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Instability and stratification of a two-component Bose-Einstein condensate
in a trapped ultracold gas

Eugene P. Bashkin and Alexei V. Vagov
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The thermodynamic stability of a trapped Bose gas with a two-component condensate, e.g., a gas of atoms
in two distinct hyperfine states or a binary gaseous mixture, is considered on the basis of modified Gross-
Pitaevskii equations. Under certain conditions the system becomes unstable with respect to stratification, i.e.,
to spatial separation between the two condensates. One condensate assumes a donutlike spatial distribution,
while the other retains a centered distribution. Possible applications of the theory to recent experimental data
on two overlapping condensates in87Rb are discussed.@S0163-1829~97!05630-0#
tio
al
t
b

f a
p
u
n
a
f
e

ts
in
d

i-
ti
b
le

n-
le
li
th
ar
s

tin
ns
th

sid
ap
h
re
ho
ion
l’’

en

d

ore

o
ion
alls

in

o a
inly
the
tal
as-
re-
ch
ct
al-

lute
ies
Re-
on
of

ts

al

ely,

y be

d in
of

the

te-
of

wo
The recent observation of Bose-Einstein condensa
~BEC! and related phenomena in a system of magnetic
trapped ultracold atoms1–3 rekindled interest in a subjec
whose basic theoretical framework was developed
Bogolyubov4 in the late 1940’s.

In this paper we will study quite unusual properties o
two-component Bose-Einstein condensate localized in a
tential trap. The behavior of a mixture of two Bose superfl
ids does not reduce at all to a trivial doubling of equatio
for a one-component system but exhibits a number of qu
tatively new features. A general theoretical description o
two-component Bose quantum superfluid was given in s
eral articles~see Refs. 5,6 and references therein!. A detailed
theory of macroscopic properties of superfluid H↓ was de-
rived in 1989,7 at time when most experimental effor
throughout the world were aimed at achieving BEC in sp
polarized atomic hydrogen H↓ . The description was base
on the fact that under normal conditions gaseous H↓ is a
mixture of atoms in two distinct hyperfine states~the so-
called ua& and ub& states!. Inasmuch as the process of long
tudinal nuclear magnetic relaxation related to the relativis
dipole interaction is very slow, the system in question can
considered as a two-component mixture of Bose partic
with different orientation of nuclear spin, in which the co
centrations of both species are conserved over a period
than the corresponding relaxation time. Such a state imp
equilibrium momentum and energy distributions whereas
occupation numbers for the individual hyperfine states
definitely out of equilibrium. Under these conditions the sy
tem behaves thermodynamically as a binary fluid consis
of two different kinds of particles. Of course interactio
within each component as well as interaction between
components play an extremely important role when con
ering macroscopic properties of the system. A similar
proach was applied earlier to3He systems where atoms wit
nuclear spin up and down were considered as two diffe
species provided the observation time scale was s
enough in comparison to the longitudinal spin-relaxat
time. The thermodynamics of such a system in ‘‘partia
equilibrium appeared to be quite different than usual~for
review and references see Refs. 8,9!. This was directly
proved in experiments on the velocity of sound in a deg
560163-1829/97/56~10!/6207~6!/$10.00
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erate Fermi gas of3He atoms carried out by Greywall an
Paalanen.10 The phenomenon of spin diffusion in3He fluids,
which has reliably been observed and measured for m
than 30 years~see Ref. 8 and references therein!, is based on
the fact that3He atoms with spin up and down form tw
different and distinguishable components. The self-diffus
between these two components is what one normally c
‘‘spin diffusion’’ in 3He. If transitions between ‘‘up’’ and
‘‘down’’ states played a crucial role there would be no sp
diffusion at all, by definition.

Indeed, the arguments described above fully apply t
supercooled atomic vapor of alkali atoms that can certa
be in different hyperfine states. Despite the fact that
nuclear spin-flip transition rate in a low-density alkali me
vapor is probably somewhat higher than in the case of g
eous atomic hydrogen, the longitudinal relaxation time
lated to weak processes of relativistic origin is still mu
longer than the BEC equilibration time determined by dire
elastic collisions between the atoms. This circumstance
lows us to treat such a system as a two-component di
solution in which the number of particles in each spec
remains unchanged for the duration of the experiment.
cently the JILA group reported a successful experiment
the creation of two strongly overlapping rarefied clouds
87Rb atoms in the different hyperfine states,uF51,m521&
and uF52,m52&, under conditions where both componen
underwent BEC phase transition.11

Another natural objective for experimental study is a re
mix of two different gases, i.e., a real binary~or, generally
speaking, multicomponent! solution. Experimentally BEC
has been achieved so far in three alkali metal vapors, nam
in Rb, Li, and Na~see references above!. In theory, at least,
this means we already have three combinations that ma
studied in experiment.

The physical nature of the phenomena we are intereste
is very simple. In a one-component system the criterion
thermodynamic stability reduces to the requirement that
compressibility ~or the velocity of sound! should not be
negative. In a multicomponent fluid the corresponding cri
rion is much more complex and is equivalent to a number
inequalities for various thermodynamic derivatives.12 One
can easily convince oneself that a rarefied mixture of t
6207 © 1997 The American Physical Society
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6208 56EUGENE P. BASHKIN AND ALEXEI V. VAGOV
Bose gases, each of which is thermodynamically stable,
turn out to be unstable with respect to stratification into p
species. Put simply, two such components will always try
separate spatially and stay far away from each other.
trap, however, such a ‘‘falling apart’’ and full separation a
impossible simply because both species are confined to
same potential well. The spatial density distribution of bo
components should now be found by minimizing the fr
energy of the fluid in the trap. Inasmuch as the instability a
related structural transformation occur at temperatures
below the BEC critical point, one ends up with a quite p
culiar spatial distribution of the two coexisting condens
fractions which can be directly detected in the trap. As w
be seen below the onset of instability depends essentiall
the magnitudes of the s-wave scattering lengths
ai j , i , j 51,2 for elastic two-body collisions between all pa
ticles in the two-component gaseous mixture~i.e., the ai j
describe interactions both within and between the com
nents!. Regretfully experimental data of sufficient accura
on the magnitudes of the quantitiesai j ~particularly ofa12)
are unavailable at present and a concrete prediction of w
mixture should be taken as most suitable for experime
study cannot be made. However, it is worth emphasizing
in the case of two hyperfine components of the same
even a tiny difference in thes-wave scattering lengths due t
relativistic effects may lead to instability and related stru
tural transformation.

We will start with the Hamiltonian of a two-componen
Bose gas in an external potential of the magnetic trap wh
has the form:

H5
\2

2m (
i 51,2

E ¹C i
1~r !¹C i~r !d3r

1
1

2 (
i , j 51,2

E C i
1~r !C j

1~r 8!Ui j ~r 2r 8!

3C j~r 8!C i~r !d3rd3r 8

1 (
i 51,2

E Vi~r !C i
1~r !C i~r !d3r , ~1!

where C1,2 are the standard Bose field operators13 for the
first and second components, 1 and 2, respectively,
Vi ,i 51,2 denotes the external potentials for those com
nents which, in principle, could differ from each other. O
can easily see that the Hamiltonian~1! conserves the numbe
of particles in each of the two components.

A two-component system described by the Hamilton
~1! has two different transition temperatures,Tc1 and Tc2,7

that are determined by the concentrations of the compone
If the temperatureT is higher than both critical temperature
then we have a normal mixture of two Bose gases and th
is no BEC at all. AtTc1,T,Tc2 the system manifests itse
as a quantum solution of the normalu1& component in the
superfluid background of theu2& component. When lowering
the temperature,T,Tc1,Tc2, we finally enter the range
where two interacting Bose-Einstein condensates coexis
the fluid. In this paper we will focus on the latter case w
two coexisting condensates as this is most amenable to
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periment. The theoretical description of a two-compon
BE condensate is based on the generalized Gross-Pitae
equations~GPE!:14,7

i\Ḟ i5S 2
\2

2m
D2m i1uii uF i u21ui j uF j u21Vi DF i , ~2!

where iÞ j , F i is the macroscopic wave function of th
i th condensate,m i is the chemical potential. The quantitie
ui j are the coupling constants that in the case of a dil
system can be expressed in terms of the corresponding
tering lengths,ui j 54p\2ai j /m. We consider here the cas
of same atoms in different hyperfine states so t
m15m25m wherem is the mass of the atom. Symmetry o
the scattering matrix impliesu125u21.

From the mathematical point of view the GPE~2! are
nonlinear coupled Schro¨dinger equations. Similar equation
are frequently used in optics15 to describe the so-called
‘‘couplers,’’ nonlinear devices where light beams intera
with each other. Solutions to the coupled nonlinear Sch¨-
dinger equations are known to be very sensitive to the m
nitudes of the coupling constants,ui j . As was demonstrated
in Ref. 16 for one-dimensional coupled Schro¨dinger equa-
tions, at certain threshold values ofui j solutions of quite
different structure and symmetry can emerge. This criti
phenomenon is usually referred to as a bifurcation and
threshold magnitudes of the parameters at which it occurs
called the bifurcation points.

The GPE~2! applied to an infinite two-condensate fluid
the absence of an external potential are characterized
critical surface given byu12

2 5u11u22. This can easily be
demonstrated when considering the spectrum of small e
tations about the constant solution to the GPE equations

m i5uii r i1ui j r j , r i5uF i u2. ~3!

SubstitutingF i5r i
1/21f i into Eq.~2! we obtain after linear-

ization:

i\ḟ i52S \2

2m
D1m i Df i1uii r i~2f i1f̄ i !1ui j r jf i

1ui jAr ir j~f j1f̄ j !, ~4!

where the bar denotes complex conjugation. The solution
this equation can conveniently be sought in the traditio
form f i5Aiexp(ikx2ivt)1B̄iexp(2ikx1ivt) with constants
Ai andBi to be determined. Substituting this into Eq.~4! one
can easily obtain two branches of the excitation spectrum

v6~k!5
k

A2m
F k2\2

2m
1~u11r11u22r2!

3S 16A114
u12

2 2u11u22

~u11r11u22r2!2
r1r2D G 1/2

.

~5!

The lower branch of the spectrum,v2 , becomes imaginary
when u12

2 .u11u22, and the homogeneous solution~3! is no
longer stable. It should be pointed out that the opposite
equality,u12

2 ,u11u22, is the standard condition of the the
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56 6209INSTABILITY AND STRATIFICATION OF A TWO- . . .
modynamic stability of the two-component system.12 Thus
u12

2 5u11u22 is a critical point for the GPE~2! in the absence
of an external potential.

When deriving the stability criterion we actually restri
ourselves to considering the low-temperature lim
T!Tc1 ,Tc2. In other words, it has implicitly been assume
that the system becomes unstable and stratifies only
below the BEC transition whereas above the transition te
perature the fluid is thermodynamically stable. The ques
might arise whether this assumption leads to a loss of g
erality of the developed theory. Firstly, one can easily c
vince oneself that a rarefied two-component fluid is alwa
stable at high enough temperatures. AtT@Tc1 ,Tc2 when all
particles obey Maxwell-Boltzmann statistics, the statemen
obvious as the main contribution to the stability criteri
comes from the terms pertinent to an ideal gas. Virial c
rections related to the interaction, as well as the quant
statistical corrections, are always small in comparison to
ideal-gas terms at such high temperatures. Using the re
of Ref. 7 one can also verify that the statement remains v
at intermediate temperatures,T<Tci or T>Tci ,i 51,2. Thus
the mixture can lose its stability only at very low temper
tures when the temperature-related contribution to the en
becomes smaller than the terms related to the interaction
tween particles. As can be seen from Ref. 7, if the system
exactly at the point of instability,u12

2 5u11u22, ~or close to it!
at T50 even a small phonon correction will make the m
ture stable at higher temperatures. Secondly, even if the m
ture was unstable above the BEC transition this would
render the results obtained in this paper meaningless.
stratified structure found below corresponds to a minimum
the free energy. Therefore such a phase definitely could e
~maybe as a metastable one! no matter what might happen t
the system at higher temperatures.

A further issue which may lead to confusion is the fo
lowing. Ideal gases do not separate. Therefore, the instab
in question is related to nonideality of the gas mixture. F
that reason the general stability condition for a tw
component solution12 should, in principle, involve the dens
ties of both condensates. The above criterion, however,
volves only interaction constantsui j which seems to
contradict the general thermodynamic statement. In ac
fact, there is no contradiction here. One can demonstrate
in the case of a rarefied gas mixture the instability criterion
T→0 would involve only the interaction constants. At lo
densities the free energyF of the Bogolyubov gas reduces t
a quadratic form inN1 and N2 ~similar to the conventiona
virial expansion!. To have a minimum this form should b
positive definite, i.e., detuu]2F/]Ni]Nkuu>0. Inasmuch as
F contains only quadratic terms inNi the corresponding sta
bility criterion involves only density-independent constan
in the order of approximation used. Of course, if one was
take into account higher-order corrections in density~that are
responsible, e.g., for the interaction-dependent term in
BEC-transition temperature in the Bogolyubov gas!, a
density-dependent contribution to the instability conditi
would come into effect. In the approximation used applyi
the general criterion of thermodynamic stability from Ref.
expressed in terms ofN1 and N2, rather than through the
pressure and concentration, yields the above result.
t
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It should be emphasized that most rarefied binary ga
are stable. However, there is no law of nature to say tha
low-density mixture always has to be stable. There is a nu
ber of dilute two-component systems in which instabiliti
and related phase transformations can exhibit themse
even at high temperatures~see Ref. 9 and references therein!.
From that point of view this paper may be seen as revea
another example of such an instability at very low tempe
tures.

Now we will turn to the experimental situation where tw
condensates are placed in a harmonic external potential
magnetic trap. For the sake of simplicity we will consider
symmetric trap and assume that the same external pote
acts on both components:

V1~r !5V2~r !5V~r !5
1

2
mV2r 2. ~6!

The existence of the critical point where the solutions cha
their character, can most easily be seen in the case wher
number density of one of the components~condensates! is
small,N2!N1. Under these circumstances the terms prop
tional to uF2u2 in Eqs.~2! can be neglected, which immed
ately yields

i\Ḟ i5S 2
\2

2m
D2m i1ui1uF1u21V~r ! DF i . ~7!

The first equation,i 51, in Eq.~7! is nonlinear and has to b
solved numerically or by means of some approximation
was shown in Ref. 17 that if 8pa11N1 / l @1, where
l 5A\/mV is the characteristic length of the harmonic p
tential, a Thomas-Fermi-like approximation is of good acc
racy:

uF1~r !u25
1

u11
H m12V~r !, ur u,r 0

0, ur u.r 0 .
~8!

This solution is quite accurate providedr is not too close to
the turning point,r 05A2m1 /mV. Substituting Eq.~8! into
the second equation,i 52, in Eq. ~7! we obtain

i\Ḟ25S 2
\2

2m
D2m21U~r ! DF2 , ~9!

where

U~r !5H m1

u21

u11
1S 12

u12

u11
DV~r !, ur u,r 0

V~r !, ur u.r 0 .

~10!

If u11.u12 the potential U(r ) reaches its minimum a
r 50. In the opposite case whereu11,u12, the minimum on
the curveU(r ) occurs atr 0. This means that the maximum
of the stationary solution of the linear equation~9! with low-
est energy~the peak of the spatial distribution of the conde
sate fraction! will be located at the pointsr 50 and r 5r 0,
respectively. For that reason the second BE condensate i
centered in the middle of the magnetic trap any longer bu
displaced towards the peripheral part of the potential w
forming a donutlike structure providedu11,u12. The exact
numerical solution for Eq.~8! confirms this result.
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6210 56EUGENE P. BASHKIN AND ALEXEI V. VAGOV
In the more relevant case where both condensates ha
substantial number of particles, a linear approximation d
not work any more, and one has to seek a solution to
original system of coupled equations~2!. As before, we can
try a Thomas-Fermi-like approximation as a starting po
which in this case leads to the following equations:

uii uF i u21ui j uF j u25H m i2V~r ! ur u,r i

0 ur u.r i ,
~11!

wherer i5A2m i /mV2. After simple algebra we obtain

uF i u25H S 15m3/2V3

16A2p
D 2/5

@uj j ~uii Ni1ui j Nj !
2/52ui j ~uj j Nj

1ui j Ni !
2/5#1V~r !~ui j 2uii !J ~uii uj j 2ui j

2 !21,

~12!

where we made use of the conditions

Ni54pE uF i u2d3r , i 51,2. ~13!

The result is less satisfactory than in the previous case.
reason is that the solution~12! can become negative near th
turning pointsr i in Eq. ~11! as well as in between them. W
can still attempt to study the instabilities, however, if we u
the fact that the solution~12! is correct in the vicinity of
r 50. Therefore if one of the condensate densiti
uF1(0)u2 or uF2(0)u2, is negative one can conclude th
there is no stable solution with both densities having th
maxima atr 50. This conclusion leads to the condition

uj j ~uii Ni1ui j Nj !
2/52ui j ~uj j Nj1ui j Ni !

2/5

uii uj j 2ui j
2

>0. ~14!

As can be seen from Eq.~14!, u11u225u12
2 is a singular point

similar to the one in a uniform bulk two-component flui
However, a system confined to a trap exhibits another crit
point, at which the condition of thermodynamic stability
not violated. To demonstrate this we will consider the tw
following cases: ~a! N1.N2 ,u11.u22; ~b! N1.N2 ,u11
,u22.

Without loss of generality we can setu2251. Let quanti-
ties u,v, and x be defined asu115u,u125vAu,N2 /N15x.
Case ~a! then corresponds tou.1,x,1 and case~b! is
equivalent tou,1,x,1. The conditionu12

2 ,u11u22 reduces
simply to v,1. With this notation Eq.~14! reads

~u1xvAu!2/5.vAu~x1vAu!2/5,

u~x1vAu!2/5.vAu~u1xvAu!2/5. ~15!

It is not difficult to solve these equations numerically a
demonstrate that in both cases,u,1 andu.1, one of these
conditions is broken while the other is not. The same c
clusion can also be derived analytically. One can easily c
vince oneself that the equations obtained from Eq.~15! by
equating the left-hand and the right-hand sides@i.e., by con-
sidering the equalities rather than the inequalities in
e a
s
e

t,

he

e

,
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al

-
n-

.

~15!#, have a unique real solutionv51 whenu51. Solving
a linearized version of Eq.~15! by settingv511dv and
u511du yields

dv,2
3

2

x11

3x17
uduu,0, ~16!

which proves the above statement.
To study what the actual solutions of the GPE~2! are, we

performed an exact numerical minimization of the Gro
Pitaevskii free-energy functional:

F5E d3r S \2

2m (
i 51,2

u¹F i u21
1

2 (
i , j 51,2

ui j uF i u2uF j u2

1V~r ! (
i 51,2

uF i u2D , ~17!

provided conditions ~13! are fulfilled. To obtain the
‘‘ground’’ state we sought spherically symmetric solution
Parameters entering the functional in Eq.~17! were chosen
close to a typical experiment with Rb,1 V/2p5220 Hz,
a225100a0 with a0 the Bohr radii. Also we setN15106 and
N250.7106. In case~a! we chose 2u115u22, while in case
~b! we setu1152u22. The results of the minimization ar
shown in Figs. 1 and 2, respectively.

As is shown in Fig. 1, the structure of the solutio
changes whenu12 crosses the ‘‘line’’ u12'0.91Au11u22.
When this happens the peak of the second condensate
tion, F2, is shifted from the center of the trapr 50 towards
r 5r 0, although the number density at the center rema
finite, F2(0)Þ0. If u12 crosses the second critical ‘‘line,’

FIG. 1. Macroscopic wave functions, case~a!.
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56 6211INSTABILITY AND STRATIFICATION OF A TWO- . . .
u12
2 5u11u22, the condensate fraction of the second com

nent at the center,F2(0), vanishes.
The results for case~b! shown in Fig. 2 are similar to

those displayed in Fig. 1 except that here the compon
F1, which has a bigger number density, is pushed out of
center of the trap. Thus one can conclude that as a resu
instability the condensate with a weaker self-interaction w
occupy the ‘‘lowest’’ places in the external potential ‘‘land
scape.’’ The condensate pushed away from the center o
trap will give rise to a donutlike structure where the conde
sate fraction at the center of the potential well is significan
depleted or even zero. This is similar to the stratification
immiscible liquids with different mass densities in a gravi
tional field.

In the experiment11 cited above two BE condensates we
kept separated due to the difference in external potent
V1 and V2. However, the density profile of one condensa
was noticeably altered in the presence of the other one.
authors of Ref. 11 attributed this to the fact that the t
condensates effectively repel each other or, in other wo
that the scattering length for the collisions between atom
the two different states is positive. The result of our calcu
tions shows that such a change in the density profile ma
fact indicate that the scattering length in question falls i
the instability range. Unfortunately the separation of the c
densates in the experiment11 was too large to state with cer
tainty whether the instability observed in Ref. 11 manife
itself in the two-condensate system we investigate here
the best of our knowledge no reliable theoretical calculat
of the scattering length for elastic collisions of Rb atoms
differing hyperfine states is available. For that reason
cannot exclude an explanation of the experimental data
Ref. 11 in terms of the phenomenon discussed in this pa

FIG. 2. Macroscopic wave functions, case~b!.
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although the whole question of whether the stability criteri
was broken under the experimental conditions still rema
open. In order to answer this question it would be most he
ful if an experiment could achieve a much smaller separa
between the two interacting condensates~small in compari-
son to the width of the spatial condensate distribution!. If the
stability condition is broken we predict a structural transfo
mation in both condensate clouds, in particular, the form
tion of a centered peak in the density distribution of o
condensate and of a donutlike distribution for the other.

Let us point out that in the case of a mixture of tw
different hyperfine states such a structural transformation
plies a strongly inhomogeneous and quite unusual distr
tion of nuclear magnetization, kind of a ‘‘domain wall,
across the trap. Of course, in this case the inhomogene
distribution of the nuclear magnetization as well as the
nutlike structure cannot exist eternally, since the state un
consideration does not correspond to full thermodynam
equilibrium~see the introduction!. In the long run the nuclea
spin-flip transitions will bring the system to full equilibrium
in which the fluid will possess one BE condensate only,
that Nozieres’ arguments18 about the absence of degenera
in Bose-Einstein condensates hold. However, the co
sponding equilibration time~related to the weak magneti
interaction! is usually much greater than the typical observ
tion time in experiments which justifies the approach used
this paper. In the case of a binary mixture of atoms of d
ferent kind the state in question is in full thermodynam
equilibrium and therefore can live forever.

In all calculations presented above the presence of an
ternal potential of the magnetic trap was essential for
effect. The trapping potentials are often highly inhomog
neous which results in significant density gradients ev
above the BEC transition. In the latter case,T.Tci ,i 51,2,
the density distributions of both components can be fou
directly from the conditionsm i1U5 const. At low enough
temperatures almost all atoms belong to the BE condens
and their spatial distribution is given by the Gross-Pitaevs
equations with an external potential. All properties includi
the instability criterion can be inferred from these equatio
The exact solutions for the density distributions~condensate
fractions! obtained by directly minimizing the Gross
Pitaevskii free energy, are shown in Figs. 1 and 2. Note t
a perturbative approach was not used here when numeric
calculating these density profiles. In analytical calculatio
the Thomas-Fermi-like approximation was used, in wh
density gradients were taken into account explicitly. As c
be seen from the manuscript, the role of the trap does
reduce to only a confining force; the trap causes signific
qualitative changes as well. As was demonstrated above
der certain conditions~even in the case where the bulk mix
ture in the absence of any external potential would definit
be stable! the same mixture in the trap becomes unstable
stratifies. Instead of there being a single point of thermo
namic instability in a two-component bulk fluid, one ma
end up with a number of extra critical points for a mixture
a trap, and the whole picture becomes much more com
cated. This is probably the most important outcome of t
paper.
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In the case of a bulk fluid in the absence of any exter
field the instability itself can definitely occur but it migh
result in a quite different structural transformation. One
the possible structures might be an intermittent chain of c
ters with a higher and lower condensate fraction den
which is qualitatively similar to the case of two unmixab
n

y

.

l

f
s-
y

liquids ~like water and petrol! in the absence of gravity
However, this case, being relevant to no experimental ge
etry, is not attended to here.
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