period le§éRb atoms in the different hyperfine statgs=1,m=—1)
than the corresponding relaxation time. Such a state implieand |F =2,m=2), under conditions where both components
equilibrium momentum and energy distributions whereas theinderwent BEC phase transitich.
occupation numbers for the individual hyperfine states are Another natural objective for experimental study is a real
definitely out of equilibrium. Under these conditions the sys-mix of two different gases, i.e., a real binafgr, generally
tem behaves thermodynamically as a binary fluid consistingpeaking, multicomponentsolution. Experimentally BEC
of two different kinds of particles. Of course interactions has been achieved so far in three alkali metal vapors, namely,
within each component as well as interaction between thé Rb, Li, and Na(see references abovén theory, at least,
components play an extremely important role when considthis means we already have three combinations that may be
ering macroscopic properties of the system. A similar apstudied in experiment.
proach was applied earlier ftHe systems where atoms with ~ The physical nature of the phenomena we are interested in
nuclear spin up and down were considered as two differenis very simple. In a one-component system the criterion of
species provided the observation time scale was shothermodynamic stability reduces to the requirement that the
enough in comparison to the longitudinal spin-relaxationcompressibility (or the velocity of sound should not be
time. The thermodynamics of such a system in “partial” negative. In a multicomponent fluid the corresponding crite-
equilibrium appeared to be quite different than us(far  rion is much more complex and is equivalent to a number of
review and references see Refs.)8,Fhis was directly inequalities for various thermodynamic derivativésOne
proved in experiments on the velocity of sound in a degencan easily convince oneself that a rarefied mixture of two
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Bose gases, each of which is thermodynamically stable, caperiment. The theoretical description of a two-component
turn out to be unstable with respect to stratification into pureéBE condensate is based on the generalized Gross-Pitaevskii
species. Put simply, two such components will always try teequations GPB:1*’
separate spatially and stay far away from each other. In a
trap, however, such a “falling apart” and full separation are
impossible simply because both species are confined to the
same potential well. The spatial density distribution of both o ) ) )
components should now be found by minimizing the freeWherei=j, ®; is the macroscopic wave function of the
energy of the fluid in the trap. Inasmuch as the instability andth condensatey; is the chemical potential. The quantities
related structural transformation occur at temperatures welij are the coupling constants that in the case of a dilute
below the BEC critical point, one ends up with a quite pe-SyStém can be expressed in terms of the corresponding scat-
culiar spatial distribution of the two coexisting condensatef€ring lengthsu;; = 4m#2a;; /m. We consider here the case
fractions which can be directly detected in the trap. As willOf same atoms in different hyperfine states so that
be seen below the onset of instability depends essentially ofl2=Mm,=m wherem is the mass of the atom. Symmetry of
the magnitudes of thes-wave scattering lengths, the scattering matrix implies;,=u,;.
a;j, i,j=1,2 for elastic two-body collisions between all par- From the mathematical point of view the GRE) are
ticles in the two-component gaseous mixtuie., the a;; nonlinear coupled Schdmge_r equations. Similar equations
describe interactions both within and between the compo@re frequently used in OPUES to describe the so-called
nent3. Regretfully experimental data of sufficient accuracy ‘couplers,” nonlinear devices where light beams interact
on the magnitudes of the quantitieg (particularly ofa,) Wlth each other. Solutions to the coupled n_qnllnear Schro
are unavailable at present and a concrete prediction of wh&tinger equations are known to be very sensitive to the mag-
mixture should be taken as most suitable for experimentdpitudes of the coupling constants; . As was demonstrated
study cannot be made. However, it is worth emphasizing thaft Ref. 16 for one-dimensional coupled Sctiimger equa-
in the case of two hyperfine components of the same gadons. at certain threshold values of; solutions of quite
even a tiny difference in thewave scattering lengths due to different structure and symmetry can emerge. This critical
relativistic effects may lead to instability and related struc-Phenomenon is usually referred to as a bifurcation and the
tural transformation. threshold magnitudes of the parameters at which it occurs are
We will start with the Hamiltonian of a two-component Called the bifurcation points.

Bose gas in an external potential of the magnetic trap which The GPE(2) applied to an infinite two-condensate fluid in
has the form: the absence of an external potential are characterized by a

critical surface given bwizzulluzz. This can easily be
demonstrated when considering the spectrum of small exci-
tations about the constant solution to the GPE equations:

o 12
ihd;= _EA_Mi+Uii|(Di|2+uij|q)j|2+vi ®i, (2

2
Hzf—mizlzfvw(r)vqfi(r)d%
' wi=Uipi+uip;,  pi=|Pil% (3
+ 1 > f TP (r)U(r—r") Substituting®; = pX>+ ¢, into Eq.(2) we obtain after linear-
2i =12 ) ) ization:
XW(r")W(r)d3rd3r 2

. fi _
iﬁ(f’i:_(ﬁAﬁLMi) i+ U;ipi(2¢i+ &i) +Ujjpj i
£ 2| Vi (nw(nd, D

i=7,

+uij \/p|_pj(¢]+¢fj), (4)

where ¥, , are the standard Bose field operatdror the where the'bar denotes cqmplex conjugatior). The solu_ti'on to
first and second components, 1 and 2, respectively, antis equation can convenﬁntly be sought in the traditional
V;,i=1,2 denotes the external potentials for those compoform ¢;=A;expfkx—iwt)+Bjexp(~ikx+iwt) with constants
nents which, in principle, could differ from each other. OneA; andB; to be determined. Substituting this into E4) one

can easily see that the Hamiltoniél) conserves the number can easily obtain two branches of the excitation spectrum:
of particles in each of the two components.

A two-component system described by the Hamiltonian k | k?h?
(1) has two different transition temperaturds, and T, - (k)= \/ﬁ m+(u11pl+u22p2)
that are determined by the concentrations of the components.
If the temperaturd is higher than both critical temperatures UZ-— Ul 1z
then we have a normal mixture of two Bose gases and there X ( 1+ \/1+412—“22p1p2)
is no BEC at all. AtT;<T<T,, the system manifests itself (U13p1+ Ugopy)?

as a quantum solution of the normdl) component in the (5)
superfluid background of tH&) component. When lowering

the temperatureT<T.;<T.,, we finally enter the range The lower branch of the spectrum,. , becomes imaginary
where two interacting Bose-Einstein condensates coexist iwhen uZ,>uyjU,,, and the homogeneous solutiéd) is no

the fluid. In this paper we will focus on the latter case withlonger stable. It should be pointed out that the opposite in-
two coexisting condensates as this is most amenable to exequality,uiz< UqqU5,, is the standard condition of the ther-
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modynamic stability of the two-component syst&mlhus It should be emphasized that most rarefied binary gases
u7,=Uy,Uy, is a critical point for the GPE2) in the absence are stable. However, there is no law of nature to say that a
of an external potential. low-density mixture always has to be stable. There is a num-

When deriving the stability criterion we actually restrict ber of dilute two-component systems in which instabilities

T<T.,Te,. In other words, it has implicitly been assumed €V€N at high temperaturésee Ref. 9 and references thejein

that the system becomes unstable and stratifies only wef[fom that point of view this paper may be seen as revealing

below the BEC transition whereas above the transition temgnother example of such an instability at very low tempera-
es.

T ; - tur
perature the fluid is thermodynamically stable. The quesuorﬁ Now we will turn to the experimental situation where two

might arise whether this assumption leads to a loss of gen- i . .
. . . condensates are placed in a harmonic external potential of a
erality of the developed theory. Firstly, one can easily con-

. If that fied 1 t fluid is al magnetic trap. For the sake of simplicity we will consider a
vince onesell that a rarefied two-component fluid Is alway ymmetric trap and assume that the same external potential
stable at high enough temperatures.TAt T, T, when all

. o _acts on both components:
particles obey Maxwell-Boltzmann statistics, the statement is

obvious as the main contribution to the stability criterion 1

comes from the terms pertinent to an ideal gas. Virial cor- Vi(r)=Va(r)=V(r)= Emﬂzfz- (6)
rections related to the interaction, as well as the quantum-

statistical corrections, are always small in comparison to thd he existence of the critical point where the solutions change
ideal-gas terms at such high temperatures. Using the result8eir character, can most easily be seen in the case where the
of Ref. 7 one can also verify that the statement remains validlumber density of one of the componeritondensatgsis

at intermediate temperaturés=<T,; or T=T,;,i=1,2. Thus s_maII,N2< N%. .Under these circumstances the terms propor-
the mixture can lose its stability only at very low tempera-tional to|d,|* in Egs.(2) can be neglected, which immedi-
tures when the temperature-related contribution to the energ§t€y vields

becomes smaller than the terms related to the interaction be- 52

tween particles. As can be seen from Ref. 7, if the system is ihdi=| —5=A— i+ Uiy | D2+ V(r) | D;. 7
exactly at the point of instabilityy3,= u,,U,,, (or close to i 2m

atT=0 even a small phonon correction will make the mix- The first equationi=1, in Eq.(7) is nonlinear and has to be
ture stable at higher temperatures. Secondly, even if the mixsolved numerically or by means of some approximation. It
ture was unstable above the BEC transition this would nofvas shown in Ref. 17 that if 8a;;N;/I>1, where
render the results obtained in this paper meaningless. The- \z/mQ is the characteristic length of the harmonic po-

stratified structure found below corresponds to a minimum otential, a Thomas-Fermi-like approximation is of good accu-
the free energy. Therefore such a phase definitely could exiggcy:

(maybe as a metastable gm® matter what might happen to

the system at higher temperatures. 1
A further issue which may lead to confusion is the fol- |‘I’1(f)|2:u—

lowing. Ideal gases do not separate. Therefore, the instability 1

in question is related to nonideality of the gas mixture. ForThis solution is quite accurate provideds not too close to

that reason the general stability condition for a two-the turning pointro=v2u;/m€. Substituting Eq(8) into

component solutiotf should, in principle, involve the densi- the second equation= 2, in Eq.(7) we obtain

ties of both condensates. The above criterion, however, in-

volves only interaction constants;; which seems to .

contradict the general thermodynamic statement. In actual i d,= _ﬁA_I“ZJFU(r) @, ©)

fact, there is no contradiction here. One can demonstrate that

in the case of a rarefied gas mixture the instability criterion awvhere

T—0 would involve only the interaction constants. At low

,ul—V(l’), |r|<|’0
0, |r|>rg.

8

ﬁZ

densities the free enerdy of the Bogolyubov gas reduces to M ”_21+ ( 1— u_12> v(r), |rl<r
a quadratic form ifN; and N, (similar to the conventional U(r)= Yuy Uiy ' 0 (10
virial expansion. To have a minimum this form should be v(r), |r|>r,.

positive definite, i.e., dHy?F/dN;dN,||=0. Inasmuch as

F contains only quadratic terms M; the corresponding sta- If u;;>uj, the potential U(r) reaches its minimum at
bility criterion involves only density-independent constantsr =0. In the opposite case whetig;<u;,, the minimum on

in the order of approximation used. Of course, if one was tdhe curveU(r) occurs atry. This means that the maximum
take into account higher-order corrections in dengipt are  of the stationary solution of the linear equati@® with low-
responsible, e.g., for the interaction-dependent term in thest energythe peak of the spatial distribution of the conden-
BEC-transition temperature in the Bogolyubov gyas  sate fractioh will be located at the points=0 andr=r,
density-dependent contribution to the instability conditionrespectively. For that reason the second BE condensate is not
would come into effect. In the approximation used applyingcentered in the middle of the magnetic trap any longer but is
the general criterion of thermodynamic stability from Ref. 12displaced towards the peripheral part of the potential well
expressed in terms dfl; and N,, rather than through the forming a donutlike structure provided,;<u;,. The exact
pressure and concentration, yields the above result. numerical solution for Eg(8) confirms this result.
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In the more relevant case where both condensates have i
substantial number of particles, a linear approximation does
not work any more, and one has to seek a solution to the

original system of coupled equatiof®). As before, we can
try a Thomas-Fermi-like approximation as a starting point,
which in this case leads to the following equations:

Mmi—V(r)
0 |r|>ry,

wherer;=\2u;/mQZ. After simple algebra we obtain

e

Ir[<r;

Ui | D] 2+ uy| = (11)

2/5

3/2(y3
Q 2/5
[Ujj(uiiNi+Uiij) _U”(U”N]

16\/577
+ Ui N+ V() (U _Uii)] (ujuji—uf) "1,

12

where we made use of the conditions

N=ar [ |, =12 (13

The result is less satisfactory than in the previous case. The

reason is that the solutiqii2) can become negative near the
turning pointsr; in Eq. (11) as well as in between them. We

can still attempt to study the instabilities, however, if we use

the fact that the solutior§12) is correct in the vicinity of
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FIG. 1. Macroscopic wave functions, casg.

r/

r=0. Therefore if one of the condensate densities(19]: have a unique real solutian=1 whenu=1. Solving
|,(0)|2 or |®,(0)[2, is negative one can conclude that & linearized version of Eq(l5) by settingv=1+ év and

there is no stable solution with both densities having theit=1+ 6u yields

maxima atr =0. This conclusion leads to the condition

2/5
Ujj(uiiNi+Uiij) _Uij(U”
2
ij

N;+u;;N;)#®

=0. (19

Uiinj_U

As can be seen from E@l4), u;,u,,= U3, is a singular point
similar to the one in a uniform bulk two-component flui

However, a system confined to a trap exhibits another critical

point, at which the condition of thermodynamic stability is

not violated. To demonstrate this we will consider the two

following cases: (@) N;>N,,U;;>Uy,; (b)) N;>N,,ujq
<Uyy.

Without loss of generality we can se$,=1. Let quanti-
ties u,v, andx be defined asi;;=u,u;,=vJu,N,/N;=x.
Case (a) then corresponds ta>1x<1 and caselb) is
equivalent tou<1x<1. The Conditiom§2< Uq4U5, reduces
simply tov<<1. With this notation Eq(14) reads

(u+xv\u)?5>p Ju(x+vJu)?s,

u(x+ v Ju)?>>p Ju(u+xv Ju)?®. (15)

+1

X
C23x+7 (16

ov<

|su| <0,

which proves the above statement.

To study what the actual solutions of the GB are, we

d performed an exact numerical minimization of the Gross-

Pitaevskii free-energy functional:
F=fd3r s vops i S uioef
2m=, : 2if<h, ! !

+V<r)i§2|®i|2), (17)

provided conditions (13) are fulfiled. To obtain the
“ground” state we sought spherically symmetric solutions.
Parameters entering the functional in Efj7) were chosen
close to a typical experiment with RbQ/27=220 Hz,
a,,= 1008, with a, the Bohr radii. Also we sel; =1 and

N,=0.71C. In case(a) we chose B;;=u,,, while in case
(b) we setu;;=2u,,. The results of the minimization are

It is not difficult to solve these equations numerically andshown in Figs. 1 and 2, respectively.

demonstrate that in both casesy1 andu>1, one of these

As is shown in Fig. 1, the structure of the solutions

conditions is broken while the other is not. The same conchanges wheru,, crosses the *“line” u;,~0.91yuy U5).
clusion can also be derived analytically. One can easily conWhen this happens the peak of the second condensate frac-

vince oneself that the equations obtained from 8¢ by
equating the left-hand and the right-hand sifies, by con-

tion, ®,, is shifted from the center of the trap=0 towards
r=ry, although the number density at the center remains

sidering the equalities rather than the inequalities in Eqfinite, ®,(0)#0. If u;, crosses the second critical “line,”
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20 . . . . although the whole question of whether the stability criterion
was broken under the experimental conditions still remains
open. In order to answer this question it would be most help-
. ful if an experiment could achieve a much smaller separation
between the two interacting condensatesmall in compari-

son to the width of the spatial condensate distribytitiithe

stability condition is broken we predict a structural transfor-
mation in both condensate clouds, in particular, the forma-
- tion of a centered peak in the density distribution of one
condensate and of a donutlike distribution for the other.

Let us point out that in the case of a mixture of two

| ®

0 : = : : different hyperfine states such a structural transformation im-
55 — -v=0.8 ] plies a strongly inhomogeneous and quite unusual distribu-
— = -v=0.907 tion of nuclear magnetization, kind of a “domain wall,”
— 20F~=~_"\. 777 v=0.96 across the trap. Of course, in this case the inhomogeneous

o I~ distribution of the nuclear magnetization as well as the do-
’e‘ 15 nutlike structure cannot exist eternally, since the state under
- consideration does not correspond to full thermodynamic

10 1 equilibrium(see the introduction In the long run the nuclear
5+ spin-flip transitions will bring the system to full equilibrium
in which the fluid will possess one BE condensate only, so
0 L that Nozieres’ argumenitSabout the absence of degeneracy
0 2 4 6 8 10 in Bose-Einstein condensates hold. However, the corre-

sponding equilibration timdrelated to the weak magnetic
r / 1 interaction is usually much greater than the typical observa-
tion time in experiments which justifies the approach used in
this paper. In the case of a binary mixture of atoms of dif-
uiZZ u11u22’ the Condensate fraction Of the Second Compo_ferent k|nd the State in question iS in fu” thermodynamic
nent at the centerp,(0), vanishes. equilibrium and therefore can live forever.

The results for caséb) shown in Fig. 2 are similar to In all calculations presented above the presence of an ex-
those displayed in Fig. 1 except that here the componeriernal potential of the magnetic trap was essential for the
®,, which has a bigger number density, is pushed out of theffect. The trapping potentials are often highly inhomoge-
center of the trap. Thus one can conclude that as a result gleous which results in significant density gradients even
instability the condensate with a weaker self-interaction willabove the BEC transition. In the latter ca3ex T;,i=1,2,
occupy the “lowest” places in the external potential “land- the density distributions of both components can be found
scape.” The condensate pushed away from the center of thgirectly from the conditiong:;+ U= const. At low enough
trap will give rise to a donutlike structure where the condentemperatures almost all atoms belong to the BE condensate,
sate fraction at the center of the potential well is significantlyand their spatial distribution is given by the Gross-Pitaevskii
depleted or even zero. This is similar to the stratification ofequations with an external potential. All properties including
immiscible liquids with different mass densities in a gravita-the instability criterion can be inferred from these equations.

tional field. o The exact solutions for the density distributioje®ndensate
In the experiment cited above two BE condensateswerefractions) obtained by directly minimizing the Gross-

kept separated due to the difference in external potentialsbitaevsk“ free energy, are shown in Figs. 1 and 2. Note that

ngﬂgt\i/ééa%%\/lvgl\{:rr,eéhii ?ﬁ;?gszr:leo?ftﬁgitﬁ(;?%ennesa_lt_ﬁ% perturbative approach was not used here when numerically
authors of Ref. 11 attributed this to the fact that the two alculating these density profiles. In analytical calculations

condensates effectively repel each other or, in other wordsthe Thomas-Fermi-like approximation was used, in which

that the scattering length for the collisions between atoms ir‘ijenSIty gradients were taken into account explicitly. As can

the two different states is positive. The result of our calcula.P€ S€€N from the manuscript, the role of the trap does not

tions shows that such a change in the density profile may ilrledu_ce _to only a confining force; the trap causes significant
fact indicate that the scattering length in question falls intgdu@litative changes as well. As was demonstrated above, un-
the instability range. Unfortunately the separation of the coner certain conditiongeven in the case where the bulk mix-
densates in the experiméhtvas too large to state with cer- turein the absence of any external potential would definitely
tainty whether the instability observed in Ref. 11 manifestsbe stablgthe same mixture in the trap becomes unstable and
itself in the two-condensate system we investigate here. Tétratifies. Instead of there being a single point of thermody-
the best of our knowledge no reliable theoretical calculatiornamic instability in a two-component bulk fluid, one may
of the scattering length for elastic collisions of Rb atoms inend up with a number of extra critical points for a mixture in
differing hyperfine states is available. For that reason onea trap, and the whole picture becomes much more compli-
cannot exclude an explanation of the experimental data isated. This is probably the most important outcome of this
Ref. 11 in terms of the phenomenon discussed in this papepaper.

FIG. 2. Macroscopic wave functions, caés.
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In the case of a bulk fluid in the absence of any externaliquids (like water and petrglin the absence of gravity.
field the instability itself can definitely occur but it might However, this case, being relevant to no experimental geom-
result in a quite different structural transformation. One ofetry, is not attended to here.
the possible structures might be an intermittent chain of clus- , . ,
ters with a higher and lower condensate fraction density This work was supported in part by the Australian Re-
which is qualitatively similar to the case of two unmixable S€&rch Council under Grant No. A69600107.
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